Regular Article -Experimental Physics Measurements of electroweak Wjjproduction and constraints on anomalous gauge couplings with theATLAS detector ATLAS Collaboration
CERN, 1211 Geneva 23, Switzerland Received: 14 March 2017 / Accepted: 21 June 2017 / Published online: 17 July 2017 © CERN for the beneft of the ATLAS collaboration 2017. This article is an open access publication Abstract Measurements of the electroweak production of a Wboson in association with two jets at high dijet invariant √ mass are performed using s= 7 and 8 TeV proton–proton collision data produced by the Large Hadron Collider, corresponding respectively to 4.7 and 20.2 fb−1 of integrated luminosity collected by the ATLAS detector. The measurements are sensitive to the production of a W boson via a triple-gauge-boson vertex and include both the fducial and differential cross sections of the electroweak process. Contents 1 Introduction ..................... 1 2 ATLAS detector and data reconstruction ...... 3 2.1ATLASdetector ................. 3 2.2Objectreconstruction .............. 3 3 Eventselection .................... 5 3.1Eventpreselection ................ 5 3.2 Defnitions of the measurement regions ..... 6 4 Modelling of signal and background processes ... 7 4.1MonteCarlosimulation ............. 7 4.2Multijetbackground ............... 9 4.3Distributionsandyields ............. 9 5 Fiducial and total electroweak Wjjcross sections .10 5.1 Control-region constraint ............ 11 5.2 Uncertainties in μEW .............. 12 5.3 Electroweak Wjjcross-section results ..... 14 6 Differentialcrosssections .............. 15 6.1 Unfolding and uncertainties ........... 16 6.2 Fiducial regions and integrated cross sections .16 6.3 Observables distinguishing QCD Wjj and EW Wjj ..................... 19 6.3.1Dijetobservables ............. 20 6.3.2 Object topology relative to the rapidity gap 20 6.4 Observables sensitive to anomalous gauge couplings .................... 22 7 Anomalous triple-gauge-boson couplings ...... 24  e-mail: atlas.publications@cern.ch 7.1Theoreticaloverview .............. 25 7.2Experimentalmethod .............. 27 7.3 Confdence-level intervals for aTGC parameters 28 8 Summary....................... 34 AAppendix ....................... 35 References........................ 59 1 Introduction The non-Abelian nature of the standard model (SM) electroweak theory predicts the self-interactions of the weak gauge bosons. These triple and quartic gauge-boson couplings provide a unique means to test for new fundamental interactions. The fusion of electroweak (EW) bosons is a par-ticularly important process for measuring particle properties, such as the couplings of the Higgs boson, and for searching for new particles beyond the Standard Model [1–11]. In proton–proton ( pp) collisions, a characteristic signature of these processes is the production of two high-momentum jets of hadrons at small angles with respect to the incoming proton beams [12]. Measurements of this vector-boson-fusion (VBF) topology have been performed in W[13], Z[14,15] and Higgs [16] boson production, though the observation of purely electroweak processes in this topology has only been achieved in individual measurements of Z-boson production. This paper presents a precise measurement of electroweak W-boson production in the VBF topology, with a signifcance well above the standard for claiming observation, as well as differential cross section measurements and constraints on anomalous triple-gauge-boson couplings (aTGCs). The production of a W boson in association with two or more jets (Wjj) is dominated by processes involving strong interactions (strong Wjj or QCD Wjj). These pro-cesses have been extensively studied by experiments at the Large Hadron Collider (LHC)[17,18] and the Tevatron collider[19,20], motivating the development of precise perturbative predictions [21–33]. The large cross section for W-boson production provides greater sensitivity to the VBF 123 (a) Vector boson fusion (b) Wbremsstrahlung (c) Non-resonant Fig. 1 Representative leading-order diagrams for electroweak Wjj production at the LHC. In addition to a the vector boson fusion pro-cess, there are four b Wbremsstrahlung diagrams, corresponding to Fig. 2 Examples of leading-order diagrams for strong Wjjproduction at the LHC. The left-hand diagram interferes with the electroweak diagrams of Fig. 1 when the fnal-state quarks have the same colours as the initial-state quarks W± boson radiation by any incoming or outgoing quark, and two c non-resonant diagrams, corresponding to W± boson radiation by either incoming quark ν ν topology and to the electroweak production of Wjj (electroweak Wjjor EW Wjj) than corresponding measurements of Z-or Higgs-boson production. The VBF process is inseparable from other electroweak Wjj processes, so it is not measured directly; sensitivity to the VBF production mechanism is quantifed by determining constraints on operator coeffcients in an effective Lagrangian approach [34]. The classes of electroweak diagrams constituting the signal are shown in Fig. 1 [35] and contain at least three vertices where an electroweak gauge boson connects to a pair of fermions. Diboson production, where the fnal-state quarks result from the decay of an s-channel gauge boson, is not shown and is considered as a background; it is small for the VBF topology defned in the analysis. The large background from a Wboson associated with strongly produced jets is shown in Fig. 2 and has only two electroweak vertices. This background has O(10) times the yield of the signal process, and can interfere with the signal. This interference is suppressed because only a small subset of the background diagrams have the same initial and fnal state as the signal. The analysis signature consists of a neutrino and either an electron or a muon, two jets with a high dijet invariant mass, and no additional jets at a wide angle from the beam. This signature discriminates signal events from the copious background events consisting of strongly produced jets associated with a W(or Z) boson, top-quark production, or multijet pro-duction. The purity of electroweak Wjjproduction increases with increasing dijet invariant mass, increasing the sensitivity to anomalous triple-gauge-boson couplings. Measurements of the inclusive and fducial cross sections of electroweak Wjjproduction in proton–proton collisions √ at centre-of-mass energies s= 7 and 8 TeV are performed in a fducial region with a signal-to-background ratio of approximately 1:8. The electroweak signal is extracted with a binned likelihood ft to the dijet invariant mass distribution. The ft determines the ratio μEW of the measured signal cross section to that of a Standard Model calculation [36]; this ratio is then multiplied by the prediction to provide the measured cross section. To reduce the uncertainties in the modelling of the strong Wjj events, data are used to con-strain their dijet mass distribution, resulting in a precise mea-surement of the electroweak Wjjfducial cross section. The quantum-mechanical interference between electroweak and strong Wjjprocesses is not modelled and its impact on the measurement is estimated using a Monte Carlo simulation and taken as an uncertainty. In order to explore the kinematics of the Wjj topology, and the interplay between strong and electroweak production, the 8TeV data are unfolded differentially to particle level in many variables and phase-space regions, and com-pared to theoretical predictions. Electroweak Wjj produc 123 tion is measured in regions where the signal purity is relatively high ( 10%); combined strong and electroweak Wjj production is measured in the other regions. These mea-surements are then integrated to obtain fducial cross sec-tions in the different phase-space regions, albeit with larger uncertainties than the measurement with the constrained background. Sensitivity to the VBF diagram is determined by modifying the triple-gauge-boson couplings. Anomalous couplings arising from new processes at a high energy scale would cause increasing deviations from the SM prediction for increasing momentum transfer between the incoming partons. Hence, a region of high momentum transfer is defned, and constraints on anomalous gauge couplings are set in the context of an effective feld theory (EFT), including limits on interactions that violate charge-parity (CP) conservation. The paper is organized as follows. The ATLAS detector and reconstruction of the fnal-state particles are described in Sect. 2. The defnitions of the measurement phase-space regions and the event selection are given in Sect. 3. The mod-elling of signal and background processes is discussed in Sect. 4. Section 5 is dedicated to the precise extraction of the inclusive and fducial cross sections, while Sect. 6 presents differential cross sections unfolded for detector effects. Sec-tion 7 describes limits on aTGCs and parameters of an effective feld theory. Section 8 summarizes the results and the Appendix provides a comprehensive set of differential cross-section measurements. 2 ATLAS detector and data reconstruction √ The data set corresponds to LHC pp collisions at s = √ 7 TeV in 2011 and at s = 8 TeV in 2012, with fnal-state particles measured by the ATLAS detector. This section describes the detector and the reconstruction of the data to produce the fnal-state physics objects used in the measurements. 2.1 ATLAS detector ATLAS is a multi-purpose detector used to measure LHC particle collisions. A detailed description of the detector can be found in Ref. [37]. A tracking system comprises the inner detector (ID) surrounding the collision point, with silicon pixel and microstrip detectors most centrally located, fol-lowed by a transition radiation tracker at higher radii [38,39]. These tracking detectors are used to measure the trajectories and momenta of charged particles up to pseudorapidities of |η|= 2.5.1 The ID is surrounded by a superconduct 1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the centre of the detector and the z-axis ing solenoid, providing a 2 T magnetic feld for the tracking detectors. A calorimeter system surrounds the solenoid magnet and consists of electromagnetic and hadronic sections. The electromagnetic section is segmented along the z-axis into a barrel region covering |η| < 1.475, two end-cap components spanning 1.375 < |η|< 3.2, and two forward components (3.1 < |η|< 4.9). Similarly, the hadronic section comprises a barrel region (|η|< 1.7), two end-cap regions (1.5 < |η|< 3.2), and two forward regions (3.1 < |η|< 4.9). The barrel region of the hadronic section uses scintillator tiles as the active medium, while the remaining regions use liquid argon. A muon spectrometer surrounds the calorimeter system and contains superconducting coils, drift tubes and cathode strip chambers to provide precise measurements of muon momenta within |η|< 2.7. The spectrometer also includes resistive-plate and thin-gap chambers to trigger on muons in the region |η|< 2.4. The ATLAS trigger system uses three consecutive stages to select events for permanent storage. The frst level uses custom electronics and the second level uses fast software algorithms to inspect regions of interest fagged by the frst trigger level. At the third level, the full event is reconstructed using software algorithms similar to those used offine. 2.2 Object reconstruction Electrons, muons, and hadronic jets are reconstructed in the ATLAS detector. Each type of object has a distinctive signature and is identifed using the criteria described below. The object identifcation includes track and vertex positions relative to the primary event vertex, defned as the reconstructed vertex with the highest summed pT2 of all associated tracks. Each object is calibrated and modelled in Monte Carlo simulation, corrected to match data measurements of the trigger, reconstruction, and identifcation effciencies, and of the energy and momentum scales and resolutions [40–44]. Electrons Electron candidates are reconstructed from energy clusters in the electromagnetic section of the calorimeter which are matched to tracks reconstructed in the ID. Candidates for along the beam pipe. The x-axis points from the interaction point to the centre of the LHC ring, and the y-axis points upward. Cylindri-cal coordinates (r,φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The pseudorapidity is defned in terms of the polar angle θ as η =−ln tan(θ/2). The rapidity is defned as y = 0.5ln[(E +pz)/(E − pz)],where E and pz are the energy and longitudinal momentum, respectively. Momentum in the transverse plane is denoted by pT. 123 signal events are required to satisfy ‘tight’ selection criteria[41,42], which include requirements on calorimeter shower shape, track hit multiplicity, the ratio of reconstructed energy to track momentum, E/ p, and the matching of the energy clusters to the track. In order to build templates to model the multijet background (see Sect. 4.2), a set of cri-teria is employed based on ‘loose’ or ‘medium’ selection, which drops the E/ p requirement and uses less restrictive selection criteria for the other discriminating variables. Electron candidates are required to be isolated to reject possible misidentifed jets or heavy-favour hadron decays. Isolation is calculated as the ratio of energy in an isolation cone around the primary track or calorimeter deposit to the energy of the candidate. Different isolation requirements are made in the 7 and 8 TeV data sets, due to the different LHC and detector operating conditions. For 7 TeV data tak-ing, the requirements on track and calorimeter isolation variables associated with the electron candidate achieve a con-stant identifcation effciency as a function of the candidate transverse energy (ET) and pseudorapidity. The 8 TeV trigger includes a requirement on track isolation, so the selection is more restrictive and requires the summed pT of surrounding tracks to be < 5% of the electron candidate ET, excluding the electron track and using a cone of size  R≡ (φ)2 +(η)2 =0.2 around the shower centroid. Muons Muon candidates are identifed as reconstructed tracks in the muon spectrometer which are matched to and combined with ID tracks to form a ‘combined’ muon candidate[43].Quality requirements on the ID track include a minimum number of hits in each subdetector to ensure good track reconstruction. Candidates in 7 TeV data are selected using a track-based fractional isolation requiring the scalar sum of the pT values of tracks within a cone of size R=0.2 of the muon track to be less than 10% of the candidate pT. For 8 TeV data taking, requirements are applied to track and calorimeter fractional isolation using a cone of size R=0.3. The upper bound on each type of isolation increases with increasing muon pT, and is 15% for pT > 30 GeV. Additional transverse (d0) and longitudinal (z0) impact parameter requirements of |d0/σd0 |< 3 (where σd0 is the d0 uncertainty) and |z0 sin θ|< 0.5 mm are imposed on all muon and electron candidates to suppress contributions from hadron decays to leptons. Jets Jets are reconstructed using the anti-kt algorithm [45] with a jet-radius parameter of 0.4, from three-dimensional clustered energy deposits in the calorimeters [46]. Jets are required to have pT > 30 GeV and |η|< 4.4, and must be sep-arated from the lepton in η–φ space, R(, j) ≥ 0.3. Quality requirements are imposed to remove events where jets are associated with noisy calorimeter cells. Jet energies are corrected for the presence of low-energy contributions from additional in-time or out-of-time collisions (pile-up), the non-compensating response of the calorimeter, detec-tor material variations, and energy losses in uninstrumented regions. This calibration is performed in bins of pT and η, using correction factors determined using a combination of Monte Carlo simulations and in-situ calibrations with data[44,47]. The systematic uncertainties in these correction factors are determined from the same control samples in data. A signifcant source of uncertainty in this analysis arises from the modelling of the η dependence of the jet energy response. To suppress the contribution of jets from additional coincident pp collisions, the jet vertex fraction (JVF) [48]isused to reject central jets (|η|< 2.4) that are not compatible with originating from the primary vertex. The JVF is defned as the scalar sum of the pT values of tracks associated with both the primary vertex and the jet, divided by the summed pT of all tracks associated with the jet. For the 7 TeV data taking, the requirement is |JVF|≥0.75; this requirement is loosened in 8 TeV data taking to |JVF|≥0.5ifthe jet has pT < 50 GeV. The relaxed requirement in 8 TeV data is due to the larger pile-up rate causing signal events to be rejected when using the 7 TeV selection, and the requirement of |η|< 2.4 is to ensure the jets are within the ID tracking acceptance. Jets that are consistent with originating from heavy-favour quarks are identifed using a neural network algorithm trained on input variables related to the impact parameter signifcance of tracks in the jet and the secondary vertices reconstructed from these tracks [49]. Jets are identifed as b-jets with a selection on the output of the neural network corresponding to an identifcation effciency of 80%. Missing transverse momentum In events with a leptonically decaying Wboson, one expects large missing momentum in the transverse plane due to the escaping neutrino. The magnitude of this missing transverse momentum (Emiss) is constructed from the vector sum of T muon momenta and three-dimensional energy clusters in the calorimeter [50,51]. The clusters are corrected to account for the different response to hadrons compared to electrons or photons, as well as dead material and out-of-cluster energy losses. Additional tracking information is used to extrapolate low-momentum particles to the primary vertex to reduce the contribution from pile-up. 123 3 Event selection The proton–proton collision data samples correspond to a total integrated luminosity of 4.7 fb−1 for the 7 TeV data and 20.2 fb−1 for the 8 TeV data with uncertainties of 1.8% [52] and 1.9% [53], respectively. The measurements use data collected with single-electron and single-muon triggers. The triggers identify candidate muons by combining an ID track with a muon-spectrometer track, and candidate electrons by matching an inner detector track to an energy cluster in the calorimeter consistent with an electromagnetic shower. The triggers in the 7 TeV data require pT > 18 GeV for muons and either ET > 20 GeV or ET > 22 GeV for electrons, depending on the data-taking period. The 8 TeV data events are selected by two triggers in each channel. The electron-channel triggers have ET thresholds of 24 and 60 GeV, where the lower-threshold trigger includes a calorimeter isolation criterion: the measured ET within a cone of radius R= 0.2 around the electron candi-date, excluding the electron candidate’s ET, must be less than 10% of the ET of the electron. The muon-channel triggers have pT thresholds of 24 and 36 GeV. The lower-threshold trigger has a track-isolation requirement, where the scalar summed pT of tracks within a cone of radius R= 0.2 around the muon is required to be less than 12% of the pT of the muon. Table1 Phase-space defnitions at the generated particle level. Each phase-space region includes the preselection and the additional requirements listed for that region. The variables are defned in Sects. 3.1 and 3.2 The analysis defnes many measurement regions vary-ing in electroweak Wjj purity. Table 1 shows the regions at the generated particle level based on the variables defned below. Particle-level objects are reconstructed as follows: jets are reconstructed using the anti-kt algorithm with a radius parameter of 0.4 using fnal-state particles with a proper life-time longer than 10 ps; and leptons are reconstructed by com-bining the fnal-state lepton with photons within a cone of R= 0.1 around the lepton. The requirements in Table 1 are also used to select data events, except for the following differences: (1) electrons must have |η| < 2.47 and cannot be in the crack region of the calorimeter (1.37 < |η| < 1.52); (2) muons must have |η| < 2.4; and (3) jets are selected using pseudorapidity (|η| < 4.4) rather than rapidity. Also, a b-jet veto is applied to the validation region in data when performing the measurement of the fducial electroweak Wjj cross section described in Sect. 5. 3.1 Event preselection Signal candidate events are initially defned by the presence of missing transverse momentum (Emiss > 20 GeV), T exactly one charged lepton (electron or muon) candidate with pT > 25 GeV, and at least two jets. The highest-pT jet is required to have pT j1 > 80 GeV and the second jet must have pT j2 > 60 GeV. To isolate events with a W boson, a Region name Requirements Preselection Fiducial and differential measurements Signal region Forward-lepton control region Central-jet validation region Differential measurements only Inclusive regions Forward-lepton/central-jet region High-mass signal region Anomalous coupling measurements only High-q2 region Lepton pT > 25 GeV Lepton |η| < 2.5 Emiss > 25 GeV T mT > 40 GeV pT j1 >80 GeV j2 pT >60 GeV Jet |y| < 4.4 Mjj > 500 GeV y(j1, j2)> 2 R(j,)> 0.3 Ncen = 1,Ncen = 0 lepton jets Ncen = 0,Ncen = 0 lepton jets Ncen = 1,Ncen lepton jets ≥ 1 Mjj > 0.5TeV,1TeV, 1.5TeV,or2TeV Ncen = 0,Ncen lepton jets ≥ 1 = 1,Ncen Mjj > 1TeV, Ncen = 0 lepton jets = 1,Ncen j1 Mjj > 1TeV, Ncen = 0, p> 600 GeV lepton jets T 123 veto is imposed on events with a second same-favour lepton y1 +y2 with pT > 20 GeV; these leptons are identifed in data using 2 relaxed isolation and impact parameter criteria. A minimum cut on the transverse mass, mT > 40 GeV, of the W-boson candidate is additionally imposed, where mT is defned by:   ·Emiss mT = 2 pT1 −cos φ(,Emiss ). TT Jets are selected in data if they have |η| < 4.4 and R(j,) > 0.3. A VBF topology is selected by requiring the invariant mass of the dijet system defned by the two highest pT jets to satisfy Mjj > 500 GeV, and the absolute value of Fig. 3 Illustration of the central region used to count leptons and jets in the defnition of the signal, control, and validation regions. The rapidity the rapidity separation of the jets to satisfy y(j1, j2)> 2. range of the region corresponds to Cmax =0.4inEq. (2). An object in the direction of the dashed line has C =0 3.2 Defnitions of the measurement regions Inclusive Lepton centrality The above preselection defnes an inclusive fducial region, which is then split into four orthogonal fducial regions defned by the presence or absence of the lepton or an additional jet in a “central” rapidity range between the two highest-pT jets. The signal EW Wjj process is character ized by a lepton and no jets in the central rapidity range. This range is determined by the centrality variable C or Cj for the lepton or jets respectively: Forward-lepton/ Forward-lepton central-jet region control region Ncen Ncen jets ≥ 1 jets =0 Ncen lepton =0 Ncen lepton =0 Central-jet     y(j) − y1+y2  C(j) ≡  2  , (1)  y1 −y2  where y(j) is the rapidity of the candidate lepton (jet), and y1 and y2 are the rapidities of the highest-pT (leading) and next-highest-pT (subleading) jets. Requiring the centrality to be below a value Cmax defnes the selection of a rapidity range centred on the mean rapidity of the leading jets, i.e.,  y1 +y2 y1 +y2 −Cmax ×|y1 −y2|+Cmax ×|y1 −y2| 2 , 2 , (2) as illustrated in Fig. 3.For Cmax = 0.5, the interval spans the entire rapidity region between the two jets; the number of jets within this interval is denoted Ngap jets . In defning the electroweak Wjj signal region, Cmax =0.4 is used to count the number of leptons (Ncen jets ) within the range. lepton)orjets(Ncen A value of Cmax = 0.4 permits an event with the emission of an additional jet close to one of the two highest-pT jets to be retained as a candidate signal event. The fducial regions are illustrated in Fig. 4. The signal process is characterized by a W boson in the rapidity range spanned by the two jets (Fig. 1), with no jets in this range due to the absence of colour fow between the inter-acting partons. An event is therefore defned as being in the electroweak-enhanced signal region if the identifed lepton is reconstructed in the rapidity region defned by Eq. (2) and validation region Signal region Ncen Ncen jets ≥ 1 jets =0 Ncen Ncen lepton =1 lepton =1 Jet centrality Fig. 4 Illustration of the relationship between the signal, control, and validation fducial regions. The signal region is defned by both a veto on additional jets (beyond the two highest-pT jets) and the presence of a lepton in the rapidity region defned in Eq. (2). The signal region is studied with either Mjj >0.5 TeV or 1 TeV. A forward-lepton/central-jet fducial region is also defned, for which the centrality requirements on the jets and the lepton are inverted with respect to the signal region. The inclusive region corresponds to the union of all four regions, and is studied with Mjj > 0.5, 1.0, 1.5,or 2.0 TeV. The quantities Ncen jets and Ncen lepton refer to the number of reconstructed leptons and additional jets reconstructed in the rapidity interval defned by Eq. (2) and illustrated in Fig. 3, with Cmax =0.4 no additional jets are reconstructed in this interval. A QCD-enhanced forward-lepton control fducial region is defned by the requirement that neither the identifed lepton nor any additional jets be present in the central rapidity inter-val. A second QCD-enhanced central-jet validation region is defned by events having both the identifed lepton and at least one additional jet reconstructed in the central rapidity interval. These three orthogonal fducial regions are used in Sect. 5 to extract the EW Wjj production cross section, con-strain the modelling of QCD Wjj production from data, and validate the QCD Wjj modelling, respectively. 123 For the determination of unfolded differential cross sec-a prompt charged lepton are also modelled with MC sam-tions presented in Sect. 6, four additional fducial regions ples. The multijet background, where a photon or hadronic are studied: the inclusive region for the progressively more jet is misreconstructed as a prompt lepton, or where a restrictive dijet invariant mass thresholds of 1.0, 1.5, and lepton is produced in a hadron decay, is modelled using 2.0 TeV, and an orthogonal forward-lepton/central-jet region data. defned by events with the lepton outside the central region, but at least one additional jet reconstructed in the inter-val. For the study of EW Wjj differential cross sections, 4.1 Monte Carlo simulation the signal fducial region with an increased dijet invari-ant mass requirement of Mjj > 1TeV (high-mass sig-The measurements described in this paper focus on the nal region) is also analyzed; a further requirement that the electroweak production of Wjj. This process has differ leading-jet pT be greater than 600 GeV defnes a high2 ent kinematic properties to strong Wjj production, but qregion used for constraints on aTGCs (discussed in there is nonetheless some small interference between the Sect. 7). processes. The other signifcant background processes are top-quark, Z-boson, and diboson production, which are modelled with MC simulation. All MC samples used to 4 Modelling ofsignal and background processes model the data are passed through a detector simulation [54] based on geant4 [55]. Pile-up interactions are modelled Simulated Monte Carlo (MC) samples are used to model Wjj with Pythia8 (v. 8.165) [56]. Table 2 lists the MC sam-production, with small data-derived corrections applied to ples and the cross sections used in the MC normalizareduce systematic uncertainties. Other processes producing tion. Table2 Monte Carlo samples Process MC generator σ · B [pb] used to model the signal and background processes. The 7TeV 8TeV cross sections times branching fractions, σ · B, are quoted for W(→ eν, μν) + 2 jets √ s = 7and8TeV.The 2 EW vertices Powheg + Pythia8 4670 5340 branching fraction corresponds 4 EW vertices (no dibosons) Powheg + Pythia8 2.7 3.4 to the decay to a single lepton favour, and here  refers to e, μ, W(→ τν) inclusive or τ . The neutral current Z/γ ∗ 2 EW vertices Sherpa 10100 11900 process is denoted by Z.To W(→ τν) + 2 jets remove overlap between W(→ τν) +2jets and 4 EW vertices (with dibosons) Sherpa 8.4 WW/WZ in 7 TeV samples, 4 EW vertices (no dibosons) Sherpa 4.2 events with a generated τ lepton Top quarks are removed from the 7TeV WW/WZ samples. Jets tt¯(→ νb¯b,νbν ¯mc@nlo + Herwig 90.0 qq ¯b) refer to a quark or gluon in the Powheg + Pythia6 114 fnal state of the matrix-element tW AcerMC + Pythia6 15.3 calculation mc@nlo + Herwig 20.7 ¯ tbq → νb¯AcerMC + Pythia6 23.5 25.8 bq ¯ tb→ νbb ¯AcerMC + Pythia6 1.0 mc@nlo + Herwig 1.7 Z(→ ) inclusive, m > 40 GeV 2 EW vertices Sherpa 3140 3620 Z(→ ee, μμ) + 2 jets, mee,μμ > 40 GeV 4 EW vertices (no dibosons) Sherpa 0.7 0.9 Dibosons WW Herwig++ 45.9 56.8 WZ Herwig++ 18.4 22.5 ZZ Herwig++ 6.0 7.2 123 Wjj The primary model of the signal and background Wjjprocesses in the analysis is the next-to-leading-order (NLO) Powheg Monte Carlo generator[29,36,57,58], interfaced with Pythia8 using the AU2 parameter values[59]for the simulation of parton showering, underlying event, and hadronization. Two fnal-state partons with pT > 20 GeV are required for the signal. A generator-level suppression is applied in the background generation to enhance events with one parton with pT > 80 GeV and a second parton with pT > 60 GeV, and the mass of the pair larger than 500 GeV. Parton momentum distributions are modelled using the CT10 [60] set of parton distribution functions (PDFs). The QCD factorization and renormalization scales are set to the W-boson mass for the sample with jets produced via the electroweak interaction. For the sample with strongly pro-duced jets, the hard-process scale is also the W-boson mass while the QCD emission scales are set with the multiscaleimproved NLO (MiNLO) procedure [61] to improve the modelling and reduce the scale dependence. Uncertainties due to missing higher-order contributions are estimated by doubling and halving the factorization and renormalization scales independently, but keeping their ratio within the range 0.5–2.0. Uncertainties due to parton distribution functions are estimated using CT10 eigenvector variations rescaled to 68% confdence level, and an uncertainty due to the parton shower and hadronization model is taken from the difference between predictions using the Pythia8 and Herwig++ [62,63] generators. Measured particle-level differential distributions are also compared to the Sherpa (v. 1.4) [64] generation of QCD+EW Wjj production at leading-order accuracy, including inter-ference. An uncertainty due to the neglect of interference in the EW Wjj measurement is estimated using this sample and individual Sherpa QCD and EW Wjjsamples. The individual samples are also used to model the small con-tribution from W → τν decays. Measured distributions of QCD+EW Wjj production are compared to the combined QCD+EW and to the QCD Wjjsamples, the latter to demon-strate the effect of the EW Wjj process. The QCD Wjj sample is a W+ (n)-parton prediction with n ≤ 4 partons with pT > 15 GeV produced via QCD interactions. The EW Wjjsample has two partons produced via electroweak vertices, and up to one additional parton produced by QCD interactions. The CKKW matching scheme [65]isusedto remove the overlap between different parton multiplicities at the matrix-element level. The predictions use the CT10 PDFs and the default parameter values for simulating the underlying event. Renormalization and factorization scales are set using the standard dynamical scale scheme in Sherpa. The interference uncertainty is cross-checked with the Mad-graph [28] generator interfaced to Pythia8. For unfolded distributions with a low purity of electroweak Wjjproduction, an additional comparison is made to the all-order resummation calculation of hej (High Energy Jets) [33] for strong Wjj production. The calculation improves the accuracy of predictions in wide-angle or high-invariant-mass dijet confgurations, where logarithmic corrections are signifcant. To allow a comparison to unfolded data and to other generators, the small electroweak Wjjcontribution is added using Powheg interfaced to Pythia8 and the sum is labelled hej (qcd) + pow+py (ew). Both the Powheg and Sherpa predictions for electroweak Wjj production omit the small contribution from diboson production processes, assuming negligible interference with these processes. Higher-order electroweak corrections to the background Wjj process are studied with OpenLoops [66, 67] and found to affect the measured fducial cross section by < 1%. Other processes Background contributions from top-quark, Z+ 2 jets, and diboson processes are estimated using MC simulation. The top-quark background consists of pair-production and single-production processes, with the latter including s-channel production and production in association with a b quark or Wboson. Top-quark pair production is normalized using the cross section calculated at next-to-next-to-leading order (NNLO) in αS, with resummation to next-to-next-toleading logarithm (NNLL) using TOP++2.0 [68]. Kinematic distributions are modelled at NLO using the mc@nlo [69] generator and the Herwig [63,70] parton shower model for 7 TeV data, and with Powheg and Pythia6 (v. 6.427) [71]for 8 TeV data; both use the CT10 PDF set. An uncertainty due to the parton shower model, and its interface to the matrix-element generator, is estimated by comparing the Powheg sample to an mc@nlo sample interfaced to Herwig. Single-top-quark production in the t-channel, tbq ¯→ νb¯ bq,is modelled using the leading-order generator AcerMC (v. 3.8)[72] interfaced with Pythia6 and the CTEQ6L1 [73] PDF set, and the sample is normalized using the cross sec-tions calculated by the generator. Modelling of the s-channel production of a single top quark, tb ¯→ νbb¯, and of the associated production of a top quark and a Wboson are per-formed using AcerMC with Pythia6 in 7 TeV data and mc@nlo with Herwig in 8 TeV data. These samples are also normalized using the generator cross-section values. Background from the Z+ 2jets (Zjj) process, which contributes when one of the leptons is not reconstructed and the Emiss T is large, is modelled using Sherpa and the CT10 PDF set. For the background with jets from QCD radiation, an inclusive Drell–Yan sample is produced at NLO [74] and merged with the leading-order (LO) production of additional 123 partons (up to fve). The background with jets produced purely through the electroweak interaction is modelled at leading order. This combination of samples is also used to model the W(→ τν) + 2 jets background; the 7 TeV sample includes WWand WZproduction. The interference between the electroweak and QCD production of jets for these small backgrounds has a negligible impact on the measurements and is not modelled. () The diboson background processes WW/WZ → νqq¯and ZZ → qq¯provide only a small contribution at high dijet mass since the distribution peaks at the mass of the W or Z boson. The interference between the single and pair production of electroweak bosons is negligible for the mass range selected by the analysis. The diboson processes are modelled at leading order with Herwig++ and normalized to the NLO cross section[75]. The generation uses the CTEQ6L1 PDF set. In 7 TeV samples, W→ τν decays are removed since they are included in the Wjjsamples. 4.2 Multijet background Multijet production constitutes a background to the Wjjprocess when one of the jets is misidentifed as a lepton and signifcant ETmiss arises from either a momentum mismeasurement or the loss of particles outside the detector acceptance. Due to the very small fraction of multijet events with both of these properties, and their relatively poor modelling in simulation, a purely data-driven method is used to estimate this background. The method inverts certain lepton identifcation criteria (described below) to obtain a multijet-dominated sample for modelling kinematic distributions. The Emiss dis- T tribution is then ft to obtain a multijet normalization factor; this ft is performed separately in the signal, control, and validation regions. Systematic uncertainties are estimated by modifying the ft distribution and the identifcation criteria, and by propagating detector and theoretical uncertainties. Modifcations to the lepton identifcation criteria which enhance the multijet contribution are based on isolation and either the impact parameter with respect to the primary vertex (for muons) or the shower and track properties (for electrons). For the 7 TeV analysis, the impact parameter signifcance requirement is inverted in the muon channel (|d0|/σd0 > 3). This preferentially selects muons from heavy-favour hadron decays, a dominant source of muons in multijet events. For the 8 TeV analysis, no requirement on impact parameter signifcance is made and instead a track isolation requirement is applied orthogonal to the requirement for selected muons R=0.3 (0.15 < pT / pT < 0.35). √ For the electron channel in s = 7 TeV data, triggers requiring a loose electron candidate are used to obtain a mul-tijet modelling sample. The electron candidate must satisfy medium criteria on track hit multiplicity and track–shower matching in η, but must fail to satisfy at least one of the tight shower-based criteria. It also must not be isolated in √ ER=0.3 the calorimeter: T /ET > 0.2. In s= 8 TeV data, electron candidates must satisfy medium selection criteria consistent with the trigger used in the analysis. As in the muon channel, a track isolation window is applied orthogonal to the R=0.2 requirement for selected electrons (0.05 < pT / pT < 0.1). To normalize the multijet-dominated samples to the expected contribution with nominal lepton criteria, a ft to the Emiss T distribution is performed. The ft simultaneously determines the multijet and strong Wjjnormalizations in the region where the nominal lepton criteria are applied, taking the multijet distribution from the sample with inverted lepton identifcation criteria. Other contributions are fxed to their SM predictions, and the data are consistent with the post-ft distribution within uncertainties. The strong Wjjnormalization is consistent with that found in the ft to the dijet mass distribution described in Sect. 5. Systematic uncertainties in the multijet normalization arise from uncertainties in the kinematic modelling and in jet, lepton, and Emiss reconstruction. The modelling uncer- T tainties dominate and are estimated using three methods: (1) modifying the lepton candidate selection for the kinematic distributions; (2) using mT as an alternative ft distribution; and (3) varying the kinematic range of the ft. For each method, the largest change in the normalization is taken as a systematic uncertainty and added in quadrature with reconstruction and modelling uncertainties for processes modelled with Monte Carlo simulation. The leading uncertainty arises from the change in multijet normalization when ftting the mT distribution instead of the Emiss distribution. The next T largest uncertainty results from variations of the isolation and impact parameter requirements in the lepton selection used for the kinematic distributions. The total relative systematic uncertainty of the multijet normalization in the muon (elec- √ tron) channel is 28% (67%) for the s = 7 TeV analysis, √ and 36% (38%) for the s= 8 TeV analysis. The relatively √ large uncertainty in the s= 7 TeV electron channel results from a larger dependence on the ft distribution and range than in the other multijet fts. 4.3 Distributions and yields The distributions of lepton centrality and the minimum cen-trality of additional jets, which are used to separate signal, control, and validation regions, are shown in Fig. 5 for the 7 and 8 TeV data and the corresponding SM predictions after the preselection. The comparisons of the SM predictions to data show general agreement within the estimated uncertainties. The predictions include correction factors for lepton identifcation and triggering, and the bands correspond to the combination of statistical and experimental uncertainties. The signal-region dijet mass distributions, used to ft for 123 40000 200 s = 8 TeV, 20.2 fb-1 180 Wjj inclusive region Wjj inclusive region 35000 Data Data EW Wjj EW Wjj 160 30000 QCD Wjj Top quarks QCD Wjj 140 Top quarks Events / unit centrality Data / PredictionEvents / unit centrality 25000 Multijets Multijets 120 Zjj and dibosons Zjj and dibosons 20000 100 Uncertainty Uncertainty 80 15000 60 10000 40 5000 20 0 0 1.5 1 0.5 1.5 1 0.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Lepton centrality ×103 180 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Lepton centrality s = 7 TeV, 4.7 fb-1 s = 8 TeV, 20.2 fb-1 ATLAS ATLAS 30000 160 Wjj inclusive region Wjj inclusive region Data Data EW Wjj EW Wjj 140 QCD Wjj Top quarks 120 Multijets 25000 QCD Wjj Top quarks Multijets 20000 100 Zjj and dibosons Zjj and dibosons Uncertainty Uncertainty 15000 80 60 10000 40 5000 20 0 0 Data / Prediction 1.5 1 0.5 1.5 1 0.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Minimum centrality of additional jets 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Minimum centrality of additional jets Fig. 5 Predicted and observed distributions of the lepton centrality (top) and the minimum centrality of additional jets (bottom)for events in the inclusive fducial region (i.e. after preselection) in 7 TeV (left) and 8 TeV (right) data. The arrows in the lepton-centrality distributions separate the signal-region selection (to the left) from the control-region the signal yield in the fducial and total cross-section mea-surements, are shown in Fig. 6 for both data sets. The fgure also shows the dijet rapidity difference, which is correlated with dijet mass and demonstrates an enhancement in signal at high values. Table 3 details the data and SM predictions for the individual processes in the signal region, and Table 4 shows the total predictions and the observed data in each of the fducial regions defned in Sect. 3. 5Fiducial and totalelectroweakWjjcross sections The measurement of the fducial EW Wjj cross section in the signal region uses a control-region constraint to provide selection (to the right). The arrows in the jet-centrality distributions sep-arate the signal-region selection (to the right) from the validation-region selection (to the left). The bottom panel in each distribution shows the ratio of data to the prediction. The shaded band represents the statistical and experimental uncertainties summed in quadrature a precise determination of the electroweak production cross section for W bosons produced in association with dijets at high invariant mass. The measurement is performed with an extended joint binned likelihood ft [76]ofthe Mjj distribution for the normalization factors of the QCD Wjj and EW Wjj Powheg + Pythia8 predictions, μQCD and μEW respectively, defned as follows: ν jj × Ai)meas ν jj theo (σ = μi · (σ × Ai) ii Ni = , CiL ν jj where σ i is the cross section of process i (QCD Wjj or EW Wjj production in a single lepton channel), Ai is 123 ATLAS s = 7 TeV, 4.7 fb-1 s = 8 TeV, 20.2 fb-1 Wjj signal region 102 EW Wjj EW Wjj QCD Wjj QCD Wjj 10 Top quarks Top quarks Data / PredictionEvents / unit rapidity Data / PredictionEvents / GeV Multijets Multijets 1 Zjj and dibosons Zjj and dibosons 1 Uncertainty Uncertainty 10-1 10-1 10-2 10-2 10-3 10-3 1.5 1 0.5 500 1000 1500 2000 2500 3000 3500 Mjj [GeV] 1.5 1 0.5 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Mjj [GeV] 3500 20000 Events / unit rapidity s = 7 TeV, 4.7 fb-1 s = 8 TeV, 20.2 fb-1 ATLAS ATLAS 18000 Wjj signal region Wjj signal region Data Data 3000 EW Wjj EW Wjj 16000 14000 QCD Wjj Top quarks Multijets 12000 Zjj and dibosons 10000 Uncertainty QCD Wjj 2500 Top quarks Multijets Zjj and dibosons 2000 Uncertainty 1500 8000 1000 6000 4000 500 2000 0 0 Data / Prediction 1.5 1 0.5 1.5 1 0.5 22.5 33.5 44.5 55.5 66.5 7 Δ y(j,j) 12 22.5 33.5 44.5 55.5 66.5 7 Δ y(j,j) 12 Fig. 6 Predicted and observed distributions of the dijet invariant mass (top)and y( j1, j2) (bottom) for events in the signal region in 7TeV (left)and8TeV (right) data. The bottom panel in each distribution the acceptance for events to pass the signal selection at the particle level (see Table 1), Ni is the number of measured events, L is the integrated luminosity, and Ci is the ratio of reconstructed to generated events passing the selection and accounts for experimental effciencies and resolutions. The ft includes a Gaussian constraint for all non-Wjj backgrounds, and accounts only for statistical uncertainties in the expected yield. The ft result for μEW is translated into a fducial cross section by multiplying μEW by the predicted fducial cross section from Powheg + Pythia8. In addition, the total cross section for jets with pT > 20 GeV is calculated by dividing the fducial cross section by Afor the EW Wjj process. The dijet mass provides the discriminating ft distribution. The region at relatively low invariant mass (≈500–1000 GeV) has low signal purity and primarily determines μQCD, while events with higher invariant mass have higher signal purity shows the ratio of data to the prediction. The shaded band represents the statistical and experimental uncertainties summed in quadrature and mainly determine μEW. The interference between the processes is not included in the ft, and is instead taken as an uncertainty based on SM predictions. The uncertainty in the shape of the QCD Wjj distribution dominates the measurement, but is reduced by using the forward-lepton control region to correct the modelling of the Mjj shape. This control region is defned in Table 1 and uses the same selection as the signal region, except for the inversion of the central-lepton requirement. This section describes the application of the control-region constraint, the uncertainties in the measurement, and the results of the ft. 5.1 Control-region constraint The SM prediction of the dijet mass distribution receives signifcant uncertainties from the experimental jet energy scale 123 Table 3 Observed data and predicted SM event yields in the signal region. The MC predictions are normalized to the theoretical cross sec-tions in Table 2. The relative uncertainty of the total SM prediction is O(10%) Process 7 TeV 8 TeV Wjj(EW) 920 5600 Wjj(QCD) 3020 19,600 Multijets 500 2350 t¯t 430 1960 Single top 244 1470 Zjj(QCD) 470 1140 Dibosons 126 272 Zjj(EW) 5 79 Total SM 5700 32,500 Data 6063 33,719 and resolution. These uncertainties are constrained with a correction to the predicted distribution derived using data in a control region where the signal contribution is suppressed. This forward-lepton control region is selected using the lepton centrality distribution. Residual uncertainties arise primarily from differences in the dijet mass spectrum between the control region and the signal region. To derive the Mjj correction, all processes other than strong Wjjproduction are subtracted from the data and the result is compared to the prediction (Fig. 7). The correc
tion is then determined with a linear ft to the ratio of the subtracted data to the Wjj prediction. The slopes of the fts in 7 and 8 TeV data are consistent with zero; they are (0.2 ± 1.1)%/TeV and (0.28 ± 0.43)%/TeV, respectively, where the uncertainties are statistical only. The effect of a Table4 Observed data and total predicted SM event yields in each measurement region. The MC predictions are normalized to the theoretical cross sections times branching ratios in Table 2. The relative uncertainty of the total SM prediction is O(10%) slope correction of 1%/TeV is approximately 0.1 in the mea-sured μEW. Systematic uncertainties in the corrected dijet mass dis-tribution in the signal and validation regions are estimated by varying each source of uncertainty up or down by 1σ and calculating the corresponding slope correction in the control region in the simulation. This correction is applied to the prediction in the signal region and the ft performed on pseudodata derived from the nominal prediction. The resulting change in μEW is taken as the corresponding systematic uncertainty. The method is illustrated in the central-jet validation region in Fig. 8, where the background-subtracted and corrected Wjj dijet mass distribution is compared to data. The ratio of subtracted data to the corrected Wjjprediction is consistent with a line of zero slope when considering statistical and experimental uncertainties (the dotted lines in the fgure). 5.2 Uncertainties in μEW Uncertainties in μEW consist of: statistical uncertainties in the ft to the normalizations of the signal and background Wjj processes in the signal region; the statistical uncertainty of the correction from the control region; and experimental and theoretical uncertainties affecting the signal and background predictions. Table 5 summarizes the uncertainties in the mea-surement of μEW. The total statistical uncertainty in μEW of the joint likelihood ft is 0.16 (0.052) in 7 (8) TeV data, where the leading uncertainty is the statistical uncertainty of the data in the control region rather than in the signal region. Systematic uncertainties affecting the MC prediction are estimated by varying each uncertainty source up and down by 1σ in all MC processes, ftting the ratio of the varied Region name 7 TeV 8 TeV SM prediction Data SM prediction Data Fiducial and differential measurements Signal region 5700 Forward-lepton control region 5000 Central-jet validation region 2170 Differential measurement only Inclusive region, Mjj > 500 GeV – Inclusive region, Mjj > 1 TeV – Inclusive region, Mjj > 1.5 TeV – Inclusive region, Mjj > 2 TeV – Forward-lepton/central-jet region – High-mass signal region – Anomalous coupling measurements only High-q2 region – 6063 32500 33719 5273 29400 30986 2187 12400 12677 – 106000 107040 – 17400 16849 – 3900 3611 – 1040 890 – 12000 12267 – 6100 6052 – 39 30 123 102 102 10 1 Data / PredictionEvents / GeV 1 10-1 10-1 10-2 10-3 10-2 10-4 10-3 2 2 1 1 0 0 500 1000 1500 2000 2500 3000 3500 Mjj [GeV] Mjj [GeV] Fig. 7 Comparison of the predicted QCD Wjj dijet mass distribution panel in each distribution shows the ratio of data to the QCD Wjj pre-to data with background processes subtracted, for events in the forward-diction, and the result of a linear ft to the ratio. The errorbars represent lepton control region in 7 TeV (left)and 8TeV (right) data. The bottom statistical and experimental uncertainties summed in quadrature 102 Data / PredictionEvents / GeV Data / PredictionEvents / GeV 102 10 10 1 1 10-1 10-1 10-2 10-3 10-2 10-4 10-3 2 2 1 0 1 0 500 1000 1500 2000 2500 3000 3500 Mjj [GeV] Mjj [GeV] Fig. 8 Comparison of the corrected QCD Wjj background dijet mass distribution to data with background processes subtracted, for events in the central-jet validation region in 7 TeV (left)and8TeV (right) data. The bottom panel in each subfgure shows the ratio of data to predic- QCD Wjj prediction to the nominal prediction in the control region, and performing the signal region ft using the varied samples as pseudodata and the nominal samples as the templates. The largest change in μ from the up and down variations is taken as a symmetric uncertainty. The dominant experimental uncertainty in μEW is due to the calibration of the η dependence of the jet energy scale, and is 0.124 (0.053) in 7 (8) TeV data. Other uncertainties in the jet energy scale (JES) and resolution (JER) are of similar size when com- tion, and the result of a linear ft to the ratio (solid line). The error bars represent statistical and experimental uncertainties summed in quadrature. The dotted lines show the ft with slope adjusted up and down by statistical and experimental uncertainties bined, with the largest contribution coming from the uncertainty in modelling the ratio of responses to quarks and gluons. Uncertainties due to multijet modelling are estimated by separately varying the normalization and distribution of the multijet background in each phase-space region and combining the effects in quadrature. Theoretical uncertainties arise from the statistical uncertainty on the MC predictions; the lack of interference between signal and background Wjj processes in the MC mod 123 Table5 The statistical and systematic uncertainty contributions to the measurements of μEW in7and 8TeVdata Source Uncertainty in μEW 7TeV 8TeV Statistical Signal region 0.094 0.028 Control region 0.127 0.044 Experimental Jet energy scale (η intercalibration) 0.124 0.053 Jet energy scale and resolution (other) 0.096 0.059 Luminosity 0.018 0.019 Lepton and Emiss reconstruction 0.021 0.012 T Multijet background 0.064 0.019 Theoretical MC statistics (signal region) 0.027 0.026 MC statistics (control region) 0.029 0.019 EW Wjj (scale and parton shower) 0.012 0.031 QCD Wjj (scale and parton shower) 0.043 0.018 Interference (EW and QCD Wjj) 0.037 0.032 Parton distribution functions 0.053 0.052 Other background cross sections 0.002 0.002 EW Wjj cross section 0.076 0.061 Total 0.26 0.14 elling; Wjj renormalization and factorization scale varia-tions and parton-shower modelling, which affect the accep-tance of the jet centrality requirement; parton distribution functions; and cross-section uncertainties. The uncertainty due to MC statistics is 0.040 (0.032) in 7 (8) TeV data. The interference uncertainty is estimated by including the Sherpa leading-order interference model as part of the background Wjj process and affects the measurement of μEW by 0.037 (0.032) in 7 (8) TeV data. Uncertainties due to PDFs are 0.053 (0.052) for 7 (8) TeV data. Scale and parton-shower uncertainties are ≈0.04 in both the 7 and 8 TeV measurements. The scale uncertainty in EW Wjj production is larger √ at s = 8 TeV than at 7 TeV because of the increasing uncertainty with dijet mass and the higher mean dijet mass at 8 TeV. The scale uncertainty in QCD Wjj production is larger at √ s = 7 TeV because the data constraint has less statistical power than at 8 TeV. Finally, a 0.076 (0.061) uncertainty in the signal cross section at 7 (8) TeV due to higher-order QCD corrections and non-perturbative modelling is estimated using scale and parton-shower variations, affecting the measurement of μEW but not the extracted cross sections. 5.3 Electroweak Wjj cross-section results The dijet mass distributions in 7 and 8 TeV data after ftting for μEW and μQCD are shown in Fig. 9. There is good overall agreement between the normalized distributions and the data. The ft results for μQCD are 1.16 ± 0.07 for 7 TeV data, and 1.09 ± 0.05 for 8 TeV data. The measured values of μEW are consistent between electron and muon channels, with the following combined results: μEW (7TeV) = 1.00 ± 0.16 (stat) ± 0.17 (exp) ± 0.12 (th), μEW (8TeV) = 0.81 ± 0.05 (stat) ± 0.09 (exp) ± 0.10 (th). Data / PredictionEvents / GeV 102 Data / PredictionEvents / GeV 102 10 1 10-1 10 1 10-1 10-2 10-2 10-3 10-3 1.5 1.5 1 0.5 1 0.5 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 Mjj [GeV] Mjj [GeV] Fig. 9 Distributions of the dijet invariant mass for events in the signal shows the ratio of data to predicted signal-plus-background yields. The region in 7 TeV (left)and 8TeV (right) data, after ftting for the yields shaded band centred at unity represents the statistical and experimental of the individual Wjj processes. The bottom panel in each distribution uncertainties summed in quadrature 123 Table6 Measured fducial cross sections of electroweak Wjj production in a single lepton channel, compared to predictions from Powheg + Pythia8. The acceptances and the inclusive measured production cross sections with pT > 20 GeV jets are also shown √ σ fd σ fd σ inc s [fb] SM [fb] Acceptance A [fb] meas meas 7 TeV 144 ± 23 (stat) ± 23 (exp) ± 13 (th) 144 ± 11 0.053 ± 0.004 2760 ± 670 8 TeV 159 ± 10 (stat) ± 17 (exp) ± 15 (th) 198 ± 12 0.058 ± 0.003 2890 ± 510 The measured value of μEW has a total uncertainty of 0.26 (0.14) in 7 (8) TeV data, and differs from the SM prediction of unity by < 0.1σ (1.4σ ). In the absence of a control region, the uncertainty would increase to 0.37 (0.18) in 7 (8) TeV data. The fducial signal region is defned by the selection in Table 1 using particle-level quantities after parton showering. The measured and predicted cross sections times branching ratios in this region are shown in Table 6. The acceptance is calculated using Powheg + Pythia8 with a dominant uncertainty due to the parton-shower modelling which is estimated by taking the difference between Powheg + Pythia8 and Powheg + Herwig++. The uncertainty in the predicted √ fducial cross section at s = 8 TeV includes a 4 fb contribution from scale variations and an 11 fb contribution from parton-shower modelling. A summary of this measurement and other measurements of boson production at high dijet invariant mass is shown in Fig. 10, normalized to SM predictions. The measurement with the smallest relative uncertainty is the 8 TeV Wjj mea-surement presented here. 6 Differential cross sections Differential cross section measurements provide valuable information on the observed kinematic properties of a pro-cess, testing the theoretical predictions and providing model-independent results to probe for new physics. This section √ presents differential measurements in the s = 8 TeV data that discriminate EW Wjj from QCD Wjj production, after frst introducing the unfolding procedure, uncertainties, and the fducial measurement regions. The large event yields allow more precise tests of these distributions than other VBF measurements and provide the most comprehensive tests of predictions in VBF-fducial regions. Distributions sensitive to anomalous triple gauge couplings are also presented and extend to values of momentum transfer approaching 1 TeV, directly probing these energies for the presence of new inter-actions. Additional distributions are provided in Appendix A, and the complete set of measurements is available in hep-data [77]. All differential production cross sections are measured both as absolute cross sections and as distributions normalized by the cross section of the measured fducial region LHC electroweak Xjj production measurements ATLAS Stat. uncertainty Total uncertainty Theory uncertainty • σB normalized to SM prediction Fig. 10 Measurements of the cross section times branching fractions of electroweak production of a single W, Z, or Higgs boson at high dijet invariant mass, divided by the SM predictions (Powheg +Pythia8 for ATLAS, Madgraph +Pythia8 for CMS, and Powheg +Pythia8 for the LHC combination). The lighter shaded band (where shown) rep-resents the statistical uncertainty of the measurement, the outer darker band represents the total measurement uncertainty. Theoretical uncertainties in the SM prediction are represented by the shaded region cen-tred at unity (σ fd W ). The normalizations are performed self-consistently, i.e. data measurements are normalized by the total fducial data cross section and MC predictions are normalized by the corresponding MC cross section. Many sources of uncertainty are reduced for normalized distributions, allowing higher-precision tests of the modelling of the shape of the measured observables. Unfolded differential cross-section measurements are per-formed for both QCD+EW Wjj and EW Wjj production and compared to theoretical predictions from the Powheg + Pythia8, Sherpa, and hej event generators, which are described in Sect. 4.1. The reported cross sections are for a 123 single lepton favour and are normalized by the width of the measured bin interval. 6.1 Unfolding and uncertainties The MC simulations are used to correct the cross sections for detector and event selection ineffciencies, and for the effect of detector resolutions. An implementation[78]ofa Bayesian iterative unfolding technique[79]isusedtoper-form these corrections. The unfolding is based on a response matrix from the simulated events which encodes bin-to-bin migrations between a particle-level differential distribution and the equivalent reconstruction-level distribution. The matrix gives transition probabilities from particle level to reconstruction level, and Bayes’ theorem is employed to calculate the inverse probabilities. These probabilities are used in conjunction with a prior particle-level signal distribution, which is taken from the Powheg + Pythia8 simulations, to unfold the background-subtracted reconstructionlevel data distributions. After this frst unfolding iteration the unfolded data distribution is used as the new prior and the process repeated for another iteration. The unfolding proce-dure is validated by unfolding the Sherpa simulation using the Powheg + Pythia8 response matrix. For all distributions the unfolded and initial particle-level Sherpa predictions agree within the unfolding uncertainty assigned. Bin boundaries in unfolded distributions are chosen to ensure that >66% of particle-level events remain within the same interval at reconstruction level. The sources of uncertainty discussed in Sect. 5 are assessed for the unfolded differential production cross sec-tions. Figures are shown with statistical uncertainties as inner bars and total uncertainties as the outer bars. Statistical uncertainties are estimated using pseudoexperiments, with correlations between bins determined using a bootstrap method [80]. The W → eν and W → μν channels are found to be statistically compatible, and are combined. Theoretical uncertainties include the effects of scale and PDF variations on the prior distribution and on the response matrix. For unfolding EW Wjjproduction, additional theoretical uncertainties arise from modelling the QCD Wjjcontribution subtracted from the data, and from the neglect of interference between the strong and electroweak Wjjprocesses. The interference uncertainty is estimated using the same procedure as for the fducial measurement (Sect. 5), i.e. by adding the Sherpa interference model to the background prediction. The inter-ference uncertainty is shown explicitly as a shaded area in each bin of the measured distributions. An uncertainty in the unfolding procedure is estimated by reweighting the simulation such that the distributions match the unfolded data, and then unfolding the data with the reweighted simulation; the change in the unfolded measurement is symmetrized and taken as an uncertainty. Experimental uncertainties are assessed by unfolding the data distributions using a modi-fed response matrix and prior incorporating the change in detector response. Figures 11 and 12 summarize the uncertainty contributions to example unfolded data distributions for QCD+EW Wjj and EW Wjj production, respectively. For measurements of combined QCD+EW Wjjproduction, the jet energy scale and resolution uncertainties dominate the total uncertainty except in regions where statistical uncertainties are signifcant. The unfolding uncertainty is typically relevant in these regions and in regions dominated by QCD Wjjproduction where the statistical uncertainties are small. In measurementsofEW Wjjproduction, uncertainties in the modelling of strong Wjj production are particularly important at low dijet invariant mass, where the EW Wjjsignal purity is low-est. Interference uncertainties become dominant at low dijet rapidity separation but are otherwise not the leading contribution to the total uncertainty. A recent study[81]ofinterference in Z+jets VBF topologies, incorporating NLO electroweak corrections, predicted similar behaviour. For the bulk of the EW Wjj distributions, the leading sources of uncertainty are statistical, QCD Wjj modelling, and jet energy scale and resolution, and contribute roughly equally. 6.2 Fiducial regions and integrated cross sections The differential cross sections of the combined Wjj pro-cesses are measured in the following nine fducial regions: • the four mutually orthogonal fducial regions defned in Fig. 4, three of which are electroweak-suppressed (<5% contribution) and one electroweak-enhanced (15–20% contribution); • an additional electroweak-enhanced signal region with Mjj > 1.0 TeV (35–40% electroweak Wjj contribution); and • four inclusive fducial regions defned by the preselection requirements in Table 1 with Mjj > 0.5, 1.0, 1.5 and 2.0 TeV. The inclusive fducial regions probe the observables used to distinguish EW and QCD Wjj production, namely lepton and jet centrality, and the number of jets radiated in the rapidity gap between the two leading jets. The four successively higher invariant mass thresholds increasingly enhance the EW Wjjpurity of the differential distributions, without lepton and jet topology requirements. The combined QCD+EW Wjjproduction is measured in all regions to test the modelling of QCD Wjjproduction in a VBF topology. In regions sensitive to EW Wjjcontributions, the prediction for QCD Wjj only is shown along with the combined QCD+EW Wjjprediction in order to indicate the effect of the EW Wjjprocess. Differential measurements of 123 0.35 Wjj inclusive region (M >0.5 TeV) 0.3 Stat ⊕ Syst Stat ⊕ Syst Statistical Statistical 0.25 0.25 JES+JER JES+JER Unfolding Unfolding Relative uncertainty in QCD+EW Wjj Relative uncertainty in QCD+EW Wjj 0.2 0.15 0.1 0.2 0.15 0.1 0.05 0.05 0 0 012345678 0 0.5 1 1.5 2 2.5 Number of jets in the rapidity gap Lepton centrality 0.35 0.35 ATLAS s = 8 TeV ATLAS s = 8 TeV Wjj inclusive region (M>0.5 TeV) jj Stat ⊕ Syst Wjj signal region (M>0.5 TeV) jj Stat ⊕ Syst 0.3 0.3 Statistical Statistical 0.25 0.25 JES+JER JES+JER Unfolding Unfolding 0.2 0.15 0.1 0.2 0.15 0.1 0.05 0 5×102 103 3×103Dijet mass [GeV] Fig. 11 Relative uncertainties in example unfolded differential cross sections for the combined QCD+EW Wjj processes. The examples are: the number of jets in the rapidity gap between the two highest-pT jets in the inclusive region (topleft); the lepton centrality distribution in the EW Wjj production are performed in regions with Mjj > 1.0 TeV, where the expected EW Wjj fraction is >20%. The QCD Wjj background is subtracted using the multiplicative normalization factor of μQCD = 1.09 ± 0.02 (stat) determined from the fts in Sect. 5. This substantially reduces the normalization uncertainty, confning theoretical uncertainties to the shapes of the background distributions. Performing a complete unfolding of the EW Wjj signal process leads to better precision on the unfolded data, particularly in the case of normalized distributions, than could be achieved by subtracting the particle-level QCD Wjj production background from unfolded QCD+EW Wjj production data. All EW Wjj differential measurements are nonethe-less also performed as combined QCD+EW Wjj production measurements so that such a subtraction could be performed with other QCD Wjj predictions. Integrated cross sections for Wjj production are determined in each fducial region. Table 7 and Fig. 13 show 0.05 0 0 100 200 300 400 500 600 700 800 900 Dijet p [GeV] T inclusive Mjj > 1 TeV region (top right); Mjj in the inclusive region (bottomleft); and the dijet pT in the signal region (bottomright). Dominant contributions to the total systematic uncertainty are highlighted separately the measured integrated production cross sections for a single lepton favour (σ W fd) for QCD+EW Wjj production and, in high dijet invariant-mass regions, for EW Wjj production. Also shown is the value of the EW Wjj cross section extracted from the constrained ft described in Sect. 5.3.All measurements are broadly compatible with predictions from Powheg + Pythia8. In fducial regions dominated by QCD Wjj production the measured cross sections are approximately 15–20% higher than predictions. The integrated EW Wjj production cross sections have larger relative uncertainties than the precisely constrained fducial EW Wjj cross-section measurement. The measurements of electroweak Wjj fducial cross sec-tions are compared to measurements of electroweak Zjj pro-duction and VBF Higgs boson production in Fig. 14. These other measurements are extrapolated to lower dijet mass (for Zjj production) or to inclusive production (for Higgs boson 123 s = 8 TeV 0.7 Wjj signal region (M >1.0 TeV) jj 0.6 Stat ⊕ Syst Unfolding Stat ⊕ Syst Unfolding Statistical QCD Wjj modelling Statistical QCD Wjj modelling JES+JER QCD-EW interference JES+JER QCD-EW interference 0.5 0.5 Relative uncertainty in EW Wjj Relative uncertainty in EW Wjj 0.4 0.3 0.4 0.3 0.2 0.2 0.1 0.1 00 2345678 103 2×103 Dijet mass [GeV] Δ y(j1, j2) 1.2 ATLAS s = 8 TeV ATLAS 0.7 s = 8 TeV Wjj inclusive region (M >1.0 TeV) jj 1 Stat ⊕ Syst Unfolding Statistical QCD Wjj modelling JES+JER QCD-EW interference Wjj signal region (M >1.0 TeV) jj 0.6 Stat ⊕ Syst Unfolding Statistical QCD Wjj modelling JES+JER QCD-EW interference 0.5 0.4 0.3 0.8 0.6 0.4 0.2 0.2 0.1 00 103 2×103102 5×102 Dijet mass [GeV] Leading-jet p [GeV] T Fig. 12 Relative uncertainties in example unfolded differential cross Mjj > 1 TeV inclusive region (bottomleft); and leading-jet pT in the sections for the EW Wjj processes. The examples are Mjj (topleft) high-mass signal region (bottom right). Dominant contributions to the and y( j1, j2) (top right) in the high-mass signal region; Mjj in the total systematic uncertainty are highlighted separately Table7 Integrated fducial cross sections for QCD+EW and EW Wjj production and the equivalent predictions from Powheg + Pythia8.The uncertainties displayed are the values of the statistical and systematic uncertainties added in quadrature Fiducial region σ fd W [fb] QCD+EW EW Data Powheg + Pythia8 Data Powheg + Pythia8 Inclusive Mjj > 0.5 TeV 1700 ± 110 1420 ± 150 –– Inclusive Mjj > 1.0 TeV 263 ± 21 234 ± 26 64 ± 36 52 ± 1 Inclusive Mjj > 1.5TeV 56 ± 5 53 ± 5 20 ± 8 19 ± 0.5 Inclusive Mjj > 2.0TeV 13 ± 2 14 ± 15.6 ± 2.16.9 ± 0.2 Forward-lepton 545 ± 39 455 ± 51 –– Central-jet 292 ± 36 235 ± 28 –– Forward-lepton/central-jet 313 ± 30 265 ± 32 –– Signal Mjj > 0.5 TeV 546 ± 35 465 ± 39 159 ± 25 198 ± 12 Signal Mjj > 1.0TeV 96 ± 8 89 ± 7 43 ± 11 41 ± 1 123 Production cross section σ. B [fb] Fig. 13 Integrated production cross sections for QCD+EW Wjj (solid data points) and EW Wjj (open data points) production in each measured σfid Wjj [fb] 103 particle-level fducial region in a single lepton channel; EW Wjj production is only measured in fducial regions where there is suffcient purity. For each measurement the error bar represents the statistical and systematic uncertainties summed in quadrature. Comparisons are made to 102 predictions from Powheg + 10 Pythia8 and the bottom pane showsthe ratioofdatatothese predictions Data/Theory 1.5 1 0.5 Fig. 14 Measurements of the LHC electroweak Xjj production measurements cross sections times branching fractions of electroweak production of a single W, Z,or Higgs boson with two jets at high dijet invariant mass and in fducial measurement regions. For each measurement the error bar represents the statistical and systematic uncertainties summed in quadrature. Shaded bands represent the theory predictions. The Mjj threshold 200 100 40 30 20 10 defning the fducial Zjj region 5 4 differs between ATLAS and 3 CMS, leading to different 2 inclusive cross sections production) so their apparent cross sections are generally increased relative to the Wjj fducial cross sections. 6.3 Observables distinguishing QCD Wjj and EW Wjj Differential measurements are performed in the following distributions that provide discrimination between strong and electroweak Wjj production: • Mjj, the invariant mass of the two highest-pT jets; • y( j1, j2), the absolute rapidity separation between the two highest-pT jets; • C, lepton centrality, the location in rapidity of the lepton relative to the average rapidity of the two highest-pT jets, defned in Eq. (1); • Cj, jet centrality, the location in rapidity of any additional jet relative to the average rapidity of the two highest-pT jets, defned in Eq. (1); and • Ngap jets , the number of additional jets in the rapidity gap bounded by the two highest-pT jets (i.e., jets with Cj < 0.5). The frst two observables use the dijet system to distinguish the t-channel VBF topology from the background. The 123 1 ATLAS Simulation Wjj signal region (M >0.5 TeV) jj ATLAS Simulation s = 8 TeV 0.25 Wjj inclusive region (M >0.5 TeV) jj 0.8 POWHEG+PYTHIA8 POWHEG+PYTHIA8 0.2 SHERPA SHERPA Electroweak signal fraction 0.7 0.6 0.5 0.4 Electroweak signal fraction 0.15 0.1 0.3 0.2 0.05 0.1 0 5×102 103 3×103 0 0 1 2 3 4 5 6 7 8 Dijet mass [GeV] Number of jets in the rapidity gap Fig. 15 Fraction of EW Wjj signal relative to the combined QCD+EW Wjj production, predicted by Powheg + Pythia8 and Sherpa simulations for observables in the signal (left) and inclusive (right) fducial regions remaining observables use the rapidity of other objects relative to the dijet rapidity gap, exploiting the colourless gauge boson exchange to distinguish the EW Wjj signal from the QCD Wjj background. Figure 15 shows the Powheg + Pythia8 and Sherpa predictions of the fraction of Wjj events produced via electroweak processes, as a function of the dijet invariant mass in the signal fducial region and the number of jets emitted in the dijet rapidity gap for the inclusive fducial region with Mjj > 0.5TeV. 6.3.1 Dijet observables The best discrimination between QCD and EW Wjj pro-duction is provided by the dijet mass distribution, as demon-strated in the top plots of Fig. 16. The distribution of dijet rapidity separation is correlated with this distribution but is purely topological. The discrimination provided by y( j1, j2) is shown in the bottom plots of the fgure for Mjj > 0.5 and 1 TeV. The QCD Wjj modelling of the dijet distributions is important for extracting the cross section for EW Wjj pro-duction. The modelling of the Mjj distribution in regions dominated by QCD Wjj production is shown in Fig. 17. Predictions from hej, which are expected to provide a good description at high dijet invariant mass where large loga-rithms contribute, are similar to the NLO predictions from Powheg + Pythia8. Sherpa predicts more events at high dijet invariant mass than observed in data in these fducial regions, whereas Powheg + Pythia8 and hej are in better agreement with data. The dijet rapidity separation (Fig. 18) shows similar behavior, with Sherpa overestimating the rate at large separation. The hej distributions have larger deviations from the data due to the reduced accuracy of resummation at small y( j1, j2). The dijet distributions are generally well modelled for the EW Wjj process, as shown in Fig. 19 for the inclusive and signal regions with Mjj > 1.0 TeV. The reduced purity in the inclusive region causes larger measurement uncertainties, and the measurements have larger absolute discrepancies with respect to predictions. The interference uncertainty is largest at low y( j1, j2), where the topology is less VBF-like. 6.3.2Object topology relativetotherapidity gap The event topology distinguishes electroweak VBF production from other processes, in particular the lack of hadronic activity in the rapidity gap between the leading two jets and the tendency for the boson to be emitted within this gap. These topological features are studied using the distributions of the jet multiplicity in the gap, the fraction of events with no jets with the gap, and the rapidity of the lepton and jets relative to the gap. Figure 20 shows the normalized differential cross section as a function of the number of pT > 30 GeV jets emitted into the rapidity gap for progressively increasing Mjj thresholds. In the lowest invariant-mass fducial region, strong Wjj pro-duction dominates and predictions from Powheg + Pythia8, Sherpa, and hej all describe the data well. As the dijet invariant mass threshold is increased, the differences in shape between predictions with and without the EW Wjj contribution become apparent. The corresponding differential mea-surements for EW Wjj production are shown in Fig. 21 for the inclusive regions with Mjj > 1.0 and 2.0 TeV. The mea-sured fraction of EW Wjj events with no additional central jets is higher than that of QCD+EW Wjj events, as also demonstrated in Table 8. The table shows that the measured 123 10 s = 8 TeV, 20.2 fb-1 10−2 SHERPA (QCD+EW) SHERPA (QCD+EW) SHERPA (QCD) SHERPA (QCD) 1 HEJ (QCD) + POW+PY (EW) HEJ (QCD) + POW+PY (EW) 10−3 1/σfid Theory/DataW ⋅ dσ/dΔy/ bin widthTheory/Datadσ/dMjj [fb/GeV] 1/σfid 1/σ fid 10−1 10−4 10−2 10−5 ATLAS ATLAS 10−6 10−3 Wjj signal region (M >0.5 TeV) Wjj signal region (M >0.5 TeV) jj jj 103 103 1.5 1 0.5 1.5 1 0.5 5×102 103 3×103 5×102 103 3×103 Dijet mass [GeV] Dijet mass [GeV] 10 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 10 POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) SHERPA (QCD) 1 1 HEJ (QCD) + POW+PY (EW) 10−1 10−1 10−2 10−2 10−3 ATLAS ATLAS Wjj signal region (M >0.5 TeV) Wjj signal region (M >1.0 TeV) jj jj 10−3 10−4 1.5 1 0.5 1.5 1 0.5 2468 Δy(j, j) 12 Fig. 16 Top Unfolded absolute (left) and normalized (right)differential Wjj production cross sections as a function of dijet mass for the signal fducial region. Bottom Unfolded normalized production cross sections as a function of y( j1, j2) for the signal regions with zero-jet fraction, frequently referred to as the jet-veto eff-ciency, is consistent with the Powheg + Pythia8 QCD+EW Wjj prediction for progressively increasing Mjj.As Mjj increases the relative contribution of the EW Wjj process increases substantially. Jet centrality is related to the number of jets in the rapidity gap, as events with Cj < 0.5 have a jet within the gap. Figure 22 shows good agreement between the predictions and 2468 Δy(j, j) 12 Mjj > 0.5TeV (left)and Mjj > 1.0TeV (right). Both statistical (inner bar)and total(outer bar) measurement uncertainties are shown, as well as ratios of the theoretical predictions to the data (the bottom panel in each distribution) data in the QCD+EW Wjj differential cross section weighted by the mean number of gap jets. Since the rate for additional jet production is low in EW Wjj production, there are too few events to perform a measurement of the jet centrality distribution for this process. The lepton centrality distribution indirectly probes the rapidity of the W boson relative to the dijet rapidity inter-val. The differential cross section in the inclusive region as 123 10−2 s = 8 TeV, 20.2 fb-1 SHERPA (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) HEJ (QCD) + POW+PY (EW) 10−3 10−3 1/σfid 1/σfid Theory/DataW ⋅ dσ/dM [GeV-1] Theory/DataW ⋅ dσ/dM [GeV-1] jj jj 1/σfid 1/σfid jj jj 10−4 10−4 10−5 10−5 10−6 ATLAS ATLAS Wjj inclusive region (M >0.5 TeV) Wjj forward-lepton/central-jet region 10−6 jj 1.5 1 0.5 1.5 1 0.5 5×102 103 3×1035×102 103 3×103Dijet mass [GeV] Dijet mass [GeV] Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) 10−2 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) HEJ (QCD) + POW+PY (EW) 10−3 10−3 10−4 10−4 10−5 10−5 10−6 ATLAS ATLAS Wjj forward-lepton control region Wjj central-jet validation region 10−7 1.5 1 0.5 1.5 1 0.5 5×102 103 3×103Dijet mass [GeV] Fig. 17 Unfolded normalized differential Wjj production cross sec-tions as a function of dijet invariant mass in the inclusive, forward-lepton/central-jet, forward-lepton, and central-jet fducial regions. Both a function of lepton centrality is shown in Fig. 23 for three Mjj thresholds. All QCD+EW Wjj predictions adequately describe the lepton centrality in the region with the lowest dijet mass threshold, which is dominated by QCD Wjj pro-duction. As the Mjj threshold is increased the differences between QCD and QCD+EW Wjj production become more apparent, particularly at low lepton centrality where EW Wjj production is enhanced. The measurement of this distribution for EW Wjj production shows good agreement with the predictions. 5×102 103 3×103 Dijet mass [GeV] statistical (inner bar) and total (outer bar) measurement uncertainties are shown, as well as ratios of the theoretical predictions to the data (the bottom panel in each distribution) 6.4 Observables sensitive to anomalous gauge couplings Differential measurements are performed in distributions that provide enhanced sensitivity to anomalous gauge couplings: • pT j1,the pT of the highest-pT jet; • pT jj ,the pT of the dijet system (vector sum of the pT of the two highest-pT jets); and • φ( j1, j2), the magnitude of the azimuthal angle between the two highest-pT jets, 123 s = 8 TeV, 20.2 fb-1 HEJ (QCD) + POW+PY (EW) HEJ (QCD) + POW+PY (EW) 1 10−1 1/σfid 1/σfid Theory/DataW ⋅ dσ/dΔy/ bin widthTheory/DataW ⋅ dσ/dΔy/ bin width 1/σfid 1/σfid 10−1 10−2 10−2 10−3 ATLAS ATLAS Wjj inclusive region (M >0.5 TeV) Wjj forward-lepton/central-jet region jj 10−4 10−3 1.5 1 0.5 1.5 1 0.5 2468 2468 Δy(j, j)Δy(j, j) 1212 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 1 1 HEJ (QCD) + POW+PY (EW) 10−1 10−2 10−1 10−2 10−3 10−3 10−4 10−4 ATLAS ATLAS Wjj forward-lepton control region Wjj central-jet validation region 10−5 1.5 1 0.5 1.5 1 0.5 2468 Δy(j, j) 12 Fig. 18 Unfolded normalized differential Wjj production cross sec-tions as a function of y( j1, j2) in the inclusive, forward-lepton/central-jet, forward-lepton, and central-jet fducial regions. Both statistical where the last observable is sensitive to anomalous CP-violating couplings [82]. The transverse momentum distribution of the leading jet, shown in Fig. 24, has a substantial correlation with the momentum transfer in t-channel events. The QCD+EW Wjj measurements are globally well described by Powheg + Pythia8, while predictions from Sherpa and hej both show a harder spectrum than observed in data. For EW Wjj pro-duction the Powheg + Pythia8 and Sherpa predictions give a harder spectrum than observed in the data, particularly in 2468 Δy(j, j) 12 (inner bar)and total(outer bar) measurement uncertainties are shown, as well as ratios of the theoretical predictions to the data (the bottom panel in each distribution) the higher purity regions (Fig. 25). The overestimation of rates at high jet pT may be reduced by the inclusion of NLO electroweak corrections [66]. The transverse momentum of the dijet system is also correlated with the momentum transfer in t-channel events. Fig-ure 26 shows the measured normalized pT distribution of the dijet system compared to the various predictions. There is a trend for all predictions to overestimate the relative rate at high dijet pT in the inclusive and signal-enhanced regions, both for QCD+EW Wjj and EW Wjj production. As in the 123 case of the jet pT distribution, the discrepancy could be due to missing NLO electroweak corrections, which reduce the predictions at high W-boson pT [66]. The azimuthal angle between the two leading jets can be used to probe for new CP-odd operators in VBF production. The normalized differential cross sections for QCD+EW Wjj production as a function of this angle are shown in the inclusive, forward-lepton control, central-jet validation, and signal fducial regions in Fig. 27. Good agreement between the data and all predictions is seen, with a slight tendency for predictions to overestimate the relative rate at small angles in Mjj > 1.0 TeV. Both statistical (inner bar) and total (outer bar) mea-surement uncertainties are shown, as well as ratios of the theoretical predictions to the data (the bottom panel in each distribution) all fducial regions. Figure 28 shows the normalized EW Wjj cross section as a function of the azimuthal angle between the two leading jets for the inclusive and signal fducial regions with Mjj > 1.0TeV. 7 Anomalous triple-gauge-boson couplings The triple-gauge-boson vertex is directly probed by the vector-boson-fusion process. Non-SM couplings at this ver-tex would affect the production rates and distributions. The couplings are constrained in the context of an aTGC or EFT 123 s = 8 TeV, 20.2 fb-1 1 HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) SHERPA (QCD) 10−1 10−1 1/σ fid 1/σfid Theory/DataW ⋅ dσ/dNgap/ bin widthTheory/DataW ⋅ dσ/dNgap/ bin width jetsjets 1/σ fid 1/σfid jetsjets 10−2 10−2 10−3 10−3 ATLAS ATLAS Wjj inclusive region (M >0.5 TeV) Wjj inclusive region (M >1.0 TeV) jj jj 1.5 1 0.5 1.5 1 0.5 012345678 012345678 Number of jets in the rapidity gap Number of jets in the rapidity gap Data s = 8 TeV, 20.2 fb-1 Data 1 s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) 1 SHERPA (QCD+EW) SHERPA (QCD) 10−1 10−2 10−1 10−3 ATLAS ATLAS Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 1.5 1 0.5 1.5 1 0.5 0 12345678 Number of jets in the rapidity gap Fig. 20 Unfolded normalized distribution of the number of jets with pT > 30 GeV in the rapidity interval bounded by the two highest-pT jets in the inclusive fducial region with Mjj thresholds of 0.5 TeV (top left), 1.0 TeV (top right), 1.5 TeV (bottom left), and 2.0 TeV (bottom framework, using the yield in the anomalous coupling signal region (Table 1) to constrain the parameters. The results are complementary [83] to those obtained in diboson production [84], which corresponds to the exchange of one off-shell boson in the s-channel rather than two in the t-channel. 7.1 Theoretical overview The signal-region measurements are sensitive to the WWV (V = Z or γ ) couplings present in the t-channel production mode shown in Fig. 1a. These couplings can be characterized 01234 Number of jets in the rapidity gap right). Both statistical (inner bar) and total (outer bar) measurement uncertainties are shown, as well as ratios of the theoretical predictions to thedata(the bottom panel in each distribution) by an effective Lagrangian LWWV including operators up to eff mass-dimension six [34]: iLWWVV W−ν g1 Vμ(W− W+ν − W+ ) eff = gWWV μν μν Vμν + Vμν W+ρ + κVW+ W− λVW− μν νρμ 2 m W κ˜V μνρσ Vρσ − W− W+ 2 μν ˜ λVW+μνραβ Vαβ + W− , 2mρμν 2 W 123 01 Number of jets in the rapidity gap Number of jets in the rapidity gap Table8 Jet-veto effciency for each Mjj threshold compared to Powheg + Pythia8 QCD+EW and QCD Wjj simulations. The uncertainties comprise statistical and systematic components added in quadrature Jet-veto effciency Mjj > 0.5TeV Mjj > 1.0TeV Mjj > 1.5TeV Mjj > 2.0TeV Data 0.596 ±0.014 0.54 ±0.02 0.55 ±0.03 0.63 ±0.04 Powheg +Pythia8 (QCD+EW) Powheg +Pythia8 (QCD) 0.597 ±0.005 0.569 ±0.002 0.55 ±0.01 0.45 ±0.01 0.57 ±0.02 0.39 ±0.01 0.63 ±0.03 0.36 ±0.03 where W±=∂μW±−∂ν W± , with W± the W±feld; Vμν = μννμ μ ∂μVν −∂ν Vμ, with Vμ the Z or γ feld; mW is the W-boson V mass; and the individual couplings have SM values g1 =1, κV =1, λV =0, κ˜V =0, and λ˜V =0. The overall coupling constants gWWV are given by gWWγ =−e and gWWZ = −e ·cot(θW), where e is the electromagnetic coupling and θW is the weak mixing angle. The terms in the frst row of the Lagrangian conserve C, P, and CP, while those in the second violate CP. Deviations of the gV and κV parameters 1 from the SM are denoted by g1 Z = g1 Z −1 and κV = κV −1, respectively. The requirement of gauge invariance at the level of dimension-six operators leads to the following relations [85]: Z γ g=κZ +κγ tan2 θW,λγ =λZ ≡λV, g =1, 11 κ˜γ =−˜κZ cot2 θW, and λ˜γ =λ˜Z ≡λ˜V. The presence of anomalous couplings leads to unphysically large cross sections when the square of the momentum transfer (q2) between the incoming partons is large. To preserve unitarity, a form factor is introduced with a new-physics scale  that suppresses the anomalous coupling at high energies: α 2 α(q) = (1 +q2/2)2 , where α is the anomalous coupling of interest. In the following, 95% confdence-level intervals are set for a unitarization scale of  =4 TeV and for a scale that effectively removes the form factor (shown as  =∞). The scale  =4TeV is chosen because it does not violate unitarity for any parameter in the expected range of sensitivity. An alternative to the use of a form factor is to employ an effective feld theory, which is an expansion in inverse powers of the energy scale of new interactions assuming perturbative coupling coeffcients. An EFT allows the comprehensive investigation of a complete set of dimension-six operators in a Lagrangian with SM felds. The dimension-six terms intro-duced in the EFT can be expressed as 123 s = 8 TeV, 20.2 fb-1 10 HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) SHERPA (QCD) 1 1 1/σfid Theory/DataW ⋅〈 Ngap 〉 dσ/dC/ bin width jet j 10−1 1/σfid jet j 10−2 10−3 10−1 10−2 ATLAS ATLAS Wjj inclusive region (M >0.5 TeV) Wjj inclusive region (M >1.0 TeV) jj jj 10−4 1.5 1.5 1 0.5 1 0.5 10−11 Jet centrality Fig. 22 Unfolded normalized differential QCD+EW Wjj production cross sections as a function of jet centrality for the inclusive fducial region with Mjj > 0.5TeV (left) and 1.0 TeV (right). Both statistical  ci LEFT = Oi, 2 i where Oi are feld operators with dimension 6, the scale of new physics is , and ci are dimensionless coeffcients. The operators relevant to triple-gauge-boson couplings in the HISZ basis [85]are † Bμν Dν H, OB =(Dμ H)†Wμν Dν H, OW =(Dμ H) OWWW =Tr[Wμν Wρν Wρμ], † W˜μν Dν H, OW ˜=(Dμ H) O˜ρ W˜ρμ], WWW =Tr[Wμν Wν where H is the Higgs-boson feld, Bμν =∂μ Bν −∂ν Bμ, Bμ Wμν 1 is the U(1)Y gauge feld, and ˜= 2 μνρσ Wρσ . The coeffcients of these operators are related to the aTGC parameters via the following equations: cW 2 = (gZ −1), 2 m21 Z cB 22 = (gZ −1) − (κZ −1), 221 2 tan2 θWmZ sin2 θWmZ cWWW 2 = λV, 2 23g2m W c ˜2 W =− κ˜Z, 22 tan2 θWmW c ˜2 WWW ˜ = λV, 2 23g2m W 10−11 Jet centrality (inner bar)and total(outer bar) measurement uncertainties are shown, as well as ratios of the theoretical predictions to the data (the bottom panel in each distribution) where gis the weak coupling, mZ is the Z-boson mass, and the aTGC parameters do not have any form-factor suppression. 7.2 Experimental method The signal region defned to increase the sensitivity to anomalous triple-gauge-boson couplings requires Mjj > 1 TeV and leading-jet pT > 600 GeV (Table 1). The leading-jet pT is chosen because it is highly correlated with the q2 of the signal t-channel process. The pT threshold is optimized to max-imize sensitivity to anomalous couplings, considering both the statistical and systematic uncertainties. The event yields in the reconstructed signal region used for setting the con-straints are given in Table 4. The SM prediction is negligible for pT > 1 TeV, yielding an approximate lower bound for the validity of the EFT constraints. The effects of anomalous couplings are modelled with Sherpa. Each sample is normalized by a factor k = NLO/LO given by the ratio of Powheg + Pythia8 to Sherpa SM predictions of electroweak Wjj production. The number of events expected for a given parameter value is cal-culated as: =L×σ ν jj ×A×C ×k, Nreco where Lis the integrated luminosity of the 8 TeV data, σ ν jj is the cross section for the corresponding anomalous-coupling variation, Ais the selection acceptance at particle level, and C is the ratio of selected reconstruction-level events to the 123 s = 8 TeV, 20.2 fb-1 10 HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) SHERPA (QCD) 1 1/σ fid 1/σfid Theory/DataW ⋅ dσ/dLC/ bin widthTheory/DataW ⋅ dσ/dC/ bin width l 1/σ fid 1/σfid l 1 10−1 10−1 10−2 ATLAS ATLAS 10−2 Wjj inclusive region (M >0.5 TeV) Wjj inclusive region (M >1.0 TeV) 10−3 jj jj 1.5 1 0.5 4 1.5 1 0.5 10−11 10−11 Lepton centrality Lepton centrality 4 Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 3.5 Interference uncertainty 3.5 Interference uncertainty POWHEG+PYTHIA8 EW-only POWHEG+PYTHIA8 EW-only 3 3 SHERPA EW-only SHERPA EW-only 2.5 2 2.5 2 1.5 1.5 1 1 0.5 0.5 ATLAS ATLAS 0 0 Wjj inclusive region (M >1.0 TeV) Wjj inclusive region (M >1.5 TeV) jj jj −0.5 −0.5 1.5 1 0.5 1.5 1 0.5 0 0.2 0.4 0.6 0.8 1 Lepton centrality Fig. 23 Unfolded normalized differential QCD+EW Wjj (top)and EW (bottom) production cross sections as a function of lepton cen-trality for the inclusive fducial region with Mjj > 0.5TeV (topleft), 1.0 TeV (top right and bottomleft), and 1.5 TeV (bottom right). Both particle-level events in the fducial phase-space region. The factor containing the cross section and acceptance (σ ν jj×A) is parameterized as a quadratic function of each aTGC param-eter, with a 10% statistical uncertainty in the parameterization. Theoretical uncertainties due to missing higher orders, estimated with factors of 2 and 1/2 variations of the renormalization and factorization scales, are estimated to be 8% of the strong Wjj yield and 14% of the electroweak Wjj yield in the region with leading-jet pT > 600 GeV. Detector 0 0.2 0.4 0.6 0.8 1 Lepton centrality statistical (inner bar) and total (outer bar) measurement uncertainties are shown, as well as ratios of the theoretical predictions to the data (the bottom panel in each distribution) uncertainties are correlated between strong and electroweak production and are estimated to be 11% of the combined yield. 7.3 Confdence-level intervals for aTGC parameters Confdence-level (C.L.) intervals are calculated using a frequentist approach[86]. A negative log-likelihood function is constructed based on the expected numbers of background and signal events, and the number of observed data events. 123 SHERPA (QCD+EW) SHERPA (QCD+EW) SHERPA (QCD) SHERPA (QCD) 10−2 1/σfid 1/σfid Theory/DataW ⋅ dσ/dp [GeV-1] Theory/DataW ⋅ dσ/dp [GeV-1] TT 1/σfid 1/σfid TT HEJ (QCD) + POW+PY (EW) 10−2 10−3 10−3 10−4 ATLAS ATLAS Wjj signal region (Mjj>0.5 TeV) Wjj signal region (Mjj>1.0 TeV) 10−4 10−5 1.5 1 0.5 1.5 1 0.5 102 5×102102 5×102Leading-jet p [GeV] Leading-jet p [GeV] TT Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) s = 8 TeV, 20.2 fb-1 Data 10−1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) HEJ (QCD) + POW+PY (EW) 10−2 10−2 10−3 10−3 10−4 10−5 10−4 10−6 ATLASATLAS Wjj forward-lepton/central-jet region Wjj forward-lepton control region 10−5 10−7 1.5 1 0.5 1.5 1 0.5 102 2×102 5×102Leading-jet p [GeV] T Fig. 24 Unfolded normalized differential Wjj production cross sec-tions as a function of the leading-jet pT in the signal, high-mass signal, forward-lepton/central-jet, and forward-lepton regions fducial regions. The likelihood is calculated as a function of individual aTGC parameter variations, with the other parameters set to their SM values. To obtain 95% confdence-level intervals, pseudoexperiments are produced with the number of pseudodata events drawn from a Poisson distribution, where the mean is given by the total SM prediction Gaussian-fuctuated accord-ing to theoretical and experimental uncertainties. Tables 9 and 10 give the expected and observed 95% C.L. interval for each parameter probed, with the other parameters set to their SM values. All observed intervals are narrower than the expected intervals due to a slight defcit of data events 102 103 Leading-jet p [GeV] T Both statistical (inner bar) and total (outer bar) measurement uncertainties are shown, as well as ratios of the theoretical predictions to the data (the bottom panel in each distribution) compared with the SM prediction (Table 4). The λV inter-vals are competitive with those derived from WW production [84]. The 95% C.L. regions in planes with two param-eters deviating from their SM values are shown in Fig. 29. Since the regions are determined using a single measured yield, only the size of the region is constrained and not its shape. Thus, along an axis where one parameter is equal to zero, the corresponding one-parameter C.L. interval is recovered. The constraints on λ˜V are similar to λV since the sensitivity is dominated by the square of the anomalous-coupling amplitude rather than its interference with the SM amplitude. 123 s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 EW-only POWHEG+PYTHIA8 EW-only 10−2 10−2 SHERPA EW-only SHERPA EW-only 1/σfid 1/σfid Theory/DataW ⋅ dσ/dp [GeV-1] Theory/DataW ⋅ dσ/dp [GeV-1] TT 1/σfid 1/σfid TT 10−3 10−3 10−4 ATLAS ATLAS Wjj inclusive region (M >1.0 TeV) Wjj signal region (M >1.0 TeV) jj jj 1.5 1 0.5 1.5 1 0.5 102 5×102102 5×102Leading-jet p [GeV] Leading-jet p [GeV] TT Data s = 8 TeV, 20.2 fb-1 Interference uncertainty POWHEG+PYTHIA8 EW-only SHERPA EW-only 10−2 Data s = 8 TeV, 20.2 fb-1 Interference uncertainty POWHEG+PYTHIA8 EW-only 10−2 SHERPA EW-only 10−3 10−3 10−4 ATLAS ATLAS Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 1.5 1 0.5 1.5 1 0.5 102 5×102102 5×102 Leading-jet p [GeV] Leading-jet p [GeV] TT Fig. 25 Unfolded normalized differential EW Wjj production cross dijet invariant mass of 1.0 TeV. Both statistical (inner bar) and total sections as a function of the leading-jet pT for the inclusive fducial (outer bar) measurement uncertainties are shown, as well as ratios of region with three thresholds on the dijet invariant mass (1.0, 1.5, and the theoretical predictions to the data (the bottom panel in each distri 2.0 TeV), and for the signal-enriched fducial region with a minimum bution) 123 10−2 [GeV-1] T HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) SHERPA (QCD) 10−3 10−3 1/σfid Theory/DataW ⋅ dσ/dp [GeV-1] 1/σfid T 1/σfid Theory/DataW ⋅ dσ/dp 10−4 10−4 10−5 10−5 ATLAS ATLAS Wjj inclusive region (Mjj>0.5 TeV) Wjj inclusive region (Mjj>1.0 TeV) 1.5 1 0.5 1.5 1 0.5 0 200 400 600 800 0 200 400 600 800 Dijet p [GeV] Dijet p [GeV] TT 1/σ fid W ⋅ dσ/dp [GeV-1] T Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 10−2 Interference uncertainty POWHEG+PYTHIA8 EW-only POWHEG+PYTHIA8 (QCD+EW) 10−2 POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) HEJ (QCD) + POW+PY (EW) 10−3 SHERPA EW-only 10−3 10−4 10−4 10−5 10−5 ATLAS ATLAS Wjj signal region (M >1.0 TeV) Wjj signal region (Mjj>0.5 TeV) jj 10−6 Theory/Data 1.5 1 0.5 1.5 1 0.5 0 200 400 600 800 Dijet p [GeV] T Fig. 26 Unfolded normalized differential Wjj production cross sec-tions as a function of dijet pT for the inclusive (top) and signal (bottom) regions with Mjj > 0.5TeV (left)and Mjj > 1.0TeV (right). The bottom right distribution shows EW Wjj production and the other dis 0 100 200 300 400 500 600 700 800 900 Dijet p [GeV] T tributions show QCD+EW Wjj production. Both statistical (inner bar) and total (outer bar) measurement uncertainties are shown, as well as ratios of the theoretical predictions to the data (the bottom panel in each distribution) 123 s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 10 SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) HEJ (QCD) + POW+PY (EW) 1/σfid 1/σfid Theory/DataW ⋅ dσ/dΔφ/ bin widthTheory/DataW ⋅ dσ/dΔφ/ bin width 1/σfid 1/σfid 1 1 10−1 10−1 ATLAS ATLAS Wjj inclusive region (M >0.5 TeV) Wjj forward-lepton control region jj 1.5 1 0.5 1.5 1 0.5 00.5 100.5 1 Δφ(j, j) / π Δφ(j, j) / π 1212 Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 10 POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) HEJ (QCD) + POW+PY (EW) 1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) 10 HEJ (QCD) + POW+PY (EW) 1 10−1 10−1 ATLAS ATLAS Wjj central-jet validation region Wjj signal region (M >0.5 TeV) jj 1.5 1 0.5 1.5 1 0.5 00.5 100.5 1 Δφ(j, j) / π Δφ(j, j) / π 1212 Fig. 27 Unfolded normalized differential Wjj production cross sec-(inner bar)and total(outer bar) measurement uncertainties are shown, tions as a function of φ( j1, j2) for the inclusive, forward-lepton con-as well as ratios of the theoretical predictions to the data (the bottom trol, central-jet validation, and signal fducial regions. Both statistical panel in each distribution) 123 10 1 1/σ fid Theory/DataW ⋅ dσ/dΔφ/ bin width 1 10−1 10−1 10−2 1.5 1.5 1 1 0.5 0.5 Δφ(j, j) / π Δφ(j, j) / π 1212 Table9 Expected and observed  =4TeV  = ∞ 95% C.L. allowed ranges for all aTGC parameters considered Expected Observed Expected Observed with the other parameters set to Z g[−0.39, 0.35] [−0.32, 0.28] [−0.16, 0.15] [−0.13, 0.12] their SM values. A form factor 1 with unitarization scale equal to κZ [−0.38, 0.51] [−0.29, 0.42] [−0.19, 0.19] [−0.15, 0.16] 4 TeV enforces unitarity for all λV [−0.16, 0.12] [−0.13, 0.090] [−0.064, 0.054] [−0.053, 0.042] aTGC parameters. The results are derived from the high-q2 κ˜Z [−1.7, 1.8] [−1.4, 1.4] [−0.70, 0.70] [−0.56, 0.56] ˜ region yields given in Table 4 λV [−0.13, 0.15] [−0.10, 0.12] [−0.058, 0.057] [−0.047, 0.046] 123 Table 10 Expected and observed 95% C.L. intervals for individual EFT coeffcients divided by the square of the new physics scale ,with other coeffcients set to zero. Intervals are calculated using the high-q2 region yields (Table 4) Parameter Expected (TeV−2) Observed (TeV−2) cW [−39, 37] [−33, 30] 2 cB [−200, 190] [−170, 160] 2 cWWW [−16, 13] [−13, 9] 2 c ˜ W [−720, 720] [−580, 580] 2 c ˜ WWW [−14, 14] [−11, 11] 2 8 Summary Measurements of the fducial and differential cross sections of electroweak production of W bosons in association with two jets have been performed using the lepton decay chan-nel and events with high dijet invariant mass. The measurements use data collected by the ATLAS detector from proton– proton collisions at the LHC at centre-of-mass energies of√ s = 7 and 8 TeV, corresponding to 4.7 and 20.2 fb−1 of integrated luminosity, respectively. The cross sections in a fducial region with a signal purity of O(15%) are fd σ EW ν jj (7TeV) = 144 ± 23 (stat) ± 23 (exp) ± 13 (th) fb, fd σ EW ν jj (8TeV) = 159 ± 10 (stat) ± 17 (exp) ± 15 (th) fb, 0.8 Δκ Z 0.1 0.2 0.2 0.6 0.4 0 0 -0.2 -0.1 -0.4 -0.6 -0.2 -0.8 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 -0.4 -0.2 0 0.2 0.4 ZZ Δ g Δ g 11 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 ΔκZ 123 corresponding to a deviation of < 0.1σ(1.4σ) from the SM √ prediction of 144 ± 11 (198 ± 12) fb at s = 7 (8) TeV. The large sample size of the 8 TeV measurement yields the smallest relative uncertainty of existing fducial cross-section measurements of electroweak boson production in a VBF topology. √ Differential cross sections of the s= 8 TeV electroweak Wjjproduction process are measured in a high-purity region with Mjj > 1 TeV. The cross sections are measured as a function of dijet mass, dijet rapidity separation, dijet azimuthal angular separation, dijet pT, leading-jet pT, the number of jets within the dijet rapidity gap, and lepton and jet central-ities. Additionally, differential cross sections are measured in various fducial regions for the combined electroweak and strong Wjj production with high dijet invariant mass. The differential measurements are integrated in each fducial region to obtain additional fducial cross-section measurements. The most inclusive region, where Mjj > 0.5TeV, j1 j2 y(j1, j2)> 2, pT > 80 GeV, and pT > 60 GeV, has a √ measured QCD+EW fducial cross section at s= 8TeV of σfd QCD+EW νjj = 1700 ± 110 fb. The region of increased purity for electroweak production of Wjj(Mjj > 1 TeV) is used to constrain dimensionsix triple-gauge-boson operators motivated by an effective feld theory. To improve the sensitivity to high-scale physics affecting the triple-gauge-boson vertex, events with leading-jet pT > 600 GeV are also used to constrain CP-conserving and CP-violating operators in the HISZ scenario, both with and without a form-factor suppression. A 95% C.L. range of [−0.13,0.09] is determined for λV with a suppression scale of 4 TeV and the other parameters set to their SM values. Limits are also set on the parameters of an effective feld theory. The operator coeffcient cWWW/2 is proportional to λV and is constrained to [−13,9]/TeV2 at 95% C.L. Con-straints on CP-violating operators are similar to those on the CP-conserving operators. Acknowledgements We thank CERN for the very successful oper-ation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated effciently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Repub-lic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-fnanced by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [87]. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecomm ons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Funded by SCOAP3. AAppendix This section includes normalized and absolute differential QCD+EW and EW Wjj production cross-section measurements not directly discussed in the main text (Figs. 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52). The complete set of measured differential spectra is available in hepdata [77]. 123 s = 8 TeV, 20.2 fb-1 HEJ (QCD) + POW+PY (EW) 1 HEJ (QCD) + POW+PY (EW) 1 10−1 Theory/Datadσ/dMjj [fb/GeV] Theory/Datadσ/dMjj [fb/GeV] 10−1 10−2 10−3 10−2 ATLAS ATLAS 10−4 Wjj inclusive region (M >0.5 TeV)Wjj forward-lepton control region jj 10−3 103 103 1.5 1 0.5 1.5 1 0.5 5×102 103 3×103 5×102 103 3×103 Dijet mass [GeV] Dijet mass [GeV] Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) 1 HEJ (QCD) + POW+PY (EW) Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 1 SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 10−1 10−1 10−2 10−2 10−3 ATLAS ATLAS 10−3 Wjj central-jet validation region Wjj forward-lepton/central-jet region 10−4 103 103 1.5 1 0.5 1.5 1 0.5 5×102 103 3×103 5×102 103 3×103 Dijet mass [GeV] Dijet mass [GeV] Fig. 30 Unfolded differential Wjj production cross sections as a func statistical (inner bar) and total (outer bar) measurement uncertainties tion of dijet mass for the inclusive (top left), forward-lepton (top right), are shown, as well as ratios of the theoretical predictions to the data (the central-jet (bottom left), and forward-lepton/central-jet (bottom right) bottom panel in each distribution) fducial regions, which are enriched in strong Wjj production. Both 123 s = 8 TeV, 20.2 fb-1 1 SHERPA (QCD+EW) SHERPA (QCD) HEJ (QCD) + POW+PY (EW) 10−1 1/σfid 1/σfid Theory/DataW ⋅ dσ/dΔy/ bin widthTheory/DataW ⋅ dσ/dΔy/ bin width 1/σfid 1/σfid 10−1 10−2 10−3 10−2 ATLAS ATLAS Wjj inclusive region (M >0.5 TeV) Wjj inclusive region (M >1.0 TeV) jj jj 10−4 1.5 1 0.5 1.5 1 0.5 2468 2468 Δy(j, j)Δy(j, j) 1212 s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) Data POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) SHERPA (QCD+EW) SHERPA (QCD) 1 1 10−1 10−1 ATLAS ATLAS Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 1.5 1 0.5 1.5 1 0.5 2468 468 Δy(j, j)Δy(j, j) 1212 Fig. 31 Unfolded normalized differential Wjj production cross sec-Both statistical (inner bar) and total (outer bar) measurement uncertions as a function of y( j1, j2) in the inclusive fducial region with tainties are shown, as well as ratios of the theoretical predictions to the four thresholds on the dijet invariant mass (0.5, 1.0, 1.5, and 2.0 TeV). data (the bottom panel in each distribution) 123 s = 8 TeV, 20.2 fb-1 HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) SHERPA (QCD) 103 102 Theory/Datadσ/dΔy [fb/ bin width] Theory/Datadσ/dΔy [fb/ bin width] 102 10 10 1 1 ATLAS ATLAS Wjj inclusive region (M >0.5 TeV)Wjj inclusive region (M >1.0 TeV) jjjj 10−1 1.5 1 0.5 1.5 1 0.5 2468 2468 Δy(j, j)Δy(j, j) 1212 102 s = 8 TeV, 20.2 fb-1 Data Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) SHERPA (QCD+EW) 10 SHERPA (QCD) 10 1 1 ATLAS ATLAS Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 1.5 1 0.5 1.5 1 0.5 2468 468 Δy(j, j)Δy(j, j) 1212 Fig. 32 Unfolded absolute differential Wjj production cross sections and total (outer bar) measurement uncertainties are shown, as well as as a function of y( j1, j2) for the inclusive fducial region with pro-ratios of the theoretical predictions to the data (the bottom panel in each gressively increasing dijet mass thresholds. Both statistical (inner bar) distribution) 123 Eur. Phys. J. C (2017) 77 :474 Page 39 of 74 474 Fig. 33 Differential Wjj Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 production cross sections as a POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) POWHEG+PYTHIA8 (QCD) function of y( j1, j2) in the 103 SHERPA (QCD+EW) SHERPA (QCD+EW) 102 signal and high-mass signal SHERPA (QCD) SHERPA (QCD) HEJ (QCD) + POW+PY (EW) fducial regions, and in the forward-lepton, central-jet 102 Theory/Datadσ/dΔy [fb/ bin width] Theory/Datadσ/dΔy [fb/ bin width] Theory/Datadσ/dΔy [fb/ bin width]Theory/Datadσ/dΔy [fb/ bin width] validation, and 10 forward-lepton/central-jet 10 fducial regions. Both statistical (inner bar) and total (outer bar) 1 measurement uncertainties are 1 shown, as well as ratios of the theoretical predictions to the ATLAS ATLAS 10−1 10−1 Wjj signal region (Mjj>0.5 TeV) Wjj signal region (Mjj>1.0 TeV) data (the bottom panel in each distribution) 1.5 1 0.5 1.5 1 0.5 2468 2468 Δy(j, j)Δy(j, j) 1212 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 103 SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 102 10 103 SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 102 10 1 10−1 1 10−2 ATLAS ATLAS Wjj forward-lepton/central-jet region Wjj forward-lepton control region 10−1 1.5 1 0.5 1.5 1 0.5 2468 2468 Δy(j, j)Δy(j, j) 1212 Theory/Datadσ/dΔy [fb/ bin width] Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 103 SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 102 10 1 10−1 ATLAS Wjj central-jet validation region 1.5 1 0.5 2468 Δy(j, j) 12 123 s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 EW-only 102 POWHEG+PYTHIA8 EW-only SHERPA EW-only SHERPA EW-only Theory/Datadσ/dΔy [fb/ bin width] Theory/Datadσ/dΔy [fb/ bin width] 10 10 1 ATLAS ATLAS Wjj signal region (M >1.0 TeV) Wjj inclusive region (M >1.0 TeV) jj jj 1 1.5 1 0.5 1.5 1 0.5 2345678 2345678 Δy(j, j)Δy(j, j) 1212 Data s = 8 TeV, 20.2 fb-1 Interference uncertainty POWHEG+PYTHIA8 EW-only SHERPA EW-only Data s = 8 TeV, 20.2 fb-1 Interference uncertainty POWHEG+PYTHIA8 EW-only 10 SHERPA EW-only 10 1 1 ATLAS ATLAS 10−1 Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 10−1 1.5 1 0.5 1.5 1 0.5 2345678 345678 Δy(j, j)Δy(j, j) 1212 Fig. 34 Differential electroweak Wjj production cross sections as a and 2.0). Both statistical (inner bar)and total(outer bar) measurement function of y( j1, j2) in the high-mass signal region and the inclusive uncertainties are shown, as well as ratios of the theoretical predictions fducial region with three thresholds on the dijet invariant mass (1.0, 1.5, to thedata(the bottom panel in each distribution) 123 s = 8 TeV, 20.2 fb-1 HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) 102 SHERPA (QCD) 102 Theory/Datadσ/dNgap [fb/ bin width]Theory/Datadσ/dNgap [fb/ bin width] jets jets jets jets 10 10 1 ATLAS ATLAS Wjj inclusive region (M >0.5 TeV) Wjj inclusive region (M >1.0 TeV) jj jj 1 1.5 1 0.5 10 1 1.5 1 0.5 012345678 012345678 Number of jets in the rapidity gap Number of jets in the rapidity gap Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) 10 SHERPA (QCD) ATLAS ATLAS Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) 1 jj jj 1.5 1 0.5 1.5 1 0.5 0 1 2345678 01 2 3 4 Number of jets in the rapidity gap Number of jets in the rapidity gap Fig. 35 Differential Wjj production cross sections as a function of and total (outer bar) measurement uncertainties are shown, as well as the number of hard jets in the rapidity interval between the two leading ratios of the theoretical predictions to the data (the bottom panel in each jets in the inclusive fducial region with four thresholds on the dijet distribution) invariant mass (0.5, 1.0, 1.5, and 2.0 TeV). Both statistical (inner bar) 123 30 s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 EW-only 25 POWHEG+PYTHIA8 EW-only SHERPA EW-only SHERPA EW-only 20 60 dσ/dNjets dσ/dNjets 1/σfid Theory/DataW ⋅ dσ/dNgap/ bin widthTheory/Datagap [fb/ bin width] jetsdσ/dNjets 15 40 10 20 5 0 ATLAS ATLAS 0 Wjj inclusive region (Mjj>1.5 TeV) Wjj inclusive region (Mjj>1.0 TeV) 1.5 1 0.5 1.5 1 0.5 01 01 Number of jets in the rapidity gap Number of jets in the rapidity gap 1.4 Data s = 8 TeV, 20.2 fb-1 Interference uncertainty 1.2 POWHEG+PYTHIA8 EW-only SHERPA EW-only 1 0.8 0.6 Data s = 8 TeV, 20.2 fb-1 12 Interference uncertainty POWHEG+PYTHIA8 EW-only 10 SHERPA EW-only 8 6 4 0.4 2 0.2 0 ATLAS ATLAS 0 Wjj inclusive region (Mjj>2.0 TeV) Wjj inclusive region (Mjj>1.5 TeV) -2 1.5 1 0.5 1.5 1 0.5 01 Number of jets in the rapidity gap Fig. 36 Differential electroweak Wjj production cross sections as a function of the number of hard jets in the rapidity gap between the two leading jets in the inclusive fducial region with Mjj > 1.0TeV (top left), 1.5 TeV (top right and bottom left), and 2.0 TeV(bottom right). The region with Mjj > 1.5 TeV, includes both absolute (top right) 01 Number of jets in the rapidity gap and normalized (bottomleft) distributions. Both statistical (inner bar) and total (outer bar) measurement uncertainties are shown, as well as ratios of the theoretical predictions to the data (the bottom panel in each distribution) 123 104 s = 8 TeV, 20.2 fb-1 SHERPA (QCD+EW) POWHEG+PYTHIA8 (QCD) HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) SHERPA (QCD) 103 103 gap gap Theory/Data〈 N 〉 dσ/dC [fb/ bin width]Theory/Data〈 N 〉 dσ/dC [fb/ bin width] jetj jetj gap gap Theory/Data〈 N 〉 dσ/dC [fb/ bin width]Theory/Data〈 N 〉 dσ/dC [fb/ bin width] jetj jetj 102 102 10 10 1 ATLAS ATLAS Wjj inclusive region (M >0.5 TeV) Wjj inclusive region (M >1.0 TeV) jj 1 jj 10−1 110−1 1 1.5 1 0.5 1.5 1 0.5 10−11 10−11 Jet centrality Jet centrality Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) 102 SHERPA (QCD) 10 103 POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) 102 10 1 ATLAS ATLAS Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 10−1 110−1 1.5 1 0.5 1.5 1 0.5 10−1 1 10−1 Jet centrality Jet centrality Fig. 37 Differential Wjj production cross sections as a function of jet bar)and total(outer bar) measurement uncertainties are shown, as well centrality in the inclusive fducial region with four thresholds on the as ratios of the theoretical predictions to the data (the bottom panel in dijet invariant mass (0.5, 1.0, 1.5, and 2.0 TeV). Both statistical (inner each distribution) 123 s = 8 TeV, 20.2 fb-1 SHERPA (QCD+EW) SHERPA (QCD+EW) SHERPA (QCD) SHERPA (QCD) 1/σfid 1/σfid Theory/DataW ⋅ dσ/dC/ bin widthTheory/DataW ⋅〈 Ngap 〉 dσ/dC/ bin width l jet j 1/σfid 1/σfid l jet j 1 1 10−1 ATLAS ATLAS 10−2 Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 10−1 1 10−1 1.5 1 0.5 1.5 1 0.5 10−11 10−1 Jet centrality Jet centrality Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 10 POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) 1 10 POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) 1 10−1 10−1 ATLAS ATLAS Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 10−2 10−1 1 10−1 1.5 1 0.5 1.5 1 0.5 10−1 1 10−1 Lepton centrality Lepton centrality Fig. 38 Unfolded normalized differential Wjj production cross sec 2.0 TeV (right). Both statistical (inner bar) and total (outer bar)mea tions as a function of jet centrality (top) and lepton centrality (bot surement uncertainties are shown, as well as ratios of the theoretical tom) for the inclusive fducial region with Mjj > 1.5TeV (left)and predictions to the data (the bottom panel in each distribution) 123 Eur. Phys. J. C (2017) 77 :474 Page 45 of 74 474 Fig. 39 Unfolded differential Data s = 8 TeV, 20.2 fb-1 s = 8 TeV, 20.2 fb-1 Data 104 Wjj production cross sections as a function of lepton centrality POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD+EW) 104 SHERPA (QCD+EW) POWHEG+PYTHIA8 (QCD) HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) SHERPA (QCD) in the inclusive fducial region 103 with four thresholds on the dijet 103 Theory/Datadσ/dCl [fb/ bin width]Theory/Datadσ/dCl [fb/ bin width] Theory/Datadσ/dCl [fb/ bin width]Theory/Datadσ/dCl [fb/ bin width] invariant mass (0.5, 1.0, 1.5, and 2.0 TeV). The bottomplot shows 102 the normalized distribution for 102 Mjj > 2.0 TeV. Both statistical (inner bar) and total (outer bar) measurement uncertainties are 10 10 shown, as well as ratios of the theoretical predictions to the ATLAS ATLAS Wjj inclusive region (Mjj>0.5 TeV) Wjj inclusive region (M >1.0 TeV) data (the bottom panel in each 1 jj 1 distribution) 10−1 1 10−1 1.5 1 0.5 1.5 1 0.5 10−11 10−11 Lepton centrality Lepton centrality Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) 102 SHERPA (QCD) 103 POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) 102 10 10 1 1 ATLAS ATLAS Wjj inclusive region (Mjj>1.5 TeV) Wjj inclusive region (Mjj>2.0 TeV) 10−1 1 10−1 1.5 1 0.5 1.5 1 0.5 10−11 10−1 Lepton centrality Lepton centrality 1/σ fid Theory/DataW ⋅ dσ/dLC/ bin width 4 Data s = 8 TeV, 20.2 fb-1 Interference uncertainty POWHEG+PYTHIA8 EW-only 3 3.5 SHERPA EW-only 2.5 2 1.5 1 0.5 0 ATLAS Wjj inclusive region (Mjj>2.0 TeV)−0.5 1.5 1 0.5 0 0.2 0.4 0.6 0.8 1 Lepton centrality 123 10 s = 8 TeV, 20.2 fb-1 HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) SHERPA (QCD) 10 1 Theory/Datadσ/dp [fb/GeV]Theory/Datadσ/dp [fb/GeV] TT TT 1 10−1 10−1 10−2 10−2 ATLASATLAS Wjj inclusive region (M >0.5 TeV)Wjj inclusive region (M >1.0 TeV) jjjj 10−3 102102 1.5 1 0.5 1.5 1 0.5 102 103 102 5×102 Leading-jet p [GeV] Leading-jet p [GeV] TT Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) 1 SHERPA (QCD) SHERPA (QCD) 10−1 10−1 10−2 10−2 ATLAS ATLAS Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 102102 1.5 1 0.5 1.5 1 0.5 102 5×102 102 5×102 Leading-jet p [GeV] Leading-jet p [GeV] TT Fig. 40 Unfolded absolute differential Wjj production cross sections (inner bar)and total(outer bar) measurement uncertainties are shown, as a function of leading-jet pT for the inclusive fducial region when the as well as ratios of the theoretical predictions to the data (the bottom dijet invariant mass threshold is progressively raised in 500 GeV incre-panel in each distribution) ments from 0.5 TeV (topleft)to2.0 TeV(bottomright). Both statistical 123 s = 8 TeV, 20.2 fb-1 10−2 HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) 10−2 SHERPA (QCD) 10−3 1/σfid 1/σfid Theory/DataW ⋅ dσ/dp [GeV-1] Theory/DataW ⋅ dσ/dp [GeV-1] TT 1/σfid 1/σfid TT 10−3 10−4 10−5 10−4 10−6 ATLASATLAS Wjj inclusive region (M >0.5 TeV)Wjj inclusive region (M >1.0 TeV) jjjj 10−7 10−5 102102 1.5 1 0.5 1.5 1 0.5 102 103 102 5×102 Leading-jet p [GeV] Leading-jet p [GeV] TT 10−2 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) SHERPA (QCD+EW) 10−2 SHERPA (QCD) 10−3 10−3 10−4 ATLAS ATLAS Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 102102 1.5 1 0.5 1.5 1 0.5 102 5×102 102 5×102 Leading-jet p [GeV] Leading-jet p [GeV] TT Fig. 41 Unfolded normalized differential Wjj production cross sec-2.0 TeV). Both statistical (inner bar)and total(outer bar) measurement tions as a function of the leading-jet pT in the inclusive fducial region uncertainties are shown, as well as ratios of the theoretical predictions with four thresholds on the dijet invariant mass (0.5, 1.0, 1.5, and to thedata(the bottom panel in each distribution) 123 474 Page 48 of 74 Eur. Phys. J. C (2017) 77 :474 Fig. 42 Unfolded absolute Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 102 differential Wjj production POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) 10 HEJ (QCD) + POW+PY (EW) cross sections as a function of leading-jet pT for the 10 forward-lepton control region Theory/Datadσ/dp [fb/GeV]Theory/Datadσ/dp [fb/GeV]Theory/Datadσ/dp [fb/GeV] TTT 1/σfid Theory/DataW ⋅ dσ/dp [GeV-1] Theory/Datadσ/dp [fb/GeV]Theory/Datadσ/dp [fb/GeV] TT T (topleft), 1 1 forward-lepton/central-jet fducial region (top right), the 10−1 signal regions with Mjj > 0.5TeV (middleleft) 10−2 10−1 and 1.0 TeV(middle right), and the central-jet validation region 10−3 (bottom). The absolute (left)and ATLASATLAS 10−2 Wjj forward-lepton control region Wjj forward-lepton/central-jet region normalized (right) distributions 10−4 are shown in the central-jet region. Both statistical (inner bar)and total(outer bar) measurement uncertainties are shown, as well as ratios of the 102102 1.5 1 0.5 1.5 1 0.5 theoretical predictions to the 102 103 102 2×102 5×102 Leading-jet p [GeV] Leading-jet p [GeV] data (the bottom panel in each TT distribution) 102 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) HEJ (QCD) + POW+PY (EW) 10 1 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) 1 SHERPA (QCD) 10−1 10−1 ATLAS ATLAS 10−2 Wjj signal region (Mjj>0.5 TeV) Wjj signal region (Mjj>1.0 TeV) 10−2 102102 1.5 1 0.5 1.5 1 0.5 102 5×102 102 5×102 Leading-jet p [GeV] Leading-jet p [GeV] TT Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) s = 8 TeV, 20.2 fb-1 Data 10−1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 10−2 10−3 10 1 10−4 10−1 10−5 10−2 10−6 ATLAS ATLAS Wjj central-jet validation region Wjj central-jet validation region 10−3 10−7 102102 1.5 1 0.5 1.5 1 0.5 102 5×102 102 5×102 Leading-jet p [GeV] Leading-jet p [GeV] TT 123 s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 EW-only POWHEG+PYTHIA8 EW-only SHERPA EW-only Theory/Datadσ/dp [fb/GeV]Theory/Datadσ/dp [fb/GeV] TT TT SHERPA EW-only 1 10−1 10−1 10−2 ATLAS ATLAS Wjj signal region (M >1.0 TeV) Wjj inclusive region (M >1.0 TeV) 10−2 jj jj 102102 1.5 1 0.5 1.5 1 0.5 102 5×102 102 5×102 Leading-jet p [GeV] Leading-jet p [GeV] TT Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 Interference uncertainty POWHEG+PYTHIA8 EW-only SHERPA EW-only 10−1 10−2 Interference uncertainty 1 POWHEG+PYTHIA8 EW-only SHERPA EW-only 10−1 10−2 10−3 ATLAS ATLAS Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 10−3 102102 1.5 1 0.5 1.5 1 0.5 102 5×102 102 5×102 Leading-jet p [GeV] Leading-jet p [GeV] TT Fig. 43 Differential electroweak Wjj production cross sections as a (1.0, 1.5, and 2.0 TeV). Both statistical (inner bar) and total (outer bar) function of the leading-jet pT in the high-mass signal region and the measurement uncertainties are shown, as well as ratios of the theoretical inclusive fducial region with three thresholds on the dijet invariant mass predictions to the data (the bottom panel in each distribution) 123 474 Page 50 of 74 Eur. Phys. J. C (2017) 77 :474 Fig. 44 Unfolded normalized 10−2 10−2 Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 differential Wjj production POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) POWHEG+PYTHIA8 (QCD) cross sections as a function of SHERPA (QCD+EW) SHERPA (QCD+EW) dijet pT in the inclusive (top), forward-lepton/central-jet SHERPA (QCD) SHERPA (QCD) 10−3 10−3 1/σ fid 1/σfid 1/σfid Theory/DataW ⋅ dσ/dp [GeV-1] Theory/DataW ⋅ dσ/dp [GeV-1] Theory/DataW ⋅ dσ/dp [GeV-1] TTT 1/σ fid 1/σfid 1/σfid Theory/DataW ⋅ dσ/dp [GeV-1] Theory/DataW ⋅ dσ/dp [GeV-1] Theory/DataW ⋅ dσ/dp [GeV-1] TTT (middleleft), forward-lepton (middle right), central-jet (bottomleft), and high-mass 10−4 signal (bottom right) fducial regions. The inclusive regions 10−4 show the distributions for Mjj 10−5 thresholds of 1.5 TeV (left)and 2.0 TeV (right). Both statistical ATLASATLAS Wjj inclusive region (Mjj>1.5 TeV) Wjj inclusive region (Mjj>2.0 TeV) (inner bar) and total (outer bar) measurement uncertainties are shown, as well as ratios of the theoretical predictions to the data (the bottom panel in each distribution) 1.5 1 0.5 1.5 1 0.5 0 200 400 600 800 0 200 400 600 Dijet p [GeV] Dijet p [GeV] TT 10−2 s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 10−2 SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 10−3 Data POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 10−3 10−4 10−4 10−5 ATLAS ATLAS Wjj forward-lepton/central-jet region Wjj forward-lepton control region 10−6 10−5 1.5 1 0.5 1.5 1 0.5 0 200 400 600 0 200 400 600 800 Dijet p [GeV] Dijet p [GeV] TT Data s = 8 TeV, 20.2 fb-1 s = 8 TeV, 20.2 fb-1 Data 10−2 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) POWHEG+PYTHIA8 (QCD+EW) 10−2 POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) 10−3 HEJ (QCD) + POW+PY (EW) 10−3 10−4 10−4 10−5 ATLAS ATLAS 10−5 Wjj central-jet validation region Wjj signal region (Mjj>1.0 TeV) 1.5 1 0.5 1.5 1 0.5 0 200 400 600 800 0 200 400 600 800 Dijet p [GeV] Dijet p [GeV] TT Eur. Phys. J. C (2017) 77 :474 Page 51 of 74 474 Fig. 45 Differential Wjj Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 10 1 production cross sections as a POWHEG+PYTHIA8 (QCD) POWHEG+PYTHIA8 (QCD) function of dijet pT in the SHERPA (QCD+EW) SHERPA (QCD+EW) SHERPA (QCD) SHERPA (QCD) signal, high-mass signal, HEJ (QCD) + POW+PY (EW) forward-lepton/central-jet, 10−1 1 forward-lepton, and central-jet fducial regions. Both statistical (inner bar) and total (outer bar) 10−1 10−2 measurement uncertainties are shown, as well as ratios of the theoretical predictions to the 10−2 10−3 data (the bottom panel in each distribution) ATLASATLAS Wjj signal region (Mjj>0.5 TeV) Wjj signal region (Mjj>1.0 TeV)10−3 Theory/Datadσ/dp [fb/GeV]Theory/Datadσ/dp [fb/GeV] TT Theory/Datadσ/dp [fb/GeV]Theory/Datadσ/dp [fb/GeV] TT 1.5 1 0.5 1.5 1 0.5 0 200 400 600 800 0 200 400 600 800 Dijet p [GeV] Dijet p [GeV] TT Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 10 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 1 1 10−1 10−1 10−2 10−2 ATLAS ATLAS 10−3 Wjj forward-lepton/central-jet region Wjj forward-lepton control region 1.5 1 0.5 1.5 1 0.5 0 200 400 600 0 200 400 600 800 Dijet p [GeV] Dijet p [GeV] TT Theory/Datadσ/dp [fb/GeV] T Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 1 10−1 10−2 ATLAS Wjj central-jet validation region 1.5 1 0.5 0 200 400 600 800 Dijet p [GeV] T 123 s = 8 TeV, 20.2 fb-1 1 HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) SHERPA (QCD) Theory/Datadσ/dp [fb/GeV]Theory/Datadσ/dp [fb/GeV] TT TT 1 10−1 10−1 10−2 10−2 ATLAS ATLAS Wjj inclusive region (M >0.5 TeV) Wjj inclusive region (M >1.0 TeV) jj jj 10−3 1.5 1 0.5 1.5 1 0.5 0 200 400 600 800 0 200 400 600 800 Dijet p [GeV] Dijet p [GeV] TT 1 s = 8 TeV, 20.2 fb-1 Data Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD+EW) 10−1 SHERPA (QCD) SHERPA (QCD) 10−1 10−2 10−2 10−3 10−3 ATLAS ATLAS Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 10−4 1.5 1 0.5 1.5 1 0.5 0 200 400 600 800 0 200 400 600 Dijet p [GeV] Dijet p [GeV] TT Fig. 46 Differential Wjj production cross sections as a function of and total (outer bar) measurement uncertainties are shown, as well as dijet pT in the inclusive fducial region with four thresholds on the dijet ratios of the theoretical predictions to the data (the bottom panel in each invariant mass (0.5, 1.0, 1.5, and 2.0 TeV). Both statistical (inner bar) distribution) 123 s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 10 SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) HEJ (QCD) + POW+PY (EW) 1/σ fid 1/σfid Theory/DataW ⋅ dσ/dΔφ/ bin widthTheory/DataW ⋅ dσ/dΔφ/ bin width 1/σ fid 1/σfid 1 1 10−1 10−1 ATLAS ATLAS Wjj inclusive region (M >0.5 TeV) Wjj forward-lepton control region jj 1.5 1 0.5 1.5 1 0.5 00.5 100.5 1 Δφ(j, j) / π Δφ(j, j) / π 1212 Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 10 POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) HEJ (QCD) + POW+PY (EW) 1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) 10 HEJ (QCD) + POW+PY (EW) 1 10−1 10−1 ATLAS ATLAS Wjj central-jet validation region Wjj signal region (M >0.5 TeV) jj 1.5 1 0.5 1.5 1 0.5 00.5 100.5 1 Δφ(j, j) / π Δφ(j, j) / π 1212 Fig. 47 Unfolded normalized differential production cross sections bar)and total(outer bar) measurement uncertainties are shown, as well as a function of φ( j1, j2) for the inclusive, forward-lepton control, as ratios of the theoretical predictions to the data (the bottom panel in central-jet validation, and signal fducial regions. Both statistical (inner each distribution) 123 s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 10 SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) SHERPA (QCD) 1/σfid 1/σfid Theory/DataW ⋅ dσ/dΔφ/ bin widthTheory/DataW ⋅ dσ/dΔφ/ bin width 1/σfid 1/σfid 1 1 10−1 10−1 ATLAS ATLAS Wjj inclusive region (M >0.5 TeV) Wjj inclusive region (M >1.0 TeV) jj jj 1.5 1 0.5 1.5 1 0.5 00.5 100.5 1 Δφ(j, j) / π Δφ(j, j) / π 1212 Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 10 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) 10 POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) SHERPA (QCD+EW) SHERPA (QCD) 1 1 10−1 10−1 ATLAS ATLAS Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 1.5 1 0.5 1.5 1 0.5 00.5 100.5 1 Δφ(j, j) / π Δφ(j, j) / π 1212 Fig. 48 Unfolded normalized differential Wjj production cross sec-Both statistical (inner bar) and total (outer bar) measurement uncertions as a function of φ( j1, j2) in the inclusive fducial region with tainties are shown, as well as ratios of the theoretical predictions to the four thresholds on the dijet invariant mass (0.5, 1.0, 1.5, and 2.0 TeV). data (the bottom panel in each distribution) 123 Eur. Phys. J. C (2017) 77 :474 Page 55 of 74 474 Fig. 49 Unfolded normalized Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 differential Wjj production POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD+EW) 10 10 POWHEG+PYTHIA8 (QCD) POWHEG+PYTHIA8 (QCD) cross sections as a function of SHERPA (QCD+EW) SHERPA (QCD+EW) SHERPA (QCD) SHERPA (QCD) φ( j1, j2) in the signal, HEJ (QCD) + POW+PY (EW) high-mass signal, forward-lepton/central-jet, 1 1 1/σfid 1/σ fid Theory/DataW ⋅ dσ/dΔφ/ bin widthTheory/DataW ⋅ dσ/dΔφ/ bin width 1/σfid 1/σ fid Theory/DataW ⋅ dσ/dΔφ/ bin widthTheory/DataW ⋅ dσ/dΔφ/ bin width forward-lepton, and central-jet fducial regions. Both statistical (inner bar) and total (outer bar) measurement uncertainties are 10−1 10−1 shown, as well as ratios of the theoretical predictions to the data (the bottom panel in each ATLAS ATLAS Wjj signal region (Mjj>0.5 TeV) Wjj signal region (Mjj>1.0 TeV) distribution) 1.5 1 0.5 1.5 1 0.5 00.5 100.5 1 Δφ(j, j) / π Δφ(j, j) / π 1212 Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 10 POWHEG+PYTHIA8 (QCD+EW) 10 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 1 1 10−1 10−1 ATLAS ATLAS Wjj forward-lepton/central-jet region Wjj forward-lepton control region 1.5 1 0.5 1.5 1 0.5 00.5 100.5 1 Δφ(j, j) / π Δφ(j, j) / π 1212 1/σ fid Theory/DataW ⋅ dσ/dΔφ/ bin width Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 10 SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 1 10−1 ATLAS Wjj central-jet validation region 1.5 1 0.5 00.5 1 Δφ(j, j) / π 12 123 474 Page 56 of 74 Eur. Phys. J. C (2017) 77 :474 Fig. 50 Differential Wjj Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 production cross sections as a POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) POWHEG+PYTHIA8 (QCD) function of φ( j1, j2) in the SHERPA (QCD+EW) SHERPA (QCD+EW) SHERPA (QCD) SHERPA (QCD) signal, high-mass signal, 103 HEJ (QCD) + POW+PY (EW) forward-lepton/central-jet, 102 Theory/Datadσ/dΔφ [fb/ bin width] Theory/Datadσ/dΔφ [fb/ bin width] Theory/Datadσ/dΔφ [fb/ bin width] Theory/Datadσ/dΔφ [fb/ bin width] forward-lepton, and central-jet fducial regions. Both statistical (inner bar) and total (outer bar) measurement uncertainties are shown, as well as ratios of the 102 10 theoretical predictions to the data (the bottom panel in each distribution) ATLAS ATLAS Wjj signal region (Mjj>0.5 TeV) Wjj signal region (Mjj>1.0 TeV) 1.5 1 0.5 1.5 1 0.5 00.5 100.5 1 Δφ(j, j) / π Δφ(j, j) / π 1212 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 103 SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 103 102 102 ATLAS ATLAS 10 Wjj forward-lepton/central-jet region Wjj forward-lepton control region 10 1.5 1 0.5 1.5 1 0.5 00.5 100.5 1 Δφ(j, j) / π Δφ(j, j) / π 1212 Theory/Datadσ/dΔφ [fb/ bin width] Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 103 102 ATLAS Wjj central-jet validation region 10 1.5 1 0.5 00.5 1 Δφ(j, j) / π 12 123 s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) SHERPA (QCD+EW) HEJ (QCD) + POW+PY (EW) 103 SHERPA (QCD+EW) SHERPA (QCD) Theory/Datadσ/dΔφ [fb/ bin width] Theory/Datadσ/dΔφ [fb/ bin width] 103 102 10 102 ATLAS ATLAS Wjj inclusive region (M >0.5 TeV) Wjj inclusive region (M >1.0 TeV) jj jj 1.5 1 0.5 1.5 1 0.5 00.5 100.5 1 Δφ(j, j) / π Δφ(j, j) / π 1212 Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) Data s = 8 TeV, 20.2 fb-1 POWHEG+PYTHIA8 (QCD+EW) 102 POWHEG+PYTHIA8 (QCD) SHERPA (QCD+EW) SHERPA (QCD) 102 10 10 1 ATLAS ATLAS 1 Wjj inclusive region (M >1.5 TeV) Wjj inclusive region (M >2.0 TeV) jj jj 1.5 1 0.5 1.5 1 0.5 00.5 100.5 1 Δφ(j, j) / π Δφ(j, j) / π 1212 Fig. 51 Differential Wjj production cross sections as a function of bar)and total(outer bar) measurement uncertainties are shown, as well φ( j1, j2) in the inclusive fducial region with four thresholds on the as ratios of the theoretical predictions to the data (the bottom panel in dijet invariant mass (0.5, 1.0, 1.5, and 2.0 TeV). Both statistical (inner each distribution) 123 474 Page 58 of 74 Eur. Phys. J. C (2017) 77 :474 Fig. 52 Differential Data s = 8 TeV, 20.2 fb-1 Data s = 8 TeV, 20.2 fb-1 electroweak Wjj production Interference uncertainty Interference uncertainty cross sections as a function of POWHEG+PYTHIA8 EW-only POWHEG+PYTHIA8 EW-only 102 SHERPA EW-only SHERPA EW-only φ( j1, j2) in the high-mass 102 1/σfid Theory/DataW ⋅ dσ/dΔφ/ bin widthTheory/Datadσ/dΔφ [fb/ bin width] Theory/Datadσ/dΔφ [fb/ bin width] 1/σfid Theory/DataW ⋅ dσ/dΔφ/ bin widthTheory/Datadσ/dΔφ [fb/ bin width]Theory/Datadσ/dΔφ [fb/ bin width] signal region and the inclusive fducial region with three thresholds on the dijet invariant 10 mass (1.0, 1.5, and 2.0 TeV). The bottom two distributions are 10 normalized, the rest are absolute. Both statistical (inner 1 bar)and total(outer bar) measurement uncertainties are ATLAS ATLAS 1 Wjj signal region (Mjj>1.0 TeV) Wjj inclusive region (Mjj>1.0 TeV) shown, as well as ratios of the theoretical predictions to the data (the bottom panel in each distribution) 1.5 1 0.5 1.5 1 0.5 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Δφ(j, j) / π Δφ(j, j) / π 1212 Data s = 8 TeV, 20.2 fb-1 Interference uncertainty POWHEG+PYTHIA8 EW-only 102 SHERPA EW-only 10 Data s = 8 TeV, 20.2 fb-1 Interference uncertainty POWHEG+PYTHIA8 EW-only SHERPA EW-only 10 1 10−1 1 ATLAS ATLAS Wjj inclusive region (Mjj>1.5 TeV) Wjj inclusive region (Mjj>2.0 TeV) 1.5 1 0.5 1.5 1 0.5 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Δφ(j, j) / π Δφ(j, j) / π 1212 Data s = 8 TeV, 20.2 fb-1 Interference uncertainty Data s = 8 TeV, 20.2 fb-1 Interference uncertainty 10 10 POWHEG+PYTHIA8 EW-only SHERPA EW-only POWHEG+PYTHIA8 EW-only SHERPA EW-only 1 1 10−1 10−1 ATLAS ATLAS 10−2 10−2 Wjj inclusive region (Mjj>1.5 TeV) Wjj inclusive region (Mjj>2.0 TeV) 1.5 1 0.5 1.5 1 0.5 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 Δφ(j, j) / π Δφ(j, j) / π 1212 123 References 1. ATLAS Collaboration, Search for invisible decays of a Higgs √ boson using vector-boson fusion in pp collisions at s = 8TeV with the ATLAS detector. JHEP 01, 172 (2016). doi:10.1007/ JHEP01(2016)172. arXiv:1508.07869 [hep-ex] 2. CMS Collaboration, Searches for invisible decays of the Higgs √ boson in pp collisions at s = 7, 8, and 13 TeV. (2016). arXiv:1610.09218 [hep-ex] 3. CMS Collaboration, Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes. Eur. Phys. J. C 74, 2980 (2014). doi:10.1140/epjc/s10052-014-2980-6. arXiv:1404.1344 [hep-ex] 4. ATLAS Collaboration, Search for a charged Higgs boson produced in the vector-boson fusion mode with decay H±→ W±Z using pp √ collisions at s= 8 TeV with the ATLAS experiment. Phys. Rev. Lett. 114, 231801 (2015). doi:10.1103/PhysRevLett.114.231801. arXiv:1503.04233 [hep-ex] 5. CMS Collaboration, Search for dark matter and supersymmetry with a compressed mass spectrum in the vector boson fusion √ topology in proton–proton collisions at s = 8TeV.Phys. Rev. Lett. 118, 021802 (2017). doi:10.1103/PhysRevLett.118.021802. arXiv:1605.09305 [hep-ex] 6. CMS Collaboration, Search for supersymmetry in the vector- √ boson fusion topology in proton–proton collisions at s = 8TeV. JHEP 11, 189 (2015). doi:10.1007/JHEP11(2015)189. arXiv:1508.07628 [hep-ex] 7. A.G. Delannoy et al., Probing dark matter at the LHC using vec-tor Boson fusion processes. Phys. Rev. Lett. 111, 061801 (2013). doi:10.1103/PhysRevLett.111.061801. arXiv:1304.7779 [hep-ph] 8. B. Dutta et al., Vector boson fusion processes as a probe of supersymmetric electroweak sectors at the LHC. Phys. Rev. D 87, 035029 (2013). doi:10.1103/PhysRevD.87.035029. arXiv:1210.0964 [hep-ph] 9. T. Liu, L. Wang, J.M. Yang, Pseudo-goldstino and electroweakinos via VBF processes at LHC. JHEP 02, 177 (2015). doi:10.1007/ JHEP02(2015)177. arXiv:1411.6105 [hep-ph] 10. C. Englert, E. Re, M. Spannowsky, Pinning down Higgs triplets at the LHC. Phys. Rev. D 88, 035024 (2013). doi:10.1103/PhysRevD. 88.035024. arXiv:1306.6228 [hep-ph] 11. G. Bambhaniya, J. Chakrabortty, J. Gluza, T. Jelinski, R. Szafron, Search for doubly charged Higgs bosons through vector boson fusion at the LHC and beyond. Phys. Rev. D 92, 015016 (2015). doi:10.1103/PhysRevD.92.015016. arXiv:1504.03999 [hep-ph] 12. J.D. Bjorken, Rapidity gaps and jets as a new physics signature in very high-energy hadron hadron collisions. Phys. Rev. D 47, 101 (1993). doi:10.1103/PhysRevD.47.101 13. CMS Collaboration, Measurement of electroweak production of a √ W boson and two forward jets in proton–proton collisions at s= 8TeV. JHEP 11, 147 (2016). doi:10.1007/JHEP11(2016)147. arXiv:1607.06975 [hep-ex] 14. ATLAS Collaboration, Measurement of the electroweak production of dijets in association with a Z boson and distributions sensitive to vector boson fusion in proton–proton collisions at √ s = 8 TeV using the ATLAS detector. JHEP 04, 031 (2014). arXiv:1401.7610 [hep-ex] 15. CMS Collaboration, Measurement of electroweak production of two jets in association with a Z boson in proton–proton collisions √ at s = 8 TeV. Eur. Phys. J. C 75, 66 (2015). doi:10.1140/epjc/ s10052-014-3232-5. arXiv:1410.3153 [hep-ex] 16. ATLAS and CMS Collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp colli- √ sion data at s= 7and8TeV. JHEP 08, 045 (2016). doi:10.1007/ JHEP08(2016)045. arXiv:1606.02266 [hep-ex] 17. ATLAS Collaboration, Measurements of the W production cross sections in association with jets with the ATLAS detector. Eur. Phys. J. C 75, 82 (2015). doi:10.1140/epjc/s10052-015-3262-7. arXiv:1409.8639 [hep-ex] 18. CMS Collaboration, Differential cross section measurements for the production of a W boson in association with jets in proton– √ proton collisions at s = 7 TeV.Phys. Lett.B 741, 12 (2015). doi:10.1016/j.physletb.2014.12.003. arXiv:1406.7533 [hep-ex] 19. CDF Collaboration, T. Aaltonen et al., Measurement of the cross section for W√− boson production in association with jets in pp ¯collisions at s= 1.96 − TeV, Phys. Rev. D 77, 011108 (2008). doi:10.1103/PhysRevD.77.011108, arXiv:0711.4044 [hep-ex] 20. D0 Collaboration, V. M. Abazov et al., Studies of W boson plus √ jets production in pp ¯collisions at s = 1 : 96 TeV, Phys. Rev. D 88, 092001 (2013). doi:10.1103/PhysRevD.88.092001, arXiv:1302.6508 [hep-ex] 21. J.M. Campbell, R.K. Ellis, Next-to-leading order corrections to W+2 jet and Z+2 jet production at hadron colliders. Phys. Rev. D 65, 113007 (2002). doi:10.1103/PhysRevD.65.113007. arXiv:hep-ph/0202176 22. J.M. Campbell, R.K. Ellis, D.L. Rainwater, Next-to-leading order QCD predictions for W + 2 jet and Z + 2 jet production at the CERN LHC. Phys.Rev.D 68, 094021 (2003). doi:10.1103/PhysRevD.68. 094021. arXiv:hep-ph/0308195 23. R.K. Ellis, K. Melnikov, G. Zanderighi, W+3 jet production at the tevatron. Phys. Rev. D 80, 094002 (2009). doi:10.1103/PhysRevD. 80.094002. arXiv:0906.1445 [hep-ph] 24. C.F. Berger et al., Precise Predictions for W + 3 Jet production at hadron colliders. Phys. Rev. Lett. 102, 222001 (2009). doi:10. 1103/PhysRevLett.102.222001. arXiv:0902.2760 [hep-ph] 25. C.F. Berger et al., Precise predictions for W + 4 Jet production at the large hadron collider. Phys. Rev. Lett. 106, 092001 (2011). doi:10.1103/PhysRevLett.106.092001. arXiv:1009.2338 [hep-ph] 26. Z. Bern et al., Next-to-leading order W + 5-jet production at the LHC. Phys.Rev.D 88, 014025 (2013). doi:10.1103/PhysRevD.88. 014025. arXiv:1304.1253 [hep-ph] 27. S. Hoeche, F. Krauss, M. Schoenherr, F. Siegert, QCD matrix elements + parton showers: the NLO case. JHEP 04, 027 (2013). doi:10.1007/JHEP04(2013)027. arXiv:1207.5030 [hep-ph] 28. J. Alwall et al., The automated computation of tree-level and nextto-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). doi:10.1007/ JHEP07(2014)079. arXiv:1405.0301 [hep-ph] 29. J.M. Campbell, R.K. Ellis, P. Nason, G. Zanderighi, W and Z bosons in association with two jets using the POWHEG method. JHEP 08, 005 (2013). doi:10.1007/JHEP08(2013)005. arXiv:1303.5447 [hep-ph] 30. J.R. Andersen, J.M. Smillie, constructing all-order corrections to multi-jet rates. JHEP 01, 039 (2010). doi:10.1007/ JHEP01(2010)039. arXiv:0908.2786 [hep-ph] 31. J.R. Andersen, J.M. Smillie, The factorisation of the t-channel pole in quark-gluon scattering. Phys. Rev. D 81, 114021 (2010). doi:10. 1103/PhysRevD.81.114021. arXiv:0910.5113 [hep-ph] 32. J.R. Andersen, J.M. Smillie, Multiple jets at the LHC with high energy jets. JHEP 06, 010 (2011). doi:10.1007/JHEP06(2011)010. arXiv:1101.5394 [hep-ph] 33. J.R. Andersen, T. Hapola, J.M. Smillie, W plus multiple jets at the LHC with high energy jets. JHEP 09, 047 (2012). doi:10.1007/ JHEP09(2012)047. arXiv:1206.6763 [hep-ph] 34. K. Hagiwara, R.D. Peccei, D. Zeppenfeld, K. Hikasa, Probing the weak Boson sector in e+e−→ W+W−. Nucl. Phys. B 282, 253 (1987) 35. C. Oleari, D. Zeppenfeld, QCD corrections to electroweak ν()jj and +− jj production. Phys. Rev. D 69, 093004 (2004). doi:10. 1103/PhysRevD.69.093004. arXiv:hep-ph/0310156 123 36. F. Schissler, D. Zeppenfeld, Parton shower effects on W and Z production via vector Boson fusion at NLO QCD. JHEP 04, 057 (2013). doi:10.1007/JHEP04(2013)057. arXiv:1302.2884 [hepph] 37. ATLAS Collaboration, The ATLAS experiment at the CERN large hadron collider. JINST 3, S08003 (2008). doi:10.1088/1748-0221/ 3/08/S08003 38. ATLAS Collaboration, The ATLAS inner detector commissioning and calibration. Eur. Phys. J. C 70, 787 (2010). doi:10.1140/epjc/ s10052-010-1366-7. arXiv:1004.5293 [physics.ins-det] 39. ATLAS Collaboration, Performance of the ATLAS inner detector track and vertex reconstruction in high pile-up LHC environment, ATLAS-CONF-2012-042 (2012). https://cdsweb.cern.ch/record/ 1435196 40. ATLAS Collaboration, Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data. Eur. Phys. J. C 74, 3071 (2014). doi:10.1140/epjc/s10052-014-3071-4. arXiv:1407.5063 [hep-ex] 41. ATLAS Collaboration, Electron reconstruction and identifcation effciency measurements with the ATLAS detector using the 2011 LHC proton–proton collision data. Eur. Phys. J. C 74, 2941 (2014). doi:10.1140/epjc/s10052-014-2941-0. arXiv:1404.2240 [hep-ex] 42. ATLAS Collaboration, Electron effciency measurements with the ATLAS detector using the 2012 LHC proton–proton collision data, ATLAS-CONF-2014-032 (2014), https://cdsweb.cern.ch/record/ 1706245 43. ATLAS Collaboration, Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton–proton collision data. Eur. Phys. J. C 74, 3130 (2014). doi:10.1140/epjc/s10052-014-3130-x. arXiv:1407.3935 [hep-ex] 44. ATLAS Collaboration, Jet energy measurement and its systematic √ uncertainty in proton–proton collisions at s = 7 TeV with the ATLAS detector. Eur. Phys. J. C 75, 17 (2015). doi:10.1140/epjc/ s10052-014-3190-y. arXiv:1406.0076 [hep-ex] 45. M. Cacciari, G.P. Salam, G. Soyez, The anti-kt jet clustering algo-rithm. JHEP 04, 063 (2008). doi:10.1088/1126-6708/2008/04/063. arXiv:0802.1189 [hep-ph] 46. ATLAS Collaboration, Topological cell clustering in the ATLAS calorimeters and its performance in LHC Run 1 (2016), submitted to Eur. Phys. J. C, arXiv:1603.02934 [hep-ex] 47. ATLAS Collaboration, Monte Carlo calibration and combination of in-situ measurements of jet energy scale, jet energy resolution and jet mass in ATLAS, ATLAS-CONF-2015-037 (2015). https:// cdsweb.cern.ch/record/2044941 48. ATLAS Collaboration, Performance of pile-up mitigation tech √ niques for jets in pp collisions at s = 8 TeV using the ATLAS detector. Eur. Phys. J. C 76, 581 (2016). doi:10.1140/epjc/ s10052-016-4395-z. arXiv:1510.03823 [hep-ex] 49. ATLAS Collaboration, Performance of b-Jet identifcation in the ATLAS experiment. JINST 11, P04008 (2016). doi:10.1088/ 1748-0221/11/04/P04008. arXiv:1512.01094 [hep-ex] 50. ATLAS Collaboration, Performance of missing transverse momen-tum reconstruction in proton–proton collisions at 7 TeV with ATLAS. Eur. Phys. J. C 72, 1844 (2012). doi:10.1140/epjc/ s10052-011-1844-6. arXiv:1108.5602 [hep-ex] 51. ATLAS Collaboration, Performance of missing transverse momen-tum reconstruction in ATLAS studied in proton–proton collisions recorded in 2012 at 8 TeV, ATLAS-CONF-2013-082 (2013). https://cdsweb.cern.ch/record/1570993 52. ATLAS Collaboration, Improved luminosity determination in √ pp collisions at s = 7 TeV using the ATLAS detector at the LHC. Eur. Phys. J. C 73, 2518 (2013). doi:10.1140/epjc/ s10052-013-2518-3. arXiv:1302.4393 [hep-ex] 53. ATLAS Collaboration, Luminosity determination in pp collisions √ at s = 8 TeV using the ATLAS detector at the LHC. Eur. Phys. J. C 76, 653 (2016). doi:10.1140/epjc/s10052-016-4466-1. arXiv:1608.03953 [hep-ex] 54. ATLAS Collaboration, The ATLAS simulation infrastructure. Eur. Phys. J. C 70, 823 (2010). doi:10.1140/epjc/s10052-010-1429-9. arXiv:1005.4568 [physics.ins-det] 55. S. Agostinelli et al., GEANT4: a simulation toolkit. Nucl. Instrum. Meth. A 506, 250 (2003). doi:10.1016/S0168-9002(03)01368-8 56. T. Sjöstrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008). doi:10. 1016/j.cpc.2008.01.036. arXiv:0710.3820 [hep-ph] 57. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 11, 040 (2004). doi:10.1088/ 1126-6708/2004/11/040. arXiv:hep-ph/0409146 58. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with Parton shower simulations: the POWHEG method. JHEP 11, 070 (2007). doi:10.1088/1126-6708/2007/11/070. arXiv:0709.2092 [hep-ph] 59. ATLAS Collaboration, Summary of ATLAS PYTHIA 8 tunes, ATLAS-PUB-2011-003 (2012). https://cdsweb.cern.ch/record/ 1474107 60. H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). doi:10.1103/PhysRevD.82.074024. arXiv:1007.2241 [hep-ph] 61. K. Hamilton, P. Nason, G. Zanderighi, MINLO: multiscale improved NLO. JHEP 10, 155 (2012). doi:10.1007/ JHEP10(2012)155. arXiv:1206.3572 [hep-ph] 62. M. Bahr et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639 (2008). doi:10.1140/epjc/s10052-008-0798-9. arXiv:0803.0883 [hep-ph] 63. J.M. Butterworth, J.R. Forshaw, M.H. Seymour, Multiparton interactions in photoproduction at HERA. Z. Phys. C 72, 637 (1996). doi:10.1007/BF02909195, 10.1007/s002880050286. arXiv:hep-ph/9601371 64. T. Gleisberg et al., Event generation with SHERPA 1.1. JHEP 02, 007 (2009). doi:10.1088/1126-6708/2009/02/007. arXiv:0811.4622 [hep-ph] 65. S. Catani, F. Krauss, R. Kuhn, B.R. Webber, QCD matrix elements + parton showers. JHEP 11, 063 (2001). doi:10.1088/1126-6708/ 2001/11/063. arXiv:hep-ph/0109231 66. S. Kallweit, J.M. Lindert, P. Maierhofer, S. Pozzorini, M. Schönherr, NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging. JHEP 04, 021 (2016). doi:10.1007/JHEP04(2016)021. arXiv:1511.08692 [hep-ph] 67. S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini, M. Schönherr, NLO electroweak automation and precise predictions for W+multijet production at the LHC. JHEP 04, 012 (2015). doi:10. 1007/JHEP04(2015)012. arXiv:1412.5157 [hep-ph] 68. M. Czakon, A. Mitov, Top++: a program for the calculation of the top-pair cross-section at Hadron colliders. Comput. Phys. Commun. 185, 2930 (2014). doi:10.1016/j.cpc.2014.06.021. arXiv:1112.5675 [hep-ph] 69. S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. JHEP 06, 029 (2002). doi:10.1088/ 1126-6708/2002/06/029. arXiv:hep-ph/0204244 70. G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). JHEP 0101, 010 (2001). doi:10.1088/1126-6708/2001/ 01/010. arXiv:hep-ph/0011363 71. T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 physics and manual. JHEP 05, 026 (2006). doi:10.1088/1126-6708/2006/05/ 026. arXiv:hep-ph/0603175 72. B.P. Kersevan, E. Richter-Was, The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1. Comput. Phys. Commun. 184, 919 (2013). doi:10.1016/j.cpc.2012.10.032. arXiv:hep-ph/0405247 123 73. J. Pumplin et al., New generation of parton distributions with uncer-the LHC. JHEP 01, 094 (2015). doi:10.1007/JHEP01(2015)094. tainties from global QCD analysis. JHEP 07, 012 (2002). doi:10. arXiv:1411.0916 [hep-ph] 1088/1126-6708/2002/07/012. arXiv:hep-ph/0201195 82. T. Plehn, D. Rainwater, D. Zeppenfeld, Determining the structure 74. S. Hoeche, F. Krauss, M. Schoenherr, F. Siegert, NLO matrix ele-of Higgs couplings at the CERN Large Hadron Collider. Phys. Rev. ments and truncated showers. JHEP 08, 123 (2011). doi:10.1007/ Lett. 88, 051801 (2002). doi:10.1103/PhysRevLett.88.051801 JHEP08(2011)123. arXiv:1009.1127 [hep-ph] 83. U. Baur, D. Zeppenfeld, Measuring three vector boson couplings in 75. J.M. Campbell, R.K. Ellis, C. Williams, Vector boson pair qq → qqW at the SSC’. In: Workshop on physics at current accel-production at the LHC. JHEP 07, 018 (2011). doi:10.1007/ erators and the supercollider Argonne, Illinois, June 2–5, 1993, JHEP07(2011)018. arXiv:1105.0020 [hep-ph] 0327 (1993). arXiv:hep-ph/9309227 [hep-ph] 76. W. Verkerke, D.P. Kirkby, The RooFit toolkit for data modeling 84. ATLAS Collaboration, Measurement of total and differential (2003). arXiv:physics/0306116 [physics.data-an] W+W-. production cross sections in proton–proton collisions at √ 77. HEPDATA repository for all differential and integrated produc-s = 8 TeV with the ATLAS detector and limits on anomalous tion cross-sections, uncertainties, and correlations measured in this triple-gauge-boson couplings. JHEP 09, 029 (2016). doi:10.1007/ paper (2016). https://www.hepdata.net/record/76505 JHEP09(2016)029. arXiv:1603.01702 [hep-ex] 78. T. Adye, Unfolding algorithms and tests using RooUnfold (2011). 85. K. Hagiwara, S. Ishihara, R. Szalapski, D. Zeppenfeld, Low-energy arXiv:1105.1160 [physics.data-an] effects of new interactions in the electroweak boson sector. Phys. 79. G. D’Agostini, Improved iterative Bayesian unfolding, 2010, Rev. D 48, 2182 (1993). doi:10.1103/PhysRevD.48.2182 arXiv:1010.0632 [physics.data-an] 86. G.J. Feldman, R.D. Cousins, A Unifed approach to the classi 80. K.G. Hayes, M.L. Perl, B. Efron, Application of the Bootstrap sta-cal statistical analysis of small signals. Phys. Rev. D 57, 3873 tistical method to the Tau decay mode problem. Phys. Rev. D 39, (1998). doi:10.1103/PhysRevD.57.3873. arXiv:physics/9711021 274 (1989). doi:10.1103/PhysRevD.39.274 [physics.data-an] 81. A. Denner, L. Hofer, A. Scharf, S. Uccirati, Electroweak correc-87. ATLAS Collaboration, ATLAS computing acknowledgements tions to lepton pair production in association with two hard jets at 2016–2017, ATL-GEN-PUB-2016-002 (2016). https://cdsweb. cern.ch/record/2202407 ATLASCollaboration M. Aaboud137d,G. Aad88, B. Abbott115, J. Abdallah8, O. Abdinov12, B. Abeloos119, S. H. Abidi161, O. S. AbouZeid139, N. L. Abraham151,H. Abramowicz155,H. Abreu154,R. Abreu118,Y. Abulaiti148a,148b,B. S. Acharya167a,167b,a,S. Adachi157, L. Adamczyk41a, D.L.Adams27, J. Adelman110, M. Adersberger102, T. Adye133, A. A. Affolder139, T. Agatonovic-Jovin14, C. Agheorghiesei28b, J. A. Aguilar-Saavedra128a,128f, S. P. Ahlen24, F. Ahmadov68,b, G. Aielli135a,135b, S. Akatsuka71, H. Akerstedt148a,148b, T.P.A.Åkesson84,A. V. Akimov98, G. L. Alberghi22a,22b, J. Albert172, M. J. Alconada Verzini74, M. Aleksa32, I. N. Aleksandrov68,C. Alexa28b, G. Alexander155, T. Alexopoulos10, M. Alhroob115,B. Ali130, M. Aliev76a,76b, G. Alimonti94a, J. Alison33, S. P. Alkire38, B.M.M.Allbrooke151, B.W.Allen118, P. P. Allport19, A. Aloisio106a,106b, A. Alonso39, F. Alonso74, C. Alpigiani140, A. A. Alshehri56, M. Alstaty88, B. Alvarez Gonzalez32, D. Álvarez Piqueras170, M. G. Alviggi106a,106b, B.T.Amadio16, Y. Amaral Coutinho26a, C. Amelung25, D. Amidei92, S. P. Amor Dos Santos128a,128c, A. Amorim128a,128b, S. Amoroso32, G. Amundsen25, C. Anastopoulos141, L. S. Ancu52, N. Andari19, T. Andeen11, C. F. Anders60b, J. K. Anders77, K.J.Anderson33, A. Andreazza94a,94b, V. Andrei60a, S. Angelidakis9, I. Angelozzi109, A. Angerami38, F. Anghinolf32, A. V. Anisenkov111,c, N. Anjos13, A. Annovi126a,126b, C. Antel60a, M. Antonelli50, A. Antonov100,*, D.J.Antrim166, F. Anulli134a, M. Aoki69, L. Aperio Bella32, G. Arabidze93, Y. Arai69, J. P. Araque128a, V. Araujo Ferraz26a, A.T.H.Arce48, R.E.Ardell80, F. A. Arduh74, J.-F. Arguin97, S. Argyropoulos66,M. Arik20a, A.J.Armbruster145, L. J. Armitage79, O. Arnaez32, H. Arnold51, M. Arratia30, O. Arslan23, A. Artamonov99, G. Artoni122,S. Artz86,S. Asai157, N. Asbah45, A. Ashkenazi155, L. Asquith151, K. Assamagan27, R. Astalos146a, M. Atkinson169, N. B. Atlay143, K. Augsten130, G. Avolio32,B. Axen16, M. K. Ayoub119, G. Azuelos97,d, A. E. Baas60a, M.J.Baca19, H. Bachacou138, K. Bachas76a,76b, M. Backes122, M. Backhaus32, P. Bagiacchi134a,134b, P. Bagnaia134a,134b, J. T. Baines133, M. Bajic39, O. K. Baker179, E.M.Baldin111,c, P. Balek175, T. Balestri150, F. Balli138, W. K. Balunas124, E. Banas42, Sw. Banerjee176,e, A. A. E. Bannoura178, L. Barak32, E. L. Barberio91, D. Barberis53a,53b, M. Barbero88, T. Barillari103, M.-S. Barisits32, T. Barklow145,N. Barlow30, S. L. Barnes36c, B. M. Barnett133, R. M. Barnett16, Z. Barnovska-Blenessy36a, A. Baroncelli136a, G. Barone25, A.J.Barr122, L. Barranco Navarro170, F. Barreiro85, J. Barreiro Guimarães da Costa35a, R. Bartoldus145,A. E. Barton75,P. Bartos146a, A. Basalaev125, A. Bassalat119,f, R. L. Bates56, S. J. Batista161, J. R. Batley30, M. Battaglia139, M. Bauce134a,134b, F. Bauer138, H. S. Bawa145,g, J. B. Beacham113, M. D. Beattie75, T. Beau83, P. H. Beauchemin165, P. Bechtle23, H. P. Beck18,h, K. Becker122, M. Becker86, M. Beckingham173, C. Becot112, A. J. Beddall20d, A. Beddall20b, V. A. Bednyakov68, M. Bedognetti109,C. P. Bee150, T. A. Beermann32, M. Begalli26a, M. Begel27, J.K.Behr45,A. S. Bell81,G. Bella155, L. Bellagamba22a, A. Bellerive31, M. Bellomo89, K. Belotskiy100, O. Beltramello32, N. L. Belyaev100, O. Benary155,*, D. Benchekroun137a, M. Bender102, K. Bendtz148a,148b, N. Benekos10, Y. Benhammou155, E. Benhar Noccioli179, 123 J. Benitez66, D. P. Benjamin48, M. Benoit52, J. R. Bensinger25, S. Bentvelsen109, L. Beresford122, M. Beretta50, D. Berge109, E. Bergeaas Kuutmann168, N. Berger5, J. Beringer16, S. Berlendis58, N. R. Bernard89, G. Bernardi83, C. Bernius112, F. U. Bernlochner23,T. Berry80,P. Berta131, C. Bertella86, G. Bertoli148a,148b, F. Bertolucci126a,126b, I. A. Bertram75, C. Bertsche45, D. Bertsche115, G.J.Besjes39, O. Bessidskaia Bylund148a,148b, M. Bessner45, N. Besson138, C. Betancourt51, A. Bethani87, S. Bethke103, A.J.Bevan79, R. M. Bianchi127, M. Bianco32, O. Biebel102, D. Biedermann17, R. Bielski87,N. V. Biesuz126a,126b, M. Biglietti136a, J. Bilbao De Mendizabal52, T.R.V.Billoud97, H. Bilokon50, M. Bindi57, A. Bingul20b,C. Bini134a,134b, S. Biondi22a,22b, T. Bisanz57, C. Bittrich47, D.M.Bjergaard48, C. W. Black152, J. E. Black145, K. M. Black24, D. Blackburn140, R.E.Blair6, T. Blazek146a, I. Bloch45, C. Blocker25,A. Blue56, W. Blum86,*, U. Blumenschein79, S. Blunier34a, G. J. Bobbink109, V. S. Bobrovnikov111,c, S. S. Bocchetta84, A. Bocci48, C. Bock102, M. Boehler51, D. Boerner178, D. Bogavac102, A. G. Bogdanchikov111, C. Bohm148a, V. Boisvert80, P. Bokan168,i,T. Bold41a, A. S. Boldyrev101, M. Bomben83, M. Bona79, M. Boonekamp138,A. Borisov132, G. Borissov75, J. Bortfeldt32, D. Bortoletto122, V. Bortolotto62a,62b,62c,K. Bos109, D. Boscherini22a,M. Bosman13, J.D.BossioSola29, J. Boudreau127, J. Bouffard2, E. V. Bouhova-Thacker75, D. Boumediene37, C. Bourdarios119, S.K.Boutle56, A. Boveia113, J. Boyd32, I.R.Boyko68, J. Bracinik19, A. Brandt8, G. Brandt57, O. Brandt60a, U. Bratzler158,B. Brau89, J.E.Brau118, W. D. Breaden Madden56, K. Brendlinger45, A. J. Brennan91, L. Brenner109, R. Brenner168, S. Bressler175, D. L. Briglin19, T. M. Bristow49, D. Britton56, D. Britzger45, F. M. Brochu30, I. Brock23, R. Brock93, G. Brooijmans38, T. Brooks80, W. K. Brooks34b,J. Brosamer16, E. Brost110, J. H Broughton19, P. A. Bruckman de Renstrom42, D. Bruncko146b, A. Bruni22a, G. Bruni22a, L. S. Bruni109, BH Brunt30, M. Bruschi22a, N. Bruscino23, P. Bryant33, L. Bryngemark84, T. Buanes15, Q. Buat144, P. Buchholz143, A. G. Buckley56, I. A. Budagov68, F. Buehrer51, M. K. Bugge121, O. Bulekov100, D. Bullock8, H. Burckhart32, S. Burdin77,C. D. Burgard51, A. M. Burger5, B. Burghgrave110, K. Burka42, S. Burke133, I. Burmeister46, J.T.P.Burr122, E. Busato37, D. Büscher51, V. Büscher86, P. Bussey56, J.M.Butler24, C. M. Buttar56, J. M. Butterworth81, P. Butti32, W. Buttinger27, A. Buzatu35c, A. R. Buzykaev111,c, S. Cabrera Urbán170, D. Caforio130, V.M.Cairo40a,40b, O. Cakir4a, N. Calace52, P. Calafura16, A. Calandri88, G. Calderini83, P. Calfayan64, G. Callea40a,40b, L. P. Caloba26a, S. Calvente Lopez85,D. Calvet37,S. Calvet37,T. P. Calvet88, R. Camacho Toro33, S. Camarda32, P. Camarri135a,135b, D. Cameron121, R. Caminal Armadans169, C. Camincher58, S. Campana32, M. Campanelli81, A. Camplani94a,94b, A. Campoverde143, V. Canale106a,106b, M. Cano Bret36c, J. Cantero116,T. Cao155, M. D. M. Capeans Garrido32, I. Caprini28b, M. Caprini28b, M. Capua40a,40b, R. M. Carbone38, R. Cardarelli135a, F. Cardillo51,I. Carli131,T. Carli32, G. Carlino106a, B. T. Carlson127, L. Carminati94a,94b, R.M.D.Carney148a,148b, S. Caron108, E. Carquin34b, G. D. Carrillo-Montoya32,J. Carvalho128a,128c, D. Casadei19, M. P. Casado13,j, M. Casolino13, D. W. Casper166, R. Castelijn109, A. Castelli109, V. Castillo Gimenez170, N. F. Castro128a,k, A. Catinaccio32, J. R. Catmore121, A. Cattai32, J. Caudron23, V. Cavaliere169, E. Cavallaro13, D. Cavalli94a, M. Cavalli-Sforza13, V. Cavasinni126a,126b, E. Celebi20a, F. Ceradini136a,136b, L. Cerda Alberich170, A. S. Cerqueira26b, A. Cerri151, L. Cerrito135a,135b, F. Cerutti16, A. Cervelli18, S. A. Cetin20c, A. Chafaq137a, D. Chakraborty110, S. K. Chan59, W. S. Chan109, Y. L. Chan62a, P. Chang169, J. D. Chapman30, D.G.Charlton19, A. Chatterjee52, C. C. Chau161, C. A. Chavez Barajas151,S. Che113, S. Cheatham167a,167c, A. Chegwidden93, S. Chekanov6, S. V. Chekulaev163a, G. A. Chelkov68,l, M.A.Chelstowska32, C. Chen67, H. Chen27, S. Chen35b, S. Chen157, X. Chen35c,m, Y. Chen70, H. C. Cheng92, H. J. Cheng35a, Y. Cheng33, A. Cheplakov68, E. Cheremushkina132, R. Cherkaoui El Moursli137e, V. Chernyatin27,*, E. Cheu7, L. Chevalier138, V. Chiarella50, G. Chiarelli126a,126b, G. Chiodini76a, A. S. Chisholm32, A. Chitan28b,Y. H. Chiu172, M. V. Chizhov68, K. Choi64, A. R. Chomont37, S. Chouridou9, B.K.B.Chow102, V. Christodoulou81, D. Chromek-Burckhart32,M. C. Chu62a, J. Chudoba129, A. J. Chuinard90, J. J. Chwastowski42, L. Chytka117, A.K.Ciftci4a, D. Cinca46, V. Cindro78, I.A.Cioara23, C. Ciocca22a,22b, A. Ciocio16, F. Cirotto106a,106b, Z. H. Citron175, M. Citterio94a, M. Ciubancan28b, A. Clark52, B. L. Clark59, M. R. Clark38, P. J. Clark49, R. N. Clarke16, C. Clement148a,148b, Y. Coadou88, M. Cobal167a,167c, A. Coccaro52, J. Cochran67, L. Colasurdo108, B. Cole38, A. P. Colijn109, J. Collot58, T. Colombo166, P. Conde Muiño128a,128b, E. Coniavitis51, S. H. Connell147b, I. A. Connelly87, V. Consorti51, S. Constantinescu28b, G. Conti32, F. Conventi106a,n, M. Cooke16, B. D. Cooper81, A. M. Cooper-Sarkar122, F. Cormier171, K.J.R.Cormier161, T. Cornelissen178, M. Corradi134a,134b, F. Corriveau90,o, A. Cortes-Gonzalez32, G. Cortiana103,G. Costa94a,M. J. Costa170, D. Costanzo141, G. Cottin30,G. Cowan80,B. E. Cox87, K. Cranmer112, S.J.Crawley56, R. A. Creager124,G. Cree31, S. Crépé-Renaudin58, F. Crescioli83, W.A.Cribbs148a,148b, M. Crispin Ortuzar122, M. Cristinziani23,V. Croft108, G. Crosetti40a,40b, A. Cueto85, T. Cuhadar Donszelmann141, J. Cummings179, M. Curatolo50,J. Cúth86,H. Czirr143, P. Czodrowski32,G. D’amen22a,22b,S. D’Auria56, M. D’Onofrio77, M. J. Da Cunha Sargedas De Sousa128a,128b,C.DaVia87,W.Dabrowski41a,T.Dado146a,T.Dai92,O.Dale15, F. Dallaire97, C. Dallapiccola89,M. Dam39, J. R. Dandoy124, N. P. Dang51, A. C. Daniells19, N. S. Dann87, M. Danninger171, M. Dano Hoffmann138,V. Dao150, G. Darbo53a,S. Darmora8, J. Dassoulas3, A. Dattagupta118, T. Daubney45, W. Davey23, 123 C. David45, T. Davidek131,M. Davies155,P. Davison81,E. Dawe91,I. Dawson141,K. De8, R. de Asmundis106a, A. De Benedetti115,S. De Castro22a,22b, S. De Cecco83, N. De Groot108, P. de Jong109,H. De la Torre93, F. De Lorenzi67, A. De Maria57, D. De Pedis134a, A. De Salvo134a, U. De Sanctis151, A. De Santo151, K. particle De Vasconcelos Corga88, J. B. De VivieDeRegie119, W. J. Dearnaley75, R. Debbe27, C. Debenedetti139, D. V. Dedovich68, N. Dehghanian3, I. Deigaard109, M. Del Gaudio40a,40b, J. Del Peso85, T. Del Prete126a,126b, D. Delgove119, F. Deliot138, C. M. Delitzsch52, A. Dell’Acqua32, L. Dell’Asta24, M. Dell’Orso126a,126b, M. Della Pietra106a,106b, D. della Volpe52,M. Delmastro5, P. A. Delsart58, D. A. DeMarco161, S. Demers179, M. Demichev68, A. Demilly83, S. P. Denisov132, D. Denysiuk138, D. Derendarz42, J. E. Derkaoui137d, F. Derue83,P. Dervan77, K. Desch23, C. Deterre45, K. Dette46,P. O. Deviveiros32, A. Dewhurst133, S. Dhaliwal25, A. Di Ciaccio135a,135b, L. Di Ciaccio5, W.K.DiClemente124, C. Di Donato106a,106b, A. Di Girolamo32, B. Di Girolamo32, B.DiMicco136a,136b, R. Di Nardo32, K. F. Di Petrillo59, A.DiSimone51, R. Di Sipio161, D.DiValentino31, C. Diaconu88, M. Diamond161,F. A. Dias49,M. A. Diaz34a, E. B. Diehl92, J. Dietrich17, S. Díez Cornell45, A. Dimitrievska14, J. Dingfelder23, P. Dita28b, S. Dita28b, F. Dittus32,F. Djama88, T. Djobava54b, J. I. Djuvsland60a, M.A.B.doVale26c, D. Dobos32, M. Dobre28b, C. Doglioni84, J. Dolejsi131, Z. Dolezal131, M. Donadelli26d,S. Donati126a,126b,P. Dondero123a,123b,J. Donini37,J. Dopke133,A. Doria106a,M. T. Dova74,A. T. Doyle56, E. Drechsler57,M. Dris10,Y. Du36b, J. Duarte-Campderros155, E. Duchovni175, G. Duckeck102, O. A. Ducu97,p, D. Duda109, A. Dudarev32, A. Chr. Dudder86, E. M. Duffeld16, L. Dufot119, M. Dührssen32, M. Dumancic175, A. E. Dumitriu28b, A. K. Duncan56, M. Dunford60a, H. Duran Yildiz4a, M. Düren55, A. Durglishvili54b, D. Duschinger47, B. Dutta45, M. Dyndal45, C. Eckardt45, K.M.Ecker103, R. C. Edgar92,T. Eifert32, G. Eigen15, K. Einsweiler16,T. Ekelof168, M. El Kacimi137c, V. Ellajosyula88, M. Ellert168, S. Elles5, F. Ellinghaus178, A. A. Elliot172, N. Ellis32, J. Elmsheuser27, M. Elsing32, D. Emeliyanov133, Y. Enari157, O. C. Endner86, J.S.Ennis173, J. Erdmann46, A. Ereditato18,G. Ernis178, M. Ernst27, S. Errede169,E. Ertel86, M. Escalier119,H. Esch46, C. Escobar127, B. Esposito50, A. I. Etienvre138, E. Etzion155, H. Evans64, A. Ezhilov125, F. Fabbri22a,22b, L. Fabbri22a,22b, G. Facini33, R. M. Fakhrutdinov132, S. Falciano134a, R. J. Falla81, J. Faltova32, Y. Fang35a, M. Fanti94a,94b, A. Farbin8, A. Farilla136a,C. Farina127, E. M. Farina123a,123b, T. Farooque93,S. Farrell16, S. M. Farrington173, P. Farthouat32, F. Fassi137e, P. Fassnacht32, D. Fassouliotis9, M. Faucci Giannelli80, A. Favareto53a,53b, W. J. Fawcett122, L. Fayard119, O. L. Fedin125,q, W. Fedorko171, S. Feigl121, L. Feligioni88, C. Feng36b, E. J. Feng32, H. Feng92, A. B. Fenyuk132, L. Feremenga8, P. ernandez Martinez170, S. Fernandez Perez13, J. Ferrando45, A. Ferrari168, P. Ferrari109, R. Ferrari123a, D.E.FerreiradeLima60b, A. Ferrer170, D. Ferrere52, C. Ferretti92, F. Fiedler86, A. Filipcic78, M. Filipuzzi45, F. Filthaut108, M. Fincke-Keeler172, K. D. Finelli152, M. C. N. Fiolhais128a,128c,r,L. Fiorini170, A. Fischer2, C. Fischer13, J. Fischer178, W. C. Fisher93, N. Flaschel45, I. Fleck143, P. Fleischmann92, R. R. M. Fletcher124, T. Flick178, B. M. Flierl102, L. R. Flores Castillo62a, M.J.Flowerdew103, G. T. Forcolin87, A. Formica138,A. Forti87,A. G. Foster19, D. Fournier119,H. Fox75, S. Fracchia13, P. Francavilla83, M. Franchini22a,22b, D. Francis32, L. Franconi121, M. Franklin59,M. Frate166, M. Fraternali123a,123b, D. Freeborn81, S. M. Fressard-Batraneanu32, B. Freund97, D. Froidevaux32, J. A. Frost122, C. Fukunaga158, E. Fullana Torregrosa86, T. Fusayasu104, J. Fuster170, C. Gabaldon58, O. Gabizon154, A. Gabrielli22a,22b, A. Gabrielli16, G. P. Gach41a, S. Gadatsch32, S. Gadomski80, G. Gagliardi53a,53b, L. G. Gagnon97, P. Gagnon64, C. Galea108, B. Galhardo128a,128c, E. J. Gallas122, B.J.Gallop133, P. Gallus130, G. Galster39, K.K.Gan113, S. Ganguly37,J. Gao36a,Y. Gao77,Y. S. Gao145,g, F. M. Garay Walls49, C. García170, J. E. García Navarro170, M. Garcia-Sciveres16, R. W. Gardner33, N. Garelli145, V. Garonne121, A. Gascon Bravo45, K. Gasnikova45, C. Gatti50, A. Gaudiello53a,53b, G. Gaudio123a, I.L.Gavrilenko98, C. Gay171, G. Gaycken23, E. N. Gazis10, C.N.P.Gee133,M. Geisen86, M. P. Geisler60a, K. Gellerstedt148a,148b, C. Gemme53a,M. H. Genest58,C. Geng36a,s,S. Gentile134a,134b,C. Gentsos156,S. George80,D. Gerbaudo13,A. Gershon155, S. Ghasemi143, M. Ghneimat23, B. Giacobbe22a, S. Giagu134a,134b, P. Giannetti126a,126b,S. M. Gibson80, M. Gignac171, M. Gilchriese16, D. Gillberg31, G. Gilles178, D.M.Gingrich3,d, N. Giokaris9,*, M. P. Giordani167a,167c,F. M. Giorgi22a, P. F. Giraud138, P. Giromini59, D. Giugni94a, F. Giuli122, C. Giuliani103, M. Giulini60b, B. K. Gjelsten121, S. Gkaitatzis156, I. Gkialas9, E. L. Gkougkousis139, L. K. Gladilin101,C. Glasman85, J. Glatzer13, P. C. F. Glaysher45, A. Glazov45, M. Goblirsch-Kolb25, J. Godlewski42, S. Goldfarb91, T. Golling52, D. Golubkov132, A. Gomes128a,128b,128d, R. Gonçalo128a, R. Goncalves Gama26a, J. Goncalves Pinto Firmino Da Costa138, G. Gonella51, L. Gonella19, A. Gongadze68, S. González de la Hoz170, S. Gonzalez-Sevilla52, L. Goossens32, P. A. Gorbounov99, H. A. Gordon27, I. Gorelov107, B. Gorini32,E. Gorini76a,76b, A. Gorišek78, A. T. Goshaw48, C. Gössling46, M. I. Gostkin68, C. R. Goudet119, D. Goujdami137c,A.G.Goussiou140,N. Govender147b,t,E. Gozani154,L. Graber57,I. Grabowska-Bold41a,P.O.J.Gradin58, J. Gramling52,E. Gramstad121, S. Grancagnolo17, V. Gratchev125, P. M. Gravila28f, H.M.Gray32, Z. D. Greenwood82,u, C. Grefe23, K. Gregersen81, I.M.Gregor45, P. Grenier145, K. Grevtsov5,J. Griffths8, A. A. Grillo139,K. Grimm75, S. Grinstein13,v, Ph. Gris37,J.-F. Grivaz119,S. Groh86,E. Gross175, J. Grosse-Knetter57, G. C. Grossi82, Z. J. Grout81, L. Guan92, W. Guan176, J. Guenther65, F. Guescini163a, D. Guest166, O. Gueta155,B. Gui113, E. Guido53a,53b, T. Guillemin5, 123 S. Guindon2,U. Gul56, C. Gumpert32,J. Guo36c,W. Guo92,Y. Guo36a, R. Gupta43, S. Gupta122, G. Gustavino134a,134b, P. Gutierrez115, N. G. Gutierrez Ortiz81, C. Gutschow81, C. Guyot138, M. P. Guzik41a, C. Gwenlan122, C. B. Gwilliam77, A. Haas112, C. Haber16, H. K. Hadavand8, A. Hadef88, S. Hageböck23, M. Hagihara164, H. Hakobyan180,*, M. Haleem45, J. Haley116, G. Halladjian93, G. D. Hallewell88, K. Hamacher178, P. Hamal117, K. Hamano172, A. Hamilton147a, G. N. Hamity141, P. G. Hamnett45,L. Han36a,S. Han35a, K. Hanagaki69,w, K. Hanawa157, M. Hance139, B. Haney124, P. Hanke60a, R. Hanna138, J. B. Hansen39, J. D. Hansen39, M. C. Hansen23, P. H. Hansen39,K. Hara164,A. S. Hard176, T. Harenberg178,F. Hariri119, S. Harkusha95, R. D. Harrington49, P.F.Harrison173, F. Hartjes109, N. M. Hartmann102, M. Hasegawa70, Y. Hasegawa142,A. Hasib49, S. Hassani138, S. Haug18, R. Hauser93, L. Hauswald47, L. B. Havener38, M. Havranek130, C.M.Hawkes19, R. J. Hawkings32, D. Hayakawa159, D. Hayden93, C. P. Hays122, J.M.Hays79, H. S. Hayward77, S. J. Haywood133, S. J. Head19, T. Heck86, V. Hedberg84, L. Heelan8, K. K. Heidegger51, S. Heim45,T. Heim16, B. Heinemann45,x, J.J.Heinrich102, L. Heinrich112, C. Heinz55, J. Hejbal129, L. Helary32, A. Held171, S. Hellman148a,148b, C. Helsens32, J. Henderson122, R. C. W. Henderson75, Y. Heng176, S. Henkelmann171, A. M. Henriques Correia32, S. Henrot-Versille119, G. H. Herbert17, H. Herde25, V. Herget177, Y. Hernández Jiménez147c, G. Herten51, R. Hertenberger102,L. Hervas32,T. C. Herwig124, G.G.Hesketh81, N. P. Hessey163a, J. W. Hetherly43, S. Higashino69, E. Higón-Rodriguez170, E. Hill172, J.C.Hill30, K. H. Hiller45, S. J. Hillier19, I. Hinchliffe16,M. Hirose51, D. Hirschbuehl178, B. Hiti78, O. Hladik129, X. Hoad49, J. Hobbs150,N. Hod163a, M. C. Hodgkinson141, P. Hodgson141, A. Hoecker32, M. R. Hoeferkamp107, F. Hoenig102, D. Hohn23,T. R. Holmes16, M. Homann46, S. Honda164, T. Honda69, T. M. Hong127, B. H. Hooberman169, W. H. Hopkins118,Y. Horii105, A.J.Horton144, J.-Y. Hostachy58,S. Hou153, A. Hoummada137a,J. Howarth45,J. Hoya74, M. Hrabovsky117,I. Hristova17, J. Hrivnac119, T. Hryn’ova5, A. Hrynevich96, P. J. Hsu63,S.-C. Hsu140,Q. Hu36a,S. Hu36c, Y. Huang35a, Z. Hubacek130, F. Hubaut88, F. Huegging23, T. B. Huffman122, E. W. Hughes38, G. Hughes75, M. Huhtinen32,P. Huo150, N. Huseynov68,b,J. Huston93,J. Huth59, G. Iacobucci52, G. Iakovidis27, I. Ibragimov143, L. Iconomidou-Fayard119, P. Iengo32, O. Igonkina109,y,T. Iizawa174,Y. Ikegami69, M. Ikeno69, Y. Ilchenko11,z, D. Iliadis156, N. Ilic145, G. Introzzi123a,123b, P. Ioannou9,*, M. Iodice136a, K. Iordanidou38, V. Ippolito59, N. Ishijima120,M. Ishino157, M. Ishitsuka159, C. Issever122, S. Istin20a,F. Ito164, J. M. Iturbe Ponce87, R. Iuppa162a,162b, H. Iwasaki69, J.M.Izen44, V. Izzo106a, S. Jabbar3, P. Jackson1,V. Jain2, K. B. Jakobi86, K. Jakobs51, S. Jakobsen32, T. Jakoubek129,D. O. Jamin116, D. K. Jana82, R. Jansky65, J. Janssen23, M. Janus57, P. A. Janus41a, G. Jarlskog84, N. Javadov68,b,T. Javurek51, M. Javurkova51, F. Jeanneau138, L. Jeanty16, J. Jejelava54a,aa, A. Jelinskas173, P. Jenni51,ab,C. Jeske173, S. Jézéquel5,H. Ji176,J. Jia150, H. Jiang67, Y. Jiang36a, Z. Jiang145, S. Jiggins81, J. Jimenez Pena170,S. Jin35a, A. Jinaru28b, O. Jinnouchi159,H. Jivan147c, P. Johansson141, K. A. Johns7, C. A. Johnson64, W. J. Johnson140, K. Jon-And148a,148b, R. W. L. Jones75, S. Jones7, T. J. Jones77, J. Jongmanns60a, P. M. Jorge128a,128b, J. Jovicevic163a,X. Ju176, A. Juste Rozas13,v, M. K. Köhler175, A. Kaczmarska42, M. Kado119, H. Kagan113, M. Kagan145, S. J. Kahn88,T. Kaji174, E. Kajomovitz48, C. W. Kalderon84, A. Kaluza86,S. Kama43, A. Kamenshchikov132, N. Kanaya157, S. Kaneti30, L. Kanjir78, V. A. Kantserov100, J. Kanzaki69, B. Kaplan112, L. S. Kaplan176,D. Kar147c, K. Karakostas10, N. Karastathis10, M. J. Kareem57, E. Karentzos10, S. N. Karpov68, Z.M.Karpova68, K. Karthik112, V. Kartvelishvili75, A. N. Karyukhin132, K. Kasahara164, L. Kashif176,R. D. Kass113, A. Kastanas149, Y. Kataoka157,C. Kato157,A. Katre52, J. Katzy45, K. Kawade105, K. Kawagoe73, T. Kawamoto157, G. Kawamura57, E.F.Kay77, V. F. Kazanin111,c, R. Keeler172, R. Kehoe43, J.S.Keller45, J. J. Kempster80, H. Keoshkerian161, O. Kepka129, B. P. Kerševan78, S. Kersten178, R. A. Keyes90, M. Khader169, F. Khalil-zada12, A. Khanov116, A. G. Kharlamov111,c, T. Kharlamova111,c, A. Khodinov160, T. J. Khoo52, V. Khovanskiy99,*, E. Khramov68, J. Khubua54b,ac,S. Kido70, C. R. Kilby80,H. Y. Kim8,S. H. Kim164, Y. K. Kim33,N. Kimura156,O. M. Kind17,B. T. King77, D. Kirchmeier47,J. Kirk133, A. E. Kiryunin103, T. Kishimoto157, D. Kisielewska41a, K. Kiuchi164, O. Kivernyk138, E. Kladiva146b, T. Klapdor-Kleingrothaus51, M.H.Klein38, M. Klein77, U. Klein77, K. Kleinknecht86, P. Klimek110, A. Klimentov27, R. Klingenberg46, T. Klioutchnikova32, E.-E. Kluge60a, P. Kluit109, S. Kluth103, J. Knapik42, E. Kneringer65, E. B. F. G. Knoops88, A. Knue103, A. Kobayashi157, D. Kobayashi159, T. Kobayashi157, M. Kobel47, M. Kocian145, P. Kodys131,T. Koffas31,E. Koffeman109, N. M. Köhler103, T. Koi145,M. Kolb60b, I. Koletsou5, A. A. Komar98,*, Y. Komori157, T. Kondo69, N. Kondrashova36c, K. Köneke51, A. C. König108, T. Kono69,ad, R. Konoplich112,ae, N. Konstantinidis81, R. Kopeliansky64, S. Koperny41a, A.K.Kopp51, K. Korcyl42, K. Kordas156,A. Korn81, A. A. Korol111,c, I. Korolkov13, E. V. Korolkova141, O. Kortner103, S. Kortner103, T. Kosek131, V. V. Kostyukhin23,A. Kotwal48, A. Koulouris10, A. Kourkoumeli-Charalampidi123a,123b, C. Kourkoumelis9, V. Kouskoura27, A. B. Kowalewska42, R. Kowalewski172, T. Z. Kowalski41a, C. Kozakai157, W. Kozanecki138, A. S. Kozhin132, V. A. Kramarenko101, G. Kramberger78, D. Krasnopevtsev100, M. W. Krasny83, A. Krasznahorkay32, D. Krauss103, A. Kravchenko27, J.A.Kremer41a,M. Kretz60c, J. Kretzschmar77, K. Kreutzfeldt55, P. Krieger161, K. Krizka33, K. Kroeninger46, H. Kroha103,J. Kroll124, J. Kroseberg23, J. Krstic14, U. Kruchonak68, H. Krüger23, N. Krumnack67, M.C.Kruse48, M. Kruskal24, T. Kubota91, H. Kucuk81, S. Kuday4b, J. T. Kuechler178, S. Kuehn51, 123 A. Kugel60c, F. Kuger177, T. Kuhl45, V. Kukhtin68, R. Kukla88, Y. Kulchitsky95, S. Kuleshov34b, Y. P. Kulinich169, M. Kuna134a,134b, T. Kunigo71, A. Kupco129, O. Kuprash155, H. Kurashige70, L. L. Kurchaninov163a, Y. A. Kurochkin95, M. G. Kurth35a,V. Kus129, E. S. Kuwertz172, M. Kuze159, J. Kvita117,T. Kwan172, D. Kyriazopoulos141,A. La Rosa103, J. L. La Rosa Navarro26d, L. La Rotonda40a,40b, C. Lacasta170, F. Lacava134a,134b, J. Lacey45, H. Lacker17, D. Lacour83, E. Ladygin68, R. Lafaye5, B. Laforge83, T. Lagouri179,S. Lai57, S. Lammers64, W. Lampl7, E. Lançon27, U. Landgraf51, M. P. J. Landon79, M. C. Lanfermann52, V. S. Lang60a, J. C. Lange13, A. J. Lankford166, F. Lanni27, K. Lantzsch23, A. Lanza123a, A. Lapertosa53a,53b, S. Laplace83, J. F. Laporte138,T. Lari94a, F. Lasagni Manghi22a,22b, M. Lassnig32, P. Laurelli50, W. Lavrijsen16,A. T. Law139, P. Laycock77, T. Lazovich59, M. Lazzaroni94a,94b,B. Le91,O. Le Dortz83, E. Le Guirriec88, E. P. Le Quilleuc138, M. LeBlanc172, T. LeCompte6, F. Ledroit-Guillon58,C. A. Lee27,S. C. Lee153, L. Lee1, B. Lefebvre90, G. Lefebvre83, M. Lefebvre172, F. Legger102, C. Leggett16, A. Lehan77, G. Lehmann Miotto32, X. Lei7, W. A. Leight45, A.G.Leister179, M.A.L.Leite26d, R. Leitner131, D. Lellouch175, B. Lemmer57, K.J.C.Leney81, T. Lenz23, B. Lenzi32, R. Leone7, S. Leone126a,126b, C. Leonidopoulos49, G. Lerner151,C. Leroy97, A. A. J. Lesage138, C. G. Lester30, M. Levchenko125, J. Levêque5,D. Levin92,L. J. Levinson175,M. Levy19,D. Lewis79,M. Leyton44, B. Li36a,s,C. Li36a,H. Li150,L. Li48,L. Li36c,Q. Li35a,S. Li48,X. Li36c,Y. Li143, Z. Liang35a, B. Liberti135a, A. Liblong161,K. Lie169, J. Liebal23, W. Liebig15, A. Limosani152,S. C. Lin153,af,T. H. Lin86, B. E. Lindquist150, A. E. Lionti52, E. Lipeles124, A. Lipniacka15, M. Lisovyi60b, T.M.Liss169, A. Lister171, A.M.Litke139,B. Liu153,ag, H. Liu92,H. Liu27,J. Liu36b,J. B. Liu36a,K. Liu88,L. Liu169,M. Liu36a,Y. L. Liu36a,Y. Liu36a,M. Livan123a,123b, A. Lleres58, J. Llorente Merino35a, S.L.Lloyd79, C.Y.Lo62b,F. Lo Sterzo153, E. M. Lobodzinska45, P. Loch7, F. K. Loebinger87, K.M.Loew25, A. Loginov179,*, T. Lohse17, K. Lohwasser45, M. Lokajicek129, B.A.Long24, J. D. Long169, R. E. Long75, L. Longo76a,76b, K. A. Looper113, J. A. Lopez34b, D. Lopez Mateos59, I. Lopez Paz13, A. Lopez Solis83, J. Lorenz102, N. Lorenzo Martinez64, M. Losada21, P. J. Lösel102,X. Lou35a, A. Lounis119, J. Love6, P. A. Love75,H. Lu62a,N. Lu92,Y. J. Lu63, H.J.Lubatti140, C. Luci134a,134b, A. Lucotte58, C. Luedtke51, F. Luehring64, W. Lukas65, L. Luminari134a, O. Lundberg148a,148b, B. Lund-Jensen149, P. M. Luzi83, D. Lynn27, R. Lysak129,E. Lytken84, V. Lyubushkin68,H. Ma27,L. L. Ma36b,Y. Ma36b, G. Maccarrone50, A. Macchiolo103, C. M. Macdonald141,B. Macek78, J. Machado Miguens124,128b, D. Madaffari88, R. Madar37, H. J. Maddocks168, W. F. Mader47, A. Madsen45, J. Maeda70, S. Maeland15, T. Maeno27, A. Maevskiy101, E. Magradze57, J. Mahlstedt109, C. Maiani119, C. Maidantchik26a, A. A. Maier103, T. Maier102,A. Maio128a,128b,128d,S. Majewski118, Y. Makida69, N. Makovec119, B. Malaescu83, Pa. Malecki42, V. P. Maleev125, F. Malek58, U. Mallik66, D. Malon6, C. Malone30, S. Maltezos10, S. Malyukov32, J. Mamuzic170, G. Mancini50, L. Mandelli94a, I. Mandi´c78, J. Maneira128a,128b, L. Manhaes de Andrade Filho26b, J. Manjarres Ramos163b, A. Mann102, A. Manousos32, B. Mansoulie138, J. D. Mansour35a, R. Mantifel90, M. Mantoani57, S. Manzo ni94a,94b, L. Mapelli32, G. Marceca29, L. March52, G. Marchiori83, M. Marcisovsky129, M. Marjanovic37, D. E. Marley92, F. Marroquim26a, S. P. Marsden87, Z. Marshall16, M.U.FMartensson168, S. Marti-Garcia170, C. B. Martin113, T. A. Martin173, V.J.Martin49, B. Martin dit Latour15, M. Martinez13,v, V. I. Martinez Outschoorn169, S. Martin-Haugh133, V. S. Martoiu28b, A. C. Martyniuk81, A. Marzin115, L. Masetti86, T. Mashimo157, R. Mashinistov98, J. Masik87, A. L. Maslennikov111,c, L. Massa135a,135b, P. Mastrandrea5, A. Mastroberardino40a,40b, T. Masubuchi157, P. Mättig178, J. Maurer28b, S. J. Maxfeld77, D.A.Maximov111,c, R. Mazini153, I. Maznas156, S. M. Mazza94a,94b, N. C. Mc Fadden107, G. Mc Goldrick161,S. P. Mc Kee92, A. McCarn92, R. L. McCarthy150, T. G. McCarthy103, L. I. McClymont81, E. F. McDonald91, J. A. Mcfayden81, G. Mchedlidze57, S. J. McMahon133, P. C. McNamara91, R. A. McPherson172,o, S. Meehan140,T. J. Megy51, S. Mehlhase102, A. Mehta77, T. Meideck58, K. Meier60a, C. Meineck102, B. Meirose44, D. Melini170,ah, B.R.Mellado Garcia147c,M. Melo146a, F. Meloni18, S. B. Menary87, L. Meng77, X. T. Meng92, A. Mengarelli22a,22b, S. Menke103, E. Meoni165, S. Mergelmeyer17,P. Mermod52, L. Merola106a,106b, C. Meroni94a, F.S.Merritt33, A. Messina134a,134b, J. Metcalfe6,A. S. Mete166, C. Meyer124, J.-P. Meyer138, J. Meyer109, 49 H. Meyer Zu Theenhausen60a, F. Miano151, R. P. Middleton133, S. Miglioranzi53a,53b, L. Mijovi´c, G. Mikenberg175, M. Mikestikova129, M. Mikuž78, M. Milesi91, A. Milic27, D. W. Miller33, C. Mills49, A. Milov175, D.A.Milstead148a,148b, A. A. Minaenko132, Y. Minami157, I. A. Minashvili68, A. I. Mincer112, B. Mindur41a, M. Mineev68, Y. Minegishi157, Y. Ming176,L. M. Mir13, K.P.Mistry124, T. Mitani174, J. Mitrevski102, V. A. Mitsou170, A. Miucci18, P. S. Miyagawa141, A. Mizukami69, J.U.Mjörnmark84, M. Mlynarikova131,T. Moa148a,148b, K. Mochizuki97, P. Mogg51, S. Mohapatra38, S. Molander148a,148b, R. Moles-Valls23, R. Monden71, M. C. Mondragon93, K. Mönig45, J. Monk39, E. Monnier88, A. Montalbano150, J. Montejo Berlingen32, F. Monticelli74, S. Monzani94a,94b, R. W. Moore3, N. Morange119, D. Moreno21, M. Moreno Llácer57, P. Morettini53a, S. Morgenstern32,D. Mori144,T. Mori157,M. Morii59, M. Morinaga157, V. Morisbak121, A.K.Morley152, G. Mornacchi32,J. D. Morris79,L. Morvaj150, P. Moschovakos10, M. Mosidze54b, H. J. Moss141,J. Moss145,ai,K. Motohashi159,R. Mount145,E. Mountricha27,E.J.W.Moyse89,S. Muanza88,R. D. Mudd19, F. Mueller103, J. Mueller127,R.S.P.Mueller102, D. Muenstermann75, P. Mullen56, G. A. Mullier18, F. J. Munoz Sanchez87, 123 W. J. Murray133,173, H. Musheghyan57, M. Muškinja78, A. G. Myagkov132,aj, M. Myska130, B. P. Nachman16, O. Nackenhorst52, K. Nagai122, R. Nagai69,ad, K. Nagano69, Y. Nagasaka61, K. Nagata164, M. Nagel51, E. Nagy88, A. M. Nairz32, Y. Nakahama105, K. Nakamura69, T. Nakamura157, I. Nakano114, R. F. Naranjo Garcia45, R. Narayan11, D. I. Narrias Villar60a, I. Naryshkin125, T. Naumann45,G. Navarro21, R. Nayyar7, H. A. Neal92, P. Yu. Nechaeva98, T. J. Neep138,A. Negri123a,123b,M. Negrini22a, S. Nektarijevic108, C. Nellist119,A. Nelson166, S. Nemecek129, P. Nemethy112, A. A. Nepomuceno26a, M. Nessi32,ak, M. S. Neubauer169, M. Neumann178, R.M.Neves112,P. Nevski27, P. R. Newman19,T. Y. Ng62c, T. Nguyen Manh97,R. B. Nickerson122, R. Nicolaidou138, J. Nielsen139, V. Nikolaenko132,aj, I. Nikolic-Audit83, K. Nikolopoulos19, J.K.Nilsen121, P. Nilsson27, Y. Ninomiya157,A. Nisati134a,N. Nishu35c, R. Nisius103, T. Nobe157, Y. Noguchi71, M. Nomachi120, I. Nomidis31, M.A.Nomura27, T. Nooney79, M. Nordberg32, N. Norjoharuddeen122, O. Novgorodova47,S. Nowak103, M. Nozaki69, L. Nozka117, K. Ntekas166, E. Nurse81,F. Nuti91, D. C. O’Neil144, A.A.O’Rourke45, V. O’Shea56, F. G. Oakham31,d, H. Oberlack103, T. Obermann23, J. Ocariz83, A. Ochi70, I. Ochoa38, J. P. Ochoa-Ricoux34a,S. Oda73, S. Odaka69, H. Ogren64,A. Oh87,S. H. Oh48, C.C.Ohm16, H. Ohman168, H. Oide53a,53b,H. Okawa164, Y. Okumura157, T. Okuyama69,A. Olariu28b, L. F. Oleiro Seabra128a, S. A. Olivares Pino49, D. Oliveira Damazio27, A. Olszewski42, J. Olszowska42, A. Onofre128a,128e, K. Onogi105, P.U.E.Onyisi11,z, M. J. Oreglia33,Y. Oren155, D. Orestano136a,136b, N. Orlando62b,R. S. Orr161, B. Osculati53a,53b,*, R. Ospanov87, G. Otero y Garzon29, H. Otono73, M. Ouchrif137d, F. Ould-Saada121, A. Ouraou138, K. P. Oussoren109, Q. Ouyang35a, M. Owen56, R. E. Owen19, V. E. Ozcan20a, N. Ozturk8, K. Pachal144, A. Pacheco Pages13, L. Pacheco Rodriguez138, C. Padilla Aranda13, S. Pagan Griso16, M. Paganini179, F. Paige27,P.Pais89, G. Palacino64, S. Palazzo40a,40b, S. Palestini32, M. Palka41b, D. Pallin37, E. St. Panagiotopoulou10, I. Panagoulias10, C. E. Pandini83, J. G. Panduro Vazquez80, P. Pani32, S. Panitkin27, D. Pantea28b, L. Paolozzi52, Th. D. Papadopoulou10, K. Papageorgiou9, A. Paramonov6, D. Paredes Hernandez179,A. J. Parker75,M. A. Parker30, K.A.Parker45, F. Parodi53a,53b, J. A. Parsons38, U. Parzefall51, V. R. Pascuzzi161, J. M. Pasner139, E. Pasqualucci134a, S. Passaggio53a,Fr. Pastore80, S. Pataraia178, J. R. Pater87, T. Pauly32, J. Pearce172, B. Pearson115, L. E. Pedersen39, S. Pedraza Lopez170, R. Pedro128a,128b, S. V. Peleganchuk111,c, O. Penc129, C. Peng35a, H. Peng36a, J. Penwell64, B. S. Peralva26b, M.M.Perego138, D. V. Perepelitsa27, L. Perini94a,94b, H. Pernegger32, S. Perrella106a,106b, R. Peschke45, V. D. Peshekhonov68, K. Peters45, R. F. Y. Peters87, B. A. Petersen32, T. C. Petersen39, E. Petit58, A. Petridis1, C. Petridou156, P. Petroff119, E. Petrolo134a, M. Petrov122, F. Petrucci136a,136b, N. E. Pettersson89, A. Peyaud138, R. Pezoa34b, P. W. Phillips133, G. Piacquadio150, E. Pianori173, A. Picazio89, E. Piccaro79, M. A. Pickering122, R. Piegaia29, J. E. Pilcher33, A. D. Pilkington87, A.W.J.Pin87, M. Pinamonti167a167c,al, J. L. Pinfold3, H. Pirumov45, M. Pitt175, L. Plazak146a, M.-A. Pleier27,V. Pleskot86, E. Plotnikova68, D. Pluth67, P. Podberezko111, R. Poettgen148a,148b, L. Poggioli119, D. Pohl23, G. Polesello123a, A. Poley45, A. Policicchio40a,40b, R. Polifka32, A. Polini22a, C. S. Pollard56, V. Polychronakos27, K. Pommès32, L. Pontecorvo134a, B. G. Pope93, G. A. Popeneciu28d, A. Poppleton32, S. Pospisil130, K. Potamianos16, I.N.Potrap68, C.J.Potter30, C. T. Potter118, G. Poulard32, J. Poveda32, M. E. Pozo Astigarraga32, P. Pralavorio88, A. Pranko16,S. Prell67,D. Price87,L. E. Price6, M. Primavera76a, S. Prince90, K. Prokofev62c,F. Prokoshin34b, S. Protopopescu27, J. Proudfoot6, M. Przybycien41a, D. Puddu136a,136b, A. Puri169, P. Puzo119,J. Qian92,G. Qin56,Y. Qin87, A. Quadt57, W. B. Quayle167a,167b, M. Queitsch-Maitland45, D. Quilty56, S. Raddum121, V. Radeka27, V. Radescu122, S. K. Radhakrishnan150, P. Radloff118, P. Rados91, F. Ragusa94a,94b, G. Rahal181, J. A. Raine87, S. Rajagopalan27, C. Rangel-Smith168, M.G.Ratti94a,94b, D. M. Rauch45, F. Rauscher102, S. Rave86, T. Ravenscroft56, I. Ravinovich175, M. Raymond32, A. L. Read121, N. P. Readioff77, M. Reale76a,76b, D. M. Rebuzzi123a,123b, A. Redelbach177, G. Redlinger27, R. Reece139, R. G. Reed147c,K. Reeves44, L. Rehnisch17, J. Reichert124,A. Reiss86, C. Rembser32,H. Ren35a, M. Rescigno134a, S. Resconi94a, E. D. Resseguie124, S. Rettie171, E. Reynolds19, O. L. Rezanova111,c, P. Reznicek131, R. Rezvani97, R. Richter103, S. Richter81, E. Richter-Was41b, O. Ricken23, M. Ridel83, P. Rieck103, C.J.Riegel178, J. Rieger57,O. Rifki115, M. Rijssenbeek150, A. Rimoldi123a,123b, M. Rimoldi18, L. Rinaldi22a, B. Risti´c52, E. Ritsch32,I. Riu13, F. Rizatdinova116, E. Rizvi79, C. Rizzi13, R. T. Roberts87, S. H. Robertson90,o, A. Robichaud-Veronneau90, D. Robinson30, J. E. M. Robinson45, A. Robson56, C. Roda126a,126b, Y. Rodina88,am, A. Rodriguez Perez13, D. Rodriguez Rodriguez170,S. Roe32, C. S. Rogan59, O. Røhne121, J. Roloff59, A. Romaniouk100, M. Romano22a,22b, S. M. Romano Saez37, E. Romero Adam170, N. Rompotis77, M. Ronzani51, L. Roos83, S. Rosati134a, K. Rosbach51,P. Rose139,N.-A. Rosien57, V. Rossetti148a,148b, E. Rossi106a,106b, L. P. Rossi53a, J. H. N. Rosten30,R. Rosten140, M. Rotaru28b,I. Roth175, J. Rothberg140, D. Rousseau119, A. Rozanov88, Y. Rozen154, X. Ruan147c, F. Rubbo145, F. Rühr51, A. Ruiz-Martinez31,Z. Rurikova51, N.A.Rusakovich68, A. Ruschke102, H. L. Russell140, J. P. Rutherfoord7, N. Ruthmann32, Y. F. Ryabov125, M. Rybar169, G. Rybkin119, S. Ryu6, A. Ryzhov132, G. F. Rzehorz57, A. F. Saavedra152, G. Sabato109, S. Sacerdoti29, H. F.-W. Sadrozinski139, R. Sadykov68, F. Safai Tehrani134a, P. Saha110, M. Sahinsoy60a, M. Saimpert45, T. Saito157, H. Sakamoto157, Y. Sakurai174, G. Salamanna136a,136b, J. E. Salazar Loyola34b, D. Salek109, P. H. Sales De Bruin140, D. Salihagic103, A. Salnikov145, 123 J. Salt170, D. Salvatore40a,40b, F. Salvatore151, A. Salvucci62a,62b,62c, A. Salzburger32, D. Sammel51, D. Sampsonidis156, J. Sánchez170, V. Sanchez Martinez170, A. Sanchez Pineda106a,106b, H. Sandaker121, R. L. Sandbach79, C. O. Sander45, M. Sandhoff178, C. Sandoval21, D. P. C. Sankey133, M. Sannino53a,53b, A. Sansoni50, C. Santoni37, R. Santonico135a,135b, H. Santos128a, I. Santoyo Castillo151, K. Sapp127, A. Sapronov68, J. G. Saraiva128a,128d, B. Sarrazin23, O. Sasaki69, K. Sato164, E. Sauvan5, G. Savage80,P. Savard161,d,N. Savic103, C. Sawyer133, L. Sawyer82,u, J. Saxon33, C. Sbarra22a, A. Sbrizzi22a,22b, T. Scanlon81, D. A. Scannicchio166, M. Scarcella152, V. Scarfone40a,40b, J. Schaarschmidt140, P. Schacht103, B. M. Schachtner102, D. Schaefer32, L. Schaefer124, R. Schaefer45, J. Schaeffer86, S. Schaepe23, S. Schaetzel60b, U. Schäfer86, A. C. Schaffer119, D. Schaile102, R. D. Schamberger150, V. Scharf60a, V. A. Schegelsky125, D. Scheirich131, M. Schernau166, C. Schiavi53a,53b, S. Schier139, C. Schillo51, M. Schioppa40a,40b, S. Schlenker32, K. R. Schmidt-Sommerfeld103, K. Schmieden32, C. Schmitt86, S. Schmitt45, S. Schmitz86, B. Schneider163a, U. Schnoor51, L. Schoeffel138, A. Schoening60b, B. D. Schoenrock93, E. Schopf23, M. Schott86, J. F. P. Schouwenberg108, J. Schovancova8, S. Schramm52, N. Schuh86, A. Schulte86, M. J. Schultens23, H.-C. Schultz-Coulon60a, H. Schulz17, M. Schumacher51, B. A. Schumm139, Ph. Schune138, A. Schwartzman145, T. A. Schwarz92, H. Schweiger87, Ph. Schwemling138, R. Schwienhorst93, J. Schwindling138, T. Schwindt23, G. Sciolla25, F. Scuri126a,126b, F. Scutti91, J. Searcy92, P. Seema23, S. C. Seidel107, A. Seiden139, J. M. Seixas26a, G. Sekhniaidze106a, K. Sekhon92, S. J. Sekula43, N. Semprini-Cesari22a,22b, C. Serfon121, L. Serin119, L. Serkin167a,167b, M. Sessa136a,136b, R. Seuster172,H. Severini115, T. Sfligoj78, F. Sforza32, A. Sfyrla52, E. Shabalina57, N. W. Shaikh148a,148b, L. Y. Shan35a, R. Shang169, J. T. Shank24, M. Shapiro16, P. B. Shatalov99, K. Shaw167a,167b, S. M. Shaw87, A. Shcherbakova148a,148b, C. Y. Shehu151, Y. Shen115, P. Sherwood81, L. Shi153,an, S. Shimizu70, C. O. Shimmin179, M. Shimojima104, S. Shirabe73, M. Shiyakova68,ao, J. Shlomi175, A. Shmeleva98, D. Shoaleh Saadi97, M. J. Shochet33, S. Shojaii94a, D. R. Shope115, S. Shrestha113, E. Shulga100, M. A. Shupe7, P. Sicho129, A. M. Sickles169, P. E. Sidebo149, E. Sideras Haddad147c, O. Sidiropoulou177, D. Sidorov116, A. Sidoti22a,22b, F. Siegert47, Dj. Sijacki14, J. Silva128a,128d, S. B. Silverstein148a,V. Simak130,Lj. Simic14, S. Simion119, E. Simioni86, B. Simmons81,M. Simon86, P. Sinervo161, N.B.Sinev118, M. Sioli22a,22b, G. Siragusa177,I. Siral92, S. Yu. Sivoklokov101, J. Sjölin148a,148b, M. B. Skinner75, P. Skubic115, M. Slater19, T. Slavicek130, M. Slawinska109, K. Sliwa165,R. Slovak131, V. Smakhtin175,B. H. Smart5,L. Smestad15,J. Smiesko146a, S. Yu. Smirnov100,Y. Smirnov100, L. N. Smirnova101,ap,O. Smirnova84, J.W.Smith57, M.N.K.Smith38, R. W. Smith38, M. Smizanska75,K. Smolek130, A. A. Snesarev98, I. M. Snyder118, S. Snyder27, R. Sobie172,o, F. Socher47, A. Soffer155, D.A.Soh153, G. Sokhrannyi78, C. A. Solans Sanchez32, M. Solar130, E. Yu. Soldatov100, U. Soldevila170, A. A. Solodkov132, A. Soloshenko68, O. V. Solovyanov132, V. Solovyev125, P. Sommer51, H. Son165, H. Y. Song36a,aq, A. Sopczak130, V. Sorin13, D. Sosa60b, C. L. Sotiropoulou126a,126b, R. Soualah167a,167c, A. M. Soukharev111,c, D. South45, B. C. Sowden80, S. Spagnolo76a,76b, M. Spalla126a,126b, M. Spangenberg173, F. Spanò80, D. Sperlich17, F. Spettel103, T. M. Spieker60a, R. Spighi22a, G. Spigo32, L. A. Spiller91, M. Spousta131, R. D. St. Denis56,*, A. Stabile94a,R. Stamen60a,S. Stamm17, E. Stanecka42, R. W. Stanek6, C. Stanescu136a, M. M. Stanitzki45, S. Stapnes121, E. A. Starchenko132, G.H.Stark33,J. Stark58, S. H Stark39, P. Staroba129, P. Starovoitov60a,S. Stärz32, R. Staszewski42, P. Steinberg27, B. Stelzer144, H.J.Stelzer32, O. Stelzer-Chilton163a, H. Stenzel55, G.A.Stewart56, J. A. Stillings23, M. C. Stockton90, M. Stoebe90, G. Stoicea28b, P. Stolte57, S. Stonjek103, A. R. Stradling8, A. Straessner47, M. E. Stramaglia18, J. Strandberg149, S. Strandberg148a,148b, A. Strandlie121, M. Strauss115, P. Strizenec146b, R. Ströhmer177,D. M. Strom118, R. Stroynowski43, A. Strubig108, S. A. Stucci27, B. Stugu15, N. A. Styles45,D. Su145,J. Su127, S. Suchek60a, Y. Sugaya120, M. Suk130, V. V. Sulin98, S. Sultansoy4c, T. Sumida71, S. Sun59, X. Sun3, K. Suruliz151, C.J.E.Suster152, M.R.Sutton151, S. Suzuki69,M. Svatos129, M. Swiatlowski33, S. P. Swift2, I. Sykora146a, T. Sykora131,D. Ta51, K. Tackmann45, J. Taenzer155,A. Taffard166, R. Tafrout163a, N. Taiblum155, H. Takai27, R. Takashima72, T. Takeshita142, Y. Takubo69, M. Talby88, A. A. Talyshev111,c, J. Tanaka157, M. Tanaka159, R. Tanaka119, S. Tanaka69, R. Tanioka70, B. B. Tannenwald113, S. Tapia Araya34b, S. Tapprogge86, S. Tarem154, G. F. Tartarelli94a,P. Tas131,M. Tasevsky129, T. Tashiro71, E. Tassi40a,40b, A. Tavares Delgado128a,128b, Y. Tayalati137e, A. C. Taylor107, G. N. Taylor91, P. T. E. Taylor91, W. Taylor163b, P. Teixeira-Dias80, D. Temple144, H. Ten Kate32, P. K. Teng153, J.J.Teoh120, F. Tepel178, S. Terada69, K. Terashi157,J. Terron85, S. Terzo13,M. Testa50, R. J. Teuscher161,o, T. Theveneaux-Pelzer88, J. P. Thomas19, J. Thomas-Wilsker80, P. D. Thompson19, A. S. Thompson56, L. A. Thomsen179, E. Thomson124, M. J. Tibbetts16,R. E. Ticse Torres88, V. O. Tikhomirov98,ar, Yu. A. Tikhonov111,c, S. Timoshenko100, P. Tipton179, S. Tisserant88, K. Todome159, S. Todorova-Nova5,J. Tojo73, S. Tokár146a, K. Tokushuku69, E. Tolley59, L. Tomlinson87, M. Tomoto105, L. Tompkins145,as,K. Toms107, B. Tong59, P. Tornambe51, E. Torrence118, H. Torres144, E. Torró Pastor140, J. Toth88,at, F. Touchard88, D. R. Tovey141, C. J. Treado112, T. Trefzger177, A. Tricoli27, I. M. Trigger163a, S. Trincaz-Duvoid83, M. F. Tripiana13, W. Trischuk161, B. Trocmé58, A. Trofymov45, C. Troncon94a, M. Trottier-McDonald16, M. Trovatelli172, L. Truong167a,167c, M. Trzebinski42, A. Trzupek42, K. W. Tsang62a, J. C.-L. Tseng122, P. V. Tsiareshka95, G. Tsipolitis10, N. Tsirintanis9, S. Tsiskaridze13, V. Tsiskaridze51, 123 E. G. Tskhadadze54a, K.M.Tsui62a, I. I. Tsukerman99, V. Tsulaia16, S. Tsuno69, D. Tsybychev150, Y. Tu62b, A. Tudorache28b, V. Tudorache28b,T. T. Tulbure28a, A.N.Tuna59, S. A. Tupputi22a,22b, S. Turchikhin68, D. Turgeman175, I. Turk Cakir4b,au,R. Turra94a,94b,P. M. Tuts38, G. Ucchielli22a,22b, I. Ueda69, M. Ughetto148a,148b,F. Ukegawa164, G. Unal32, A. Undrus27, G. Unel166, F. C. Ungaro91, Y. Unno69, C. Unverdorben102, J. Urban146b, P. Urquijo91, P. Urrejola86, G. Usai8,J. Usui69, L. Vacavant88, V. Vacek130, B. Vachon90, C. Valderanis102, E. Valdes Santurio148a,148b, N. Valencic109, S. Valentinetti22a,22b, A. Valero170, L. Valéry13, S. Valkar131, A. Vallier5, J.A.Valls Ferrer170, W. Van Den Wollenberg109, H. van der Graaf109, N. van Eldik154, P. van Gemmeren6, J. Van Nieuwkoop144, I. van Vulpen109, M. C. van Woerden109, M. Vanadia134a,134b, W. Vandelli32, R. Vanguri124, A. Vaniachine160, P. Vankov109, G. Vardanyan180,R. Vari134a, E. W. Varnes7, C. Varni53a,53b, T. Varol43, D. Varouchas83, A. Vartapetian8,K. E. Varvell152, J. G. Vasquez179, G. A. Vasquez34b,F. Vazeille37,T. Vazquez Schroeder90,J. Veatch57,V. Veeraraghavan7,L. M. Veloce161,F. Veloso128a,128c, S. Veneziano134a, A. Ventura76a,76b, M. Venturi172, N. Venturi161, A. Venturini25, V. Vercesi123a, M. Verducci136a,136b, W. Verkerke109, J. C. Vermeulen109, M.C.Vetterli144,d, N. Viaux Maira34a, O. Viazlo84, I. Vichou169,*,T. Vickey141, O. E. Vickey Boeriu141, G. H. A. Viehhauser122,S. Viel16, L. Vigani122, M. Villa22a,22b, M. Villaplana Perez94a,94b, E. Vilucchi50, M. G. Vincter31, V. B. Vinogradov68, A. Vishwakarma45, C. Vittori22a,22b, I. Vivarelli151, S. Vlachos10, M. Vlasak130, M. Vogel178, P. Vokac130, G. Volpi126a,126b, M. Volpi91, H. von der Schmitt103, E. von Toerne23, V. Vorobel131, K. Vorobev100,M. Vos170,R. Voss32, J. H. Vossebeld77, N. Vranjes14, M. Vranjes Milosavljevic14, V. Vrba130, M. Vreeswijk109, R. Vuillermet32, I. Vukotic33, P. Wagner23, W. Wagner178, H. Wahlberg74, S. Wahrmund47, J. Wakabayashi105, J. Walder75,R. Walker102, W. Walkowiak143, V. Wallangen148a,148b, C. Wang35b, C. Wang36b,av, F. Wang176, H. Wang16, H. Wang3, J. Wang45, J. Wang152, Q. Wang115, R. Wang6, S. M. Wang153, T. Wang38, W. Wang153,aw, W. Wang36a, C. Wanotayaroj118, A. Warburton90,C. P. Ward30, D. R. Wardrope81, A. Washbrook49, P. M. Watkins19,A. T. Watson19,M. F. Watson19, G. Watts140, S. Watts87, B. M. Waugh81, A. F. Webb11, S. Webb86, M. S. Weber18, S. W. Weber177, S. A. Weber31, J. S. Webster6, A. R. Weidberg122, B. Weinert64, J. Weingarten57, C. Weiser51, H. Weits109, P. S. Wells32, T. Wenaus27, T. Wengler32, S. Wenig32,N. Wermes23, M. D. Werner67, P. Werner32, M. Wessels60a, K. Whalen118, N. L. Whallon140, A. M. Wharton75, A. White8, M. J. White1, R. White34b, D. Whiteson166, F. J. Wickens133, W. Wiedenmann176, M. Wielers133, C. Wiglesworth39, L. A. M. Wiik-Fuchs23, A. Wildauer103, F. Wilk87, H. G. Wilkens32, H. H. Williams124, S. Williams109, C. Willis93, S. Willocq89, J.A.Wilson19, I. Wingerter-Seez5, F. Winklmeier118, O.J.Winston151, B.T.Winter23, M. Wittgen145, M. Wobisch82,u, T.M.H.Wolf109,R. Wolff88, M. W. Wolter42, H. Wolters128a,128c, S.D.Worm19, B.K.Wosiek42, J. Wotschack32, M. J. Woudstra87, K. W. Wozniak42, M. Wu33,S.L.Wu176,X.Wu52,Y.Wu92,T.R.Wyatt87, B. M. Wynne49, S. Xella39,Z.Xi92,L.Xia35c,D.Xu35a,L.Xu27, B. Yabsley152, S. Yacoob147a, D. Yamaguchi159, Y. Yamaguchi120, A. Yamamoto69, S. Yamamoto157, T. Yamanaka157, K. Yamauchi105, Y. Yamazaki70,Z. Yan24, H. Yang36c, H. Yang16, Y. Yang153, Z. Yang15,W.-M. Yao16,Y. C. Yap83, Y. Yasu69, E. Yatsenko5, K. H. Yau Wong23,J. Ye43,S. Ye27, I. Yeletskikh68, E. Yildirim86, K. Yorita174, K. Yoshihara124, C. Young145, C. J. S. Young32, S. Youssef24,D. R. Yu16,J. Yu8,J. Yu67, L. Yuan70, S.P.Y.Yuen23, I. Yusuff30,ax, B. Zabinski42, G. Zacharis10, R. Zaidan13, A.M.Zaitsev132,aj, N. Zakharchuk45, J. Zalieckas15, A. Zaman150, S. Zambito59, D. Zanzi91, C. Zeitnitz178, M. Zeman130,A. Zemla41a, J.C.Zeng169, Q. Zeng145, O. Zenin132, T. Ženiš146a,D. Zerwas119, D. Zhang92, F. Zhang176, G. Zhang36a,aq, H. Zhang35b, J. Zhang6, L. Zhang51, L. Zhang36a, M. Zhang169, R. Zhang23, R. Zhang36a,av, X. Zhang36b, Y. Zhang35a, Z. Zhang119, X. Zhao43, Y. Zhao36b,ay, Z. Zhao36a, A. Zhemchugov68, J. Zhong122, B. Zhou92, C. Zhou176, L. Zhou43, M. Zhou35a, M. Zhou150, N. Zhou35c,C. G. Zhu36b,H. Zhu35a,J. Zhu92, Y. Zhu36a, X. Zhuang35a, K. Zhukov98, A. Zibell177, D. Zieminska64, N. I. Zimine68, C. Zimmermann86, S. Zimmermann51, Z. Zinonos103,M. Zinser86,M. Ziolkowski143,L. Živkovi´c14,G. Zobernig176,A. Zoccoli22a,22b,R. Zou33,M. zur Nedden17, L. Zwalinski32 1 Department of Physics, University of Adelaide, Adelaide, Australia 2 Physics Department, SUNY Albany, Albany, NY, USA 3 Department of Physics, University of Alberta, Edmonton, AB, Canada 4 (a)Department of Physics, Ankara University, Ankara, Turkey; (b)Istanbul Aydin University, Istanbul, Turkey; (c)Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey 5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France 6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA 7 Department of Physics, University of Arizona, Tucson, AZ, USA 8 Department of Physics, The University of Texas at Arlington, Arlington, TX, USA 9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece 10 Physics Department, National Technical University of Athens, Zografou, Greece 123 11 Department of Physics, The University of Texas at Austin, Austin, TX, USA 12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan 13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain 14 Institute of Physics, University of Belgrade, Belgrade, Serbia 15 Department for Physics and Technology, University of Bergen, Bergen, Norway 16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA 17 Department of Physics, Humboldt University, Berlin, Germany 18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland 19 School of Physics and Astronomy, University of Birmingham, Birmingham, UK 20 (a)Department of Physics, Bogazici University, Istanbul, Turkey; (b)Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey; (c)Faculty of Engineering and Natural Sciences, Istanbul Bilgi University, Istanbul, Turkey; (d)Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey 21 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia 22 (a)INFN Sezione di Bologna, Bologna, Italy; (b)Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy 23 Physikalisches Institut, University of Bonn, Bonn, Germany 24 Department of Physics, Boston University, Boston, MA, USA 25 Department of Physics, Brandeis University, Waltham, MA, USA 26 (a)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (b)Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil; (c)Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d)Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil 27 Physics Department, Brookhaven National Laboratory, Upton, NY, USA 28 (a)Transilvania University of Brasov, Brasov, Romania; (b)Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (c)Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania; (d)Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (e)University Politehnica Bucharest, Bucharest, Romania; (f)West University in Timisoara, Timisoara, Romania 29 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina 30 Cavendish Laboratory, University of Cambridge, Cambridge, UK 31 Department of Physics, Carleton University, Ottawa, ON, Canada 32 CERN, Geneva, Switzerland 33 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA 34 (a)Departamento de Física, Pontifcia Universidad Católica de Chile, Santiago, Chile; (b)Departamento de Física, Universidad Técnica Federico Santa María, Valparaiso, Chile 35 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b)Department of Physics, Nanjing University, Nanjing, Jiangsu, China; (c)Physics Department, Tsinghua University, Beijing 100084, China 36 (a)Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; (b)School of Physics, Shandong University, Jinan, Shandong, China; (c)Department of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai (also at PKU-CHEP), Shanghai, China 37 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France 38 Nevis Laboratory, Columbia University, Irvington, NY, USA 39 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark 40 (a)INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b)Dipartimento di Fisica, Università della Calabria, Rende, Italy 41 (a)Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland; (b)Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland 42 Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland 43 Physics Department, Southern Methodist University, Dallas, TX, USA 44 Physics Department, University of Texas at Dallas, Richardson, TX, USA 45 DESY, Hamburg and Zeuthen, Germany 46 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany 123 47 Institut für Kern-und Teilchenphysik, Technische Universität Dresden, Dresden, Germany 48 Department of Physics, Duke University, Durham, NC, USA 49 SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK 50 INFN Laboratori Nazionali di Frascati, Frascati, Italy 51 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany 52 Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Genova, Switzerland 53 (a)INFN Sezione di Genova, Genova, Italy; (b)Dipartimento di Fisica, Università di Genova, Genova, Italy 54 (a)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia 55 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany 56 SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK 57 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany 58 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France 59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA 60 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (c)ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany 61 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan 62 (a)Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b)Department of Physics, The University of Hong Kong, Hong Kong, China; (c)Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China 63 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 64 Department of Physics, Indiana University, Bloomington, IN, USA 65 Institut für Astro-und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria 66 University of Iowa, Iowa City, IA, USA 67 Department of Physics and Astronomy, Iowa State University, Ames, IA, USA 68 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia 69 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan 70 Graduate School of Science, Kobe University, Kobe, Japan 71 Faculty of Science, Kyoto University, Kyoto, Japan 72 Kyoto University of Education, Kyoto, Japan 73 Department of Physics, Kyushu University, Fukuoka, Japan 74 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina 75 Physics Department, Lancaster University, Lancaster, UK 76 (a)INFN Sezione di Lecce, Lecce, Italy; (b)Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy 77 Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK 78 Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia 79 School of Physics and Astronomy, Queen Mary University of London, London, UK 80 Department of Physics, Royal Holloway University of London, Surrey, UK 81 Department of Physics and Astronomy, University College London, London, UK 82 Louisiana Tech University, Ruston, LA, USA 83 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France 84 Fysiska institutionen, Lunds universitet, Lund, Sweden 85 Departamento de Fisica Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain 86 Institut für Physik, Universität Mainz, Mainz, Germany 87 School of Physics and Astronomy, University of Manchester, Manchester, UK 88 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France 89 Department of Physics, University of Massachusetts, Amherst, MA, USA 90 Department of Physics, McGill University, Montreal, QC, Canada 91 School of Physics, University of Melbourne, Victoria, Australia 92 Department of Physics, The University of Michigan, Ann Arbor, MI, USA 123 93 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA 94 (a)INFN Sezione di Milano, Milano, Italy; (b)Dipartimento di Fisica, Università di Milano, Milano, Italy 95 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus 96 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Republic of Belarus 97 Group of Particle Physics, University of Montreal, Montreal, QC, Canada 98 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia 99 Institute for Theoretical and Experimental Physics (ITEP), Moscow, Russia 100 National Research Nuclear University MEPhI, Moscow, Russia 101 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia 102 Fakultät für Physik, Ludwig-Maximilians-Universität München, München, Germany 103 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), München, Germany 104 Nagasaki Institute of Applied Science, Nagasaki, Japan 105 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan 106 (a)INFN Sezione di Napoli, Napoli, Italy; (b)Dipartimento di Fisica, Università di Napoli, Napoli, Italy 107 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA 108 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands 109 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, Netherlands 110 Department of Physics, Northern Illinois University, DeKalb, IL, USA 111 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia 112 Department of Physics, New York University, New York, NY, USA 113 Ohio State University, Columbus, OH, USA 114 Faculty of Science, Okayama University, Okayama, Japan 115 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA 116 Department of Physics, Oklahoma State University, Stillwater, OK, USA 117 Palacký University, RCPTM, Olomouc, Czech Republic 118 Center for High Energy Physics, University of Oregon, Eugene, OR, USA 119 LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France 120 Graduate School of Science, Osaka University, Osaka, Japan 121 Department of Physics, University of Oslo, Oslo, Norway 122 Department of Physics, Oxford University, Oxford, UK 123 (a)INFN Sezione di Pavia, Pavia, Italy; (b)Dipartimento di Fisica, Università di Pavia, Pavia, Italy 124 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA 125 National Research Centre “Kurchatov Institute” B.P. Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia 126 (a)INFN Sezione di Pisa, Pisa, Italy; (b)Dipartimento di Fisica E. Fermi, Università di Pisa, Pisa, Italy 127 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA 128 (a)Laboratório de Instrumentação e Física Experimental de Partículas-LIP, Lisboa, Portugal; (b)Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal; (c)Department of Physics, University of Coimbra, Coimbra, Portugal; (d)Centro de Física Nuclear da Universidade de Lisboa, Lisboa, Portugal; (e)Departamento de Fisica, Universidade do Minho, Braga, Portugal; (f)Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, Spain; (g)Dep Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal 129 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic 130 Czech Technical University in Prague, Praha, Czech Republic 131 Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic 132 State Research Center Institute for High Energy Physics (Protvino), NRC KI, Protvino, Russia 133 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK 134 (a)INFN Sezione di Roma, Roma, Italy; (b)Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy 135 (a)INFN Sezione di Roma Tor Vergata, Roma, Italy; (b)Dipartimento di Fisica, Università di Roma Tor Vergata, Roma, Italy 136 (a)INFN Sezione di Roma Tre, Roma, Italy; (b)Dipartimento di Matematica e Fisica, Università Roma Tre, Roma, Italy 123 137 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies-Université Hassan II, Casablanca, Morocco; (b)Centre National de l’Energie des Sciences Techniques Nucleaires, Rabat, Morocco; (c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Marrakech, Morocco; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; (e)Faculté des Sciences, Université Mohammed V, Rabat, Morocco 138 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France 139 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA 140 Department of Physics, University of Washington, Seattle, WA, USA 141 Department of Physics and Astronomy, University of Sheffeld, Sheffeld, UK 142 Department of Physics, Shinshu University, Nagano, Japan 143 Department Physik, Universität Siegen, Siegen, Germany 144 Department of Physics, Simon Fraser University, Burnaby, BC, Canada 145 SLAC National Accelerator Laboratory, Stanford, CA, USA 146 (a)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic 147 (a)Department of Physics, University of Cape Town, Cape Town, South Africa; (b)Department of Physics, University of Johannesburg, Johannesburg, South Africa; (c)School of Physics, University of the Witwatersrand, Johannesburg, South Africa 148 (a)Department of Physics, Stockholm University, Stockholm, Sweden; (b)The Oskar Klein Centre, Stockholm, Sweden 149 Physics Department, Royal Institute of Technology, Stockholm, Sweden 150 Departments of Physics and Astronomy and Chemistry, Stony Brook University, Stony Brook, NY, USA 151 Department of Physics and Astronomy, University of Sussex, Brighton, UK 152 School of Physics, University of Sydney, Sydney, Australia 153 Institute of Physics, Academia Sinica, Taipei, Taiwan 154 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel 155 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel 156 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece 157 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan 158 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan 159 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan 160 Tomsk State University, Tomsk, Russia, Russia 161 Department of Physics, University of Toronto, Toronto, ON, Canada 162 (a)INFN-TIFPA, Povo, Italy; (b)University of Trento, Trento, Italy 163 (a)TRIUMF, Vancouver, BC, Canada; (b)Department of Physics and Astronomy, York University, Toronto, ON, Canada 164 Faculty of Pure and Applied Sciences, and Center for Integrated Research in Fundamental Science and Engineering, University of Tsukuba, Tsukuba, Japan 165 Department of Physics and Astronomy, Tufts University, Medford, MA, USA 166 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA 167 (a)INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b)ICTP, Trieste, Italy; (c)Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy 168 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden 169 Department of Physics, University of Illinois, Urbana, IL, USA 170 Instituto de Fisica Corpuscular (IFIC) and Departamento de Fisica Atomica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain 171 Department of Physics, University of British Columbia, Vancouver, BC, Canada 172 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada 173 Department of Physics, University of Warwick, Coventry, UK 174 Waseda University, Tokyo, Japan 175 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel 176 Department of Physics, University of Wisconsin, Madison, WI, USA 177 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany 123 178 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany 179 Department of Physics, Yale University, New Haven, CT, USA 180 Yerevan Physics Institute, Yerevan, Armenia 181 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France a Also at Department of Physics, King’s College London, London, UK b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan c Also at Novosibirsk State University, Novosibirsk, Russia d Also at TRIUMF, Vancouver, BC, Canada e Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY, USA f Also at Physics Department, An-Najah National University, Nablus, Palestine g Also at Department of Physics, California State University, Fresno CA, USA h Also at Department of Physics, University of Fribourg, Fribourg, Switzerland i Also at II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany j Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain k Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal l Also at Tomsk State University, Tomsk, Russia m Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing, China n Also at Universita di Napoli Parthenope, Napoli, Italy o Also at Institute of Particle Physics (IPP), Victoria, Canada p Also at Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania q Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia r Also at Borough of Manhattan Community College, City University of New York, New York, NY, USA s Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA t Also at Centre for High Performance Computing, CSIR Campus, Rosebank, Cape Town, South Africa u Also at Louisiana Tech University, Ruston, LA, USA v Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain w Also at Graduate School of Science, Osaka University, Osaka, Japan x Also at Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany y Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, Netherlands z Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA aa Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia ab Also at CERN, Geneva, Switzerland ac Also at Georgian Technical University (GTU), Tbilisi, Georgia ad Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan ae Also at Manhattan College, New York, NY, USA af Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan ag Also at School of Physics, Shandong University, Shandong, China ah Also at Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada, (Spain), Portugal ai Also at Department of Physics, California State University, Sacramento, CA, USA aj Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia ak Also at Departement de Physique Nucleaire et Corpusculaire, Université de Genève, Geneva, Switzerland al Also at International School for Advanced Studies (SISSA), Trieste, Italy am Also at Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain an Also at School of Physics, Sun Yat-sen University, Guangzhou, China ao Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofa, Bulgaria ap Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia aq Also at Institute of Physics, Academia Sinica, Taipei, Taiwan ar Also at National Research Nuclear University MEPhI, Moscow, Russia as Also at Department of Physics, Stanford University, Stanford, CA, USA 123 at Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary au Also at Giresun University, Faculty of Engineering, Giresun, Turkey av Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France aw Also at Department of Physics, Nanjing University, Jiangsu, China ax Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia ay Also at LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France ∗Deceased 123