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Abstract
Attractive ultracold fermions trapped in a one-dimensional periodically shaken optical lattice are con-
sidered. For an appropriate resonant shaking, a dimerized structure emerges forwhich the system
realizes paradigmatic physics described by the Rice–Melemodel. The emergent nature of the system
together with density fluctuations or controlledmodifications of latticefilling allow for the creation of
defects. Those defects lead to topologically protected localizedmodes carrying the fractional particle
number. Their possible experimental signatures are discussed.

1. Introduction

Conducting polymers [1] are particularly interesting one-dimensional systems due to their unusual topological
properties characterized by a nontrivial Zak phase [2, 3], degenerate ground states, topological solitons [4] and a
fractional charge [5]. Such polymers can be described in a simplemanner by fermionsmoving in a lattice with
dimerized tunneling amplitudes [4, 6]. The correspondingmodels can be constructedwith ultracold atoms in
optical lattices which give unprecedented tunability and control over the systemparameters. Recently, ultracold
bosons in optical superlattices were used to prepare experimentally [7] amodel of conducting polymers (namely
the Rice–Mele (RM)model [6], one of the simplest 1Dmodels of nontrivial topology) and the corresponding
Zak phase wasmeasured. In a parallel work topological edge states in a similar potential were studied
theoretically [8].

Models based on superlattice potentials are relatively easy to realize in experiment, however, they have also
some limitations. An optical lattice potential is typically defect-free due to its origin, which creates a difficulty in
realizing topological solitons. Such solitons typically emerge on defects that are the domainwalls between
topologically distinct phases. Forming the signature of nontrivial topology, they are the essence of the RM
model.

In the present paper, we showhow to realize the RMmodel with controlled defects using a systemof
attractive ultracold fermions [9–11] in a simple shaken one-dimensional optical lattice. Shaking, i.e. the periodic
driving of systemparameters (e.g. the optical potential depth or position), has been successfully implemented in
cold atomic systems in order to induce various effects [12–17] following the seminal proposition [18]. In [19]we
have shown that such a shaking combinedwith attractive interactions in a two-dimensional triangular lattice can
result in an emergent Dice structure with topological properties. Here, we show that in the case of a one-
dimensional system there exist a regime of parameters where atoms self-organize into a dimerized structure. The
ground state is then two-fold degenerate. The corresponding states represent two topologically distinct
dimerized configurations. Due to the emergent nature of the dimerized state, both configurations, separated by
domainwalls,may be simultaneously present in the lattice.Moreover, by controlling the filling fraction,
impuritiesmay be added to the configurations. Such defects—domainwalls and impurities—naturally give rise
to topologically protected solitons or bound states with a fractionalized particle number.
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2. System

Our system consists of a two-species (denoted as↓ ↑, ) fermionicmixture trapped in an optical lattice potential
π π π= + +∥ ⊥V V x a V y a z asin ( ) (sin ( ) sin ( ))latt

2 2 2 , where a is the lattice constant. For ≫⊥ ∥V V the system is
effectively one-dimensional. To control the systemwe use a familiar lateral (horizontal) lattice shaking [18].
Importantly, however, we introduce also periodic changes in the potential depthwhichwe call here vertical
shaking: δ ω= +∥V V V tcos0 0 . δV0 is an amplitude of the lattice depth shaking andω the frequency, common to
the lateral and vertical shaking.We assume fermionic species of equalmass,M, with different fillings: ≈↓n 1and

≈↑n 1 2. The interaction between atoms of different species is assumed to be attractive. In effect fermions of

different spin tend to pair creating composites [20]with the density given by theminority↑-fermion density ↑n .
We include p-bands in themodel and effectively have the composites that occupy s-bands and excess↓-fermions
thatmay occupy both p and s-bands.

The Rice–Melemodel [6] contains two essential ingredients: two types of sites and asymmetric couplings
between them. The former is realized in ourmodel by a density-wave self-arranged configuration of composites.
Such a configuration is energetically favorable when intra-band tunnelings are switched off by appropriate
adjustment of shaking amplitudewhilemaking density-dependent inter-band tunneling resonant by adjusting
the shaking frequency. To obtain asymmetric couplingwith nearest neighbours the additional vertical shaking is
necessarywith an appropriate phase shift with respect to standard lateral shaking. This phase difference breaks
the left–right symmetry of the problem.

Towrite the effectiveHamiltonian of themodel, we construct the time dependentHamiltonian,H(t) and
average it in time [18]. TheminimalHamiltonian of our system contains tunnelings, density induced
tunnelings, renormalized interactions and shaking: = + + +H H H H H tˆ ˆ ˆ ˆ ˆ ( ),tun dit int sh where:
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Here, s sˆ , ˆi i
† , p pˆ , ˆ

i i
† are creation and annihilation operators of↓-fermions in the s- and p-bands respectively, while

↑ ↑s sˆ , ˆi i
† are s-band creation and annihilation operators for the↑-fermion. Accordingly,n nˆ , ˆi i

p and ↑n̂i are the

corresponding number operators. In the on-site interactionHamiltonian, Ĥint, the renormalized self-energy of
the composites is denoted byU0, the on-site renormalized interaction between the composite and an excess↓
-fermion is characterized byU1, andE1 is the energy of the p-band. Themodulus of a negativeU0 value is the
largest interaction energy scale assumed in themodel with∣ ∣ < ∣ ∣U U1 0 (this follows fromproperties ofWannier
functions, see appendix A). Attractive interactions between two species lead then to the creation of composites in
the s band. All the tunneling amplitudes are assumed to bemuch smaller thanω. The range ofω valueswill be set
by the required resonance condition (2).

Ĥtun corresponds to standard tunnelings with amplitudes J0 and J1 for the s and p bandswhile Ĥdit describes
often neglected density induced tunnelings ([21–24]) with amplitudesTi. Observe that↑-tunneling from site i to
site jmay happen onlywhen there is a composite on site i and a free↓-fermion in the s-band on site j. In effect,
this tunneling creates a composite on site j. In the case of↓-fermions, the analogical situation does not take place
because there are no free↑-fermions. The last—most important for themechanismdiscussed later—termof
Hdit couples s and p levels and describes process occurringwhen a composite-empty site adjoins a composite-
occupied one (for details see appendix A).

H tˆ ( )sh is a time-periodicHamiltonianwithK denoting the amplitude of the lateral lattice shakingwhile δE1
denotes the strength of the time-variation of single-particle energy in the p-bandwhich is induced by periodic
driving of the lattice depthwhileφ is a relative phase between the lateral and vertical drivings. Additional effects
due to the vertical shaking that are negligible formoderate δV0 are discussed in appendices.

Next, we describe the averaging process (see appendix B formore details). First, we apply the unitary

transformation, ∫= − − ′ ′U H t H t tˆ exp [ i ˆ i ˆ ( )d ]
t

int 0 sh that gives us a newHamiltonian

′ = −H U HU U d Uˆ ˆ ˆ ˆ i ˆ [ ˆ ]t
† †

. In comparisonwith Ĥ the shaking and the on-site interaction parts are removed by

Û while the tunneling part is dressed in oscillating terms.We aim at the situationwhen inter-band density
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dependent sp tunnelingmakes the dominant tunneling contribution. Accordingly, we assume the resonant
condition

ω Δ+ = +E U N 2 , (2)1 1

whereN is integer and Δ ω≪ is the detuning andwe time-average theHamiltonian. In the process fast
oscillating terms∼1/ω are neglected. Necessarily the shaking frequencyω is chosen large compared to all the
tunneling amplitudes.We obtain the effectiveHamiltonian = + +H H H H˜ ˜ ˜

eff tun dit ons, with
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The intra-band tunneling parts above aremodified in the standardmanner [18]: ω=  ( )J K J˜ /l l0 (as well as

ω=  ( )T K T˜ /l l0 ) for ∈l {0, 1}, where ω ( )K /0 is the ordinary Bessel function of order zero. In the case of the

inter-band part, time averaging brings us, however, a new effect. The inter-band hopping ismodified by the
Bessel function of orderNwith different amplitudes depending on the direction of this process (+ or−):

ω=± ± ( )T A T˜
N01 01where δ φ φ= ± +±A K E K( cos ) sin1

2 2 2 . These amplitudes depend on the relative

phase of the drivings,φ, which, we believe, can be controlled in real experiments with a good precision. The
detuning,Δ, leads to residual on-site potential H̃ons.

Nowwe can tune the hopping parameters. The intra-band amplitudesmay bemade very small by choosing
ωK such that ω ≈ K( ) 00 . For slightly different ωK ss hopping remains negligible (so the compositesmay be

still considered as immobile) while the typicallymuch larger pphopping start to plays a role and has to be taken
into account. At the same time the inter-band hopping is large since it depends onBessel functions of order

≠N 0.
Fromnowonwe set the recoil energy, =E h Ma(8 )R

2 2 , as an energy unit and consider the ground state
structure ofHeff on an exemplary case of lattice depths =V 80 , =⊥V 25 and interaction strength
α = = −a a 0.1s (with as being the (negative) scattering length).We choose the vertical shaking to be in phase

with the lateral one (φ = 0), giving >− +
T T˜ ˜

01 01. In the regionwith dominant inter-orbital tunneling, we expect
that the ground state is given by the density wave configuration (DW)with every second side occupied by
composites. The reason for that is quite simple. In such a configuration neighboring sitesmay contain excess
fermions only and the sp tunneling lowers the energy for such a situation. On the other hand if two composites
reside in the consecutive sites then the inter-band sp tunnelingwould break one of the composites (which costs
the energy) while intraband pp tunneling for excess fermions is assumed small so it cannot lower the energy. To
confirm that prediction, wefirst assume the composites to be immobilized due to the negligible value of J̃0 and T̃0

when compared to other hopping amplitudes in thewhole regime under consideration. Thenfinding the
ground state configuration boils down to solving the single particleHamiltonian for a group of all possible

configurations of ↑n̂i (that determines composite distribution).Within the approximation of immobilized↑
-fermions, we can replace their number operators by c-numbers =↑n 1, 0i depending on the presence or
absence of the fermion on site i. Since the search space grows exponentially with the number of sites, it quickly
becomes too large for the exact diagonalization. Thuswe apply simulated annealing [25] tofind the dependence
of the lowest energy configuration on ωK . Our calculations have been performed for the lattice of 24, 40 and 60
sites and the obtained results do not depend on the number of sites.

The configurations obtained for Δ = 0 are shown infigure 1.Wefind indeed two possible configurations of
composites: 1) clustered phase (CL)where the composites cluster togetherwith the rest of the lattice being
empty or 2)DWphase (the shaded region)wherewe have alternation of occupied and empty sites.We see that

DWstructures occur for the shaking parameter, ωK , for which ω∣ ∣ + ∣ ∣ ⩾ ∣ ∣− + T T J K˜ ˜ ( )01 01 1 0 . Simulations
performed for other values ofΔ gave similar dependence of the ground state configuration on ΩK with the
region ofDWconfiguration broadening slightly for Δ > 0. The obtained phase diagram is stable under small
fluctuations in the fermion densities for both↑- and↓-fermions—theDW structure is preservedwith some
sparse defects appearing.
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3. Emergent Rice–Melemodel

When theDW-configuration of the compositesminimizes the energy of the system, the dominant hopping
process is the inter-band sp one and the effectiveHamiltonian for the excess↓-fermions corresponds to the Rice–
Melemodel [6],

∑ ∑
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Fromnowwe shall drop the∼ sign over tunneling amplitudes aswe shall consider effective tunnelings only
restricting to (4). The aboveHamiltonian describes a perfect lattice without defects. However, if the defects in
the lattice are sparse with comparison to the edgemode length (see section 4) andwe tune the shaking tomake
intra-band hopping small, then each of the domainsmay be separately described by theRice–MeleHamiltonian
(4). Otherwise, a proper description of the system requires including also intra-band tunnelings.

Towrite the theHamiltonian in themomentum space we specify a unit cell to contain two neighboring sites
of which only one is always occupied by a composite. Such a unit cell can be chosen in two different ways
dependingwhether the composite resides in thefirst (we call such a configuration ‘PS’) or the second site (‘SP’)
of the open chain (see figure 2). As expected for the RMmodel [6] these two choices of the unit cell give rise to
topologically distinct states.Whenwritten in themomentum space, theHamiltonian (4) reads:

σ σ Δσ= ± − + −± ∓ ± ±( )H k T T ka T ka( ) cos (2 ) sin (2 ) , (5)x y zDW 01 01 01

where the +H k( )DW corresponds to the ‘PS’ configuration, −H k( )DW corresponds to the ‘SP’ one, andσx y x, , are
Paulimatrices. The dispersion relations are the same for both configurations:

ϵ Δ= ± + + +±
+ − + −( )k T T T T ka( ) 4 cos ( ) . (6)2
01 01

2
01 01

2

Figure 1.Dependence of different hopping amplitudes on shaking parameter ωK for the exemplary systemof =V 80 , =⊥V 25,
α = −0.1,N=1,φ = 0. Energies are expressed in recoil energy units as discussed in the text. Gray areamarks the interval of ωK in
whichwe obtain density wave (DW) structure of↑-fermions. Outside this region composites form a cluster (CL).

Figure 2. (a) Pictorial representation of the systemdescribed byHDW.↑-fermions are denoted by blue circles while↓-fermions are
denoted by pink ones. Arrows indicate the direction of tunneling. Sites occupied by the composites are denoted byP, sites not
occupied by the composites are denoted by S. Two possibilities of theDWconfigurations (b): ‘SP’ at the top and ‘PS’ at the bottom.
Unit cells aremarkedwith yellow rectangles.
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Topologically distinct configurations are characterized by different Zak phases [2] (i.e. Berry phases
acquired across the Brillouin zone). Zak phases of particular states depend on the choice of the unit cell, their
difference forms an invariant of the system. The Zak phase is given by [2, 3]:

∫ϕ = ∂
π

π

−
i u u kd , (7)k k kZak

2

2

where∣ 〉uk are Bloch functions of the system i.e. eigenfunctions of theHamiltonian (5). For Δ = 0, when the
Hamiltonian is equivalent to the SSHmodel [1], we obtainϕ ϕ π− =Zak

SP
Zak
PS . This indicates that ‘SP’ and ‘PS’

phases are topologically distinct—one of themmust be nontrivial. For nonzeroΔwe obtain fractional (in units
of π) Zak phase differences changing from π to π1.67 for Δ ω∈ [0, 0.002 ]. To determinewhich configuration
has a nontrivial topology, we investigate the existence of edgemodes.

4. Localizedmodes

In ourmodel, defects arise naturally due to the emergent nature of theDWstructure. As discussed in [20], the
timescale required to reach a particular DW lattice configuration is set by theminority component tunneling
rate. Subsequently the timescale to form the entire DWconfiguration is governed by the corresponding Lieb–
Robinson bound [26].When the time of creation is not sufficiently long, smaller regions of different DW
configurations, separated by domainwalls, will be created.Moreover, due to number fluctuations present for
trapped atoms, the composites will not be exactly at half-filling. Any deviation from this fillingwill result in a
defect in the formof a vacancy or a filled site.

Both kinds of impurities—domainwalls and lattice defects—give rise to topologically protected localized
modes [27] (visualized infigure 3). If we tune the shaking tomake both ss and pp tunnelings negligibly small,
then on domainwalls we effectively create open boundary conditions. This will result in an appearance of edge
modes in SP configurationwhen >− +T T01 01 and in PS configuration otherwise. Thesemodes vanish sharply on
the edges (comparefigures 3(a) and (c)) indicating that the configuration has a nontrivial topology. Let us here
focus on the case when >− +T T01 01. The edgemodes have energies Δ± and in the continuum limit, their
eigenvectors are given by the spinor: ψ ψx x( ( ), ( ))s p Depending onwhich edgewe are, setting x=0 on the

boundary, we get: the edgemode on the left end (the one endingwith an S site) with energy Δ− where

ψ = −λ λ− −+ −
x A e e( ) ( )s

x x ,ψ =x( ) 0p and the edgemode on the right end (the one endingwith a P site) with

energyΔ, whereψ =x( ) 0s ,ψ = −λ λ+ −
x A e e( ) ( )p

x x with

λ =
± −

±
− − + −

−

( )T T T T

T

2

2
, (8)

01 01 01 01

01

andA being the normalization constant. A detailed and tutorial discussion of edgemodes in the dimermodel is
given in [28].

When tuning ωK further from the zero point of the Bessel function, the ss hopping is still negligible, but the
pphopping becomes significant. Therefore, on those boundaries that are separated by P-sites (figures 3(b) and
(d)), particles can tunnel through the boundary and themode vanishes exponentially on both sites giving
topological solitonswith energy Δ.Defects occurring inside the ‘SP’ configuration (figure 3(e)) give rise to two
localizedmodes on both sides of the impurity. Depending on ss and pp tunneling rates theymay end sharply on
the boundary or smoothly vanish inside the defect. Thewidth of the edge states depends on the hopping

Figure 3.Possible defects in the system and localizedmodes thatmay grow on them.With a light gray (blue) backgroundwemark the
topologically (non)trivial phase. Ondomainwalls (panels a, b, c, d) we have one localized state: vanishing sharply on the edge and
localized on the side of nontrivial phase when there is no tunneling possible between sites separating domains (panels a, c); vanishing
exponentially on both sides of the domainwall if there is hopping possible through thewall (panels b, d). If there is a small impurity
within one phasewe can either have twomodes on both sides of the impurity if the phase is nontrivial (panel e), or nomodes for a
trivial phase (panel f).
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amplitudes and can be changed by tuning the value of ωK . For ω =K 2.3 the edge state is about 15 lattice sites
long and it becomes narrower with higher values of ωK .

Defects present in the lattice are associatedwith local changes of fermion number by fraction, π=N ffrac 0

where Δ= ∣ − ∣− + −⎡⎣ ⎤⎦f T Ttan 20
1

01 01 [6] at zero temperature. Atfinite temperatures, Δ≪T , the corresponding

fractional fermion number for the localizedmode is given by the thermal expectation value [29, 30],
π Δ= − −N f sgn f T( ) exp [ ]T

frac 0 0 , where sgn() is the sign function. For a typical value of Δ = E0.01 R the

relevant temperature is in the nano-Kelvin regime for K40 .
Finally let us briefly comment on the dynamics of solitons. The solitonic localizedmodes are pinned to the

defects. Their dynamics is affected by tunnelings aswell as thermal excitations atfinite temperature. A single
density dependent tunneling event [given by theT0 term in the originalHamiltonian (1)] will change the ‘PS’
pair to ‘SP’. This corresponds to amotion of the defect and thus themotion of the soliton localized on the edge
(e.g. compare figures 3(a) or (b)).While by adjusting the frequency weminimize the influence of such processes
theywill be still partially present due to, e.g., a frequencymismatchwith respect to the exact zero of the
appropriate ω K( )0 Bessel function or higher-order terms, discussed in the next section.Onemay envision
also that once the system is formed, the frequency/amplitude of shaking is changed a little to stimulate the
motion of defects.

Consider, however, the situation represented infigure 3(e). The single ‘PS’ to ‘SP’ tunnelingwill remove two
defects, that would correspond to collisional annihilation of two localizedmodes. The stable ‘solitonic’ solution
corresponds thus to situationswithwell-separated defects that cannot easily be removed by tunnelings.

5. Experimental realization andprobing

Let usfirst discuss the timescales needed to realize the described system experimentally. The time for the
formation of the crystal is determined by the tunneling rate of↑-fermions and bounded from above by loss rates.
With an example of K40 we estimate the tunneling time to be of the order of 10 ms (see figure 1) except at the
close vicinity of ω =K 2.4. Close to ω =K 2.4when the tunneling in the averagedHamiltonian vanishes there
will be still residual higher-order tunneling. Its non-resonant effect can be estimated in an analogousway to
Bloch–Siegert shifts in quantumoptics [31] being proportional to ωJ 40

2 which again for K40 is about 10ms. The
formation of the crystal will take a few tunneling times. The precise estimatewould require full dynamical
calculation of the crystal formationwhich is beyond the scope of the present paper.

The shorter timewill lead to numerous defects. The number of defects is dependent also on the temperature.
For the nano-Kelvin regime and assuming a sufficient preparation time, the number of defects (which can be
calculated [32] comparing the energy of creating a defect with temperature assuming a canonical ensemble) will
be of the order of 1%—which allows one to obtainwell-separated edge states.With the systemprepared, wemay
probe its topological properties. The Zak phase can bemeasured experimentally in away that has been proposed
in [7], with application of coherent Bloch oscillations combinedwith Ramsey interferometry. At exact half
filling of excess fermions the topologically nontrivial bandwill befilled and the standard time-of-flightmethod
cannot detect the Zak phase5. Slightly lowerfilling of excess fermions does not affect theDWstructure of
composites (so the Rice–Melemodel is applicable). Then such ameasurement of the Zak phase should be
possible. For thismeasurement also the number of defects should not be too large. However, to detect the
localized states, defects can be helpful. Localized states can be observedwith photo-emission spectroscopy [33]
with time-of-flight where the number of edgemodes in our system results in an increased peak intensity near
zeromomentummaking the signal less susceptible to noise. At half filling, the only localized states that can be
occupied are those of the negative energy. Fermion number fractionalization can be probed on defects with
application of single site imaging.

6. Conclusions

Wehave shown that a combination of shaking and attractive interactions in a one-dimensional optical lattice
can give rise to a topologically nontrivial system.Wehave used standard lateral shaking but also introduced an
additional vertical shaking. Together, they result in a dimerized tunneling structure.Moreover, by tuning the
onsite energy slightly out of the resonancewe can induce the staggered potential. By controlling thefilling, we
have shown further the presence of topologically protected localizedmodes.We believe that suchmodes can be
experimentally verified at accessible temperatures.

5
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AppendixA

Wederive theminimalmodel in a standardmanner starting from amany bodyHamiltonian of a dilute gas of
atoms in a second quantization representation [24, 34].We consider two species (denoted by↑-fermions and
↓-fermions) of equalmasses which can occupy the lowest band. The↓-fermions have an occupation close to
unity, for themwe consider also the excited, p orbital. Different species undergo contact interactions. The
parameters in theHamiltonian (1) in themain text are given by integrals ofWannier functions x y( , )i

0(1) on s
(p)-bands, where i is a site index.

Specifically the single particle ss and pphoppings do not depend on the type of species and read

∫
∫

=

=

+

+

 
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i i
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1

latt 1
1

where π= − +∂
∂

H V x asin ( )
xlatt 0

2
2

2
is a single particleHamiltonian for a static lattice. Observe the lack of two in

the kinetic energy as wework in recoil units. The contact interactions between different species lead to density
induced tunnelings [21–24]. The corresponding part of theHamiltonianmay be expressed as

∑= − + + +

+ ′ + + + + ′ +

↑ ↑ ↑

↑ ↑ ↑ ↑
↑ ↑

⎡⎣
⎤
⎦⎥

( ) ( )

( ) ( ) ( )

H T j i p n s h c T p n n p

T s n n s T s n n s T s n n s

ˆ ( ) ˆ ˆ ˆ . ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ , (A.2)

ij
i i j i i j j

i i
p

j
p

j i i j j i i j j

dit 01
†

1
†

1
†

0
†

0
†

where, let us recall, s sˆ , ˆi i
† , p pˆ , ˆ

i i
† are the creation and annihilation operators of the↓-fermions in the s- and p-

bands respectively, while ↑ ↑s sˆ , ˆi i
† are s-band creation and annihilation operators for the↑-fermion.n nˆ , ˆi i

p and ↑n̂i

denote the corresponding number operators. Throughout the paperwe assume thatminority↑-fermions appear
in pairs only due to strong attractive interactions. Thus some of the processes included above vanish. In
particular, the termproportional to ′T0 should be excluded as occupation of the i-site by a↑-fermionmeans that
there is a↓-fermion occupying this site already, so the Pauli principle inhibits tunneling into this site. For a
different reason ′T1 may also be omitted as for the ground state we focus on the occupation of the i-site by a p
fermion is possible energetically only if there is a composite there. The presence of a composite prohibits
tunneling into this site of an s-fermion. There is a possibility that a site occupied by a composite and a p fermion
neigbors a site with two fermions: one in the s and the other in the p band. Such sites can exchange s-type
fermions by the ′T1 process. One should keep inmind that p-fermions appear in the systemonly due to resonant

T0 T1

T01

Figure A1.Visualization of different density dependent tunneling processes present in the system. Blue and pink circles denote
↑-fermions and↓-fermions, respectively.
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shaking (otherwise they costE1)—their presence in neighboring sites should be a rare event. The remaining
terms form Ĥdit included in theHamiltonian (1) of the paper.

The amplitudes,T, are given by integrals over fourWannier functions and take the form

∫
∫
∫

α

α

α

=

=

=

+

+

+

  

  

  

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

T g x x x x

T g x x x x

T g x x x x

( ) ( ) * ( ) ( )d ,

( ) ( ) * ( ) ( )d ,

( ) ( ) * ( ) ( )d , (A.3)

D i i i

D i i i

D i i i

0 1
0 0 2

1
0

1 1
1 0 2

1
1

01 1
1 0 2

1
0

where αg ( )D1 is a renormalized 1D coupling constant [35] andα = a as is the ratio of the interaction strength to
the lattice spacing.

A pictorial representation of different tunneling processes is shown infigure A1 .Note that, since↑-fermions
areminority fermions, they are always paired and the probability of their tunneling to the p-band is negligibly
small. That is why in the case of these fermionswe consider only ss tunneling. On the other hand, the presence of
↑-fermions (and therefore composites) stimulates pp tunneling of↓-fermions. Observe that the first term in
(A.2) is the inter-band sphoppingwhich has a staggered nature (reflected by the −j i( ) sign) andmay happen
when a composite-empty site adjoins a composite-occupied one.

Let us nowdiscuss the on-site energies present in theHamiltonian. The corresponding term reads:

∑ ∑ ∑= + +↑ ↑H U n n U p p n E p pˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ . (A.4)
i

i i

i
i i i

i
i iint 0 1

†
1

†

U0,U1 are given by:

∫α= U g x x( ) ( ) d , (A.5)D i0 1
0 4

∫α=  U g x x x( ) ( ) ( ) d . (A.6)D i i1 1
0 2 1 2

U0 is by far the biggest (on themodulus) energy scale and is responsible for pairing.We assume that composites
are formed in the s band only. The composites could form also in the p bandwith (negative) energyU0

p given by

(A.5)with  x( )i
1 instead of  x( )i

0 . Since p-orbitals are extended by comparisonwith s-functions,

≈U U0.6p
0 0 for typical lattice depths (e.g. at =V E80 R as assumed in numerical calculations). Similarly

≈U U0.41 0. Single particle energy of occupying p-band E1 reads:

∫ ∫= −   ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦E x H x x x H x x
1

2
( ) * ( )d

1

2
( ) * ( )d , (A.7)i i i i1

1
latt

1 0
latt

0

with the origin of the energy axis corresponding to the s-fermion single particle energy.E1may be larger than
∣ ∣U0 .

Consider now the effects due to lateral and vertical shaking. The former is quite standard [18] and leads to a
familiar term

∑ω + +↑( )K t j n s s p pcos ˆ ˆ ˆ ˆ ˆ ,
j

j j j j j
† †

whereK is the shaking amplitude. The vertical shaking of the lattice depth (assumed to be not too large) causes
periodic changes of single particle hoppings δ ω= +J t J J t( ) cosz z z for z=0,1, with amplitudes:

∫δ δ π= + ⎜ ⎟⎡⎣ ⎤⎦ ⎛
⎝

⎞
⎠J x V

x

a
x x( ) * sin ( )d . (A.8)z i

z
i
z

0
2

1

On time averagingwewill see that these periodic changes have negligibly small influence on the system and can
be omitted. That is the reasonwhy they do not appear in theHamiltonian (1) of themain text.

Next we have periodic changes in the onsite energywith amplitudes:

∫

∫

δ δ π

δ π

=

−

 

 

⎜ ⎟

⎜ ⎟

⎡⎣ ⎤⎦ ⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦ ⎛
⎝

⎞
⎠

E x V
x

a
x x

x V
x

a
x x

1

2
( ) * sin ( )d

1

2
( ) * sin ( )d . (A.9)

i i

i i

1
1

0
2 1

0
0

2 0

Contrary to changes in the tunneling, this onsite effect is very important for themodel and allows us to realize
tunneling dimerization of the RMmodel.
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Appendix B

The standard time-averaging procedure can be obtained applying Floquet theorem following [36] and deriving
the effectiveHamiltonian via repeated commutation of the time independentHamiltonianwith operator

∫= − ′F t t H t( ) d ( )
t

0 sh . Using this approach one can verify that, already in the second commutator, terms

containing periodic changes in hopping parameters become negligibly small; which allows us to omit them from
our considerations.

Asmentioned in themain textwe invoke instead a time-dependent unitary transformation

∫= − − ′ ′U H t H t tˆ exp [ i ˆ i ˆ ( )d ]
t

int 0 sh .We include in the transformation also the on-site termswith the aimof

locating resonant coupling between bands.We obtain the transformedHamiltonian, ′ = −H U HU U d Uˆ ˆ ˆ ˆ i ˆ [ ˆ ]t
† †

in the form:

∑

∑

∑

∑

ω
ω

ω
ω

ω
δ
ω

ω

ω
δ
ω

ω

′ = − +

+ + +

+ − + + +

+ − + + − +

+ − − + − − +

↑
+

↑
+ ↑ + ↑

↑ + + ↑

↑
+

↑
+ + +

↑ ↑

↑ ↑

↑ ↑

⎜ ⎟

⎜ ⎟

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

⎡
⎣
⎢⎢

⎛
⎝

⎞
⎠

⎤
⎦
⎥⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

(
)

( )

( )

( )

( )

( )

( ) ( )

( )

( )

H
K

t U n n t J s s s s

T s n n s h c

K
t U n n t J p p T p n n p h c

T j i E U n t i j
K E

t p n s

T j i E U n t i j
K E

t s n p

ˆ exp i sin exp i ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ . .

exp i sin exp i ˆ ˆ ˆ ˆ ˆ ˆ . .

( ) exp i ˆ i ( ) sin ˆ ˆ ˆ

( ) exp i ˆ i ( ) sin ˆ ˆ ˆ . (B.1)

j

j j j j j j

j j j j

j

j j j j j j j j

ij

i i i j

ij

i j i i

0 1 0 1
†

1
†

0 1
†

1

1 1 1 1
†

1 1
†

1

01 1 1
1 †

01 1 1
1 †

Nowwe assume the resonant condition

ω Δ+ = +E U N 2 , (B.2)1 1

whereN is integer and Δ ω≪ is the detuning. The shaking frequencyω chosen is large compared to all the
tunneling amplitudes. Before standard time averaging onemore simplification ismade.We consider a low
energyHilbert subspace, where due to strong attractive interactions all↑-fermions are paired. The resonant
condition (B.2)may be fulfilled only for sites occupied by the composites, i.e with = 〈 〉 =↑ ↑n n̂ 1i i .We average
theHamiltonian over the oscillation period and neglect terms (∼1/ω) obtainingHeff (3). Let us note also that
on-site direct excitation of the p-band due to periodic shaking (see e.g. [37]) is negligible in ourmodel due to the
resonance condition (B.2) involving composite binding energy.
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