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Abstract

Pairwise entanglement, calculated separately for charge and spin degrees of freedom, is proposed as a
ground-state signature of the Mott transition in correlated nanoscopic systems. Utilizing the exact
diagonalization—ab initio, for chains containing N < 16 hydrogenic-like atoms (at the half filling),
we find that the vanishing of the nearest-neighbor charge concurrence indicates the crossover from

a partly-localized quantum liquid to the Mott insulator. Spin concurrence remains nonzero at the
insulating phase, showing that the decopling of spin and charge degrees of freedom may manifest itself
by wavefunctions entangled in spin, but separable in charge coordinates. At the quarter filling, the
analysis for N < 20 shows that spin concurrence vanishes immediately when the charge-energy gap
obtained from the scaling with 1/N — 0 vanishes, constitutinga finite-system version of the Mott
transition. Analytic derivations of the formulas expressing either charge or spin concurrence in terms
of ground-state correlation functions are also provided.

1. Introduction

In 90 years after the seminal work by Schrodinger [ 1] analytical properties of quantum-mechanical
wavefunctions describing hydrogenic-like atoms (or ions) continue to surprise. For instance, recent derivation
of the Wallis formula for 7 by Friedmann and Hagen [2] refers to the variational principle and the
correspondence principle, but also employs a counterintuitive fact that some variational approaches may
truncate particular excited states of atoms with the same or better accuracy than the ground state (GS). This
feature has direct analogs in many-electron hydrogenic systems and motivated the proposal of the exact
diagonalization—ab initio method (EDABI) [3], which were recently used to discuss the influence of electron
correlations on the metallization of solid hydrogen in a rigorous manner [4, 5]. Also, asa method putting equal
footing on single- and multiparticle aspects of the correlated quantum states, EDABI seems to be a promising
candidate for the theoretical tool capable of giving a better insight into the superconductivity mechanism in
sulfur hydrides [6, 7] or into the magnetic moment formation in functionalized graphenes [8].

When considering a generic second-quantized Hamiltonian with both spin and charge degrees of freedom,
a few numerical techniques can be regarded as exact ones; i.e., giving the desired correlation functions within the
accuracy limited (in principle) by the machine precision only. These includes: exact diagonalization (ED) for
relatively small systems [9], density matrix renormalization group (DMRG) for low-dimensional systems [10],
and quantum Monte Carlo (QMC) for non-frustrated systems [11]. A separate class is outlined by variational
approaches designed to treat one-dimensional (1D) atomic chains in the insulating phase [12]. Even though each
of these methods provides us with detailed information about the closed-system GS, itis usually a challenging
task to determine whether GS is insulating, metallic, or ofa more complex nature [13]". This is primarily
because standard GS signatures of the metal-insulator transition, such as a vanishing charge gap [14], are absent
atany finite system size (quantified by the number of lattice sites N), but may appear only after the so-called
finite-size scaling (with 1/N — 0),a procedure introducing systematic errors difficult to estimate in some cases.

For the discussion of a recent controversy concerning the existence of a spin-liquid phase in the Hubbard model on the honeycomb lattice,
see[13].

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. A system studied numerically (schematic). Hydrogenic-like atoms, containing 1s-type orbitals with their radii o}, are
arranged linearly with the interatomic distance R. The Hamiltonian parameters, including the atomic energy ¢,, the intraatomic
Coulomb integral U, the hopping integrals t;;, and interatomic Coulomb integrals Kj, are determined for each value of avand R (see
section 2 for the details).

For this reason, specially-designed GS correlation functions, not only signaling the Mott transition in the
thermodynamic limit, but also showing fast convergence (with 1/N — 0) for finite systems close to the metal—
insulator boundary, may constitute a valuable complement of the existing numerical techniques.

In attempt to propose such correlation functions, one need to point out the relevance of quantum
fluctuations between electronic doubly-occupied sites and unoccupied sites and between singly occupied sites
with spin up and spin down in lattice models, as suggested before by numerous authors [15-19]. The concept
quantum entanglement [20, 21], together with entanglement measures such as the concurrence [22], was
adopted to quantify the above-mentioned fluctuations in various systems [23-25, 26—41], including basic spin
models [23-25, 42], fermionic systems [26—31], or systems with spin and orbital degrees of freedom [32—-35]. For
an open fermionic system (namely: acorrelated quantum dot attached to the leads) we found that the
concurrence, defined separately for charge and spin degrees of freedom, allowed one to distinguish between
different quantum transport regimes of the system [36]. Analogs of this observation were also reported for
double [37, 38] and triple quantum dots [39]. For closed systems, in particular for small molecules, Mottet et al
[40] showed that the entanglement analysis provided a valuable insight into the chemical bond formation. Even
noninteracting systems with complex Fermi surface topology were characterized via their entanglement spectra
[41]. Also very recently, a generic variational approach to correlated quantum systems, in which the output
numerical precision is steered by setting maximal allowed entanglement between a selected subsystem and the
environment, was proposed [43].

Sacramento et al [44] used entanglement measures to complement the long-lasting discussion of decoupling
of charge and spin degrees of freedom in 1D Hubbard model [45] and its relation to the charge—spin separation
phenomenon in Luttinger liquids [46, 47]. In particular, it is pointed out in [44] that charge—charge fluctuations,
when quantified by properly defined correlation functions, show substantially different asymptotic behavior
than spin—spin fluctuations in both the metallic and the insulating phases.

Here we focus on linear chains containing up to N = 20 equally-spaced hydrogenic-like atoms, each one
containinga single valence orbital (see figure 1). Although such chains are not directly observable due to the
well-known Peierls instability, they have been intensively studied to benchmark different ab initio approaches to
strongly-correlated systems [48]. In this paper, two distinct physical regimes are considered: at the half filling the
system shows a crossover behavior, with the increasing interatomic distance R, from a partly localized quantum
liquid to the Mott insulating phase [3, 49]. At the quarter filling, the Mott transition is reconstructed with
1/N — 0[3]. (The above-mentioned findings are consistent with more recent results of QMC simulations for
Hubbard chains with long-range interactions [50].) It is worth to mention that the two regimes are also
significantly different from a more fundamental point of view: in the strong-coupling (i.e., large R) limit the
charge fluctuations are suppressed and the half-filled chain can be effectively described as 1D Heisenberg
antifferomagnet, for which long-range order is absent due to the Mermin—-Wagner theorem [51]. For the
quarter-filling similar reasoning cannot be applied in the presence of long-range Coulomb interactions, and the
charge-density wave phase is predicted to appear [3, 52—54]. In other words, we consider the two
complementary model cases allowing one to test entanglement-based phase-transition indicators. We further
discuss the concurrence [22], defined separately for charge and spin degrees of freedom, and employ it to
recognize the decoupling of charge and spin degrees of freedom accompanying a finite-system version of the
Mott transition.

The paper is organized as follows. In section 2 we present the system Hamiltonian and summarize the
EDABI method. In section 3 the findings of [3], concerning the finite-size scaling of charge-energy gap, are
revisited after taking larger systems under consideration. In section 4 we determine the local and pairwise
entanglement, the latter for charge and spin degrees of freedom, and discuss their evolution with the interatomic
distance and the system size. The conclusions are given in section 5.
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2. The exact diagonalization—ab initio method (EDABI)

The EDABI method, together with its application to the system of figure 1, have been presented in several works
[3-5,49]. Here we briefly recall the main findings, to which we refer in the remaining parts of the paper.

2.1. The Hamiltonian for a linear chain
The analysis starts from the second-quantized Hamiltonian, which can be written in the form

H(a, R) = 6 > f; + >t (6 & + 5;051‘0) + U Andi + Y Kififli + Vion—ion» (D
' i

j i<j,o i<j

where ¢, is the atomic energy (same for all N sites upon applying periodic boundary conditions), t;;is the hopping
integral between ith and jth site (we further set t;; = —t ifiand j are nearest neighbors, otherwise t;; ~ 0), Uis
the intrasite Coulomb repulsion, Kj;is the intersite Coulomb repulsion, and Vign _jon = >, i e? /Rij (with the
distance R;; = Rmin(|i — j|, N — |i — j|)) expresses the repulsion of infinite-mass ions.

The single-particle and interaction parameters of the Hamiltonian 7:(((1, R) (1), also marked in figure 1, can
be defined as follows

(Wi Tlwy) = f Er wf O T@wi() = €65+ t;(1 — ), @)
(wiw|VIw;w;) = fd3rd3r’ lw@®PPV(E - ) w@) ] = Us; + Kij(1 — &), 3)

where T'is the single particle Hamiltonian describing an electron in the medium of periodically arranged ions,
and Vis the Coulomb repulsive interaction of two electrons. The Wannier functions are defined via atomic
(Slater-type) functions, namely

wi(r) = B (o), (4)
j

where the Slater 1s function ;(r) = (o’/7)"/? exp(—alr — Rj]), with a being the inverse orbital size, here
taken as variational parameter, and R; being the position of ith ion. The coefficients 3;; in equation (4) can be
uniquely defined by imposing that (i) (wj|wy) = 8 and that (ii) (w;|¢);) is maximal [3, 55].

The range of Coulomb interactions in the Hamiltonian (e, R) (1), quantified by parameters K i ~ e*/R;
for Rjj > R, is a priorilimited only by the chainlength L = NR. Previous studies on linear chains, both ab initio
ones [12, 48] and these starting from second-quantized model Hamiltonians [50, 52], usually have imposed
some form of charge screening reducing the range of such interactions (leaving the on-site Coulomb repulsion
only in the extreme case [53]). This can be partly justified by possible influence of the enviroment in condensed-
matter realizations such as quantum wires [54] or self-organized chains [56]. A slightly different situation
occurrs for cold atom systems, where long-range dipole—dipole interactions may be relevant [57]. Apart from
these experiment-related premises, long-range interactions usually lead to a noticeable slowdown of the
convergence for numerical methods such as DMRG or QMC [58, 59]. This is not the case for the EDABI method,
as the determination of parameters Kjj corresponds to a relatively small portion of the overall computation time
[60]%, and the convergence of subsequent diagonalization in the Fock space (see the next subsection) is
unaffected by the fact whether or not long-range interactions are included. Also, as charge screening becomes
systematically less effective when the system dimensionality is reduced [61], one can expect it to be insignificant
ina hypotetical realization of chains containing N < 20 atoms.

2.2. Single-particle basis optimization
Next, each Slater function is approximated as follows

™

o (2r2)*
vi(0) & a2 B [—q) e~ Tolr—Ri ©)
q=1

where p is the number of Gaussian functions truncating Pjs and {Bp I3}, 9=1,...,p,are adjustable parameters
chosen to minimize the atomic energy for « = 1and a given value of p. Here we set p = 3, for which the
deviation from the exact energy for 1s function is lower that 1%°. Subsequently, the parameters €, t;j, U, and Kj;
are calculated from equations (2) and (3) as functions of & and R. The Hamiltonian H («, R) (1) is diagonalized
numerically in the Fock space, using the Lanczos algorithm, and the orbital size is optimized to find o = oy

corresponding to the minimal GS energy E(N) for each R. Defining the efective atomic energy as

The situation may become substantially different in the absence of translational invariance, see [60].

% See appendix Ain[55].
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Table 1. Microscopic parameters (specified in eV—unless stated otherwise) of the Hamiltonian H (a, R) (1) with @ = Qmin
minimizing the ground-state (GS) energy E¢. The Bohr radius is ag = 0.529 A. The effective atomic level ¢£ is defined by
equation (6); the remaining symbolsare t = —t;; for j = i £ 1(modN), K,, = Kj;_j (with m = 1, 2, 3),and the
correlated hopping integral V = (w;w;|V|w;wiy ), quantifying the largest neglected term in (v, R). The numerical
extrapolation with 1/N — 0 is performed for all parameters.

R/ay Ctanin 40 et t U K K K; v Eg/N
L5 1.363 1.36 11.31 27.95 15.85 9.08 6.08 —0.597 —-10.19
2.0 1.220 —7.48 6.02 23.58 12.40 6.82 4.54 —0.324 —12.65
2.5 1.122 10.85 3.60 20.83 10.20 5.46 3.63 —0.203 —13.32
3.0 1.062 12.27 2.32 19.14 8.69 4.54 3.02 —0.150 —13.48
35 1.031 12.90 1.57 18.16 7.58 3.89 2.60 —0.128 —~13.50
4.0 1.013 13.20 1.08 17.57 6.71 3.40 2.27 —0.119 —13.50
5.0 1.004 13.43 0.51 17.12 5.43 2.72 1.81 —0.096 —13.50
6.0 1.001 13.48 0.23 16.99 4.53 2.27 1.51 —0.058 —~13.50
7.0 1.000 13.49 0.10 16.97 3.89 1.99 1.29 —0.027 —13.50

Table 2. Boundary conditions BC (with +/— marking the
periodic/antiperiodic BC) and dimension of the largest
subblock of the Hilbert space (with the total zth component of
spin S, = 0) for chains studied in the paper at the quarter filling
(i.e., Ng = N/2). Thelast column specifies the values of the
interatomic distance R, at which the spin concurrence vanishes,
with the interpolation errorbars for the last digit given in
parenthesis. (See section 4 for details.)

N Na BC dim H(S" = 0) R, /ag
8 4 — 784 6.53(3)
12 6 + 48 400 5.22(2)
16 8 - 3312 400 4.38(1)
20 10 + 240 374 016 4.51(1)
ff 1
62 =&+ — ZKU + Vion—ion |> (6)
i<j

one finds that amin and other parameters converges rapidly with N. This observation allows us to speed up
computations by using the values obtained for smaller systems (N > 10) to perform extrapolation with
1/N — 0. (Theresults are listed in table 1.)

3. Finite-size scaling for the charge-energy gap

A standard numerical approach [14, 50], allowing one to determine whether a correlated system described by
the Hamiltonian such as given by equation (1) is metallic or insulating in the GS, involves calculating the charge-
energy gap according to

AEJM(N) = Eg*H (N) + BG4 (N) — 2BG4(N), @

where N, is the number of electrons. Next, the limitof 1/N — 0 (with N, /N= const) is to be taken
numerically. The limiting value of AEc — 0 indicates the metallic phase, whereas a nonzero value indicates the
insulating phase”. In the numerical examples presented here and in section 4 we consider two different physical
situations: the halffilling Ny = N, with N < 16, and the quarter filling Ny = N /2, with N < 20; we further
restrict ourselves to even values of Nand N,). Due to the total spin conservation it is sufficient, for each pair

(N, Ny), to look for the ground-state energy EX® (N') in equation (7) in the subspace characterized by the total
zth component of spin S, = 0. Analogously, the values EY<*!(N) can be found by choosing S, = 1/2.1In
particular, the largest considered subspace dimension corresponds to N = 20, N + 1 = 11,and isequal to
600 935 040. Moreover, we impose the periodic (¢; ;1 y = t;) or antiperiodic (¢; ;45 = —t;;) boundary
conditions to minimize EGNel (N) for N = 4k + 2 or Ny = 4k, respectively, with k-integer (see table 2).

4 Strictly speaking, finding out whether the insulating phase is of the Mott type also requires calculation of the so-called spin gap,

AEg = E&~' — E%=" (where ES denotes the lowest eigenenergy in the subspace with a total zth component of spin S,); AE¢c > 0
accompanied by AEs — 0 for 1/N — 0 indicates the Mott phase. Although the answer may not be obvious ina more general situation (see
[13], footnote 1), a lack of long-range spin order in 1D systems manifests itself by a fast decay of AEg with N for atomic chains described by
the Hamiltonian 'H(a, R) (1) for all values of R. The numerical demonstrations are provided in [3, 55].
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Figure 2. Charge-energy gap asa function of the interatomic distance R/ao (with the Bohr radius ao = 0.529 A) for chains of

N = 10-16 atoms at the half filling (N = N). Datapoints were shifted vertically by 0.05 Ry for N = 16 (diamonds), 0.10 Ry for
N = 14 (solid circles), 0.15 Ryfor N = 12 (open circles), or 0.20 Ryfor N = 10 (stars). The results of the finite-size scaling with
1/N — 0, obtained via the Richardson extrapolation of the second order [62], are also shown (triangles). Lines are guides for the eye
only.
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Figure 3. Same as figure 2 but for chains of N = 8-20 atoms at the quarter filling (N = N /2). No artificial datashifts were applied
this time. Horizontal dashed line marks AE¢ = 0, solid purple line represents the best-fitted function given by equations (8) and (9),
indicating the Mott metal-insulator transition in the 1/N — 0 limit, occurring for R = R, ~ 4.2 a,.

The numerical results, corresponding to the Hamiltonian (e, R) (1) with the microscopic parameters
listed in table 1, are presented in figures 2 and 3. We notice that the datasets for N < 14 at the half filling as well
asfor N < 16 at the quarter filling were presented in [ 3], were we also used the Richardson extrapolation of the
second order [62] to perform finite-size scaling with 1/N — 0 for each value of R. After adding the new datasets
for N = 16, N = N and N = 20, N, = N /2 (both depicted with open diamonds) the earlier conclusions
regarding the system GS are further supported: namely, the extrapolation with 1/N — 0 (open triangles) at
N, = N leadsto AE¢ > 0 foranyaccessible value of R/a, indicating the insulating phase (see figure 2). At
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N, = N/2,the finite-size scaling results can be rationalized with the empirical function

0 ifR<R
AEN?(1/N — 0) ~ © 8
TN ZOEIANR = R faol iR > R, ®
with the best-fitted parameters (numbers in parentheses are standard deviations for the last digit)
R. = 4.18(Qag, Ay = 0.158(3)Ry, 7= 0.57(3), )

depicted with solid purple line in figure 3. The gap openingat R = R, indicates the Mott transition.

For a sake of conciseness, our discussion of finite-size scaling estimates of the Mott transition is limited to
the charge-energy gap. A more detailed analysis, presented in [3, 49, 55] and involving calculations of the
electron momentum distribution, the Drude weight, as well as the so-called modern theory of polarization [63],
justify the transition appearance in the N;; = N /2 case, which coincides with the results for related
parametrized model studies [50, 52, 53, 57]. Inthe N;j = N case, the situation is of a slightly more complex
nature: apart from a nonzero gap for any R, following from the finite-size scaling, several GS and dynamical
characteristics (in particular—the Drude weight, see [3]) exhibit, for any finite N, a crossover behavior between
a partlylocalized quantum liquid, appearing for small R, and a fully-reconstructed Mott insulator, typically
appearing for R/ay 2 4. These findings coincides with more recent variational Monte-Carlo studies of
hydrogenic chains (see [12]), and can be attributed to the increasing (with growing R) role of electron
correlations in either the exact or variational GS wavefunction.

It is worth to mention here that some surprisingly efficient variational methods, such as presented in [12],
become significantly less efficient when treating open-shell configurations in attempt to calculate AE. from
equation (7), or generally when utilized away from the half filling (N, = N). Also for this reason, GS correlation
functions signaling a finite-system version of the Mott transition for N small enough to be treated with some
more flexible numerical techniques, are desired.

4. Reduced density matrix and quantum entanglement

In this section we derive explicit representations of the reduced density operator p, = Try|¥) (U] (where Try
stands for tracing over all degrees of freedom except from these characterizing a selected subsystem A) relevant
when discussing the local entanglement, the pairwise entanglement for charge degrees of freedom, and the
pairwise entanglement for spin degrees of freedom. The derivations remain valid for a generic spin-1,/2
fermionic system at any pure state | ), which can be represented assuming four basis states for each site j,
namely:

{Injrni)} = {00);5 1 1) 1L ) 1T L) b (10)

although the numerical examples, considered in search for entanglement-based estimates of the Mott transition,
all correspond to the GS of a linear chain described by the Hamiltonian H («, R) (1) with the microscopic
parameters taken from table 1.

4.1. General considerations
Let us consider a general example at first: the quantum system, which can be divided into two distinct
subsystems A and B. A pure state |¥) can be represented as follows

) = Tosla) @ |6), (11)
aff

where U, 3 denotes a complex probability amplitude corresponding to a basis state of the full system |a) ® |5),
while {|«) } and {|5) } are complete basis sets for the subsystems A and B (respectively). The reduced density
operator p, is defined as:

Py =Tl W) (] = > (B1P) (V] B)

8
= > UupPlgla) (], (12)

B,a,a’

where the last equality follows from equation (11) and W7, ; denotes the complex conjugate of ¥, 3. Subsequently,
the matrix elements of p, are given by

Pa,a! = <Oé|ﬁA|OZ/> = le(!ﬂlpz’, . (13)
o]
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We define now projection operators P, and P, associated with the basis states |«v) and | 3), via

Pala/> = an’|a>a Pﬂlﬂ/> = 6@3’|ﬁ> (14)
Useful properties, directly following from equation (14) are

P.=P, P;=D (15)

SB=>P;3=1, (16)
el B8

where equation (16) also employs the completeness of the basis sets {|«) } and {|5) }. Next, we define the transfer
operator

Taa’la,> = |Oé>, <O/|T2a/ = <04|’ (17)
which is unitary, i.e.
T;a’ = (Tao/)71 = Twva- (18)

Explicit forms of P,,, P3, and T,,, corresponding to the particular splittings of the system into A and B
subsystems, are to be specified later in terms of the operators {¢;,, ¢; } for lattice spin-1/2 fermions. Here we
notice that as the indices (o, o) refer the subsystem A, whereas the index [ refers to the subsystem B, we have

[P(y) Pﬂ] =0, [Pﬂ) sz(y’] =0, (19)
for all (o, ') and .

With the help of operators P, and P; (14) one can write down, for |¥') represented according to
equation (11),

RP3|¥) = Yy |) @ |6), (20
(VIR Py = (| @ (O] Vo @1
In turn, the reduced density matrix, as given by the rightmost equality in equation (13), can be rewritten as

Poa’ = Z <\Ij|Pa’Pﬁ Ta’apapﬁl\lj>
<
= <\11|Pa’Ta’aPa|\1/>a (22)

with the last equality following from equations (15), (16), and (19). Finally, using equation (18), we find
(P(MI)* = <\II|P04 Tao/Pa’l\D>- (23)
Remarkably, the reduced density matrix elements in equation (23) are expressed by pure-state expectation values

(correlation functions) of the operators acting only on the subsystem A. This feature is further explored in the
remaining parts of this section.

4.2. Entanglement entropy

The local entanglement [27] exhibits quantum correlations between the local state of a selected jth site
(subsystem A) and the rest of the system (B). As the basis set {|«) } is simply given by equation (10), one can write
down the corresponding projection operators

®) =11 —-n)Q—n),m 1 —mn), (1—n)n,mnll, (24)
and the transfer operators
1 o) q  qo
c{f 1 CTT q —q

(Tow) = t
!

R , (25)
qe 1 )

P T
¢ g q ¢ 1

where we have omitted the site index j for brevity. For the system with the total spin and charge conservation,
such as our linear chain (see equation (1)), we have

(o) = () =0, {cats) = {ejc7) =0,
and  (cics) = (clc,) =0, (26)
(with 7 being the spin index opposite to o) providing that the averaging takes place over an eigenstate |¥) of the

system Hamiltonian (not necessarily the GS). Substituting the expressions for P,, (24) and T,, (25) into
equation (23) and taking equation (26) into account we get, after a straightforward algebra,

7
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(ppo) = diag(uy, wi, wy, u_) (27)
with
uy = (A —npA —n5)), w = (npA — n5)),
wa = (1 = mpnp),  u- = (njpnjy). (28)
Equation (27) corresponds to the reduced density operator of the well-known form

Pa =D pacla) (@l = uil0) O + wil T)CT I+ wal L) L1+ u 7D (T (29)

where we have used the basis given by equation (10).
A quantitative measure of the entanglement between the state of jth site and that of the remaining N — 1
sites is given by the von Neumann entropy
E, = —uylog,uy — wilog,w; — w,log,w, — u_log,u_. (30)

If the translational invariance of the system is imposed, one can define the particle density n and the average
number of double occupancies d, following
Nel n
=, ninir) = d, 31
N 2 (njrnjr) (3D

where we have further assumed that the averaging takes place over an eigenstate characterized by the total zth
component of spin S, = 0. Subsequently, equation (28) can be rewritten as

(nj) = (nj) =

u,=1—n-+4d, lewzzg—d, u_=d. (32)

In particular, for the GS of the Hamiltonian H (o, R) (1), for which the effective interaction between

electrons can roughly be estimated by ~ U — K; and is always repulsive, one can show that

In—lt+n-1 " 0 o<n<a, (33)
2 4

where the lower bound for d corresponds to the so-called strong-correlations limit approached for R > a, (as the

bandwidth W = 4t < U — K, see table 1), whereas the upper bound for d corresponds to the free-electrons

limitapproached for R < 2aq (W > U — Kj). As the charge fluctuations are given by

Var{n;} = (n}) — (n;)* = n — n? + 2d, the above-mentioned limits coincide (respectively) with the minimal

and the maximal fluctuations for a given n. Moreover, the bounds for d in equation (33) can be mapped, via

equation (32), onto

E" (n) < E, < EJ(n), (34)
with
E;"(n) = —|1 —njlog,|]l —n| — (1 — |1 — nl)logz(#) (35)
for the strong-correlations limit, and
Efree(n) = —nlogzg -2 - n)logz(l — %) (36)
for the free-electrons limit. For instance, equations (34)—(36) lead to
1<E, <2 for Ngy=N, (37)
and
% <E,<4-— %logZS ~ 1.623 for N, = % (38)

Remarkably, the strong-correlations limit corresponds to the minimal E,, whereas the free-electrons limit
corresponds to the maximal E, (forany 0 < n < 2). This is because when the free-electrons limit is approached,
ground-state wavefunction can be truncated by a single Slater determinant composed of fully delocalized single-
particle functions (Bloch functions), resulting in the maximal entanglement between jth site and the remaining
N — Isites[12, 36]. Repulsive interactions between electrons lead to the correlation-induced suppression of
Var {n;}, and to the decreasing E, with growing the interaction-to-bandwidth ratio.

General findings, presented briefly in the above, are now illustrated with the numerical examples for
N, = N and N,; = N /2 (see figures 4 and 5). In both cases, the values of E, are close to the upper bounds given
by equations (37) and (38) for the smallest considered value of R/a, = 1.5, and systematically decrease with
growing R, gradually approaching the lower bounds in equations (37) and (38). Also, a remarkably fast
convergence of E, with growing N is observed for any R, making it necessary to apply vertical shifts to the datasets
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2.2 1 ,
1.8 -
>
Lu |
1.4 1
1.0 ‘ ‘ ‘ ‘ ‘
2 3 4 5 6
R/ag

Figure 4. Local entanglement E, (see equations (30)—(32)) asa function of the interatomic distance R/a, for N = 10-16 and
Ny = N.Datapoints for N = 16 are shown unmodified, the others were shifted vertically by 0.1 (N = 14),0.2 (N = 12),0r0.3
(N = 10). Horizontal dashed line marks Ef (1) given by equation (36); other lines are guides for the eye only.

16 —— ®%ee.
hia 2 2 DSOS PIPPRY
20
1.5 ‘ ‘ ‘ ‘
2 3 4 5 6

R/ag

Figure 5. Same as figure 4, but for N = 8-20 and N, = N /2. The vertical shiftsare: 0 (N = 20),0.01 (N = 16),0.02(N = 12),and
0.03(N = 8).

in figures 4 and 5. We further notice that E, & 3/2 starting from R 2 5 a, for Ny = N /2, whereas for

N, = N westill have E, > 11in this range. However, the smooth evolution of E, with R is observed for both
N, = N and N,; = N /2, makingit difficult to consider the local entanglement as an estimate of the Mott
transition. Pairwise entanglement is discussed next as the other candidate.

4.3. The fermionic concurrence

We consider now the subsystem A consists of two spatially-separate quantum bits (qubits), one of which is
associated with ith lattice site and the other with jth site. Each individual qubit can be realized employing charge
or spin degrees of freedom.
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For instance, if charge qubits are under consideration, one can choose the basis set for A ina fixed-spin sector

o = T,namely
{la)}* = {10} @10);, 10)i @ [ T )i [T ) @ 1005 [ T )i @171 ) )
whereas for spin qubits we have
{adF =411kl )il iyl )yllell)l
The corresponding projection operators are
Py) = [ —nipd —

nip), (1 — ninjp, nip (1 — njp), ngpngy 17,

and
P))=1[ni1(A = njpnjr(1 — n5)), np(1 —n;)A -
(I = nmipngnp(1 — n;p), (1 —

niD N
nipni (1 — njpnj I°,

with the upper indices (c, s) referring to charge and spin qubits (respectively). Subsequently, the transfer
operators are given by

L e e
. chT 1 CJTTC,-T Cit
(Tom,’) = + + 1 >
Gt GGt — G
) i i
G~ 1
and
1S5 stosfst
. S 1§78 st
Tod=| " )
SOSST 1S
7SS S

with the spin operators S;" = ch i, Si
uX 0 0 0
0wt zX

0 5" w o
0 0 o0 uf

(pfa,) = for X=y¢, s,

(39)

(40)

(41)

(42)

(43)

(44)

= ci‘l cit. Substituting the above expressions into equation (23) we get

(45)

where the total spin and charge conservation is imposed. The nonzero matrix elements in equation (45) are given

by
= (A = nmp@ = njp), w = (ny(1 —nyp),
2= (chen),  wi= (1 — mpmp), ut = (niyny),
for charge qubits, or by
u+ = (nip(1 — nipnp (1 — nj))),
= (nip (1 = mi)(1 = njp)njy),
=(SS;7) = {chejie] cin)s
5 (@ = mipymipnip (1= nj))),
ul = (1 = nipni (1 — njpn;),
for spin qubits.

We use now the concurrence C, asa quantitative measure of quantum entanglement in the two-qubit

subsystem A. The closed-form expression was derived by Wootters [22] and reads

C=max{0, V& — VA — A — A},

A4 are eigenvalues of the matrix product

p- (0] ® NpHo] @ o))

where )\1 > )\2 > )\3 >

(46)

(47)

(48)

(49)

with p = ( p;(a,) given by equations (45)—(47), and o7 (0}' ) being the second Pauli matrix acting on the qubit

associated with ith (jth) lattice site. It was also shown in [22] that the entanglement of formation for a pair of

10
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CHARGE CONCURRENCE

SPIN CONCURRENCE

R/a,

Figure 6. Nearest-neighbor pairwise entanglement calculated from equation (52) for charge (top panel) and spin (bottom panel)
degrees of freedom; N = N, = 10-16. The vertical shifts, applied to the datasets in both panels, are: 0 (N = 16),0.01 (N = 14),0.02
(N = 12),and 0.03 (N = 10). Lines are guides for the eye only.

qubits was uniquely determined by C, namely
Ep = —{log,{ — (1 = Olog,(1 = &), (50)

where £ = (1 + /1 — C?) / 2.Infact, C can be interpreted as a distance between a given quantum state and the
nearest separable state [64]. For these reasons, C can be used to quantify the entanglement of two qubits instead
of E and is hereinafter called pairwise entanglement.

The eigenvalues of the matrix defined by equation (49) can be written as

5\1 = 5\4 = Ll_‘}_(l/li(,
N = (Ywiwit £ 1252, (51)

where ), ..., A4 are yet unsorted. After some straightforward steps, equation (48) leads to
C = 2max {0, |2¥| — JuXu*}, (52)

where the relevant correlation functions are given by equation (46) for X = ¢, or by equation (47) for X = s. The
correlation functions w} and w3 are absent in equation (52) as they contribute to /A, — A — A3 — g if
andonlyif JN — A — VA — 4 <.

Generalizations of C for multifermionic states, appearing when larger subsystem A is under consideration,
are also possible [65]. Such generalizations are, however, beyond the scope of this paper. We focus here on the
pairwise entanglement, mainly because the form of equation (52) makes it possible to be determined with no
significant computational costs once standard (spin or charge) correlation functions are calculated.

Our numerical results for the pairwise entanglement are presented in figures 6 and 7, constituting the central
findings of this paper. The presentation is limited to the cases when sites i and j are the nearest neighbors in

11
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CHARGE CONCURRENCE

SPIN CONCURRENCE

R/ag

Figure 7. Same as figure 6, but for N = 8-20 and N, = N /2. The vertical shifts, applied to the datasets in the top panel only, are: 0
(N = 20),0.01(N = 16),0.02(N = 12),and 0.03 (N = 8).

a linear chain (i.e., j = i +£ 1 mod N), as we have found that C = 0 for more distant neighbors”. Also,
correlation functions in equation (52) are averaged over the reference site number i, to reduce the finite-
precision effects.

For N = N, wehave C = 0 for the charge degrees of freedom (so-called charge concurrence) provided that
R/ay 2 4 (seetop panel in figure 6). In such a range, the separability of a quantum state in the position
representation, appearing ifa bipartite subsystem (A) is selected in a fixed-spin sector, justifies the above-used
notion of a fully-reconstructed Mott insulator for a finite N (see section 3 and [3, 12]). For smaller R, stronger
charge fluctuations manifest itself via nonzero charge concurrence, providing an insight into the nature of
a partly-localized quantum liquid. Remarkably, spin concurrence (see bottom panel in figure 6) is positive for
any considered Nand R/a, reaching the maximum in the crossover range of 4 < R/aq < 5. For thisreason,
spin concurrence still can be considered asa prospective signature of the Mott transition.

For N,; = N /2 the evolution of the pairwise entanglement with R/a (see figure 7) is significantly different
than for the Ny = N case. For each N, we have a nonzero charge concurrence for any considered R/a (top
panel in figure 7), whereas the spin concurrence (bottom panel) indicates a finite-system version of the Mott
transition®. In brief, for spin degrees of freedom C = 0 for R > R, (N), where the nodal value R, (N)
corresponds to |z°| — Juju® = 0,andis determined numerically via least-squares fitting of a line to the actual
datapoints fora given N (see the last column in table 2). For larger N, the values of R, (IN) are close to
R, = 4.2 ay, determined in section 3 via the finite-size scaling for AE.

Additionally, we observe that the nearest-neighbor pairwise entanglement may indicate the decoupling of
charge and spin degrees of freedom in correlated systems. This happens for R/aq 2 4 inthe N = N case (as

5, . . . . . . . . 2

This can be attributed to generic asymptotic behavior of the reduced density matrix (see equation (45)), for which pfa, ~ ln) Ono for
X =c¢or pffa/ ~ (ln — dg) baa for X = s, since the relevant operator-fluctuations in equations (46) and (47) become uncorrelated with
growing the distance between sites i and j. Analogous features for spin models were discussed in [42].

We have intentionally limited the number of Lanczos iterations, starting (in any case) from a randomly-chosen vector in the Fock space, to

relatively small value of m = 30. This allows us to visualize how GS correlation functions converges with the system size: notice that the
oscillations of C asa function of R, visible for N = 8 and 12 in figure 7, are strongly suppressed for larger N.
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wellas for R > R, (N)inthe N, = N /2 case), where nonzero spin (charge) concurrence is accompanied by
vanishing charge (spin) concurrence. In the above-mentioned ranges, quantum states of a bipartite subsystem
(A) are entangled when spin, but separable when charge degrees of freedom are under consideration (N;; = N),
orviceversa (N;; = N/2).Sucha decoupling should be distinguished from charge—spin separation predicted to
appear in 1D systems showing the Luttinger liquid phase [44—47]. Our numerical examples also show there is no
one-to-one relation between the decoupling and the Mott transition, as the format can be identified either for
the system showing the crossover behavior only or undergoing the Mott transition (in the large- N limit). Finally,
the pairwise-entanglement analysis presented above allows one to identify noticeably different behavior of
charge and spin correlation functions without referring to their asymptotic behavior, as previously proposed in
the literature (see the first paper in [12, 44, 66]).

5. Conclusions

In this study we have demonstrated that pairwise entanglement, quantified by the fermionic concurrence
determined separately for charge and spin degrees of freedom, can serve asa convenient indicator for a finite-
system version of the Mott transition. In particular, standard finite-size scaling estimates of the Mott transition
for linear chains of hydrogenic-like atoms are revisited utilizing the EDABI at the half and the quarter electronic
filling. In the latter case, we find that not merely the charge gap indicates the transition for 1 /N — 0 (with

N being the number of atoms) at the interatomic distance R, & 4.2 a, (where ay denotes the Bohr radius), but
also the spin concurrence vanishes for a finite Nat R, (IV) taking the values relatively close to R.. Charge
concurrence remains nonzero in both the metallic and the insulating phases, signaling a decoupling between
charge and spin degrees of freedom.

At the half filling the Mott transition is not observed. Instead, the crossover from a partlylocalized quantum
liquid to a fully-reconstructed Mott insulator occurs. The charge concurrence vanishes at the crossover point,
where the spin concurrence shows a broad peak; the latter remains nonzero in the entire parameter range.

Itis worth to stress here that calculations of the fermionic concurrence, employed in this paper, generate
essentially no extra computational costs, as the concurrence is determined solely via pairwise ground-state
correlation functions for charge or spin degrees of freedom, without referring to the dynamical properties such
as the optical or dc conductivity. The analytic relations between entanglement and the correlation functions (see
equation (52)) are also derived in this paper.

A striking feature is that the analysis holds true regardless how the exact (or approximated) GS is obtained,
making it possible to employ the entanglement-based signatures of the Mott transition when discussing
a generic correlated-electron system. What is more, equation (52) also applies when correlation functions on its
right-hand side are determined using more powerful numerical techniques, such as DMRG or QMC. For these
reasons, we believe the approach we propose may shed new light on various open problems in the field, such as
the long-standing metallization of solid hydrogen [4], or the recently-raised phase diagram of the repulsive
Hubbard model on a honeycomb lattice ([13], see footnote 1).
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