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Abstract
Pairwise entanglement, calculated separately for charge and spin degrees of freedom, is proposed as a
ground-state signature of theMott transition in correlated nanoscopic systems. Utilizing the exact
diagonalization—ab initio, for chains containing N 16 hydrogenic-like atoms (at the halffilling),
wefind that the vanishing of the nearest-neighbor charge concurrence indicates the crossover from
apartly-localized quantum liquid to theMott insulator. Spin concurrence remains nonzero at the
insulating phase, showing that the decopling of spin and charge degrees of freedommaymanifest itself
bywavefunctions entangled in spin, but separable in charge coordinates. At the quarter filling, the
analysis for N 20 shows that spin concurrence vanishes immediately when the charge-energy gap
obtained from the scalingwith N1 0 vanishes, constituting afinite-system version of theMott
transition. Analytic derivations of the formulas expressing either charge or spin concurrence in terms
of ground-state correlation functions are also provided.

1. Introduction

In 90 years after the seminal work by Schrödinger [1] analytical properties of quantum-mechanical
wavefunctions describing hydrogenic-like atoms (or ions) continue to surprise. For instance, recent derivation
of theWallis formula forπ by Friedmann andHagen [2] refers to the variational principle and the
correspondence principle, but also employs acounterintuitive fact that some variational approachesmay
truncate particular excited states of atomswith the same or better accuracy than the ground state (GS). This
feature has direct analogs inmany-electron hydrogenic systems andmotivated the proposal of the exact
diagonalization—ab initiomethod (EDABI) [3], whichwere recently used to discuss the influence of electron
correlations on themetallization of solid hydrogen in arigorousmanner [4, 5]. Also, as amethod putting equal
footing on single- andmultiparticle aspects of the correlated quantum states, EDABI seems to be apromising
candidate for the theoretical tool capable of giving abetter insight into the superconductivitymechanism in
sulfur hydrides [6, 7] or into themagneticmoment formation in functionalized graphenes [8].

When considering ageneric second-quantizedHamiltonianwith both spin and charge degrees of freedom,
afewnumerical techniques can be regarded as exact ones; i.e., giving the desired correlation functionswithin the
accuracy limited (in principle) by themachine precision only. These includes: exact diagonalization (ED) for
relatively small systems [9], densitymatrix renormalization group (DMRG) for low-dimensional systems [10],
and quantumMonteCarlo (QMC) for non-frustrated systems [11]. Aseparate class is outlined by variational
approaches designed to treat one-dimensional (1D) atomic chains in the insulating phase [12]. Even though each
of thesemethods provides uswith detailed information about the closed-systemGS, it is usually achallenging
task to determinewhether GS is insulating,metallic, or of amore complex nature [13]1. This is primarily
because standardGS signatures of themetal–insulator transition, such as avanishing charge gap [14], are absent
at anyfinite system size (quantified by the number of lattice sitesN), butmay appear only after the so-called
finite-size scaling (with N1 0 ), aprocedure introducing systematic errors difficult to estimate in some cases.
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For this reason, specially-designedGS correlation functions, not only signaling theMott transition in the
thermodynamic limit, but also showing fast convergence (with N1 0 ) forfinite systems close to themetal–
insulator boundary,may constitute avaluable complement of the existing numerical techniques.

In attempt to propose such correlation functions, one need to point out the relevance of quantum
fluctuations between electronic doubly-occupied sites and unoccupied sites and between singly occupied sites
with spin up and spin down in latticemodels, as suggested before by numerous authors [15–19]. The concept
quantum entanglement [20, 21], togetherwith entanglementmeasures such as the concurrence [22], was
adopted to quantify the above-mentioned fluctuations in various systems [23–25, 26–41], including basic spin
models [23–25, 42], fermionic systems [26–31], or systemswith spin and orbital degrees of freedom [32–35]. For
an open fermionic system (namely: acorrelated quantumdot attached to the leads)we found that the
concurrence, defined separately for charge and spin degrees of freedom, allowed one to distinguish between
different quantum transport regimes of the system [36]. Analogs of this observationwere also reported for
double [37, 38] and triple quantumdots [39]. For closed systems, in particular for smallmolecules,Mottet et al
[40] showed that the entanglement analysis provided a valuable insight into the chemical bond formation. Even
noninteracting systemswith complex Fermi surface topologywere characterized via their entanglement spectra
[41]. Also very recently, ageneric variational approach to correlated quantum systems, inwhich the output
numerical precision is steered by settingmaximal allowed entanglement between aselected subsystem and the
environment, was proposed [43].

Sacramento et al [44] used entanglementmeasures to complement the long-lasting discussion of decoupling
of charge and spin degrees of freedom in 1DHubbardmodel [45] and its relation to the charge–spin separation
phenomenon in Luttinger liquids [46, 47]. In particular, it is pointed out in [44] that charge–charge fluctuations,
when quantified by properly defined correlation functions, show substantially different asymptotic behavior
than spin–spin fluctuations in both themetallic and the insulating phases.

Here we focus on linear chains containing up toN=20 equally-spaced hydrogenic-like atoms, each one
containing asingle valence orbital (see figure 1). Although such chains are not directly observable due to the
well-knownPeierls instability, they have been intensively studied to benchmark different ab initio approaches to
strongly-correlated systems [48]. In this paper, two distinct physical regimes are considered: at the half filling the
system shows a crossover behavior, with the increasing interatomic distanceR, from apartly localized quantum
liquid to theMott insulating phase [3, 49]. At the quarter filling, theMott transition is reconstructed with

N1 0 [3]. (The above-mentioned findings are consistent withmore recent results ofQMC simulations for
Hubbard chains with long-range interactions [50].) It is worth tomention that the two regimes are also
significantly different from amore fundamental point of view: in the strong-coupling (i.e., largeR) limit the
chargefluctuations are suppressed and the half-filled chain can be effectively described as 1DHeisenberg
antifferomagnet, for which long-range order is absent due to theMermin–Wagner theorem [51]. For the
quarter-filling similar reasoning cannot be applied in the presence of long-range Coulomb interactions, and the
charge-density wave phase is predicted to appear [3, 52–54]. In otherwords, we consider the two
complementarymodel cases allowing one to test entanglement-based phase-transition indicators.We further
discuss the concurrence [22], defined separately for charge and spin degrees of freedom, and employ it to
recognize the decoupling of charge and spin degrees of freedom accompanying afinite-system version of the
Mott transition.

The paper is organized as follows. In section 2we present the systemHamiltonian and summarize the
EDABImethod. In section 3 thefindings of [3], concerning thefinite-size scaling of charge-energy gap, are
revisited after taking larger systems under consideration. In section 4we determine the local and pairwise
entanglement, the latter for charge and spin degrees of freedom, and discuss their evolutionwith the interatomic
distance and the system size. The conclusions are given in section 5.

Figure 1.A system studied numerically (schematic). Hydrogenic-like atoms, containing 1s-type orbitals with their radii 1a- , are
arranged linearly with the interatomic distanceR. TheHamiltonian parameters, including the atomic energy a , the intraatomic
Coulomb integralU, the hopping integrals tij, and interatomicCoulomb integralsKij, are determined for each value ofα andR (see
section 2 for the details).
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2. The exact diagonalization—ab initiomethod (EDABI)

The EDABImethod, together with its application to the systemoffigure 1, have been presented in several works
[3–5, 49]. Here we briefly recall themain findings, towhichwe refer in the remaining parts of the paper.

2.1. TheHamiltonian for alinear chain
The analysis starts from the second-quantizedHamiltonian, which can bewritten in the form

R n t c c c c U n n K n n V, , 1a
j

j
i j

ij i j j i
i

i i
i j

ij i j
,

ion ion å å å åa = + + + + +
s

s s s s
<

 
<

-ˆ ( ) ˆ (ˆ ˆ ˆ ˆ ) ˆ ˆ ˆ ˆ ( )† †

where a is the atomic energy (same for allN sites upon applying periodic boundary conditions), tij is the hopping
integral between ith and jth site (we further set t tij º - if i and j are nearest neighbors, otherwise t 0ij » ),U is
the intrasite Coulomb repulsion,Kij is the intersite Coulomb repulsion, andV e Ri j ijion ion

2= å- < (with the
distance R R i j N i jmin ,ij º - - -(∣ ∣ ∣ ∣)) expresses the repulsion of infinite-mass ions.

The single-particle and interaction parameters of theHamiltonian R, aˆ ( ) (1), alsomarked infigure 1, can
be defined as follows

w T w r w T w tr r rd 1 , 2i i i j a ij ij ij
3 ò d dá ñ = º + -∣ ∣ ( ) ( ) ( ) ( ) ( )

w w V w w r r w V w U Kr r r rd d 1 , 3i j i j ij ij ij
3 3 2 2ò d dá ñ = ¢ - ¢ ¢ º + -∣ ∣ ∣ ( )∣ ( )∣ ( )∣ ( ) ( )

whereT is thesingle particleHamiltonian describing an electron in themediumof periodically arranged ions,
andV is the Coulomb repulsive interaction of two electrons. TheWannier functions are defined via atomic
(Slater-type) functions, namely

w r r , 4i
j

ij jåb y=( ) ( ) ( )

where the Slater 1s function r r Rexpi i
3 1 2y a p a= - -( ) ( ) ( ∣ ∣), withα being the inverse orbital size, here

taken as variational parameter, and Ri being the position of ith ion. The coefficients ijb in equation (4) can be
uniquely defined by imposing that (i) w wi k ikdá ñ =∣ and that (ii) wi iyá ñ∣ ismaximal [3, 55].

The range of Coulomb interactions in theHamiltonian R, aˆ ( ) (1), quantified by parameters K e Rij ij
2»

for R Rij  , is apriori limited only by the chain length L NRº . Previous studies on linear chains, both ab initio
ones [12, 48] and these starting from second-quantizedmodelHamiltonians [50, 52], usually have imposed
some formof charge screening reducing the range of such interactions (leaving the on-site Coulomb repulsion
only in the extreme case [53]). This can be partly justified by possible influence of the enviroment in condensed-
matter realizations such as quantumwires [54] or self-organized chains [56]. Aslightly different situation
occurrs for cold atom systems, where long-range dipole–dipole interactionsmay be relevant [57]. Apart from
these experiment-related premises, long-range interactions usually lead to anoticeable slowdownof the
convergence for numericalmethods such asDMRGorQMC [58, 59]. This is not the case for the EDABImethod,
as the determination of parametersKij corresponds to arelatively small portion of the overall computation time
[60]2, and the convergence of subsequent diagonalization in the Fock space (see the next subsection) is
unaffected by the fact whether or not long-range interactions are included. Also, as charge screening becomes
systematically less effective when the systemdimensionality is reduced [61], one can expect it to be insignificant
in ahypotetical realization of chains containing N 20 atoms.

2.2. Single-particle basis optimization
Next, each Slater function is approximated as follows

Br
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where p is the number ofGaussian functions truncating jy , and B ,q qG{ }, q= 1,K, p, are adjustable parameters
chosen tominimize the atomic energy for 1a = and agiven value of p. Herewe set p=3, for which the
deviation from the exact energy for s1 function is lower that 1%3. Subsequently, the parameters a , tij,U, andKij

are calculated from equations (2) and (3) as functions ofα andR. TheHamiltonian R, aˆ ( ) (1) is diagonalized
numerically in the Fock space, using the Lanczos algorithm, and the orbital size is optimized tofind mina a=
corresponding to theminimal GS energyEG(N) for eachR. Defining the efective atomic energy as

2
The situationmay become substantially different in the absence of translational invariance, see [60].

3
See appendixA in [55].
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onefinds that mina and other parameters converges rapidlywithN. This observation allows us to speed up
computations by using the values obtained for smaller systems (N 10 ) to perform extrapolationwith

N1 0 . (The results are listed in table 1.)

3. Finite-size scaling for the charge-energy gap

Astandard numerical approach [14, 50], allowing one to determinewhether acorrelated systemdescribed by
theHamiltonian such as given by equation (1) ismetallic or insulating in theGS, involves calculating the charge-
energy gap according to

E N E N E N E N2 , 7C
N

G
N

G
N

G
N1 1el el el elD = + -+ -( ) ( ) ( ) ( ) ( )

where Nel is the number of electrons. Next, the limit of N1 0 (with N Nel = const) is to be taken
numerically. The limiting value of E 0CD  indicates themetallic phase, whereas anonzero value indicates the
insulating phase4. In the numerical examples presented here and in section 4we consider two different physical
situations: the half filling N Nel = , with N 16 , and the quarter filling N N 2el = , with N 20; we further
restrict ourselves to even values ofN and Nel. Due to the total spin conservation it is sufficient, for each pair
N N, el( ), to look for the ground-state energy E NG

Nel ( ) in equation (7) in the subspace characterized by the total
zth component of spin Sz= 0. Analogously, the values E NG

N 1el ( ) can be found by choosing S 1 2z = . In
particular, the largest considered subspace dimension corresponds toN=20, N 1 11el + = , and is equal to
600 935 040.Moreover, we impose the periodic (t ti j N ij, =+ ) or antiperiodic (t ti j N ij, = -+ ) boundary
conditions tominimize E NG

Nel ( ) for N k4 2el = + or N k4el = , respectively, with k-integer (see table 2).

Table 1.Microscopic parameters (specified in eV—unless stated otherwise) of theHamiltonian R, aˆ ( ) (1)with mina a=
minimizing the ground-state (GS) energy EG. The Bohr radius is a 0.5290 = Å. The effective atomic level a

eff is defined by
equation (6); the remaining symbols are t tijº - for j i 1=  (modN), K Km i jº -∣ ∣ (with m 1, 2, 3= ), and the
correlated hopping integral V w w V w wi i i i 1º á ñ∣ ∣ , quantifying the largest neglected term in R, aˆ ( ). The numerical
extrapolationwith N1 0 is performed for all parameters.

R a0 amin 0a a
eff t U K1 K2 K3 V E NG

1.5 1.363 1.36 11.31 27.95 15.85 9.08 6.08 −0.597 −10.19

2.0 1.220 −7.48 6.02 23.58 12.40 6.82 4.54 −0.324 −12.65

2.5 1.122 10.85 3.60 20.83 10.20 5.46 3.63 −0.203 −13.32

3.0 1.062 12.27 2.32 19.14 8.69 4.54 3.02 −0.150 −13.48

3.5 1.031 12.90 1.57 18.16 7.58 3.89 2.60 −0.128 −13.50

4.0 1.013 13.20 1.08 17.57 6.71 3.40 2.27 −0.119 −13.50

5.0 1.004 13.43 0.51 17.12 5.43 2.72 1.81 −0.096 −13.50

6.0 1.001 13.48 0.23 16.99 4.53 2.27 1.51 −0.058 −13.50

7.0 1.000 13.49 0.10 16.97 3.89 1.99 1.29 −0.027 −13.50

Table 2.Boundary conditions BC (with+ -marking the
periodic/antiperiodic BC) and dimension of the largest
subblock of theHilbert space (with the total zth component of
spin Sz= 0) for chains studied in the paper at the quarter filling
(i.e., N N 2el = ). The last column specifies the values of the
interatomic distance R at which the spin concurrence vanishes,
with the interpolation errorbars for the last digit given in
parenthesis. (See section 4 for details.)

N Nel BC dim H S 0z
tot =( ) R a0

8 4 − 784 6.53(3)
12 6 + 48 400 5.22(2)
16 8 − 3 312 400 4.38(1)
20 10 + 240 374 016 4.51(1)

4
Strictly speaking, finding outwhether the insulating phase is of theMott type also requires calculation of the so-called spin gap,
E E ES G

S
G
S1 0z zD = -= = (where EG

Sz denotes the lowest eigenenergy in the subspacewith atotal zth component of spin Sz); E 0CD >
accompanied by E 0SD  for N1 0 indicates theMott phase. Although the answermay not be obvious in amore general situation (see
[13], footnote 1), alack of long-range spin order in 1D systemsmanifests itself by afast decay of ESD withN for atomic chains described by
theHamiltonian R, aˆ ( ) (1) for all values ofR. The numerical demonstrations are provided in [3, 55].
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The numerical results, corresponding to theHamiltonian R, aˆ ( ) (1)with themicroscopic parameters
listed in table 1, are presented infigures 2 and 3.Wenotice that the datasets for N 14 at the half filling as well
as for N 16 at the quarter fillingwere presented in [3], were we also used the Richardson extrapolation of the
second order [62] to performfinite-size scaling with N1 0 for each value ofR. After adding the newdatasets
forN=16, N Nel = andN=20, N N 2el = (both depictedwith open diamonds) the earlier conclusions
regarding the systemGS are further supported: namely, the extrapolationwith N1 0 (open triangles) at
N Nel = leads to E 0CD > for any accessible value of R a0 indicating the insulating phase (seefigure 2). At

Figure 2.Charge-energy gap as afunction of the interatomic distance R a0 (with the Bohr radius a 0.5290 = Å) for chains of
N 10 16= – atoms at the half filling (N Nel = ). Datapoints were shifted vertically by 0.05 Ry forN=16 (diamonds), 0.10 Ry for
N=14 (solid circles), 0.15 Ry forN=12 (open circles), or 0.20 Ry forN=10 (stars). The results of the finite-size scalingwith

N1 0 , obtained via the Richardson extrapolation of the second order [62], are also shown (triangles). Lines are guides for the eye
only.

Figure 3. Same asfigure 2 but for chains of N 8 20= – atoms at the quarter filling (N N 2el = ). No artificial datashifts were applied
this time.Horizontal dashed linemarks E 0CD = , solid purple line represents the best-fitted function given by equations (8) and (9),
indicating theMottmetal–insulator transition in the N1 0 limit, occurring for R R a4.2c 0= » .
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N N 2el = , the finite-size scaling results can be rationalizedwith the empirical function

E N
R R

R R a R R
1 0

0 if ,
if ,

8C
N c

c c

2

0 0 D  »
<

D - g

⎧⎨⎩( )
[( ) ]

( )

with the best-fitted parameters (numbers in parentheses are standard deviations for the last digit)

R a4.18 2 , 0.158 3 Ry, 0.57 3 , 9c 0 0 g= D = =( ) ( ) ( ) ( )

depictedwith solid purple line in figure 3. The gap opening at R Rc= indicates theMott transition.
For asake of conciseness, our discussion offinite-size scaling estimates of theMott transition is limited to

the charge-energy gap. Amore detailed analysis, presented in [3, 49, 55] and involving calculations of the
electronmomentumdistribution, theDrudeweight, as well as the so-calledmodern theory of polarization [63],
justify the transition appearance in the N N 2el = case, which coincides with the results for related
parametrizedmodel studies [50, 52, 53, 57]. In the N Nel = case, the situation is of aslightlymore complex
nature: apart from anonzero gap for anyR, following from thefinite-size scaling, several GS and dynamical
characteristics (in particular—theDrudeweight, see [3]) exhibit, for anyfiniteN, acrossover behavior between
apartly localized quantum liquid, appearing for smallR, and afully-reconstructedMott insulator, typically
appearing for R a 40  . These findings coincides withmore recent variationalMonte-Carlo studies of
hydrogenic chains (see [12]), and can be attributed to the increasing (with growingR) role of electron
correlations in either the exact or variational GSwavefunction.

It is worth tomention here that some surprisingly efficient variationalmethods, such as presented in [12],
become significantly less efficient when treating open-shell configurations in attempt to calculate ECD from
equation (7), or generally when utilized away from the halffilling (N Nel ¹ ). Also for this reason, GS correlation
functions signaling afinite-system version of theMott transition forN small enough to be treatedwith some
moreflexible numerical techniques, are desired.

4. Reduced densitymatrix and quantum entanglement

In this sectionwe derive explicit representations of the reduced density operator TrA Ar = YñáYˆ ∣ ∣ (where TrA
stands for tracing over all degrees of freedom except from these characterizing a selected subsystemA) relevant
when discussing the local entanglement, the pairwise entanglement for charge degrees of freedom, and the
pairwise entanglement for spin degrees of freedom. The derivations remain valid for ageneric spin-1/2
fermionic system at any pure state Yñ∣ , which can be represented assuming four basis states for each site j,
namely:

n n 0 , , , ; 10j j j j j jñ º ñ  ñ  ñ   ñ {∣ } {∣ ∣ ∣ ∣ } ( )

although the numerical examples, considered in search for entanglement-based estimates of theMott transition,
all correspond to theGS of alinear chain described by theHamiltonian R, aˆ ( ) (1)with themicroscopic
parameters taken from table 1.

4.1. General considerations
Let us consider ageneral example atfirst: the quantum system, which can be divided into two distinct
subsystemsA andB. Apure state Yñ∣ can be represented as follows

, 11å a bYñ = Y ñ Ä ñ
ab

ab∣ ∣ ∣ ( )

where Yab denotes acomplex probability amplitude corresponding to abasis state of the full system a bñ Ä ñ∣ ∣ ,
while añ{∣ }and bñ{∣ }are complete basis sets for the subsystemsA andB (respectively). The reduced density
operator Ar̂ is defined as:

Tr

, 12

A A

, ,



å

å

r b b

a a

= YñáY º á YñáY ñ

= Y Y ñá ¢
b

b a a
ab a b

¢
¢

ˆ ∣ ∣ ∣ ∣

∣ ∣ ( )

where the last equality follows from equation (11) and Yab denotes the complex conjugate of Yab . Subsequently,
thematrix elements of Ar̂ are given by

. 13A, ,
år a r aº á ¢ñ = Y Ya a

b
ab a b¢ ¢∣ ˆ ∣ ( )
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Wedefine nowprojection operators Pα andPβ, associatedwith the basis states añ∣ and bñ∣ , via

P P, . 14a d a b d b¢ñ = ñ ¢ñ = ña aa b bb¢ ¢∣ ∣ ∣ ∣ ( )

Useful properties, directly following from equation (14) are

P P P P, , 152 2= =a a b b ( )

P P 1, 16å å= =
a

a
b

b ( )

where equation (16) also employs the completeness of the basis sets añ{∣ }and bñ{∣ }. Next, we define the transfer
operator

T T, , 17a a a a¢ñ = ñ á ¢ = áaa aa¢ ¢∣ ∣ ∣ ∣ ( )†

which is unitary, i.e.

T T T . 181= ºaa aa a a¢ ¢
-

¢( ) ( )†

Explicit forms ofPα,Pβ, andTaa¢, corresponding to the particular splittings of the system intoA andB
subsystems, are to be specified later in terms of the operators c c,i is s{ˆ ˆ }† for lattice spin-1/2 fermions.Herewe
notice that as the indices ,a a¢( ) refer the subsystemA, whereas the indexβ refers to the subsystemB, we have

P P P T, 0, , 0, 19= =a b b aa¢[ ] [ ] ( )

for all ,a a¢( ) andβ.
With the help of operators Pa and Pb (14) one canwrite down, for Yñ∣ represented according to

equation (11),

P P , 20a bYñ = Y ñ Ä ña b ab∣ ∣ ∣ ( )

P P . 21a báY = á ¢ Ä á Ya b a b¢ ¢∣ ∣ ∣ ( )

In turn, the reduced densitymatrix, as given by the rightmost equality in equation (13), can be rewritten as

P P T P P

P T P , 22

år = áY Yñ

= áY Yñ

aa
b

a b a a a b

a a a a

¢ ¢ ¢

¢ ¢

∣ ∣

∣ ∣ ( )

with the last equality following from equations (15), (16), and (19). Finally, using equation (18), we find

P T P . 23r = áY Yñaa a aa a¢ ¢ ¢( ) ∣ ∣ ( )

Remarkably, the reduced densitymatrix elements in equation (23) are expressed by pure-state expectation values
(correlation functions) of the operators acting only on the subsystemA. This feature is further explored in the
remaining parts of this section.

4.2. Entanglement entropy
The local entanglement [27] exhibits quantum correlations between the local state of aselected jth site
(subsystemA) and the rest of the system (B). As the basis set añ{∣ } is simply given by equation (10), one canwrite
down the corresponding projection operators

P n n n n n n n n1 1 , 1 , 1 , , 24T= - - - -a        ( ) [( )( ) ( ) ( ) ] ( )

and the transfer operators

T

c c c c

c c c c

c c c c

c c c c

1

1

1

1

, 25=
-

-

aa¢

   

   

   

   

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( ) ( )

† †

† †

† † † †

wherewe have omitted the site index j for brevity. For the systemwith the total spin and charge conservation,
such as our linear chain (see equation (1)), we have

c c c c c c

c c c c

0, 0,

and 0, 26

á ñ = á ñ = á ñ = á ñ =

á ñ = á ñ =
s s s s s s

s s s s ( )

†
¯

†
¯
†

†
¯ ¯

†

(with s being the spin index opposite toσ) providing that the averaging takes place over an eigenstate Yñ∣ of the
systemHamiltonian (not necessarily theGS). Substituting the expressions for Pα (24) andTaa¢ (25) into
equation (23) and taking equation (26) into account we get, after a straightforward algebra,
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u w w udiag , , , 271 2r =aa¢ + -( ) ( ) ( )

with

u n n w n n

w n n u n n

1 1 , 1 ,

1 , . 28

j j j j

j j j j

1

2

= á - - ñ = á - ñ

= á - ñ = á ñ
+    

  -  

( )( ) ( )
( ) ( )

Equation (27) corresponds to the reduced density operator of thewell-known form

u w w u0 0 , 29A 1 2år r a a= ñá ¢ = ñá +  ñá  +  ñá  + ñá
aa

aa
¢

¢ + -ˆ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( )

wherewe have used the basis given by equation (10).
Aquantitativemeasure of the entanglement between the state of jth site and that of the remaining N 1-

sites is given by the vonNeumann entropy

E u u w w w w u ulog log log log . 30v 2 1 2 1 2 2 2 2= - - - -+ + - - ( )

If the translational invariance of the system is imposed, one can define the particle density n and the average
number of double occupancies d, following

n n
N

N

n
n n d

2 2
, , 31j j j j

elá ñ = á ñ = º á ñ º    ( )

wherewe have further assumed that the averaging takes place over an eigenstate characterized by the total zth
component of spin Sz= 0. Subsequently, equation (28) can be rewritten as

u n d w w
n

d u d1 ,
2

, . 321 2= - + = = - =+ - ( )

In particular, for theGS of theHamiltonian R, aˆ ( ) (1), for which the effective interaction between
electrons can roughly be estimated by U K1~ - and is always repulsive, one can show that

n n
d

n
n

1 1

2 4
for 0 2, 33

2

   - + -∣ ∣ ( )

where the lower bound for d corresponds to the so-called strong-correlations limit approached for R a0 (as the
bandwidthW t U K4 1º - , see table 1), whereas the upper bound for d corresponds to the free-electrons
limit approached for R a2 0 (W U K1- ). As the charge fluctuations are given by

n n n n n dVar 2j j j
2 2 2= á ñ - á ñ º - +{ } , the above-mentioned limits coincide (respectively)with theminimal

and themaximal fluctuations for agiven n.Moreover, the bounds for d in equation (33) can bemapped, via
equation (32), onto

E n E E n , 34v v v
corr free ( ) ( ) ( )

with

E n n n n
n

1 log 1 1 1 log
1 1

2
35v

corr
2 2= - - - - - -

- -⎜ ⎟⎛
⎝

⎞
⎠( ) ∣ ∣ ∣ ∣ ( ∣ ∣) ∣ ∣ ( )

for the strong-correlations limit, and

E n n
n

n
n

log
2

2 log 1
2

36v
free

2 2= - - - -⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )

for the free-electrons limit. For instance, equations (34)–(36) lead to

E N N1 2 for , 37v el  = ( )
and

E N
N3

2
4

3

2
log 3 1.623 for

2
. 38v 2 el  - » = ( )

Remarkably, the strong-correlations limit corresponds to theminimal Ev, whereas the free-electrons limit
corresponds to themaximal Ev (for any n0 2  ). This is becausewhen the free-electrons limit is approached,
ground-state wavefunction can be truncated by asingle Slater determinant composed of fully delocalized single-
particle functions (Bloch functions), resulting in themaximal entanglement between jth site and the remaining
N 1- sites [12, 36]. Repulsive interactions between electrons lead to the correlation-induced suppression of

nVar j{ }, and to the decreasing Evwith growing the interaction-to-bandwidth ratio.
General findings, presented briefly in the above, are now illustratedwith the numerical examples for

N Nel = and N N 2el = (seefigures 4 and 5). In both cases, the values ofEv are close to the upper bounds given
by equations (37) and (38) for the smallest considered value of R a 1.50 = , and systematically decrease with
growingR, gradually approaching the lower bounds in equations (37) and (38). Also, a remarkably fast
convergence ofEvwith growingN is observed for anyR, making it necessary to apply vertical shifts to the datasets

8

New J. Phys. 19 (2017) 053025 ARycerz



infigures 4 and 5.We further notice that E 3 2v » starting from R a5 0 for N N 2el = , whereas for
N Nel = we still have E 1v > in this range. However, the smooth evolution ofEvwithR is observed for both
N Nel = and N N 2el = , making it difficult to consider the local entanglement as an estimate of theMott
transition. Pairwise entanglement is discussed next as the other candidate.

4.3. The fermionic concurrence
Weconsider now the subsystemA consists of two spatially-separate quantumbits (qubits), one of which is
associatedwith ith lattice site and the other with jth site. Each individual qubit can be realized employing charge
or spin degrees of freedom.

Figure 4. Local entanglement Ev (see equations (30)–(32)) as afunction of the interatomic distance R a0 for N 10 16= – and
N Nel = . Datapoints forN=16 are shownunmodified, the others were shifted vertically by 0.1 (N = 14), 0.2 (N = 12), or 0.3
(N = 10). Horizontal dashed linemarks E nv

free ( ) given by equation (36); other lines are guides for the eye only.

Figure 5. Same asfigure 4, but for N 8 20= – and N N 2el = . The vertical shifts are: 0 (N = 20), 0.01 (N = 16), 0.02 (N = 12), and
0.03 (N = 8).
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For instance, if charge qubits are under consideration, one can choose the basis set forA in afixed-spin sector
s = , namely

0 0 , 0 , 0 , , 39c
i j i j i j i jañ = ñ Ä ñ ñ Ä  ñ  ñ Ä ñ  ñ Ä  ñ{∣ } { ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ } ( )

whereas for spin qubitswehave

, , , . 40s
i j i j i j i jañ =  ñ Ä  ñ  ñ Ä  ñ  ñ Ä  ñ  ñ Ä  ñ{∣ } { ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ } ( )

The corresponding projection operators are

P n n n n n n n n1 1 , 1 , 1 , , 41c
i j i j i j i j

T= - - - -a        ( ) [( )( ) ( ) ( ) ] ( )

and

P n n n n n n n n

n n n n n n n n

1 1 , 1 1 ,

1 1 , 1 1 , 42

s
i i j j i i j j

i i j j i i j j
T

= - - - -

- - - -
a        

       

( ) [ ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ] ( )

with the upper indices (c s, ) referring to charge and spin qubits (respectively). Subsequently, the transfer
operators are given by

T

c c c c

c c c c

c c c c

c c c c

1

1

1

1

, 43c

j i j i

j j i i

i i j j

i j i j

=
-

-

aa¢

   

   

   

   

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( ) ( )

† †

† †

† † † †

and

T

S S S S

S S S S

S S S S

S S S S

1

1

1

1

, 44s

j i j i

j j i i

i i j j

i j i j

=aa¢

+ + + +

- - + +

- - + +

- - - -

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( ) ( )

with the spin operators S c ci i i=+
 
† , S c ci i i=-

 
† . Substituting the above expressions into equation (23)we get

u

w z

z w

u

X c s

0 0 0

0 0

0 0

0 0 0

for , , 45X

X

X X

X X

X

1

2


r = =aa¢

+

-

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
( )

( )
( )

where the total spin and charge conservation is imposed. The nonzeromatrix elements in equation (45) are given
by

u n n w n n

z c c w n n u n n

1 1 , 1 ,

, 1 , , 46

c
i j

c
i j

c
j i

c
i j

c
i j

1

2

= á - - ñ = á - ñ

= á ñ = á - ñ = á ñ
+    

    -  

( )( ) ( )
( ) ( )†

for charge qubits, or by

u n n n n

w n n n n

z S S c c c c

w n n n n

u n n n n

1 1 ,

1 1 ,

,

1 1 ,

1 1 , 47

s
i i j j

s
i i j j

s
j i j j j j

s
i i j j

s
i i j j

1

2

= á - - ñ

= á - - ñ

= á ñ = á ñ

= á - - ñ

= á - - ñ

+    

   

+ -
   

   

-    

( ) ( )
( )( )

( ) ( )
( ) ( ) ( )

† †

for spin qubits.
We use now the concurrence  , as aquantitativemeasure of quantum entanglement in the two-qubit

subsystemA. The closed-form expressionwas derived byWootters [22] and reads

max 0, , 481 2 3 4 l l l l= - - -{ } ( )

where 1 2 3 4  l l l l are eigenvalues of thematrix product

49i
y

j
y

i
y

j
y*r s s r s sÄ Ä· ( ) ( ) ( )

with Xr r= aa¢( ) given by equations (45)–(47), and i
ys ( j

ys ) being the second Paulimatrix acting on the qubit
associatedwith ith ( jth) lattice site. It was also shown in [22] that the entanglement of formation for apair of
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qubits was uniquely determined by  , namely

E log 1 log 1 , 50f 2 2x x x x= - - - -( ) ( ) ( )

where 1 1 22x = + -( ) . In fact,  can be interpreted as adistance between agiven quantum state and the
nearest separable state [64]. For these reasons,  can be used to quantify the entanglement of two qubits instead
ofEf, and is hereinafter called pairwise entanglement.

The eigenvalues of thematrix defined by equation (49) can bewritten as

u u

w w z

,

, 51

X X

X X X

1 4

2,3 1 2
2

l l

l

= =

= 

+ -
˜ ˜

˜ ( ∣ ∣) ( )

where , ,1 4l l¼˜ ˜ are yet unsorted. After some straightforward steps, equation (48) leads to

z u u2 max 0, , 52X X X = - + -{ ∣ ∣ } ( )

where the relevant correlation functions are given by equation (46) forX=c, or by equation (47) forX=s. The
correlation functionsw1

X andw2
X are absent in equation (52) as they contribute to 1 2 3 4l l l l- - - if

and only if 01 2 3 4l l l l- - - < .
Generalizations of  formultifermionic states, appearingwhen larger subsystemA is under consideration,

are also possible [65]. Such generalizations are, however, beyond the scope of this paper.We focus here on the
pairwise entanglement,mainly because the formof equation (52)makes it possible to be determinedwith no
significant computational costs once standard (spin or charge) correlation functions are calculated.

Our numerical results for the pairwise entanglement are presented infigures 6 and 7, constituting the central
findings of this paper. The presentation is limited to the cases when sites i and j are the nearest neighbors in

Figure 6.Nearest-neighbor pairwise entanglement calculated from equation (52) for charge (top panel) and spin (bottompanel)
degrees of freedom; N N 10 16el= = – . The vertical shifts, applied to the datasets in both panels, are: 0 (N = 16), 0.01 (N = 14), 0.02
(N = 12), and 0.03 (N = 10). Lines are guides for the eye only.
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alinear chain (i.e., j i 1=  mod N ), as we have found that 0 = formore distant neighbors5. Also,
correlation functions in equation (52) are averaged over the reference site number i, to reduce the finite-
precision effects.

For N Nel = , we have 0 = for the charge degrees of freedom (so-called charge concurrence) provided that
R a 40  (see top panel infigure 6). In such arange, the separability of aquantum state in the position
representation, appearing if abipartite subsystem (A) is selected in afixed-spin sector, justifies the above-used
notion of afully-reconstructedMott insulator for afiniteN (see section 3 and [3, 12]). For smallerR, stronger
chargefluctuationsmanifest itself via nonzero charge concurrence, providing an insight into the nature of
apartly-localized quantum liquid. Remarkably, spin concurrence (see bottompanel infigure 6) is positive for
any consideredN and R a0, reaching themaximum in the crossover range of R a4 50  . For this reason,
spin concurrence still can be considered as aprospective signature of theMott transition.

For N N 2el = the evolution of the pairwise entanglement with R a0 (seefigure 7) is significantly different
than for the N Nel = case. For eachN, we have anonzero charge concurrence for any considered R a0 (top
panel infigure 7), whereas the spin concurrence (bottompanel) indicates afinite-system version of theMott
transition6. In brief, for spin degrees of freedom 0 = for R R N> ( ), where the nodal value R N ( )
corresponds to z u u 0s s s- =+ -∣ ∣ , and is determined numerically via least-squares fitting of aline to the actual
datapoints for agivenN (see the last column in table 2). For largerN, the values of R N ( ) are close to
R a4.2c 0» , determined in section 3 via thefinite-size scaling for ECD .

Additionally, we observe that the nearest-neighbor pairwise entanglementmay indicate the decoupling of
charge and spin degrees of freedom in correlated systems. This happens for R a 40  in the N Nel = case (as

Figure 7. Same asfigure 6, but for N 8 20= – and N N 2el = . The vertical shifts, applied to the datasets in the top panel only, are: 0
(N = 20), 0.01 (N = 16), 0.02 (N = 12), and 0.03 (N = 8).

5
This can be attributed to generic asymptotic behavior of the reduced densitymatrix (see equation (45)), for which nX 1

2

2
r d»aa aa¢ ¢( ) for

X=c, or n dX 1

2

2
r d» -aa aa¢ ¢( ) forX=s, since the relevant operator-fluctuations in equations (46) and (47) become uncorrelatedwith

growing the distance between sites i and j. Analogous features for spinmodels were discussed in [42].
6
Wehave intentionally limited the number of Lanczos iterations, starting (in any case) from arandomly-chosen vector in the Fock space, to

relatively small value ofm=30. This allows us to visualize howGS correlation functions converges with the system size: notice that the
oscillations of  as afunction ofR, visible forN=8 and 12 infigure 7, are strongly suppressed for largerN.
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well as for R R N> ( ) in the N N 2el = case), where nonzero spin (charge) concurrence is accompanied by
vanishing charge (spin) concurrence. In the above-mentioned ranges, quantum states of abipartite subsystem
(A) are entangledwhen spin, but separable when charge degrees of freedom are under consideration (N Nel = ),
or vice versa (N N 2el = ). Such adecoupling should be distinguished from charge–spin separation predicted to
appear in 1D systems showing the Luttinger liquid phase [44–47]. Our numerical examples also show there is no
one-to-one relation between the decoupling and theMott transition, as the format can be identified either for
the system showing the crossover behavior only or undergoing theMott transition (in the large-N limit). Finally,
the pairwise-entanglement analysis presented above allows one to identify noticeably different behavior of
charge and spin correlation functionswithout referring to their asymptotic behavior, as previously proposed in
the literature (see thefirst paper in [12, 44, 66]).

5. Conclusions

In this studywe have demonstrated that pairwise entanglement, quantified by the fermionic concurrence
determined separately for charge and spin degrees of freedom, can serve as aconvenient indicator for afinite-
system version of theMott transition. In particular, standard finite-size scaling estimates of theMott transition
for linear chains of hydrogenic-like atoms are revisited utilizing the EDABI at the half and the quarter electronic
filling. In the latter case, wefind that notmerely the charge gap indicates the transition for N1 0 (with
N being the number of atoms) at the interatomic distance R a4.2c 0» (where a0 denotes the Bohr radius), but
also the spin concurrence vanishes for afiniteN at R N ( ) taking the values relatively close toRc. Charge
concurrence remains nonzero in both themetallic and the insulating phases, signaling adecoupling between
charge and spin degrees of freedom.

At the half filling theMott transition is not observed. Instead, the crossover from apartly localized quantum
liquid to afully-reconstructedMott insulator occurs. The charge concurrence vanishes at the crossover point,
where the spin concurrence shows abroad peak; the latter remains nonzero in the entire parameter range.

It is worth to stress here that calculations of the fermionic concurrence, employed in this paper, generate
essentially no extra computational costs, as the concurrence is determined solely via pairwise ground-state
correlation functions for charge or spin degrees of freedom,without referring to the dynamical properties such
as the optical or dc conductivity. The analytic relations between entanglement and the correlation functions (see
equation (52)) are also derived in this paper.

Astriking feature is that the analysis holds true regardless how the exact (or approximated)GS is obtained,
making it possible to employ the entanglement-based signatures of theMott transitionwhen discussing
ageneric correlated-electron system.What ismore, equation (52) also applies when correlation functions on its
right-hand side are determined usingmore powerful numerical techniques, such asDMRGorQMC. For these
reasons, we believe the approachwe proposemay shed new light on various open problems in the field, such as
the long-standingmetallization of solid hydrogen [4], or the recently-raised phase diagramof the repulsive
Hubbardmodel on ahoneycomb lattice ([13], see footnote 1).
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