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Codes with various kinds of decipherability, weaker than the usual unique decipherability, have been studied since

multiset decipherability was introduced in mid-1980s. We consider decipherability of directed figure codes, where

directed figures are defined as labelled polyominoes with designated start and end points, equipped with catenation

operation that may use a merging function to resolve possible conflicts. This is one of possible extensions generaliz-

ing words and variable-length codes to planar structures. Here, verification whether a given set is a code is no longer

decidable in general. We study the decidability status of figure codes depending on catenation type (with or without

a merging function), decipherability kind (unique, multiset, set or numeric) and code geometry (several classes deter-

mined by relative positions of start and end points of figures). We give decidability or undecidability proofs in all but

two cases that remain open.

Keywords: directed figures, uniquely decipherable codes, multiset decipherable codes, decipherability verification

1 Introduction

The classical notion of a code requires that an encoded message should be decoded uniquely, i.e. the exact

sequence of codewords must be recovered. In some situations, however, it might be sufficient to recover

only the multiset, the set or just the number of codewords. This leads to three kinds of decipherability,

known as multiset (MSD), set (SD) and numeric decipherability (ND), respectively. The original exact

decipherability is called unique decipherability (UD).

Multiset decipherability was introduced by Lempel (1986), whilst numeric decipherability originates

in Head and Weber (1994). The same authors in Head and Weber (1995) develop what they call “domino

graphs” providing a useful technique for decipherability verification. Guzmán (1999) defined set de-

cipherability and presented a unifying approach to different decipherability notions using varieties of

monoids. Contributions by Restivo (1989) and Blanchet-Sadri and Morgan (2001) settle Lempel’s con-

jectures for some MSD and SD codes. Blanchet-Sadri (2001) characterizes decipherability of three-word

codes, whilst Burderi and Restivo (2007a,b) relate decipherability to the Kraft inequality and to coding

partitions. A paper by Salomaa et al. (2009), although not directly concerned with decipherability, uses

ND codes (dubbed length codes) to study prime decompositions of languages.
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Extensions of classical words and variable-length word codes have also been widely studied. For in-

stance, Aigrain and Beauquier (1995) introduced polyomino codes; two-dimensional rectangular pictures

were studied by Giammarresi and Restivo (1996), whilst Mantaci and Restivo (2001) described an algo-

rithm to verify tree codes. Recent results on picture codes include e.g. Anselmo et al. (2013a,b). The

interest in picture-like structures is not surprising, given the huge amounts of pictorial data in use. Unfor-

tunately, properties related to decipherability are often lost when moving to a two-dimensional plane. In

particular, decipherability testing (i.e. testing whether a given set is a code) is undecidable for polyominoes

and similar structures, cf. Beauquier and Nivat (2003); Moczurad (2000).

In Kolarz and Moczurad (2009) we introduced directed figures defined as labelled polyominoes with

designated start and end points, equipped with catenation operation that uses a merging function to resolve

possible conflicts. This setting is similar to symbolic pixel pictures, described by Costagliola et al. (2005),

and admits a natural definition of catenation. The attribute “directed” is used to emphasize the way figures

are catenated; this should not be confused with the meaning of “directed” in e.g. directed polyominoes.

We proved that verification whether a given finite set of directed figures is a UD code is decidable. This

still holds true in a slightly more general setting of codes with weak equality (see Moczurad (2010))

and is a significant change in comparison to previously mentioned picture models, facilitating the use of

directed figures in, for instance, encoding and indexing of pictures in databases. On the other hand, a

directed figure model with no merging function, where catenation of figures is only possible when they

do not overlap, has again undecidable UD testing; cf. Kolarz (2010a,b). See also Moczurad (2013) for a

short description of decipherability chracaterization with domino graphs.

In the present paper we extend the previous results by considering not just UD codes, but also MSD,

SD and ND codes over directed figures. We prove decidability or undecidability for each combination of

the following orthogonal criteria: catenation type (with or without a merging function), decipherability

kind (UD, MSD, SD, ND) and code geometry (several classes determined by relative positions of start

and end points of figures). Two combinations remain open, however.

We begin, in Section 2, with definitions of directed figures and their catenations. Section 3 defines

decipherability kinds and shows the relationship between codes of those kinds. In Section 4 main decid-

ability results for decipherability verification are given. Preliminary, short version of this paper appeared

as Kolarz and Moczurad (2012).

2 Preliminaries

Let Σ be a finite, non-empty alphabet. A translation by vector u = (ux, uy) ∈ Z
2 is denoted by tru,

tru : Z2 ∋ (x, y) 7→ (x+ ux, y+ uy) ∈ Z
2. By extension, for a set V ⊆ Z

2 and an arbitrary function f :
V → Σ define tru : P(Z2) ∋ V 7→ {tru(v) | v ∈ V } ∈ P(Z2) and tru : ΣV ∋ f 7→ f ◦ tr−u ∈ Σtru(V ).

Definition 1 (Directed figure, cf. Kolarz and Moczurad (2009)). Let D ⊆ Z
2 be finite and non-empty,

b, e ∈ Z
2 and ℓ : D → Σ. A quadruple f = (D, b, e, ℓ) is a directed figure (over Σ) with

domain dom(f) = D,

start point begin(f) = b,
end point end(f) = e,

labelling function label(f) = ℓ.

Translation vector of f is defined as tran(f) = end(f)−begin(f). Additionally, the empty directed figure

ε is defined as (∅, (0, 0), (0, 0), {}), where {} denotes a function with an empty domain. Note that the
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start and end points need not be in the domain.

The set of all directed figures over Σ is denoted by Σ⋄. Two directed figures x, y are equal (denoted by

x = y) if there exists u ∈ Z
2 such that

y = (tru(dom(x)), tru(begin(x)), tru(end(x)), tru(label(x))).

Thus, we actually consider figures up to translation.

Example 1. A directed figure and its graphical representation. Each point of the domain, (x, y), is

represented by a unit square in R
2 with bottom left corner in (x, y). A circle marks the start point and

a diamond marks the end point of the figure. Figures are considered up to translation, hence we do not

mark the coordinates.

({(0, 0), (1, 0), (2, 0), (1, 1)}, (0, 1), (2, 1), {(0, 0) 7→ a, (1, 0) 7→ b, (1, 1) 7→ a, (2, 0) 7→ a})

✐

a b
a
a
⋄

Definition 2 (Catenation, cf. Kolarz and Moczurad (2009)). Let x = (Dx, bx, ex, ℓx) and y =
(Dy, by, ey, ℓy) be directed figures. If Dx ∩ trex−by (Dy) = ∅, a catenation of x and y is defined as

x ◦ y = (Dx ∪ trex−by (Dy), bx, trex−by (ey), ℓ),

where

ℓ(z) =

{
ℓx(z) for z ∈ Dx,
trex−by (ℓy)(z) for z ∈ trex−by (Dy).

If Dx ∩ trex−by (Dy) 6= ∅, catenation of x and y is not defined.

Definition 3 (m-catenation, cf. Kolarz and Moczurad (2009)). Let x = (Dx, bx, ex, ℓx) and y =
(Dy, by, ey, ℓy) be directed figures. An m-catenation of x and y with respect to a merging function

m : Σ× Σ → Σ is defined as

x ◦m y = (Dx ∪ trex−by (Dy), bx, trex−by (ey), ℓ),

where

ℓ(z) =







ℓx(z) for z ∈ Dx \ trex−by (Dy),
trex−by (ℓy)(z) for z ∈ trex−by (Dy) \Dx,
m(ℓx(z), trex−by (ℓy)(z)) for z ∈ Dx ∩ trex−by (Dy).

Notice that when x ◦ y is defined, it is equal to x ◦m y, regardless of the merging function m.

Example 2. Let π1 be the projection onto the first argument.

a✐b
c
⋄

◦π1

a✐
b c
⋄

=
a✐b
c
a
c
⋄

The “non-merging” catenation is not defined for the above figures. Note that the result of (m-)catenation

does not depend on the original position of the second argument.



4 Włodzimierz Moczurad

Observe that ◦ is associative, whilst ◦m is associative if and only if m is associative. Thus for associa-

tive m, Σ⋄
m = (Σ⋄, ◦m) is a monoid (which is never free). From now on let m be an arbitrary associative

merging function.

Abusing this notation, we also write X⋄ (resp. X⋄
m) to denote the set of all figures that can be composed

by ◦ catenation (resp. ◦m m-catenation) from figures in X ⊆ Σ⋄. When some statements are formulated

for both ◦ and ◦m, we use the symbol • and “x•y” should then be read as “x◦y (resp. x◦m y)”. Similarly,

“x ∈ X⋄
•” should be read as “x ∈ X⋄ (resp. x ∈ X⋄

m)”.

For u, v ∈ Z
2, HP(u, v) denotes a half-plane {w ∈ Z

2 | u · (w − (v + u)) ≤ 0}, where · is the usual

scalar product; see Figure 1. An angle between two vectors u, v ∈ Z
2 is written as ∠(u, v) and Rotφ(u)

denotes a rotation of u by an angle φ. For u = (ux, uy) ∈ Z
2 and n ∈ N, B(u, n) denotes a ball on the

integer grid with center u and radius n, i.e., B(u, n) = {(vx, vy) ∈ Z
2 | |ux − vx|+ |uy − vy| ≤ n}.

• •✲
v

u
v + u

Fig. 1: HP(u, v). The half-plane contains integer grid points lying on a vertical line and to the left side of that line

(the region marked by horizontal lines).

3 Codes

In this section we define a total of eight kinds of directed figure codes, resulting from the use of four

different notions of decipherability and two types of catenation. Note that by a code (over Σ, with no

further attributes) we mean any finite non-empty subset of Σ⋄ \ {ε}.

Definition 4 (UD code). Let X be a code over Σ. X is a uniquely decipherable code, if for any x1, . . . , xk,

y1, . . . , yl ∈ X the equality x1 ◦ · · · ◦ xk = y1 ◦ · · · ◦ yl implies that (x1, . . . , xk) and (y1, . . . , yl) are

equal as sequences, i.e. k = l and xi = yi for each i ∈ {1, . . . , k}.

Definition 5 (UD m-code). Let X be a code over Σ. X is a uniquely decipherable m-code, if for any

x1, . . . , xk , y1, . . . , yl ∈ X the equality x1 ◦m · · · ◦m xk = y1 ◦m · · · ◦m yl implies that (x1, . . . , xk) and

(y1, . . . , yl) are equal as sequences.

In the remaining definitions, we use the obvious abbreviated notation.
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Definition 6 (MSD code and m-code). Let X be a code over Σ. X is a multiset decipherable code (resp.

m-code), if for any x1, . . . , xk , y1, . . . , yl ∈ X the equality x1 • · · · • xk = y1 • · · · • yl implies that

{{x1, . . . , xk}} and {{y1, . . . , yl}} are equal as multisets.

Definition 7 (SD code and m-code). Let X be a code over Σ. X is a set decipherable code (resp.m-code),

if for any x1, . . . , xk, y1, . . . , yl ∈ X the equality x1 • · · · • xk = y1 • · · · • yl implies that {x1, . . . , xk}
and {y1, . . . , yl} are equal as sets.

Definition 8 (ND code and m-code). Let X be a code over Σ. X is a numerically decipherable code

(resp. m-code), if for any x1, . . . , xk, y1, . . . , yl ∈ X the equality x1 • · · · • xk = y1 • · · · • yl implies

k = l.

Proposition 1. If X is a UD (resp. MSD, SD, ND) m-code, then X is a UD (resp. MSD, SD, ND) code.

Proof: Assume X is not a UD (resp. MSD, SD, ND) code. Then for some x1, . . . , xk, y1, . . . , yl ∈ X we

have x1 ◦ · · · ◦ xk = y1 ◦ · · · ◦ yl with (x1, . . . , xk) and (y1, . . . , yl) not satisfying the final condition of

the respective definition. But then, irrespective of m, x1 ◦m · · · ◦m xk = y1 ◦m · · · ◦m yl and X is not a

UD (resp. MSD, SD, ND) m-code.

Note that the converse does not hold. A code may, for instance, fail to satisfy the UD m-code definition

with x1 ◦m · · · ◦m xk = y1 ◦m · · · ◦m yl and still be a UD code simply because some catenations in

x1 ◦ · · · ◦ xk and y1 ◦ · · · ◦ yl are not defined.

Example 3. Take X = {x = a✐⋄}. X is not a UD m-code, since x ◦m x = x. It is a trivial UD code,

though, because x ◦ x is not defined.

Proposition 2. Every UD code is an MSD code; every MSD code is an SD code and an ND code. Every

UD m-code is an MSD m-code; every MSD m-code is an SD m-code and an ND m-code.

Proof: Obvious.

The diagram illustrates inclusions between different families of codes. A similar diagram can be made

for m-codes. Examples given below show that all those inclusions are strict.

All codes

ր տ
SD ND

տ ր
MSD

↑
UD

Example 4. Four codes depicted below are, respectively, UD, MSD, SD and ND codes and m-codes.

They are proper, in the sense that the MSD code is not a UD code (since x1◦x2◦x3◦x4 = x2◦x4◦x1◦x3),

and the SD and ND codes are not MSD codes (since y1 ◦ y4 ◦ y4 ◦ y3 ◦ y2 = y2 ◦ y3 ◦ y1 ◦ y3 ◦ y4 ◦ y1
and z1 ◦ z3 = z2 ◦ z1). For the sake of simplicity, we show sets that could also serve as examples for

corresponding properties of word codes. In fact, the MSD and SD examples come from Guzmán (1999).
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UD w1 = a✐⋄ w2 = b✐a⋄ w3 = b✐b⋄
MSD x1 = a✐a b⋄ x2 = a✐a b a a⋄ x3 = a✐b a⋄ x4 = b✐a a a b a b a⋄
SD y1 = a✐⋄ y2 = b✐a b⋄ y3 = a✐a b a a⋄ y4 = a✐b a a b a⋄
ND z1 = a✐⋄ z2 = a✐b⋄ z3 = b✐a⋄

Before proceeding with the main decidability results, note that for UD, MSD and ND m-codes there

is an “easy case” that can be verified quickly just by analyzing the translation vectors of figures. This is

reflected in Theorem 1.

Definition 9 (Two-sided and one-sided codes). Let X = {x1, . . . , xn} be a code. If there exist non-

negative integers α1, . . . , αn, not all equal to zero, such that
∑n

i=1 αitran(xi) = (0, 0), then X is called

two-sided. Otherwise, X is called one-sided.

This condition can be interpreted geometrically as follows: Translation vectors of a two-sided code do

not fit in an open half-plane. For a one-sided code, there exists a line passing through (0, 0) such that all

translation vectors are on one side of it. Equivalently, there exists τ ∈ Z
2 such that the scalar products

τ · tran(xi) are all positive.

Example 5. The following set of figures is a two-sided code, with translation vectors (1, 2), (1,−2) and

(−2, 0):

a✐b
c
⋄ a✐

b c
⋄ a⋄ b ✐

It is a one-sided code, if the rightmost figure is removed.

Theorem 1 (Necessary condition). A two-sided code is not an ND m-code (and consequently neither an

MSD nor UD m-code).

Proof: Assume X = {x1, . . . , xn} is two-sided, hence there exist non-negative integers α1, . . . , αn, not

all equal to zero, such that
∑n

i=1 αitran(xi) = (0, 0). Let

x = x1 ◦m · · · ◦m x1
︸ ︷︷ ︸

α1 times

◦m x2 ◦m · · · ◦m x2
︸ ︷︷ ︸

α2 times

◦m · · · ◦m xn ◦m · · · ◦m xn
︸ ︷︷ ︸

αn times

.

Now consider the powers of x (with respect to ◦m), xi for i ≥ 1. Since tran(x) = (0, 0), each of the

powers has the same domain. There is only a finite number of possible labellings of this domain, which

implies that regardless of the merging function and labelling of x, there exist p, q ∈ N, p 6= q such that

xp = xq . Hence X is not an ND m-code.

Corollary 1. An ND m-code is one-sided.

4 Decidability of verification

In this section we summarize all non-trivial decidability results for the decipherability verification. We aim

to prove the decidability status for each combination of the following orthogonal criteria: catenation type

(with or without a merging function), decipherability kind (UD, MSD, SD, ND) and code geometry (one-

sided, two-sided, two-sided with parallel translation vectors). Two combinations remain open, however.
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Proofs that have already appeared in our previous work and algorithms are omitted; references to re-

spective papers are given. Note, however, that in all decidable non-trivial cases there exist algorithms to

test the decipherability in question; the algorithms effectively find a double factorization of a figure if the

answer is negative.

4.1 Positive decidability results

Proposition 3 (see Kolarz and Moczurad (2009), Section 4). Let X be a one-sided code over Σ. It is

decidable whether X is a UD m-code.

Proposition 4 (see Kolarz (2010b), Section 3). Let X be a one-sided code over Σ. It is decidable whether

X is a UD code.

Generalizing Propositions 3 and 4, we obtain a similar result for one-sided MSD, SD and ND codes

and m-codes.

Theorem 2. Let X be a one-sided code over Σ. It is decidable whether X is a {UD, MSD, SD or ND}
{code or m-code}.

Proof: Starting with observations that allow us to construct a “bounding area” for figures, we proceed

with properties that imply finiteness of possible configuration sets and, consequently, decidability of the

problem in question.

Let X = {x1, . . . , xn} ⊆ Σ⋄ and let begin(x) = (0, 0) for each x ∈ X . Since X is one-sided, there

exists a vector τ such that for all x ∈ X ,

τ · tran(x) > 0.

We can assume that figures are sorted with respect to the angle of their translation vectors in the following

way:

∠(Rot−π
2
(τ), tran(x1)) ≤ ∠(Rot−π

2
(τ), tran(x2)) ≤ . . . ≤ ∠(Rot−π

2
(τ), tran(xn)).

We choose constants rE , rN , rW , rS > 0 such that the vectors

τE = rEτ,

τN = rNRotπ
2
(tran(xn)),

τW = −rW τ,

τS = rSRot−π
2
(tran(x1))

define a “bounding area” for figures in X , i.e., for all x ∈ X ,

dom(x) ∪ {end(x)} ⊆
⋂

u∈{τE,τN ,τW ,τS}

{HP(u, begin(x))}.

The choice of τ determines a “central axis” along which figures will be catenated. This is the line that

bisects the half-plane containing all translation vectors of figures in X . Note that in all examples, τ and

τE are drawn as horizontal pointing eastwards, giving the natural meaning to the subscripts of τE , τN ,



8 Włodzimierz Moczurad

τW and τS vectors. The ordering of translation vectors of figures in X is thus from the “southernmost” to

“northernmost”.

For x ∈ X⋄
• define

CE+(x) = HP(τS , end(x)) ∩ HP(τN , end(x)) ∩ HP(τW , end(x)),

CE−(x) = Z
2 \ CE+(x),

CW+(x) =
⋃

v

{v + (CE+(x) ∩ HP(τE , end(x)))},

CW−(x) = Z
2 \ CW+(x),

where the union in the definition of CW+(x) is taken over v ∈ Z
2 lying within an angle spanned by

vectors −tran(x1) and −tran(xn). Note that each term of the union is a trapezoid, resulting from the

intersection of four half-planes; see Figure 2 and Figure 3.

Immediately from the definition we have following properties, for x, y ∈ X⋄
• :

u ∈ CE−(x) ∩ dom(x) ⇒ label(x)(u) = label(x • y)(u),

u ∈ CE−(x) \ dom(x) ⇒ u 6∈ dom(x • y),

u ∈ CW−(x) ⇒ u 6∈ dom(x),

CE+(x • y) ⊆ CE+(x),

CW+(x) ⊆ CW+(x • y).

For x1, . . . , xk, y1, . . . , yl ∈ X⋄
• we define a configuration as a pair of sequences

((x1, . . . , xk), (y1, . . . , yl)). A successor of such a configuration is either ((x1, . . . , xk, z), (y1, . . . , yl))
or ((x1, . . . , xk), (y1, . . . , yl, z)) for some z ∈ X . If a configuration C2 is a successor of C1, we write

C1 ≺ C2. By ≺∗ we denote the transitive closure of ≺.

For a configuration C = ((x1, . . . , xk), (y1, . . . , yl)) let us denote:

L(C) = {x1, . . . , xk},

L•(C) = x1 • . . . • xk,

R(C) = {y1, . . . , xl},

R•(C) = y1 • . . . • yl.

Now consider a starting configuration ((x), (y)), for x, y ∈ X , x 6= y. Assume that there exists a

configuration C such that L•(C) = R•(C) and ((x), (y)) ≺∗ C. Now we have:

• X is not a UD code (resp. UD m-code),

• if L(C) = R(C) as multisets then X is not an MSD code (resp. MSD m-code),

• if L(C) = R(C) as sets then X is not an SD code (resp. SD m-code),

• if |L(C)| = |R(C)| then X is not an ND code (resp. ND m-code).
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❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅

❅
❅
❅
❅
❅
❅

✟✟✟✟✟✟

• ✲
τE

❆
❆❆❑ τN

✛
τW �
�

��✠
τS

HP(τW , begin(x))

✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅
❅

�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�

❅
❅
❅
❅
❅
❅

✟✟✟✟✟✟

• ✲
τE

❆
❆❆❑ τN

✛
τW �
�

��✠
τS

HP(τS , begin(x))

Fig. 2: Half-planes HP(τ, begin(x)) for τ ∈ {τE , τN , τW , τS} are marked with parallel lines; the black dot denotes

the start point of x.
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❅
❅
❅
❅
❅

❅

✟✟✟✟✟✟

•

❅
❅
❅

✟✟✟✟✟✟

❅
❅

❅
❅

✟✟✟✟✟✟

CW+(x)
CE+(x)

Fig. 3: CW+(x) and CE+(x) regions; the black dot denotes the end point of x.

A configuration C′ such that C′ ≺∗ C and L•(C) = R•(C) for some C, is called a proper configuration.

Our goal is either to show that there exists no proper configuration, or to find such configuration(s).

In the former case, X is a code (resp. m-code) of each kind. In the latter case, if we find one of such

configurations, X is already not a UD code (resp. UD m-code). To verify whether X is an MSD, SD or

ND code (resp. m-code), we have to check the above conditions for all possible proper configurations.

Let

ρ = max
x∈X

min{n ∈ N | B(begin(x), n) ∩ dom(x) 6= ∅}.

This number determines a distance within which both parts of a configuration, L and R, can be found.

The following properties of a proper configuration C are now easily verified:

B(end(L•(C)), ρ) ∩ (CW+(R•(C)) ∪ CE+(R•(C))) 6= ∅, (1)

B(end(R•(C)), ρ) ∩ (CW+(L•(C)) ∪ CE+(L•(C))) 6= ∅, (2)

and for the common domain D = CE−(L•(C)) ∩ CE−(R•(C)):

label(L•(C)) |D≡ label(R•(C)) |D . (3)

Notice that we do not need all of the information contained in configurations, just those labellings that

can be changed by future catenations. By (3), instead of a configuration C we can consider a reduced

configuration defined as a pair (πRC(L•(C), R•(C)), πRC (R•(C), L•(C))) where

πRC(z, z
′) = (end(z), label(z) |dom(z)\(CE−

(z)∩CE−

(z′))
).



Decidability of multiset, set and numerically decipherable directed figure codes 11

Obviously we need only consider configurations where the span along τE is bounded by |τE |, i.e.,

|τE · (end(L•(C))− end(R•(C)))| ≤ |τE |
2,

since no single figure advances end(L•(C)) or end(R•(C)) by more than |τE |. Moreover, (1) and (2)

restrict the perpendicular span (in the direction of Rot−π
2
(τE)). Hence the number of reduced configu-

rations, up to translation, is finite and there is a finite number of proper configurations to check. Conse-

quently, we can verify whether X is a UD, MSD, SD or ND code (resp. m-code).

Combined with Theorem 1, this proves the decidability for all UD, MSD and ND m-codes. The case

of two-sided SD m-codes remains unsolved, however.

Two-sided codes with parallel translation vectors constitute an interesting special case.

Definition 10 (Two-sided codes with parallel translation vectors). Let X = {x1, . . . , xn} be a two-sided

code. If there exists a vector τ ∈ Z
2 and numbers α1, . . . , αn ∈ Z, not all positive and not all negative,

such that tran(xi) = αiτ for i = 1, . . . , n, then X is called two-sided with parallel translation vectors.

Proposition 5 (see Kolarz (2010a), Section 4). Let X be a two-sided code with parallel translation

vectors. It is decidable whether X is a UD code.

This can again be generalized to two-sided MSD, SD and ND codes with parallel translation vectors:

Theorem 3. Let X be a two-sided code with parallel translation vectors. It is decidable whether X is a

UD, MSD, SD or ND code.

Proof: Even though the problem is one-dimentional, it cannot be easily transformed to any known word

problem. Hence, a setting similar to that of Theorem 2 is used: we define bounding areas and use them to

show that the number of possible configurations is finite. This is accomplished by trying to find a figure

that has two different factorizations and observing that the configurations are indeed bounded.

Let X ⊆ Σ⋄ be finite and non-empty and let begin(x) = (0, 0) for each x ∈ X . Since translation

vectors of elements of X are parallel, there exists a shortest vector τ ∈ Z
2 such that for all x ∈ X ,

tran(x) ∈ Zτ = {jτ | j ∈ Z}.

In particular, if (t1, t2) = tran(x) for some x ∈ X with tran(x) 6= (0, 0), then τ is one of the following

vectors:

(t1/ gcd(|t1|, |t2|) , t2/ gcd(|t1|, |t2|)), (4)

(−t1/ gcd(|t1|, |t2|) , −t2/ gcd(|t1|, |t2|)), (5)

where gcd denotes greatest common divisor. If all translation vectors of elements of X are (0, 0), then

the decidability problem is trivial: X is an MSD, SD and ND code (since each element can be used at

most once) and X is a UD code if and only if no two elements can be concatenated, i.e. no two elements

x, y ∈ X have dom(x) ∩ dom(y) 6= ∅ (otherwise xy = yx); this case is obviously decidable.

We define the following bounding areas:

BL = {u ∈ Z
2 | 0 > u · τ},

B0 = {u ∈ Z
2 | 0 ≤ u · τ < τ · τ},

BR = {u ∈ Z
2 | τ · τ ≤ u · τ}.
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• •✲
(0, 0)

τ

B0BL BR

Fig. 4: Bounding areas BL, B0 and BR.

For a non-empty figure x ∈ Σ⋄, bounding hulls of x are sets:

hull(x) =
⋃

n=m...M

trnτ (B0),

hull∗(x) =
⋃

n=−M...−m

trnτ (B0),

where

m = min{n ∈ Z | trnτ (B0) ∩ (dom(x) ∪ {begin(x), end(x)}) 6= ∅},

M = max{n ∈ Z | trnτ (B0) ∩ (dom(x) ∪ {begin(x), end(x)}) 6= ∅}.

In addition, for the empty figure, hull(ε) = ∅ and hull∗(ε) = ∅.

The area B0 is a vertical stripe of width equal to the length of τ . For a figure x ∈ Σ⋄, hull(x) is a

union of translated stripes such that the whole figure, including its start and end points, lies inside it. The

hull∗(x) variant is a mirror image of hull(x).
Starting Configurations: Our goal is either to find a figure x ∈ X⋄ that has two different factorizations

over elements of X , or to show that such a figure does not exist. If it exists, without loss of generality we

can assume it has the following two different x- and y-factorizations:

x = ẋ1ẍ1 · · · ẍk−1ẋkẍk = ẏ1ÿ1 · · · ÿl−1ẏlÿl

where ẋ1 6= ẏ1, begin(ẋ1) = begin(ẏ1) = (0, 0) and for i ∈ {1, . . . , k} and j ∈ {1, . . . , l} we have:

ẋi ∈ X and hull(ẋi) ∩ B0 6= ∅,

ẍi ∈ X⋄ ∪ {ε} and hull(ẍi) ∩ B0 = ∅,

ẏj ∈ X and hull(ẏj) ∩ B0 6= ∅,

ÿj ∈ X⋄ ∪ {ε} and hull(ÿj) ∩ B0 = ∅.

Observe that the following conditions for the x-factorization are satisfied for i ∈ {1, . . . , k − 1}:

• if end(ẋi) ∈ BL, then begin(ẋi+1) ∈ BL,

• if end(ẋi) = (0, 0), then ẍi = ε and begin(ẋi+1) = (0, 0),

• if end(ẋi) ∈ BR, then begin(ẋi+1) ∈ BR.

These are trivial implications of the assumption that hull(ẍi) ∩ B0 = ∅ and the fact that ẋi must be

somehow linked with ẋi+1. Similar conditions are satisfied for the y-factorization. In addition, the x-

factorization must match the y-factorization, i.e.:
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• if end(ẋk) ∈ BL, then end(ẏl) ∈ BL,

• if end(ẋk) = (0, 0), then end(ẏl) = (0, 0),

• if end(ẋk) ∈ BR, then end(ẏl) ∈ BR.

Also, it is clear that

⋃

i=1...k

dom(ẋi) ∩ B0 =
⋃

i=1...l

dom(ẏi) ∩ B0, (6)

⋃

i=1...k

label(ẋi) |B0
=

⋃

i=1...l

label(ẏi) |B0
. (7)

Now we consider all possible pairs of sequences ((ẋi)i, (ẏj)j) satisfying the above conditions. Note

that equality of such sequences is considered not up to translation: relative position of sequence elements

is important. Such a pair will be called a starting configuration. Observe that there can be only a finite

number of such configurations, since

⋃

i=1...k

dom(ẋi) ⊆
⋃

x∈X

(hull(x) ∪ hull∗(x)),

⋃

i=1...l

dom(ẏi) ⊆
⋃

x∈X

(hull(x) ∪ hull∗(x))

and the set on the right hand side is bounded in the direction of τ . Also note that if there is no starting

configuration for X , then obviously X is a UD code and consequently an MSD, SD and ND code.

Left and Right Configurations: We consider independently all starting configurations constructed

for X . By (6) and (7), we can now forget the labelling of B0. From a starting configuration

((ẋi)
k
i=1, (ẏj)

l
j=1) we construct L- and R-configurations (left and right configurations)

CR = ((Dx
R, l

x
R,EB

x
R), (D

y
R, l

y
R,EB

y
R)),

CL = ((Dx
L, l

x
L,EB

x
L), (D

y
L, l

y
L,EB

y
L)).

First we show a construction for the x-part of a configuration:

Dx
R =

⋃

i=1...k dom(ẋi) ∩ BR and lxR =
⋃

i=1...k label(ẋi) |BR
,

Dx
L =

⋃

i=1...k dom(ẋi) ∩ BL and lxL =
⋃

i=1...k label(ẋi) |BL

and multisets EBx
L, EBx

R are obtained in the following way: for each i ∈ {1, . . . , k − 1}:

• if end(ẋi) ∈ BL, then (end(ẋi), begin(ẋi+1)) is added to EBx
L,

• if end(ẋi) = (0, 0), then no pair is added to EBx
L or EBx

R,

• if end(ẋi) ∈ BR, then (end(ẋi), begin(ẋi+1)) is added to EBx
R

and

• if end(ẋk) ∈ BL, then (end(ẋk),⊙) is added to EBx
L,
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• if end(ẋk) = (0, 0), then no pair is added to EBx
L or EBx

R,

• if end(ẋk) ∈ BR, then (end(ẋ1),⊙) is added to EBx
R.

These multisets keep information on how figures ẋi and ẋi+1 should be linked by ẍi factors. The ⊙
symbol denotes the end of the whole figure.

The y-part is created in a similar way.

Example 6. Consider a set containing the following figures (vertical lines separate the figures):

✐a

⋄
a ✐

⋄
a✐

⋄ a
⋄

a a✐
⋄

a ✐

Taking τ = (2,−1), we construct one of possible starting configurations (x-part only). We also show the

construction of the x-part of L- and R-configurations.

Figure 5 shows the construction. Each image presents a current figure (with bold lines) and its trans-

lation vector. Domain and labeling of all of the previous figures are also presented, together with the end

point of the previous figure (which is important for the construction). B0 lies between the slanted lines.

Domains and labellings of L- and R-configurations are presented in Fig. 6.

Now let us consider the R-configuration only (the L-configuration is handled in a similar way). We

say that an R-configuration ((Dx
R, l

x
R,EB

x
R), (D

y
R, l

y
R,EB

y
R)) is terminating if it satisfies the following

conditions:

• the domain and labelling of the x-part of the R-configuration match the domain and labelling of its

y-part, i.e.,

Dx
R = Dy

R and lxR = lyR,

• if a location of the end point of the whole figure is encoded in the R-configuration, then its location

is the same in both x- and y-parts, i.e., for all e ∈ Z,

(e,⊙) ∈ EBx
R ⇔ (e,⊙) ∈ EBy

R,

• all points that should be linked together are trivially linked, since they are the same points, i.e., for

all (e, b) ∈ EBx
R ∪ EBy

R,

e = b or b = ⊙.

Note that if for some starting configuration we obtain a pair of terminating L- and R- configurations,

then X is not a UD code (it can still be an MSD, SD or ND code, though). On the other hand, if we show

that for all starting configurations such pair of terminating L- and R-configurations cannot be reached,

then X is a UD code (and hence an MSD, SD and ND code).

Similarly as in Theorem 2, to verify whether X is an MSD, SD or ND code, we have to check the

following conditions for all possible pairs C of terminating L- and R- configurations:

• if πx(C) = πy(C) as multisets then X is not an MSD code,

• if πx(C) = πy(C) as sets then X is not an SD code,
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ẋ1

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

a✐

a⋄❍❍❥

hull(ẍ1) ⊂ BR

ẋ2

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

a
a⋄ ✐a a

⋄❍❍❥
((2,−1), (4,−2)) is added to EBx

R

hull(ẍ2) ⊂ BR

ẋ3

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

a
a
a

⋄
a

a✐a
⋄
❍❍❨

((4,−2), (2,−1)) is added to EBx
R

ẍ3 = ε

ẋ4

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

a
a
a

aa
⋄

a

✐a
⋄
❍❍❨

no pair is added to EBx
L and EBx

R

hull(ẍ4) ⊂ BL

ẋ5

✁
✁
✁

✁
✁

✁
✁
✁

✁
✁

a
a
a

aa

✐a
⋄

a

✐a

⋄
❍❍❍❍❍❍❥ ((−2, 1), (−2, 1)) is added to EBx

L

((4,−2), (⊙)) is added to EBx
R

hull(ẍ5) ⊂ BR

Fig. 5: Construction of a sample starting configuration and its L- and R-configurations (figures added at each step are

marked with thick lines).

✁
✁
✁

✁

✁
✁

✁
✁

a
a
a

aa
a

a
a

Dx
L and lxL

✁
✁

✁
✁

✁
✁
✁

✁a

aa
a

a a
a

a
Dx

R and lxR

Fig. 6: Domains and labellings of sample L- and R-configurations (respective objects are marked with thick lines).
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• if |πx(C)| = |πy(C)| then X is not an ND code,

where πx(C) and πy(C) denote respective multisets of elements used in the construction of C. Note that

computation of πx(C) and πy(C) requires the history of C to be kept; this does not spoil the finiteness of

the part of C that has to be kept.

Obtaining New R-Configurations: When an R-configuration derived from a starting configuration is

terminating, we can proceed to the analysis of the L-configuration. If the R-configuration is not terminat-

ing, we must check whether adding new figures may create a terminating configuration.

Initially such a derived configuration lies in BR. For simplicity of notation, we can translate such a

configuration by a vector −τ (translating all its elements).

Now from the given R-configuration we want to obtain a new R-configuration by adding new figures

from X . In order to obtain a new R-configuration from a given R-configuration, we create the new R-

configuration as a copy of the old one. Then zero or more of the following operations must be performed

(note that they need not be admissible for an arbitrary R-configuration or we may not need such operations

to be performed):

• an x-part operation: add any x ∈ X for which

hull(x) ∩ BL = ∅, (8)

hull(x) ∩ B0 6= ∅, (9)

dom(x) ∩Dx
R = ∅ (10)

to the new configuration, adding its domain and labelling function to the domain and labelling

function of the R-configuration, and replacing any pair (e, b) from EBx
R in the old configuration

with two pairs (e, begin(x)) and (end(x), b) in the new one,

• an y-part operation: similarly.

In each step of creating the new generation of an R-configuration, we add only figures that change the

given R-configuration within B0; hence (9). We add such figures to an R-configuration only at that step.

In consecutive steps adding such figures is forbidden; hence (8). At the first step this is a consequence of

restrictions for ẍi and ÿi. Condition (10) is obvious. Of course it is possible that a given R-configuration

is not extendable at all.

After these operations we want the x-part of the R-configuration obtained to match its y-part on B0,

i.e.,

Dx
R ∩ B0 = Dy

R ∩ B0 and lxR |B0
= lyR |B0

.

In addition, for the x-part (and similarly for the y-part):

• if ((0, 0), b) ∈ EBx
R, then b = (0, 0) or b = ⊙,

• if (e, (0, 0)) ∈ EBx
R, then e = (0, 0),

and for both parts

• ((0, 0),⊙) ∈ EBx
R if and only if ((0, 0),⊙) ∈ EBy

R.
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These conditions are trivial consequences of (8), (9) and (10) on new figures added to R-configuration. Of

course it is possible that one cannot obtain any R-configuration form the old one.

Here, since the x-part and y-part of each newly created R-configuration are the same, we now do not

have to remember the labelling of B0. When we forget this information, configurations created lie in BR,

so we can translate them by −τ as previously.

Now observe that all parts of an R-configuration are bounded: domains are contained in the area re-

stricted by the widest hull of elements of X ; multisets EBx
R and EBy

R cannot be infinite, since eventually

all points must be linked. There are only finitely many such configurations. Either we find a terminating

R-configuration, or we consider all configurations that can be obtained from a given starting configuration

performing one or more steps described.

Note that codes with parallel translation vectors are similar to classical word codes and two-sidedness

does not make a significant difference in terms of decidability. This can be contrasted with the Post

Correspondence Problem (PCP), which is also “linear” yet undecidable. The essential difference is that

PCP configurations are extended with pre-defined pairs of words and there is no a priori bound on how

much two parts of a configuration can differ. Code configurations are extended with individual words or

figures and the respective bound can be determined by inspecting the size of words/figures.

4.2 Negative decidability results

Proposition 6 (see Kolarz (2010b), Section 2). Let X be a two-sided code over Σ. It is undecidable

whether X is a UD code.

This result can again be extended to other decipherability kinds:

Theorem 4. Let X be a two-sided code over Σ. It is undecidable whether X is a UD, MSD, SD or ND

code.

Proof: We prove Theorem 4 for UD codes first. The same reasoning is applied to MSD and SD codes,

whilst for ND codes we use an additional technique, described at the end of this proof. The proof is a

reduction from PCP to the decipherability problem. Given a PCP instance, we construct a two-sided code

such that the PCP instance has a solution if and only if the code is not decipherable. Detailed explanation

why this is indeed the case is given in the form of separate Lemmas 1 and 2, for the “only if” and “if”

part, respectively. They are, however, part of the proof since they rely heavily on notations introduced

here and would be impossible to formulate clearly outside this context.

First we define figures that will be used throughout the reduction. Let Σ = {a}. For positive integers

h, hN , hE, hS , hW such that hN , hE , hS , hW ≤ h and b, e ∈ {N,E, S,W} (with the usual geographical

meaning) we define a directed hooked square DHSh(hN , hE , hS , hW )be to be a directed figure f ∈ Σ⋄

with:

dom(f) = (B \ (H−
N ∪H−

E ∪H−
S ∪H−

W )) ∪ (H+
N ∪H+

E ∪H+
S ∪H+

W ),

begin(f) =







(0, h+ 2) if b = N,
(h+ 2, 0) if b = E,
(0,−h− 2) if b = S,
(−h− 2, 0) if b = W,
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end(f) =







(0, h+ 3) if e = N,
(h+ 3, 0) if e = E,
(0,−h− 3) if e = S,
(−h− 3, 0) if e = W,

where

B = {(x, y) | x, y ∈ {−h− 2, . . . , h+ 2}},

H−
N = {(−1, y) | y ∈ {h+ 2− hN , . . . , h+ 2}} ∪ {(0, h+ 2− hN)},

H−
E = {(x, 1) | x ∈ {h+ 2− hE , . . . , h+ 2}} ∪ {(h+ 2− hE , 0)},

H−
S = {(1, y) | y ∈ {−h− 2, . . . ,−h− 2 + hS}} ∪ {(0,−h− 2 + hS)},

H−
W = {(x,−1) | x ∈ {−h− 2, . . . ,−h− 2 + hW }} ∪ {(−h− 2 + hW , 0)},

H+
N = {(1, y) | y ∈ {h+ 3, . . . , h+ 3 + hN}} ∪ {(0, h+ 3 + hN )},

H+
E = {(x,−1) | x ∈ {h+ 3, . . . , h+ 3 + hE}} ∪ {(h+ 3 + hE , 0)},

H+
S = {(−1, y) | y ∈ {−h− 3− hS , . . . ,−h− 3}} ∪ {(0,−h− 3− hS)},

H+
W = {(x, 1) | x ∈ {−h− 3− hW , . . . ,−h− 3}} ∪ {(−h− 3− hW , 0)},

i.e. f is a square with hooks on each side (see e.g. Figure 7).

a
a
a
a
a

a
a
a
a
a
a
a
a

a
a
a
a
a

a
a
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a
a
a
a

a
a
a
a
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a
a
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a
a
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a
a
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a
a
a
a

a

a

a
a
a
a

a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a
a
a
a
a
a
a
a

a
a
a
a
a
a

a

a
a
a
a
a
a

a
a
a
a
a
a
a

a
a
a
a
a
a

a
a
a
a
a
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Fig. 7: DHS4(1, 2, 3, 4)
N

E ; full and reduced graphical representation.

Observe that for

x = DHSh(hN , hE , hS , hW )be and x′ = DHSh(h
′
N , h′

E , h
′
S , h

′
W )b

′

e′

catenation x ◦ x′ is defined if and only if e matches b′, i.e.,
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e = N and b′ = S or

e = E and b′ = W or

e = S and b′ = N or

e = W and b′ = E

and he = h′
b′ .

Now we encode a PCP instance in a set of directed figures over Σ = {a}. The PCP can be stated as

follows: Let A = {a1, . . . , ap} be a finite alphabet, x1, . . . , xk, y1, . . . , yk ∈ A+ such that xi 6= yi for

i ∈ {1, . . . , k}. Find a sequence i1, . . . , in ∈ {1, . . . , k}, n ≥ 2, such that xi1 · · ·xin = yi1 · · · yin .

We describe a set of directed figures X such that a given PCP instance has a solution if and only if X is

not a UD code. Consider the following set:

H =
⋃

i∈{1,...,k}

{xi, yi, exi
, eyi

, Ii} ∪ {ai | i ∈ {1, . . . , p}} ∪ {x, y, x′, y′, bx, by, e},

where Ii are additional elements related to each pair (xi, yi) of the PCP instance. Set h = |H | =
5k + p+ 7. We can define a bijection between H and {1, . . . , h}, so from now on, each element of H is

identified with its image by this bijection. Since h is now fixed, we write DHS(hN , hE , hS , hW )be instead

of DHSh(hN , hE , hS , hW )be.

For each xi, i ∈ {1, . . . , k}, we define basic-figures [xi[, ]xi[ and ]xi] (Figure 8); these figures will

be used to encode the word xi standing at the beginning (we call it begin solution figure), in the middle

(middle solution figure) and at the end (end solution figure) of the PCP instance solution, respectively.

[xi[
W
E =

ai1

x′

bx

Ii ✲ ◦

ai2

x′

x′

x′ ✲ ◦ . . . ◦

airi

x′

x′

x′ ✲

]xi[
W
E =

ai1

x′

xi

x′ ✲ ◦

ai2

x′

x′

x′ ✲ ◦ . . . ◦

airi

x′

x′

x′ ✲

]xi]
W
S =

ai1

x′

x′

x′ ✲ ◦

ai2

x′

x′

x′ ✲ ◦ . . . ◦

airi

e

exi

x′

❅❘

Fig. 8: Basic-figures for xi = ai1 · · · airi
.

In addition we define annex-figures (Figure 9).

In the same way we define figures for the “y-part” of the PCP instance, replacing the letter x with y.

Let X be the set of all figures defined (6k basic-figures and 32k + 2 annex-figures, 16k for each part:

“x-part” and “y-part”). Observe that there exists no half-plane of integer values anchored in (0, 0) (i.e.

{v ∈ Z
2 | u · v > 0} for some u ∈ Z

2) containing all translation vectors of the figures we have defined.

The following two lemmas now complete the proof of Theorem 4 for UD, MSD and SD cases.
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Annex-figures for passing information from north to south:

xi

x

xi

x ✲

xi

x

xi

x ✛

exi

e

exi

x �✠

exi

e

exi

x
❅❘

Mx[i, N.S]WE Mx[i, N.S]EW Ex[i, N.S]NW Ex[i, N.S]WS

Annex-figures for passing information from north to west:

xi

x

x

xi
✲

xi

x

x

xi
✛

exi

e

e

exi
�✠

exi

e

e

exi❅❘

Mx[i, N.W ]WE Mx[i, N.W ]EW Ex[i, N.W ]NW Ex[i, N.W ]WS

Annex-figures for passing information from east to west:

x

xi

x

xi
✲

x

xi

x

xi
✛

x

exi

e

exi
✲

x

exi

e

exi
✛

Mx[i, E.W ]WE Mx[i, E.W ]EW Ex[i, E.W ]WE Ex[i, E.W ]EW

bx

xi

bx

Ii �✠

bx

xi

bx

Ii ❅❘

bx

exi

e

Ii �✠

bx

exi

e

Ii ❅❘

BMx[i, E.W ]ES BMx[i, E.W ]NE BEx[i, E.W ]ES BEx[i, E.W ]NE

Annex-figures which pass no information:

x

x

x

x ✲

x

x

x

x ✛

Nx[]
W
E Nx[]

E
W

Fig. 9: Annex-figures.
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Lemma 1. If the PCP instance has a solution then X is not a UD (MSD, SD) code.

Proof of Lemma 1: Let i1, . . . , in ∈ {1, . . . , k} be a solution of the PCP instance, i.e. xi1 · · ·xin =
yi1 · · · yin . Consider the following directed figures:

wx1 = [xi1 [
W
E ◦]xi2 [

W
E ◦ · · · ◦]xin−1

[WE ◦]xin ]
W
S ,

wxj = Ex[in, N.S]NW ◦Nx[]
E
W ◦ · · · ◦Nx[]

E
W

︸ ︷︷ ︸

|xn|−2 times

◦

Nx[]
E
W ◦ · · · ◦Nx[]

E
W

︸ ︷︷ ︸

|xn−1|−1 times

◦Mx[in−1, N.E]EW ◦

· · ·

Nx[]
E
W ◦ · · · ◦Nx[]

E
W

︸ ︷︷ ︸

|xj+1|−1 times

◦Mx[ij+1, N.E]EW ◦

Nx[]
E
W ◦ · · · ◦Nx[]

E
W

︸ ︷︷ ︸

|xj|−1 times

◦Mx[ij, N.E]EW ◦

Mx[ij, E.W ]EW ◦ · · · ◦Mx[ij, E.W ]EW
︸ ︷︷ ︸

|xi1
···xij−1

|−1 times

◦BMx[ij, E.W ]ES

(for even j < n),

wxj = BMx[ij , E.W ]NE ◦Mx[ij , E.W ]WE ◦ · · · ◦Mx[ij, E.W ]WE
︸ ︷︷ ︸

|xi1
···xij−1

|−1 times

◦

Mx[ij , N.E]WE ◦Nx[]
W
E ◦ · · · ◦Nx[]

W
E

︸ ︷︷ ︸

|xj |−1 times

◦

Mx[ij+1, N.E]WE ◦Nx[]
W
E ◦ · · · ◦Nx[]

W
E

︸ ︷︷ ︸

|xj+1|−1 times

◦

· · ·

Mx[in−1, N.E]WE ◦Nx[]
W
E ◦ · · · ◦Nx[]

W
E

︸ ︷︷ ︸

|xn−1|−1 times

◦

Nx[]
W
E ◦ · · · ◦Nx[]

W
E

︸ ︷︷ ︸

|xn|−2 times

◦Ex[in, N.S]WS

(for odd j < n),

wxn = Ex[in, N.W ]NW ◦ Ex[in, E.W ]EW ◦ · · · ◦ Ex[in, E.W ]EW
︸ ︷︷ ︸

|xi1
···xin |−2 times

◦BEx[in, E.W ]ES
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(if n is even),

wxn = BEx[in, E.W ]NE ◦ Ex[in, E.W ]WE ◦ · · · ◦ Ex[in, E.W ]WE
︸ ︷︷ ︸

|xi1
···xin |−2 times

◦Ex[in, N.W ]WS

(if n is odd).

In the same way we define figures wy1, . . . , wyn.

It is easy to see that wx1 ◦ · · · ◦ wxn = wy1 ◦ · · · ◦ wyn ⊆ X⋄. Hence X is not a UD code.

(End of proof of Lemma 1.)

Example 7. Consider

Σ = {a, b},

X = (x1, x2, x3) = (a, ba, bab),

Y = (y1, y2, y3) = (ab, aba, b).

We have x1x2x3 = y1y2y3. Figure f with two different tilings with elements of X is presented in Figure 10

and Figure 11 (where thick arrows show the flow of information through annex-figures).

bx

ex3

e

I3 ❅❘

x

ex3

e

ex3

✲

x

ex3

e

ex3

✲

x

ex3

e

ex3

✲

x

ex3

e

ex3

✲

ex3

e

e

ex3❅❘

bx

x2

bx

I2 �✠

x

x2

x

x2
✛

x2

x

x

x2
✛

x

x

x

x ✛

x

x

x

x ✛

ex3

e

ex3

x �✠

a

x′

bx

I1 ✲

b

x

x′

a

x′

x2

✲

b

x

x′

a

x

b

e

ex3

❅❘

✛

✛

Fig. 10: “X”-tiling of f .

Lemma 2. If X is not a UD (MSD, SD) code then the related PCP instance has a solution.

Proof of Lemma 2: Let f be a figure of minimal size (with respect to the size of its domain) which

admits two tilings with elements of X, i.e. there exist f1, . . . , fp, g1, . . . , gq ∈ X such that f1 6= g1 and

f1 ◦ . . . ◦ fp = g1 ◦ . . . ◦ gq.

Consider directed hooked squares tiling the figure f (these are annex-figures and squares of which

basic-figures are built). Let d be the westernmost among the northernmost of them. We have following

possibilities:
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by

ey3

e

I3 ❅❘

y

ey3

e

ey3

✲

y

ey3

e

ey3

✲

y

ey3

e

ey3

✲

y

ey3

e

ey3

✲

ey3

e

e

ey3❅❘

by

y2

by

I2 �✠

y

y2

y

y2 ✛

y

y2

y

y2 ✛

y

y2

y

y2 ✛

y2

y

y

y2 ✛

ey3

e

ey3

y �✠

a

by

I1

b

y′

y

✲

a

y

y′

b

y

a

y′

y2

✲

b

e

ey3

y′
❅❘

✛

✛

Fig. 11: “Y ”-tiling of f .

• Case 1: d ∈
⋃

z∈{x,y}

⋃

j∈{1,...,k}{Ez[j,N.S]NW , Ez [j,N.W ]NW , Ez[j, E.W ]NW }

Since d is the westernmost among the northernmost of all squares tiling f , it cannot have north and

west neighbour squares, i.e. squares hooked to it at the north and west sides, respectively. Hence

f = d, which contradicts the definition of the double tiling of f .

• Case 2: d ∈
⋃

z∈{x,y}

⋃

j∈{1,...,k}{Ez[j,N.S]WS , Ez [j,N.W ]WS }

Since d has no north and west neighbours, north and west hooks of d are uniquely determined

by f . Each of figures listed is uniquely determined by its north and west hooks. Hence d is also

uniquely determined by f . Now d has no west neighbour and it has the start point at its west side,

which implies that it must be the first one in a sequence of figures whose catenation gives f , i.e.

d = f1 = g2. Then either f = d (contradiction as previously), or f ′ = f2 ◦ · · · ◦ fp = g2 ◦ · · · ◦ gq
is a smaller figure with two tilings, which contradicts the minimality of f .

• Case 3: d ∈
⋃

z∈{x,y}

⋃

j∈{1,...,k}{Mz[j,N.S]EW ,Mz[j,N.W ]EW ,Mz[j, E.W ]EW }

∪{Nx[]
E
W , Ny[]

E
W }

As in Case 1, d is uniquely determined by f . Since d has no west neighbour and it has the end

point at its west side, it must be the last one in a sequence of figures whose catenation gives f , i.e.

d = fp = gq. Then either f = d (contradiction as previously), or f ′ = f1◦· · ·◦fp−1 = g1◦· · ·◦gq−1

is a smaller figure with two tilings, which contradicts the minimality of f .

• Case 4: d ∈
⋃

z∈{x,y}

⋃

j∈{1,...,k}{BMz[j, E.W ]NE , BEz [j, E.W ]NE }

Now d must be the first one in the tiling since it has the start point at its north side and it is the

northernmost in the tiling. Observe that there exists no square with e-hook at the north side. Hence

BMz[j, E.W ]NE andBEz [j, E.W ]NE (z ∈ {x, y}) cannot be the first elements of two different tiling

sequences of f . Consequently, d is uniquely determined by f and d = f1 = g1. Contradiction as in

Case 2.
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• Case 5: d ∈
⋃

z∈{x,y}

⋃

j∈{1,...,k}{BMz[j, E.W ]ES , BEz [j, E.W ]ES }

As in Case 4, d is uniquely determined by f . If d = BEz[j, E.W ]ES (for z ∈ {x, y}) then d is

the last element of a tiling sequence. Contradiction as in Case 3. If d = BMz[j, E.W ]ES (for

z ∈ {x, y}) then (for some i ∈ {1, . . . , p}) f = f1 ◦ f2 ◦ · · · ◦ fi−1 ◦ d ◦ fi+1 ◦ · · · ◦ fp, where

f1 ∈ {Mz[j, E.W ]EW ,Mz[j,N.W ]EW } and f2 = · · · = fi−1 = Mz[j, E.W ]EW . Contradiction as in

Case 1.

This leads us to a conclusion that:

• Case 6: Directed hooked square d is a part of a basic-figure. In particular, d is a “first part” of f1
and g1.

Now it is easy to observe the following properties of f ’s tiling:

1. If f1 is a figure that encodes one of the words from X , then all fi (i ∈ {1, . . . , p}) are figures

encoding “x-part” of the related PCP instance (since there is no figure that links a figure from “x-

part” with a figure from “y-part”). In the same way, if f1 encodes a word from Y , then all fi encode

“y-part” of the PCP instance. A similar statement holds for gi (i ∈ {1, . . . , q}).

2. First “row” of figures in the tiling is a sequence of middle solution figures (may be empty) which is

ended by an end solution figure (that ends the row) and may be started with a begin solution figure.

3. The sequence of middle solution figures from the first row implies that in the tiling, leftmost col-

umn’s hooks (Ij hooks of some BM and BE annex-figures) correspond to the sequence of indices

of words encoded by those figures.

This leads us to a simple observation that the only possible two tilings of f are tilings of the form defined

in the proof of Lemma 1. Hence the related PCP instance has a solution.

(End of proof of Lemma 2.)

(Proof of Theorem 4, continued.)

Lemmas 1 and 2 complete the proof for UD, as well as MSD and SD codes, since it is clear that exactly

the same reasoning can be applied in the MSD and SD cases. ND codes, however, have to be dealt with

separately, since both factorizations have exactly the same number of figures. An additional technique to

handle the ND case is as follows: replace basic directed hooked squares for both “x-part” and “y-part”

with 25 squares. In the “x-part” the 25 squares will be connected (into one figure), while in the “y-part”

they will be disconnected. See Figure 12 and Figure 13, where a construction is presented for two kinds

of figures. In both figures, p and pi are new symbols, different for each original directed hooked square.

Other kinds of figures can be dealt with in a similar way.

Observe that the construction for UD, MSD and SD codes actually uses vectors from a closed half-

plane only. The construction for ND codes can also be carried out in this way; however, more complicated

encoding figures are required then.
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Fig. 12: Replacement figures for DHS(l1, l2, l3, l4)
W

E .
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Fig. 13: Replacement figures for DHS(l1, l2, l3, l4)
N

E .



Decidability of multiset, set and numerically decipherable directed figure codes 27

4.3 Summary of decidability results

The following table summarizes the status of decipherability decidability. Decidable cases are marked

with a +, undecidable ones with a −. Combinations that are still open are denoted with a question mark.

UD MSD ND SD

1 One-sided codes + + + +

2 One-sided m-codes + + + +

3 Two-sided codes − − − −
4 Two-sided m-codes + + + ?

5 Two-sided codes with parallel vectors + + + +

6 Two-sided m-codes with parallel vectors + + + ?

5 Final remarks

Note that the positive decidability cases depicted in lines 4 and 6 (of the table in Section 4.3) are trivial.

By Theorem 1, two-sided UD, MSD or ND m-codes do not exist. For other decidable combinations,

respective proofs lead to effective verification algorithms.

On the other hand, the case of two-sided SD m-codes is non-trivial; both SD and non-SD codes of this

kind exist. However, none of the proof techniques we have used so far can be adapted to this case.
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