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Abstract

Attractive ultracold fermions trapped in a one-dimensional periodically shaken optical lattice are con-
sidered. For an appropriate resonant shaking, a dimerized structure emerges for which the system
realizes paradigmatic physics described by the Rice-Mele model. The emergent nature of the system
together with density fluctuations or controlled modifications of lattice filling allow for the creation of
defects. Those defects lead to topologically protected localized modes carrying the fractional particle
number. Their possible experimental signatures are discussed.

1. Introduction

Conducting polymers [ 1] are particularly interesting one-dimensional systems due to their unusual topological
properties characterized by a nontrivial Zak phase [2, 3], degenerate ground states, topological solitons [4] and a
fractional charge [5]. Such polymers can be described in a simple manner by fermions moving in a lattice with
dimerized tunneling amplitudes [4, 6]. The corresponding models can be constructed with ultracold atoms in
optical lattices which give unprecedented tunability and control over the system parameters. Recently, ultracold
bosons in optical superlattices were used to prepare experimentally 7] a model of conducting polymers (namely
the Rice-Mele (RM) model [6], one of the simplest 1D models of nontrivial topology) and the corresponding
Zak phase was measured. In a parallel work topological edge states in a similar potential were studied
theoretically [8].

Models based on superlattice potentials are relatively easy to realize in experiment, however, they have also
some limitations. An optical lattice potential is typically defect-free due to its origin, which creates a difficulty in
realizing topological solitons. Such solitons typically emerge on defects that are the domain walls between
topologically distinct phases. Forming the signature of nontrivial topology, they are the essence of the RM
model.

In the present paper, we show how to realize the RM model with controlled defects using a system of
attractive ultracold fermions [9-11] in a simple shaken one-dimensional optical lattice. Shaking, i.e. the periodic
driving of system parameters (e.g. the optical potential depth or position), has been successfully implemented in
cold atomic systems in order to induce various effects [ 12—17] following the seminal proposition [18]. In [19] we
have shown that such a shaking combined with attractive interactions in a two-dimensional triangular lattice can
result in an emergent Dice structure with topological properties. Here, we show that in the case of a one-
dimensional system there exist a regime of parameters where atoms self-organize into a dimerized structure. The
ground state is then two-fold degenerate. The corresponding states represent two topologically distinct
dimerized configurations. Due to the emergent nature of the dimerized state, both configurations, separated by
domain walls, may be simultaneously present in the lattice. Moreover, by controlling the filling fraction,
impurities may be added to the configurations. Such defects—domain walls and impurities—naturally give rise
to topologically protected solitons or bound states with a fractionalized particle number.
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2. System

Our system consists of a two-species (denoted as |, 1) fermionic mixture trapped in an optical lattice potential
Vi =V sin®(zx/a) + V) (sin’(zy/a) + sin’(nz/a)), where ais the lattice constant. For V; > V| the system is
effectively one-dimensional. To control the system we use a familiar lateral (horizontal) lattice shaking [18].
Importantly, however, we introduce also periodic changes in the potential depth which we call here vertical
shaking:Vjj = V + 6V, cos wt. 6V, is an amplitude of the lattice depth shaking and w the frequency, common to
the lateral and vertical shaking. We assume fermionic species of equal mass, M, with different fillings: n) ~ 1and
ny & 1/2. The interaction between atoms of different species is assumed to be attractive. In effect fermions of
different spin tend to pair creating composites [20] with the density given by the minority 1-fermion densityn'.
We include p-bands in the model and effectively have the composites that occupy s-bands and excess | -fermions
that may occupy both p and s-bands.

The Rice-Mele model [6] contains two essential ingredients: two types of sites and asymmetric couplings
between them. The former is realized in our model by a density-wave self-arranged configuration of composites.
Such a configuration is energetically favorable when intra-band tunnelings are switched off by appropriate
adjustment of shaking amplitude while making density-dependent inter-band tunneling resonant by adjusting
the shaking frequency. To obtain asymmetric coupling with nearest neighbours the additional vertical shaking is
necessary with an appropriate phase shift with respect to standard lateral shaking. This phase difference breaks
the left-right symmetry of the problem.

To write the effective Hamiltonian of the model, we construct the time dependent Hamiltonian, H(¢) and
average it in time [18]. The minimal Hamiltonian of our system contains tunnelings, density induced
tunnelings, renormalized interactions and shaking: H = Hun + Haie + Hine + Hg, (1), where:

Htun =Jo Z[nggj + §T,'T§T]':| + 5 Zﬁ;ﬁj’
(if) (if)
Haye= Y| Tosy. (1 + 12;)8y, + Tp (A + Al)p.
dit 05Tl~ n; n] ST]- 1P, n; n] p]
(if)
+ T (G = 0B 15; + he) |
Hin =1, zﬁiTﬁi + U Zﬁfﬁiﬁf + E Eﬁjlf’p
- i i

Hg (1) = K cos a)t2]<n]T + §]T§]- +13]Tf)].> + 8E; cos (wt + @) Zﬁi’rlgi, (1)
i i

Here, $/, 3, 13: , b, are creation and annihilation operators of | -fermions in the s- and p-bands respectively, while
szT,-, §; are s-band creation and annihilation operators for the 1-fermion. Accordingly, 7;, 71 and 7} are the
corresponding number operators. In the on-site interaction Hamiltonian, H.,, the renormalized self-energy of
the composites is denoted by Uy, the on-site renormalized interaction between the composite and an excess |
-fermion is characterized by U}, and E| is the energy of the p-band. The modulus of a negative U, value is the
largest interaction energy scale assumed in the model with| U;| < |Up| (this follows from properties of Wannier
functions, see appendix A). Attractive interactions between two species lead then to the creation of composites in
the sband. All the tunneling amplitudes are assumed to be much smaller than . The range of @ values will be set
by the required resonance condition (2).

Hun corresponds to standard tunnelings with amplitudes ], and J; for the s and p bands while Hg;, describes
often neglected density induced tunnelings ([21-24]) with amplitudes T;. Observe that t-tunneling from site i to
site j may happen only when there is a composite on site i and a free | -fermion in the s-band on site j. In effect,
this tunneling creates a composite on site j. In the case of | -fermions, the analogical situation does not take place
because there are no free 1-fermions. The last—most important for the mechanism discussed later—term of
Hyg;; couples sand p levels and describes process occurring when a composite-empty site adjoins a composite-
occupied one (for details see appendix A).

Hy (t)isa time-periodic Hamiltonian with K denoting the amplitude of the lateral lattice shaking while 6E;
denotes the strength of the time-variation of single-particle energy in the p-band which is induced by periodic
driving of the lattice depth while ¢ is a relative phase between the lateral and vertical drivings. Additional effects
due to the vertical shaking that are negligible for moderate 6V, are discussed in appendices.

Next, we describe the averaging process (see appendix B for more details). First, we apply the unitary

transformation, U = exp [—iHjyt — i fo Hg, (') dt’] that gives us a new Hamiltonian

o =00 -0’ [d, U]. In comparison with H the shaking and the on-site interaction parts are removed by
U while the tunneling part is dressed in oscillating terms. We aim at the situation when inter-band density
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dependent sp tunneling makes the dominant tunneling contribution. Accordingly, we assume the resonant
condition

Ei + U= Now + 24, (2)

where Nisinteger and A < @ is the detuning and we time-average the Hamiltonian. In the process fast
oscillating terms ~1/w are neglected. Necessarily the shaking frequency w is chosen large compared to all the
tunneling amplitudes. We obtain the effective Hamiltonian Hegr = Hyyn + Haie + Hons, With

Htun = fO Zl:g;rg] + §T1-T§Tj] + jl Zﬁfﬁ]
(i) (i)
Ay = Z[m;(ﬁi + )5+ Tip! (Af + ﬁ})ﬁj]
(i)
+ Tor 3 (b, + hec) = Tt 2 (i + hoct)

1

Hons=A Y pp, — A Y 3s. (3)
(i) (i)

The intra-band tunneling parts above are modified in the standard manner [18]: ; = J, (K / a)) J; (aswell as

=% (K/a)) 1)) forl € {0, 1}, where J, (K/a)) is the ordinary Bessel function of order zero. In the case of the
inter-band part, time averaging brings us, however, a new effect. The inter-band hopping is modified by the
Bessel function of order N with different amplitudes depending on the direction of this process (+ or —):
Ty = I (Ai/w) Ty, where A* = \/ (K + 8E; cos ¢)* + K? sin® ¢. These amplitudes depend on the relative
phase of the drivings, ¢, which, we believe, can be controlled in real experiments with a good precision. The
detuning, A, leads to residual on-site potential Hs.

Now we can tune the hopping parameters. The intra-band amplitudes may be made very small by choosing
K/w such that J, (K/w) ~ 0. For slightly different K/w ss hopping remains negligible (so the composites may be
still considered as immobile) while the typically much larger pp hopping start to plays a role and has to be taken

into account. At the same time the inter-band hopping is large since it depends on Bessel functions of order
N # 0.
From now on we set the recoil energy, Ex = h*/(8Ma?), as an energy unit and consider the ground state
structure of H on an exemplary case of lattice depths Vjy = 8, V| = 25 and interaction strength
a = a;/a = —0.1 (with a;being the (negative) scattering length). We choose the vertical shaking to be in phase

with the lateral one (¢ = 0), giving Tg; > T0+1. In the region with dominant inter-orbital tunneling, we expect
that the ground state is given by the density wave configuration (DW) with every second side occupied by
composites. The reason for that is quite simple. In such a configuration neighboring sites may contain excess
fermions only and the sp tunneling lowers the energy for such a situation. On the other hand if two composites
reside in the consecutive sites then the inter-band sp tunneling would break one of the composites (which costs
the energy) while intraband pp tunneling for excess fermions is assumed small so it cannot lower the energy. To
confirm that prediction, we first assume the composites to be immobilized due to the negligible value of J and T,
when compared to other hopping amplitudes in the whole regime under consideration. Then finding the
ground state configuration boils down to solving the single particle Hamiltonian for a group of all possible
configurations of 71, (that determines composite distribution). Within the approximation of immobilized 1
-fermions, we can replace their number operators by c-numbers ;' = 1, 0 depending on the presence or
absence of the fermion on site 7. Since the search space grows exponentially with the number of sites, it quickly
becomes too large for the exact diagonalization. Thus we apply simulated annealing [25] to find the dependence
of the lowest energy configuration on K/w. Our calculations have been performed for the lattice of 24, 40 and 60
sites and the obtained results do not depend on the number of sites.

The configurations obtained for A = 0 are shown in figure 1. We find indeed two possible configurations of
composites: 1) clustered phase (CL) where the composites cluster together with the rest of the lattice being
empty or 2) DW phase (the shaded region) where we have alternation of occupied and empty sites. We see that
DW structures occur for the shaking parameter, K /@, for which| Ty, | + | TOJ; | = |1l Jo (K/w). Simulations
performed for other values of A gave similar dependence of the ground state configuration on K/(2 with the
region of DW configuration broadening slightly for A > 0. The obtained phase diagram is stable under small
fluctuations in the fermion densities for both 1- and | -fermions—the DW structure is preserved with some
sparse defects appearing.
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Figure 1. Dependence of different hopping amplitudes on shaking parameter K/ for the exemplary system of V, = 8,V = 25,
a = —0.1, N=1,¢ = 0. Energies are expressed in recoil energy units as discussed in the text. Gray area marks the interval of K /e in
which we obtain density wave (DW) structure of 1 -fermions. Outside this region composites form a cluster (CL).

T‘; =] T;l topologicaly nontrivial :

SP/[SPSP

...... IZA topologicaly trivial :

P S P PSIPSPS

unit cell

Figure 2. (a) Pictorial representation of the system described by Hpy. 7-fermions are denoted by blue circles while | -fermions are
denoted by pink ones. Arrows indicate the direction of tunneling. Sites occupied by the composites are denoted by P, sites not
occupied by the composites are denoted by S. Two possibilities of the DW configurations (b): ‘SP’ at the top and ‘PS’ at the bottom.
Unit cells are marked with yellow rectangles.

3. Emergent Rice—Mele model

When the DW-configuration of the composites minimizes the energy of the system, the dominant hopping
process is the inter-band sp one and the effective Hamiltonian for the excess | -fermions corresponds to the Rice—
Mele model [6],

How =Ty ), (85ibyi, + hoc) = Ty > (8iByiyy + hc.)

1 1
+4 Zﬁ21;+lp2i+l -4 Zgis?i' (4)

(i) (i)
From now we shall drop the ~ sign over tunneling amplitudes as we shall consider effective tunnelings only
restricting to (4). The above Hamiltonian describes a perfect lattice without defects. However, if the defects in
the lattice are sparse with comparison to the edge mode length (see section 4) and we tune the shaking to make
intra-band hopping small, then each of the domains may be separately described by the Rice—Mele Hamiltonian
(4). Otherwise, a proper description of the system requires including also intra-band tunnelings.

To write the the Hamiltonian in the momentum space we specify a unit cell to contain two neighboring sites
of which only one is always occupied by a composite. Such a unit cell can be chosen in two different ways
depending whether the composite resides in the first (we call such a configuration ‘PS’) or the second site (‘SP’)
of the open chain (see figure 2). As expected for the RM model [6] these two choices of the unit cell give rise to
topologically distinct states. When written in the momentum space, the Hamiltonian (4) reads:

Hiy (k) = =(T5 — Tg cos (2ka) ) o + T sin (2ka) o, — Ao, (5)

where the Hpyy, (k) corresponds to the ‘PS’ configuration, Hp,, (k) corresponds to the ‘SP’ one, and o, are
Pauli matrices. The dispersion relations are the same for both configurations:

e, (k) = i\/AZ + (6 + T3i)” + 4T3T5; cos* (ka) . (6)
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Figure 3. Possible defects in the system and localized modes that may grow on them. With a light gray (blue) background we mark the
topologically (non)trivial phase. On domain walls (panels a, b, ¢, d) we have one localized state: vanishing sharply on the edge and
localized on the side of nontrivial phase when there is no tunneling possible between sites separating domains (panels a, c); vanishing
exponentially on both sides of the domain wall if there is hopping possible through the wall (panels b, d). If there is a small impurity
within one phase we can either have two modes on both sides of the impurity if the phase is nontrivial (panel e), or no modes for a
trivial phase (panel f).

Topologically distinct configurations are characterized by different Zak phases [2] (i.e. Berry phases
acquired across the Brillouin zone). Zak phases of particular states depend on the choice of the unit cell, their
difference forms an invariant of the system. The Zak phase is given by [2, 3]:

/2
bz = i/_”/2 (ui|Okluy) dk, (7)

where|uy, ) are Bloch functions of the system i.e. eigenfunctions of the Hamiltonian (5). For A = 0, when the
Hamiltonian is equivalent to the SSH model [1], we obtain qﬁzsi - ZPa Sk = z. This indicates that ‘SP’ and ‘PS’
phases are topologically distinct—one of them must be nontrivial. For nonzero A we obtain fractional (in units
of ) Zak phase differences changing from zto1.67z for A € [0, 0.002w]. To determine which configuration

has a nontrivial topology, we investigate the existence of edge modes.

4. Localized modes

In our model, defects arise naturally due to the emergent nature of the DW structure. As discussed in [20], the
timescale required to reach a particular DW lattice configuration is set by the minority component tunneling
rate. Subsequently the timescale to form the entire DW configuration is governed by the corresponding Lieb—
Robinson bound [26]. When the time of creation is not sufficiently long, smaller regions of different DW
configurations, separated by domain walls, will be created. Moreover, due to number fluctuations present for
trapped atoms, the composites will not be exactly at half-filling. Any deviation from this filling will result in a
defect in the form of a vacancy or a filled site.

Both kinds of impurities—domain walls and lattice defects—give rise to topologically protected localized
modes [27] (visualized in figure 3). If we tune the shaking to make both ss and pp tunnelings negligibly small,
then on domain walls we effectively create open boundary conditions. This will result in an appearance of edge
modes in SP configuration when Ty; > Tj; and in PS configuration otherwise. These modes vanish sharply on
the edges (compare figures 3(a) and (c)) indicating that the configuration has a nontrivial topology. Let us here
focus on the case when Tj; > Ty The edge modes have energies +4 and in the continuum limit, their
eigenvectors are given by the spinor: (y (x), w, (x)) Depending on which edge we are, setting x= 0 on the
boundary, we get: the edge mode on the left end (the one ending with an S site) with energy —A where
y(x) =A (e74'x — ¢74), ¥, (x) = 0and the edge mode on the right end (the one ending with a P site) with

energy A, wherey (x) = 0,y, (x) = A(e*™ — e* ) with

Ty + | Tor (275 - Tay)
A= , (8)
215,

and A being the normalization constant. A detailed and tutorial discussion of edge modes in the dimer model is
givenin [28].

When tuning K/w further from the zero point of the Bessel function, the ss hopping is still negligible, but the
pp hopping becomes significant. Therefore, on those boundaries that are separated by P-sites (figures 3(b) and
(d)), particles can tunnel through the boundary and the mode vanishes exponentially on both sites giving
topological solitons with energy A. Defects occurring inside the ‘SP’ configuration (figure 3(e)) give rise to two
localized modes on both sides of the impurity. Depending on ssand pp tunneling rates they may end sharply on
the boundary or smoothly vanish inside the defect. The width of the edge states depends on the hopping
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amplitudes and can be changed by tuning the value of K/w. For K/@ = 2.3 the edge state is about 15 lattice sites
long and it becomes narrower with higher values of K/w.
Defects present in the lattice are associated with local changes of fermion number by fraction, Ng,. = f, / T

where f, = tan‘l[ | Tgi — Topl/ ZA] [6] at zero temperature. At finite temperatures, T < A, the corresponding
fractional fermion number for the localized mode is given by the thermal expectation value [29, 30],

N = fo/m — sgn (f,) exp [—A/T], where sgn() is the sign function. For a typical value of A = 0.01Ey, the
relevant temperature is in the nano-Kelvin regime for K.

Finally let us briefly comment on the dynamics of solitons. The solitonic localized modes are pinned to the
defects. Their dynamics is affected by tunnelings as well as thermal excitations at finite temperature. A single
density dependent tunneling event [given by the Tj, term in the original Hamiltonian (1)] will change the ‘PS’
pair to ‘SP’. This corresponds to a motion of the defect and thus the motion of the soliton localized on the edge
(e.g. compare figures 3(a) or (b)). While by adjusting the frequency we minimize the influence of such processes
they will be still partially present due to, e.g., a frequency mismatch with respect to the exact zero of the
appropriate Jy (K/®) Bessel function or higher-order terms, discussed in the next section. One may envision
also that once the system is formed, the frequency/amplitude of shaking is changed a little to stimulate the
motion of defects.

Consider, however, the situation represented in figure 3(e). The single ‘PS’ to ‘SP’ tunneling will remove two
defects, that would correspond to collisional annihilation of two localized modes. The stable ‘solitonic’ solution
corresponds thus to situations with well-separated defects that cannot easily be removed by tunnelings.

5. Experimental realization and probing

Let us first discuss the timescales needed to realize the described system experimentally. The time for the
formation of the crystal is determined by the tunneling rate of t-fermions and bounded from above by loss rates.
With an example of “°K we estimate the tunneling time to be of the order of 10 ms (see figure 1) except at the
close vicinity of K/@w = 2.4. Close to K/@w = 2.4 when the tunneling in the averaged Hamiltonian vanishes there
will be still residual higher-order tunneling. Its non-resonant effect can be estimated in an analogous way to
Bloch—Siegert shifts in quantum optics [31] being proportional to J¢/4w which again for *°K is about 10 ms. The
formation of the crystal will take a few tunneling times. The precise estimate would require full dynamical
calculation of the crystal formation which is beyond the scope of the present paper.

The shorter time will lead to numerous defects. The number of defects is dependent also on the temperature.
For the nano-Kelvin regime and assuming a sufficient preparation time, the number of defects (which can be
calculated [32] comparing the energy of creating a defect with temperature assuming a canonical ensemble) will
be of the order of 1% —which allows one to obtain well-separated edge states. With the system prepared, we may
probe its topological properties. The Zak phase can be measured experimentally in a way that has been proposed
in [7], with application of coherent Bloch oscillations combined with Ramsey interferometry. At exact half
filling of excess fermions the topologically nontrivial band will be filled and the standard time-of-flight method
cannot detect the Zak phase”. Slightly lower filling of excess fermions does not affect the DW structure of
composites (so the Rice—Mele model is applicable). Then such a measurement of the Zak phase should be
possible. For this measurement also the number of defects should not be too large. However, to detect the
localized states, defects can be helpful. Localized states can be observed with photo-emission spectroscopy [33]
with time-of-flight where the number of edge modes in our system results in an increased peak intensity near
zero momentum making the signal less susceptible to noise. At half filling, the only localized states that can be
occupied are those of the negative energy. Fermion number fractionalization can be probed on defects with
application of single site imaging.

6. Conclusions

We have shown that a combination of shaking and attractive interactions in a one-dimensional optical lattice
can give rise to a topologically nontrivial system. We have used standard lateral shaking but also introduced an
additional vertical shaking. Together, they result in a dimerized tunneling structure. Moreover, by tuning the
onsite energy slightly out of the resonance we can induce the staggered potential. By controlling the filling, we
have shown further the presence of topologically protected localized modes. We believe that such modes can be
experimentally verified at accessible temperatures.

5 o
We are grateful to one of the referees for pointing that out.
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Figure A1. Visualization of different density dependent tunneling processes present in the system. Blue and pink circles denote
1-fermions and | -fermions, respectively.
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Appendix A

We derive the minimal model in a standard manner starting from a many body Hamiltonian of a dilute gas of
atoms in a second quantization representation [24, 34]. We consider two species (denoted by 1-fermions and
| -fermions) of equal masses which can occupy the lowest band. The | -fermions have an occupation close to
unity, for them we consider also the excited, p orbital. Different species undergo contact interactions. The
parameters in the Hamiltonian (1) in the main text are given by integrals of Wannier functions W?" (x, y) on s
(p)-bands, where i is a site index.

Specifically the single particle ss and pp hoppings do not depend on the type of species and read

Jo= [ [W! @] Hae Wl () dx,

h= [ W0 | HuWi () d, (A1)

02
the kinetic energy as we work in recoil units. The contact interactions between different species lead to density

induced tunnelings [21-24]. The corresponding part of the Hamiltonian may be expressed as
g, = Z[Tm((j —)pAj%; + he) + Tip! (4] +n))p,
(if)
+ 105 (A + A )s + Tosy [ (g + i)y, + To8 (] + A))s; (A.2)
i ’ ] T] 0°1; 1 ] T] 0°1 i IDEA L .

where Hy,y = —— + V, sin?(zx/a) is a single particle Hamiltonian for a static lattice. Observe the lack of two in

where, let us recall, §;/, $;, ﬁf , p, are the creation and annihilation operators of the | -fermions in the s- and p-

bands respectively, while SATT,-, $,; are s-band creation and annihilation operators for the t-fermion. 7;, A/ and ;!
denote the corresponding number operators. Throughout the paper we assume that minority t-fermions appear
in pairs only due to strong attractive interactions. Thus some of the processes included above vanish. In
particular, the term proportional to T, should be excluded as occupation of the i-site by a t-fermion means that
there is a | -fermion occupying this site already, so the Pauli principle inhibits tunneling into this site. Fora
different reason T{ may also be omitted as for the ground state we focus on the occupation of the i-site by a p
fermion is possible energetically only if there is a composite there. The presence of a composite prohibits
tunneling into this site of an s-fermion. There is a possibility that a site occupied by a composite and a p fermion
neigbors a site with two fermions: one in the s and the other in the p band. Such sites can exchange s-type
fermions by the T{ process. One should keep in mind that p-fermions appear in the system only due to resonant
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shaking (otherwise they cost E;)—their presence in neighboring sites should be a rare event. The remaining
terms form Hy;, included in the Hamiltonian (1) of the paper.
The amplitudes, T, are given by integrals over four Wannier functions and take the form

To=gp(@ [[W@] W] Wi dx
Ti=gp@ [[Wia] el whias

To=gp(@ [[W@]

where g, (@) is arenormalized 1D coupling constant [35] anda = a,/a is the ratio of the interaction strength to
the lattice spacing.

A pictorial representation of different tunneling processes is shown in figure A1 . Note that, since 1-fermions
are minority fermions, they are always paired and the probability of their tunneling to the p-band is negligibly
small. That is why in the case of these fermions we consider only ss tunneling. On the other hand, the presence of
1-fermions (and therefore composites) stimulates pp tunneling of | -fermions. Observe that the first term in
(A.2) is the inter-band sp hopping which has a staggered nature (reflected by the (j — 7) sign) and may happen
when a composite-empty site adjoins a composite-occupied one.

Let us now discuss the on-site energies present in the Hamiltonian. The corresponding term reads:

WI [ W, () d, (A3)

Hine = Uy D Al i + U T piAl + B Y by (A.4)

Uy, U, are given by:
U=gp(@ [ ds (A.5)
U=gp(@ [[Wief Wi dx (46)

Uy is by far the biggest (on the modulus) energy scale and is responsible for pairing. We assume that composites
are formed in the sband only. The composites could form also in the p band with (negative) energy Uf given by
(A.5) with ‘ Wi (x) ‘ instead of ‘ WY (x) | Since p-orbitals are extended by comparison with s-functions,

U{ ~ 0.6, for typical lattice depths (e.g. at V; = 8Fy as assumed in numerical calculations). Similarly
U = 0.4U,. Single particle energy of occupying p-band E; reads:

E = % [ ] Huowl - % [ ] Huow? o d (A7)

with the origin of the energy axis corresponding to the s-fermion single particle energy. E; may be larger than
[ Ul

Consider now the effects due to lateral and vertical shaking. The former is quite standard [ 18] and leadsto a
familiar term

K cos a)th(ﬁjT +5/5+ f)}Tf)J.),
j

where K is the shaking amplitude. The vertical shaking of the lattice depth (assumed to be not too large) causes
periodic changes of single particle hoppings J, (t) = J, + 8], cos wt for z= 0,1, with amplitudes:

5, = f [Wf (x) ]*(5\/0 sin? K)w,al(x) dx. (A.8)
a
On time averaging we will see that these periodic changes have negligibly small influence on the system and can

be omitted. That is the reason why they do not appear in the Hamiltonian (1) of the main text.
Next we have periodic changes in the onsite energy with amplitudes:

5E1=%/[w§(x)]*(avo sin? ’;—")wﬁ(x)dx
- % / [w?(x)]*(avo sin’ %x)W?(x)dx. (A.9)

Contrary to changes in the tunneling, this onsite effect is very important for the model and allows us to realize
tunneling dimerization of the RM model.
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Appendix B

The standard time-averaging procedure can be obtained applying Floquet theorem following [36] and deriving
the effective Hamiltonian via repeated commutation of the time independent Hamiltonian with operator

F(t) = — /0 ! d#’ Hy, (¢). Using this approach one can verify that, already in the second commutator, terms

containing periodic changes in hopping parameters become negligibly small; which allows us to omit them from
our considerations.
As mentioned in the main text we invoke instead a time-dependent unitary transformation

N Vo L ortoa . . . . . .
U = exp [—iHjyt — 1 /0 Hg, (t')dt’']. We include in the transformation also the on-site terms with the aim of

locating resonant coupling between bands. We obtain the transformed Hamiltonian, H' = UtHU - 0" [d, U]
in the form:

H' = exp(l— sin wt) Z exp(lUO(n]-T - n]TH)t) (Io[s}:rlsj + ST;HsT]-]

w ;
]

ot
+ T()ST]._H( w1t A sT] +hc]

+ exp(i5 sin a)t) exp(lUl(n- - n]+1)t) (]113]1113]- + Tlf)};l( Jo1 + 7] )p]) + h.c.

w

K OFE ah oA dA
+ T )G — 1) exp[i(a + Ulﬁf)t + i((i )=+ —1) sin wt]pjnﬁsj
(i) © @

SE; .

+ Toy Z(j — 1) exp[—i<E1 + U} )t — 1((1 —])— + —) sin wt] ]T ,Tpi. (B.1)

- w w
(i)

Now we assume the resonant condition

E + U = No + 24, (B.2)

where Nisintegerand A <  is the detuning. The shaking frequency w chosen is large compared to all the
tunneling amplitudes. Before standard time averaging one more simplification is made. We consider alow
energy Hilbert subspace, where due to strong attractive interactions all 1 -fermions are paired. The resonant
condition (B.2) may be fulfilled only for sites occupied by the composites, i.e withn;! = (A1) = 1. We average
the Hamiltonian over the oscillation period and neglect terms (~1/w) obtaining He (3). Let us note also that
on-site direct excitation of the p-band due to periodic shaking (see e.g. [37]) is negligible in our model due to the
resonance condition (B.2) involving composite binding energy.
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