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SUMMARY 

Selection experiments combined with genome or transcriptome resequencing represent a 

promising approach for advancing our understanding of the genetic basis of adaptive 

evolution. Here, I investigated a bank vole (Myodes [=Clethrionomys] glareolus) selection 

experiment, with four lines selected for aerobic capacity, four lines selected for predatory 

behavior and four unselected control lines. I developed transcriptomic resources for this non-

model species and assessed the accuracy of cost-effective pool RNA-Seq approach. This 

approach can be used in studies of adaptation on molecular level in organisms without high-

quality reference genome assembled. Based on transcriptomic patterns of polymorphism and 

divergence in the selection experiment I drew conclusions about initial response to selection 

on molecular level in small populations. I tried to understand how directional selection and 

genetic drift shape allele frequency and expression dynamics, and what are the consequences 

of that for studying and understanding adaption in natural populations.  

Chapter I is dedicated to testing the accuracy the estimates of allele frequency 

obtained from RNA pools sequenced using Illumina technology. While sequencing has 

become relatively inexpensive, the preparation of a large number of sequencing libraries 

remains costly and technically challenging. Pooling samples is then an attractive alternative, 

which is often applied in genome resequencing. Unfortunately, high-quality reference 

genomes are still lacking for many organisms, which complicates population genomic studies. 

For such species genome-wide information from entire populations may be obtained by 

sequencing pooled transcriptomes. The study reported in Chapter I shows that the pooled 

RNA-Seq approach is a reliable and cost-effective strategy for obtaining genome-wide 

information about potentially functionally relevant variation, provided that high-quality 

transcriptome assembly and stringent SNP-calling and filtering criteria based on individual 

sequencing are used. This result is based on data from 10 vole liver transcriptomes, sequenced 

both as an individually barcoded libraries and as a pool. Liver reference transcriptome was 

assembled de novo and around 24 thousands high-quality single nucleotide polymorphisms 

(SNPs) were identified. Allele frequency estimates were highly correlated between individual 

and pooled samples, indicating that pooled RNA-Seq exhibits an accuracy comparable with 

pooled genome resequencing. In this part of the thesis I also proposed a strategy which may 

be used to filter out SNPs potentially associated with transcriptome-specific errors. 
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This strategy was applied for studying molecular-level response to artificial selection. 

In Chapter II I investigated liver and heart transcriptomes of bank voles selected for 

increased aerobic metabolism. Samples were collected from four selected and four control 

lines at 13th generation of selection. At that point, selectively bred voles had 48% higher 

maximum rates of oxygen consumption than did the control ones. Liver and heart 

transcriptomes were assembled and annotated to evaluate molecular-level response to 

selection in genes which are expressed in those organs. The  two transcriptomes contained 

transcripts of  more than 18,000 and 11,000 known protein coding genes, respectively. 

Analyses of both transcriptomes allowed to identify 172,246 SNPs, a vast majority of them 

being located in putatively protein-coding sequences. For each SNP allele frequencies were 

calculated within each line, and mean pairwise distances between lines (FST distance) were 

used to estimate genetic differentiation between selectively bred and control lines. I did not 

find evidence for separate clustering of the four lines selected for aerobic performance and the 

four control lines. To compare allele frequency changes with expectations from drift I 

performed pedigree-based simulations. Again, I did not find evidence for mechanisms other 

than drift driving differentiation between treatments. On the other hand, expression analyses 

showed that liver transcriptome-wide pattern of expression distinguished selected from 

controls lines, and over 300 genes were found to be differentially expressed between 

treatments in heart or liver. Hence, these results support the hypothesis that initial molecular-

level response to selection occurs primarily through changes in gene expression. In order to 

understand molecular underpinnings of phenotypic selection, I chose genes which are 

plausible targets of selection. They were selected from the most differentiated genes between 

treatments, based on information about gene functions and the biology of the selected 

phenotype. Some of those genes are associated with mobilizing fats and sugars from body 

reserves, with stress response and mating success.   

Response to selection for another trait - predatory behavior - is the topic of 

Chapter III. In this study, after 13 generations, the proportion of voles showing predatory 

behavior was 5 times higher in the selected lines than in unselected control lines. I sequenced 

transcriptomes of liver and hippocampus of the selected and control animals to investigate 

patterns of repeatability of selection on molecular level. Assembled hippocampus 

transcriptome contained 21,407 sequences of protein coding genes. Both transcriptomes 

allowed to identify 179,468 polymorphisms. In contrast to the results obtained for aerobic 

performance, here I found higher than expected repeatable differentiation in allele 
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frequencies. This is mainly explained by noncoding and synonymous changes, suggesting 

their role in the evolution of gene expression or alternative splicing. Analyses of gene 

expression showed that hippocampus pattern of expression of selected lines clusters 

separately from the control ones, and 149 genes were differentially expressed between 

treatments in hippocampus or in liver. The difference between aerobic and predatory lines in 

SNPs analyses suggests that the architecture of adaptive variation differs depending on trait. 

More repeatable changes in allele frequencies in predatory lines may result from selection for 

variants of higher frequencies in base population or stronger selection per variant. Finally, 

investigation of genes most differentiated between predatory and control lines points to the 

potential role of hunger, aggression, biological rhythm and functioning of the nervous system 

in shaping the response to selection.  

The selection experiment was established using animals derived from a natural 

population and at the onset of selection the laboratory population contained an amount and 

spectrum of genetic variation similar to that typically found in populations of small mammals. 

Therefore, the results presented here are relevant to the understanding of the molecular basis 

of complex adaptation. They support the hypothesis that changes in gene expression play 

predominant role at early stages  of adaptive evolution. My results suggest also that the 

molecular pattern and repeatability of adaptation are likely a function of the genetic 

architecture of the selected trait. Finally, methodological and transcriptomic resources 

developed and presented here can be used in future studies of molecular basis of adaptation in 

non-model species.    
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STRESZCZENIE 

Analiza eksperymentów selekcyjnych poprzez sekwencjonowanie genomów lub 

transkryptomów jest obiecującą strategią, która może pomóc w zrozumieniu genetycznego 

podłoża ewolucji adaptatywnej. W prezentowanej pracy wykorzystuję tę strategię do badania 

genetycznych podstaw adaptacji u nornicy rudej (Myodes [=Clethrionomys] glareolus). 

Podczas eksperymentu selekcyjnego, cztery niezależne linie selekcjonowane były na wysoką 

wydolność tlenową, cztery na zachowania drapieżnicze, a cztery pozostałe nieselekcjonowane 

linie traktowane były jako kontrola. W mojej pracy analizowałem osobniki pochodzące z 13. 

pokolenia selekcji. W pierwszej kolejności prezentuję zasoby transkryptomowe dla tego 

niemodelowego gatunku oraz szacuję dokładność estymowania frekwencji alleli w 

zmieszanych próbkach RNA pochodzących od kilku osobników. Na podstawie 

transkryptomowych wzorców zmienności i zróżnicowania pomiędzy liniami, wnioskuję 

o początkowej odpowiedzi na dobór na poziomie molekularnym. Próbuję zrozumieć, jak 

dobór kierunkowy i dryf genetyczny kształtują dynamikę zmian frekwencji alleli oraz 

poziomu ekspresji. Analizuję jakie są tego konsekwencje dla badania i zrozumienia adaptacji 

w naturalnych populacjach.  

Rozdział I dotyczy testowania dokładności oszacowania frekwencji alleli ze 

zmieszanych próbek RNA sekwencjonowanych przy użyciu technologii Illumina. Chociaż 

sekwencjonowanie staje się relatywnie tanie, przygotowanie dużej liczby indywidulanie 

znakowanych bibliotek pozostaje kosztowne oraz trudne technicznie. Mieszanie próbek 

pochodzących z wielu osobników i przygotowywanie z nich jednej biblioteki, jest w takim 

przypadku rozsądną alternatywą, często stosowaną przy sekwencjonowaniu genomów. 

Niestety, dobrze złożone i anotowane referencyjne genomy nie są dostępne dla wielu 

gatunków, co utrudnia prowadzenie na nich ogólnogenomowych analiz. Dla takich gatunków 

populacyjna ogólnogenomowa informacja może być uzyskana poprzez sekwencjonowanie 

zmieszanych próbek transkryptomów. W rozdziale pierwszym pokazuję, że takie podejście 

jest wiarygodną i oszczędną strategią uzyskania ogólnogenomowej informacji o funkcjonalnie 

ważnej zmienności genetycznej. Należy jednak zwrócić uwagę na zapewnienie wysokiej 

jakości referencyjnego transkryptomu i ustalić rygorystyczne kryteria wywoływania oraz 

filtrowania polimorfizmów pojedynczych nukleotydów (SNPów), opartych na próbce 

pojedynczo zsekwencjonowanych osobników. Ta strategia testowana jest przy użyciu 

transkryptomów pochodzących z wątrób 10 osobników nornicy rudej. Transkryptomy 

zsekwencjonowane zostały indywidualnie oraz jako jedna zmieszana próbka. Referencyjny 
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transkrytpom złożony został de novo i użyty do wywołania ok. 20 tys. SNPów. Frekwencje 

alleli były silnie skorelowane pomiędzy oszacowaniami  pochodzącymi ze zmieszanej próbki 

a danymi uzyskanymi z indywidualnego sekwencjonowania każdego osobnika. Wyniki 

świadczą o tym, że szacowanie frekwencji alleli ze zmieszanych próbek transkryptomów ma 

podobną dokładność do analogicznych analiz opartych na sekwencjonowaniu genomów. W 

tym rozdziale proponuję także strategię, która może być użyta do filtrowania SNiPów 

potencjalnie związanych ze specyficznymi dla transkryptomów błędami.   

To podejście zostało użyte w badaniach molekularnych podstaw odpowiedzi na dobór 

sztuczny w eksperymencie selekcyjny. W rozdziale drugim analizuję transkryptomy 

pochodzące z wątrób i ser nornic selekcjonowanych na wysoki metabolizm tlenowy. Próbki 

zostały pobrane z czterech linii selekcyjnych (linie A) i z czterech kontrolnych (linie C) w 13. 

pokoleniu selekcji. W tym pokoleniu, nornice z linii A miały o 48% wyższe maksymalne 

tempo konsumpcji tlenu w porównaniu z nornicami z linii C. Transkryptomy wątroby i serca 

zostały złożone i anotowane w celu użycia ich do oszacowania odpowiedzi na dobór na 

poziomie molekularnym. W tych transkrytpomach zidentyfikowałem ok 18 tys. (wątroba) i 

11 tys. sekwencji kodujących znane białka. Analizy wszystkich zsekwencjonowanych próbek 

pozwoliły na zidentyfikowanie 172,246 SNPów, z których zdecydowana większość 

znajdowała się w sekwencjach kodujących białka. Dla każdego SNPa frekwencje alleli 

policzone zostały dla każdej linii i użyte do oszacowania średniego dystansu genetycznego  

pomiędzy liniami (dystans FST). Nie znalazłem dowodów na oddzielnie grupowanie się 

czterech linii selekcyjnych w stosunku do linii kontrolnych. Do porównania zmian frekwencji 

alleli z oczekiwaniami z dryfu przeprowadziłem symulacje komputerowe oparte o znane 

rodowody oraz oszacowane frekwencje alleli w populacji wyjściowej. Po raz kolejny nie 

znalazłem dowodów na działanie innych mechanizmów niż dryf, które powodują 

różnicowanie się linii selekcjonowanych i kontrolnych. Z drugiej strony, analizy zmian 

poziomu ekspresji genów pokazały, że ogólnotranskryptomowy profil ekspresji zmienił się 

w wątrobie, a ponad 300 genów miało istotnie różne poziomy ekspresji pomiędzy liniami A i 

C. Te wyniki wspierają hipotezę mówiącą o tym, że w początkowym okresie działania 

doboru, odpowiedź na poziomie molekularnym związana jest głównie ze zmianami w 

regulacji ekspresji genów. Aby zrozumieć molekularne podstawy selekcjonowanej cechy 

wybrałem potencjalnych kandydatów leżących u podstaw odpowiedzi na dobór. Zostały one 

wybrane spośród genów które wykazywały największe zróżnicowanie pomiędzy liniami A i 

C, używając przy tym informacji o ich molekularnej funkcji oraz wiedzy o selekcjonowanej 
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cesze. Geny te związane są z mobilizacją energii z zapasów organizmu, odpowiedzią na stres i 

sukcesem rozrodczym.  

Odpowiedź na dobór na inną cechę – zachowania drapieżnicze – jest tematem 

trzeciego rozdziału. Po 13 pokoleniach selekcji, cztery linie selekcjonowane na zachowania 

drapieżnicze (linie P), miały pięć razy większą proporcje nornic prezentujących zachowania 

drapieżnicze, niż cztery linie kontrolne (linie C). Zsekwencjonowałem transkryptomy 

pochodzące z wątrób i hipokampów nornic z linii P i C, by uzyskać odpowiedź na pytania 

dotyczące molekularnych podstaw zachowań drapieżniczych oraz powtarzalności wzorców 

ewolucji na poziomie molekularnym. Złożenie transkryptomu hipokampu pozwoliło 

zidentyfikować 21,407 sekwencji genów kodujących białka, a oba transkryptomy 

zidentyfikować 179,468 SNPów. W przeciwieństwie do wyników otrzymanych dla nornic 

selekcjonowanych na wysoka wydolność tlenową, linie P i C różnicowały się we 

frekwencjach alleli bardziej niż wynikałoby to z dryfu. Efekt ten wyjaśniają głównie 

niekodujące i synonimowe SNPy, co sugeruje ich potencjalną rolę w ewolucji ekspresji lub 

alternatywnego splicingu. Analiza ekspresji genów pokazała że wzorzec ekspresji zmienił się 

istotnie w hipokampie a 149 genów ulegało istotnie różnej ekspresji w hipokampie lub 

wątrobie. Różnica pomiędzy liniami selekcjonowanymi na wysoki metabolizm tlenowy i tymi 

selekcjonowanymi na zachowania drapieżnicze sugeruje, że architektura genetyczna tych cech 

istotnie się różni. Bardziej powtarzalne zmiany frekwencji alleli w liniach drapieżniczych 

mogą być związane z wariantami o wyższych częstościach w populacji wyjściowej albo 

z silniejszym doborem działającym na pojedyncze warianty. Geny najbardziej zróżnicowane 

pomiędzy liniami drapieżniczymi i kontrolnymi sugerują potencjalną rolę zmian w procesach 

związanych z głodem, agresją, rytmem okołodobowym i funkcjonowaniem układu 

nerwowego w odpowiedzi na dobór na zachowanie drapieżnicze.  

Studiowany eksperyment selekcyjny został założony z osobników pochodzących 

z naturalnej populacji, dlatego ilość i spektrum zmienności genetycznej była dobrym 

przybliżeniem zmienności dostępnej dla doboru w populacjach naturalnych małych ssaków. 

Prezentowane wyniki są więc relewantne dla zrozumienia molekularnych podstaw adaptacji. 

Wspierają one hipotezę zakładającą, że zmiany poziomu ekspresji genów odgrywają 

zasadniczą rolę w początkowych stadiach adaptatywnej ewolucji. Wyniki te sugerują także, że 

molekularne wzorce adaptacji i ich powtarzalność mogą być funkcją architektury genetycznej 

selekcjonowanej cechy. Zaprezentowane strategie badawcze oraz zasoby transkryptomowe 

mogą zostać użyte w dalszych badaniach molekularnych podstaw adaptacji. 
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GENERAL INTRODUCTION 

In the world of finite resources, some organisms will make more efficient use of them and so 

will leave more descendants than their less efficient relatives. If the variation between 

organisms in producing offspring includes a heritable component, this force, known as natural 

selection, pushes populations towards a phenotype that better fits the current  environment 

(Darwin 1859; Fisher 1930). This simple process is called adaptation.  

The importance of adaptive evolution is indisputable. However, it remains 

controversial  what proportion of the entire evolutionary change at molecular level arises from 

natural selection (Nei 2005; Hahn 2008; Sella et al. 2009; Wagner 2010). Random mutations 

are the primary source of genetic variation, but the extraordinary amount of genetic variation 

between populations or species can result from two different mechanisms: either deterministic 

(selection) or stochastic (genetic drift) processes. Thus, it is critical for evolutionary biology 

to figure out which of them dominates evolution (Hahn 2008; Nei 2010).  

Adaptation can be studied not only as a process but also as an outcome. An adaptive 

trait is one that increases organism’s fitness in a particular environmental context and has 

been, hence, the target of  natural selection. There is extensive debate going on regarding  the 

prevalence of adaptive traits, the mechanisms by which they arise and the levels at which 

selection operates (Nowak et al. 2010; Abbott et al. 2011; Barrett and Hoekstra 2011).   

There are several uncertainties concerning adaptation at the molecular level, for 

which recent advances in sequencing technology promise to find explanations. One of the 

problems concerns the source of adaptive variation.  A population can adapt by the means of  

either new mutations or variants already present in the population (standing genetic variation) 

(Barrett and Schluter 2008). The source of adaptive variation determines the strength of 

signatures of positive selection in genomes: adaptive evolution from standing genetic 

variation leaves more subtle signs in genomes (soft sweeps) than adaptation due to new 

mutations (hard sweeps) (Hermisson and Pennings 2005; Teshima et al. 2006; Messer and 

Petrov 2013). This may lead to underestimation of the relative importance of adaptation at the 

molecular level, if natural selection utilizes mainly standing genetic variation. However, 

recent findings suggest that the source of adaptive variation appears to vary among 

evolutionary lineages. Extensive work on microorganisms has contributed to our 

understanding  of adaptation scenarios driven by new mutations (Herring et al. 2006; Barrick 

et al. 2009; Tenaillon et al. 2012). On the other hand, in multicellular, sexually reproducing 
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species (the subject of this dissertation) standing genetic variation is the main source of 

variation at the initial stage of adaptive evolution (Barrett and Schluter 2008; Teotónio et al. 

2009; Burke et al. 2010). 

Because most of the theory on the genetics of adaptation has focused on adaptation 

from new mutations, many questions about the dynamics,  circumstances and consequences of 

adaptation from standing variation remain unanswered (Barrett and Schluter 2008). They 

concern for instance the distribution of fitness effect sizes (Barrett and Schluter 2008),as well 

as parallelism and convergence  at molecular level (Conte et al. 2012). 

The genetic basis of parallel adaptations has intrigued researchers for years because 

its understanding may help to answer questions about repeatability of evolution (Stern and 

Orgogozo 2009; Radwan and Babik 2012). If  adaptation is generally due to allele frequency 

changes at loci with standing variation, then evolution can proceed in parallel among derived 

populations experiencing similar environmental conditions (Teotónio et al. 2009). However, 

this parallel process should depend on population size and the architecture of genetic variation 

available for selection. Thus, the debate involves also the question whether, and under what 

circumstances, parallel evolution occurs on the level of nucleotide, gene and molecular 

pathway (Elmer and Mayer 2011). 

Another issue concerns the role that gene expression changes play in adaptation. King 

and Wilson (1975) proposed that adaptive evolutionary change is largely due to changes in 

gene expression, and there is empirical evidence both supporting (Wray 2007; Jones et al. 

2012) and contradicting this view (Hoekstra and Coyne 2007). A growing number of studies 

suggests that regulation of gene expression is a common source of adaptation, but performing 

a comprehensive comparison between expression and structural changes remains a 

challenging task and such comparison has been done only recently for humans on a genome-

wide scale (Fraser 2013). 

In order to study molecular basis of adaptation, scientists tried to identify alleles that 

affect adaptive phenotype (Glazier et al. 2002; Olson-Manning et al. 2012), or to scan 

genomes for signs of positive selection (Storz 2005; Biswas and Akey 2006). Such studies, 

targeting natural populations and utilizing whole-genome sequencing technology, allowed to 

collect interesting observations improving our understanding of genetic basis of adaptation. 

For example studies of stickleback fish demonstrated the importance of standing genetic 

variation and changes in regulatory elements for adaptive evolution (Jones et al. 2012). After 

the retreat of Pleistocene glaciers, marine sticklebacks adapted to newly formed freshwater 
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habitats, exhibiting repeatable changes in body shape, skeletal armour, pigmentation, life 

history and mating performance. By sequencing genomes of marine and freshwater fish 

researchers demonstrated that regulatory changes dominate their adaptive evolution, which 

occurred mainly from globally shared standing genetic variation (Jones et al. 2012). Another 

study focused on the relative importance of adaptive and neutral evolution (Brawand et al. 

2014).  By sequencing the  genomes of  African cichlid fish the authors demonstrated that 

both processes are necessary for generating new, highly diverse  species in very short periods 

of time. African cichlids are a well-known example of rapid adaptive radiation with around 

2,000 known species. Analyses of genomes from five lineages suggest that neutral processes 

were crucial for retaining genomic variation in cichlids, whereas selection subsequently sorted 

some of this variation (Brawand et al. 2014). In another study, researchers analyzed deer mice 

that have recently colonized light-colored soil of Nebraska Sand Hills (Linnen et al. 2013). 

Their strongly adaptive light coat color is composed of multiple traits and arose from many 

independent mutations within a single gene. This shows that even adaptive evolution of a 

simple Mendelian trait may proceed in complex manner.   

The studies of natural populations have some limitations, due to lack of replications, 

complex population history and population structure. Another important issue which also 

needs to be emphasized is that they concern the outcome of adaptation processes, but often 

make conclusions on the process itself. The pattern does not necessarily reveal the process 

because multiple scenarios may produce similar patterns. Thus, it was argued that molecular 

studies of natural populations have rarely altered fundamental understanding of the 

relationship between evolution of a genotype and evolution of a phenotype (Rockman 2012; 

Travisano and Shaw 2013). 

An alternative research framework that offers the opportunity to study evolutionary 

processes such as adaptation and genetic drift is experimental evolution (Kawecki et al. 2012). 

Under such approach hypotheses and theories concerning evolution are tested by the use of 

controlled experiments. Recently, selection experiments have gained new value, namely 

insight into molecular-level response to selection. Thus, evolve and resequencing (E&R, 

Turner et al. 2011) promises to unify two branches of genetics: molecular  and populations 

genetics, by identifying loci contributing to adaptation (molecular genetics) and analyzing 

trajectories of those loci during adaptation (population genetics)  (Kofler and Schlötterer 

2014). In the wake of the latest sequencing technologies and the ongoing drop in DNA 

sequencing costs, this ultimate goal has now become reachable. Moreover, the advantages of 
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E&R studies - controlled conditions, selection pressure, demography and history, studying 

evolutionary processes in the real time, and finally the ability to replicate experiments under 

identical conditions - allow to overcome the limitations which are an inherent part of the 

studies of natural populations. 

Most of the E&R studies of multicellular organisms were performed on fruit flies. 

Burke et al. (2010) studied flies that had been selected for accelerated development over 600 

generations. They concluded that the probability of fixation of selected variants is relatively 

low and that selection does not readily expunge genetic variation. Other studies confirm the 

predominant role of complex evolutionary trajectories of selected variants as well as 

emphasize the extraordinary importance of standing genetic variation and epistasis (Teotónio 

et al. 2009; Turner et al. 2011; Huang et al. 2012; Orozco-Terwengel et al. 2012).  

The E&R studies are less common for vertebrates, which usually have smaller 

population sizes, longer generation times and larger genomes. Therefore, much more effort on 

both experimental and molecular levels is required to perform such investigations. One of the 

few examples includes an experiment where mice were selected for voluntary activity 

(Swallow et al. 1998). The murine model was used to show heritability of the predisposition 

to engage in voluntary exercise with epistatic interactions accounting for a considerable 

amount of genetic variation (Kelly and Pomp 2013). However, a limitation for the conclusions 

drawn from this example is the fact, that it used laboratory model species for which the 

standing genetic variation may significantly deviate from natural populations. Other 

experiments on vertebrates suffer also from the nature of standing genetic variation in base 

populations, or have problems with achieving the required number of replicates or a 

satisfactory population size (Johansson et al. 2010; Kukekova  et al. 2011; Chan et al. 2012).  

In the present dissertation I make use of state-of-the-art sequencing technology and 

bioinformatic tools to study molecular-level response to selection in a unique vertebrate 

experiment. Bank voles (Myodes [=Clethrionomys] glareolus) have been selected in two 

ecologically important directions: for increased aerobic metabolism and for predatory 

behavior (Sadowska et al. 2008). The base population of the selection experiment originated 

from animals captured in the Niepołomice Forest, and thus represents good approximation of 

genetic variation segregating in natural populations of small vertebrates. After 13 generations, 

the voles from selected lines (in each direction) differed in the selection trait from the four 

control lines by more than 2 standard deviations. 
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Bank vole is an important organism in evolutionary, ecological, behavioral and 

medical studies (Kotlik et al. 2006; Nonno et al. 2006; Radwan et al. 2008; Sadowska et al. 

2008; Tschirren et al. 2012), but  unfortunately this small common European rodent does not 

have the reference genome assembled. Therefore, genomic analyses of bank vole are much 

more challenging than in case of  model species, such as fruit flies or mice (Ekblom and 

Galindo 2011; Ekblom and Wolf 2014). Such situation is still common for many species 

(called non-model species) studied by ecologists and evolutionary biologists. This is because 

a large genome assembly is a non-trivial task, which requires a lot of work and resources. 

Promising alternative for that is now provided by transcriptome sequencing (RNA-Seq) 

(Mortazavi et al. 2008; Vijay et al. 2013). In Chapter I I discuss benefits of RNA-Seq for non-

model species, I present the assembly of bank vole liver transcriptome and assess the accuracy 

of allele frequency estimation with the pooled RNA approach. This technical chapter is 

dedicated to test cost-effective pooled RNA-Seq approach and shows that sequenced pools of 

transcriptomes can be used as an alternative approach for population genomic analyses if 

reference genome is unavailable. I make use of these conclusions in the next two chapters, 

where pooled RNA-Seq is applied to study molecular-level response to selection.  

In Chapter II I test the hypothesis that adaptation is mainly associated with changes in 

gene expression. By sequencing and analyzing liver and heart transcriptomes of voles selected 

for increased metabolism I found support for that. Transcriptomic-wide pattern of expression 

changed drastically, whereas there is no evidence for selection-driven changes in 

nonsynonymous SNPs. This conclusion was based on analyses of distance matrices. To 

compare SNPs allele frequency differentiation with expectations from drift  I developed tools 

simulating drift and selection on known pedigree. Comparison of observed and simulated data 

showed that no repeatable changes in allele frequencies could be unambiguously attributed to 

directional selection, although the low power of these analyses limited the resulting  

inferences to large effect variants only.    

Similar  analyses were performed for hippocampus and liver transcriptomes of voles 

selected for predatory behavior (Chapter III). Again, lack of rapid nonsynonymous changes 

was accompanied by substantial expression differentiation. In contrast to the selection for 

aerobic performance however, for predatory lines I found repetitive changes in other than 

nonsynonymous classes of SNPs. They are potentially associated with expression or 

alternative splicing. Selection for predatory behavior seems to be associated with variants of 

larger effects or variants segregating in higher frequencies in the base populations. This 
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potential difference in the genetic architecture of those two traits may affect the repeatability 

of selection on molecular level. Finally, I identified candidate genes potentially underlying the 

selected traits. They should be prioritized as a target for future research, as potentially 

underlying ecologically important traits. 

In the context of adaptation genomics, my findings support the hypothesis claiming  

that changes in gene expression play predominant role in adaptive evolution. My results 

suggest also that molecular pattern and repeatability of response to selection are likely a 

function of the genetic architecture of the selected trait. The methodological part of this 

dissertation provides evidence that pooled RNA-Seq approach can be widely used in 

adaptation studies  in non-model species and that pedigree-based simulations are a powerful 

method of evaluating genome-wide effects of selection. Specifically for research on 

adaptation in bank vole, this dissertation presents transcriptomic data and a list of candidate 

genes which can be used in future laboratory and field studies on adaptation in this species. 
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Abstract 

For nonmodel organisms, genome-wide information that describes functionally relevant 

variation may be obtained by RNA-Seq following de novo transcriptome assembly. While 

sequencing has become relatively inexpensive, the preparation of a large number of 

sequencing libraries remains prohibitively expensive for population genetic analyses of 

nonmodel species. Pooling samples may be then an attractive alternative. To test whether 

pooled RNA-Seq accurately predicts true allele frequencies, we analysed the liver 

transcriptomes of 10 bank voles. Each sample was sequenced both as an individually 

barcoded library and as a part of a pool. Equal amounts of total RNA from each vole were 

pooled prior to mRNA selection and library construction. Reads were mapped onto the de 

novo assembled reference transcriptome. High-quality genotypes for individual voles, 

determined for 23 682 SNPs, provided information on ‘true’ allele frequencies; allele 

frequencies estimated from the pool were then compared with these values. ‘True’ frequencies 

and those estimated from the pool were highly correlated. Mean relative estimation error was 

21% and did not depend on expression level. However, we also observed a minor effect of 

interindividual variation in gene expression and allele-specific gene expression influencing 

allele frequency estimation accuracy. Moreover, we observed strong negative relationship 

between minor allele frequency and relative estimation error. Our results indicate that pooled 

RNA-Seq exhibits accuracy comparable with pooled genome resequencing, but variation in 

expression level  between individuals should  be assessed and accounted for. This should help 

in taking account the difference in accuracy between conservatively expressed transcripts and 

these which are variable in expression level.  
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Introduction 

Next-generation sequencing (NGS) technologies have resulted in enormous progress not only 

in the field of medicine but also in the fields of ecology and evolutionary biology. 

Comparative studies of natural variation at the molecular level have yielded important insights 

into the evolutionary history of populations, as well as the genomics of adaptation and 

speciation (Gilad et al. 2009; Rice et al. 2011;  Radwan & Babik 2012). For example, NGS 

technologies have recently been instrumental in enabling findings as impressive and varied as 

evidence of interbreeding between modern humans and Neanderthals (Reich et al. 2010), the 

discovery that adaptive evolution  results from standing genetic variation in the stickleback 

(Jones et al. 2012) and the identification of epistasis as one of the most important factors in 

evolution (Breen et al. 2012). Nonmodel, ecologically well-characterized organisms are being 

studied at a scale and with a precision unimaginable a few years ago (Ekblom & Galindo 

2011). Unfortunately, high-quality reference genomes are still lacking for many organisms 

that are commonly used in evolutionary and ecological studies, mainly because the de novo 

assembly of complex genomes  that include a large number of repetitive sequences remains a 

challenging task (Brenchley et al. 2012). In such cases, genome-wide information that 

describes functionally relevant variation may be obtained through RNA sequencing (RNA-

Seq) that utilizes de novo reference transcriptome assembly. This approach has been broadly 

used in ecological genomics (Vera et al. 2008; Babik et al. 2010; Jeukens et al. 2010; Wolf et 

al. 2010; Salem et al. 2012).  

RNA-Seq is an approach in which RNA molecules are selected, reverse-transcribed 

and then sequenced using an NGS platform (Mortazavi et al. 2008). Genome complexity and 

redundancy are reduced because only transcribed sequences are used, which enable the de 

novo assembly of entire transcripts, even when a relatively modest amount of sequence data 

are available (Martin & Wang 2011). It is important to note that RNA-Seq does not reduce 

genomic complexity randomly, but rather produces reads from regions in which a large 

proportion of functionally relevant variation is expected to be located (Jones et al. 2012). Such 

variation may be assessed and compared with known variation in genes in other organisms 

without requiring any pre-existing genomic information. Gene expression, alternative splicing 

patterns and the association of both with phenotypic traits may be also studied using RNA-

Seq (Lu et al. 2010; Barbosa-Morais et al. 2012).  
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RNA-Seq is usually  less  costly  than  genome  resequencing. However, if transcripts 

with low levels of expression are to be assembled, greater sequencing depth may be required, 

which increases the overall cost. Furthermore, the cost of preparing a large number of RNA-

Seq libraries, for example from many individuals, is still prohibitively high. An attractive 

possible solution to this problem is sample pooling (i.e. a pooled RNA-Seq). However, 

meaningful inferences from pooled RNA data require that allele frequencies estimated from 

pooled samples adequately reflect true allele frequencies. In case of RNAseq, uncertainty 

about population allele frequency arises not only because of sampling finite number of 

individuals, but also from additional stochasticity introduced due to differences in expression 

level among genes or even among alleles of the same gene. It may bias allele frequency 

estimates drastically, and to our knowledge, the extent to which these RNAseq-specific  issues  

bias  allele  frequency  estimates has not been explored.  

Pooling strategies using DNA samples (Pool-Seq) have been comprehensively tested 

(Sham et al. 2002; Futschik & Schlootterer 2010; Kim et al. 2010; Gompert & Buerkle 2011; 

Li 2011; Zhu et al. 2012), and they share some of the difficulties of the pooled RNA-Seq 

approach. In both Pool-Seq and pooled RNA-Seq approaches, the error associated with allele 

frequency estimates is inversely proportional to ‘true’ allele frequency. Several computational 

approaches that have been proposed to find rare variants in DNA pools and estimate their 

frequencies (Druley et al. 2009; Bansal 2010) could possibly be applied in pooled RNA-Seq 

analyses as well. Furthermore, variability introduced by technical errors (inaccurate pipetting, 

sequencing errors, etc.) is expected to be similar for RNA and DNA samples. However, three 

sources of error specific to pooled RNA-Seq have not been previously studied: (i) variation in 

expression levels among individuals, (ii) variation in expression levels among loci and (iii) 

allele-specific gene expression (Fig. 1).  

Substantial differences in gene expression levels commonly occur among individuals 

of the same sex or developmental stage and are attributable to differences in genetic 

background and environment. For example, Whitehead and Crawford (2006) showed that 

64% of genes are differentially expressed among individuals of the teleost fish genus 

Fundulus. Other studies argue that gene expression varies extensively both within and among 

populations (Sandberg et al. 2000; Morloy et al. 2004; Oleksiak et al. 2005; Lynch & Wagner 

2008; Barbosa-Morais et al. 2012). In the pooled RNA-Seq approach, interindividual variation 

in expression level may bias estimates of allele frequency because different individuals 

contribute unequal numbers of reads. If individuals differ greatly in their expression of a given 
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gene, allele frequency estimates will be biased towards individuals with higher expression 

levels.  

Interlocus variation in expression levels produces enormous differences in sequencing 

coverage, which may cause differences in the accuracy of allele frequency estimates for 

different loci. In non-normalized RNA-Seq analyses, gene expression levels may differ by six 

orders of magnitude (Mortazavi et al. 2008). The estimated allele frequencies for genes 

expressed at low levels will be less accurate than those obtained for genes covered by millions 

of reads. This problem is known to occur in transcriptomic studies, but it has not been studied 

in the context of pooling.  

The third major issue is allele-specific gene expression (Serre et al. 2008; Ge et al. 

2009). Cis-acting regulation or epigenetic silencing may cause differential expression of a 

diploid individual’s two alleles. Although allele-specific gene expression is a widespread 

phenomenon that affects the expression of 20% of genes, allele expression ratios higher than 

70:30 are rather rare (Serre et al. 2008). As a result, heterozygotes can in the vast majority of 

cases be successfully identified, given sufficient sequencing depth (Skelly  et al.  2011). 

However, using pooling techniques, we expect frequency estimates to be distorted for over- 

and underexpressed alleles.  

Although both potentially attractive and inexpensive, the utility of pooled RNA-Seq 

may be limited by the above issues, and thus, the accuracy of the allele frequency estimates 

obtained from pooled data should be characterized empirically. Building on results of Pool-

Seq studies, we explore here additional, RNA-Seq specific, aspects of allele frequency 

estimation. Our general aim is to determine how various aspects of expression level variation 

influence allele frequency estimation.  

To examine the accuracy of allele frequency estimates obtained with a pooled RNA-

Seq approach, we used bank vole (Myodes [=Clethrionomys] glareolus) liver transcriptomes. 

This rodent species is an important organism in evolutionary, ecological and behavioural 

studies (Sadowska et al. 2005; Radwan et al. 2008; Boratynski & Koteja 2009; Mokkonen et 

al. 2011; Tschirren et al. 2012). The bank vole genome is not available, and a high-quality 

reference genome is unlikely to become available in the near future. The bank vole thus serves 

as a good example of a nonmodel organism for which obtaining genome-wide data is an 

important but nontrivial task. RNA samples from the livers of 10 voles were sequenced to 

generate both individually barcoded libraries and a pooled sample. Allele frequencies were 
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estimated from the pool and then compared with the ‘true’ frequencies obtained from the 

individual libraries. 

 

 

 

Fig. 1 Transcriptome-specific sources of error in allele frequency estimates obtained from a 
pooled sample. Interindividual variation in gene expression (A), interlocus variation in gene 
expression (B) and allele-specific gene expression (C) are compared with a locus for which 
the allele frequency estimate is not biased (D). 
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Materials and methods 

Sample collection 

Liver samples were obtained from ten bank voles (Myodes [=Clethrionomys] glareolus) from 

a single control line (unselected) of an artificial selection experiment (generation 13), 

designed to study correlated evolution of behavioural and physiological traits (Sadowska et al. 

2008). The laboratory colony was created using voles captured in the Niepołomice Forest near 

Krakow (Poland) in 2000. Details related to colony protocols have been provided elsewhere 

(Sadowska et al. 2008). The experimental protocols were approved by the I Local Ethical 

Committee in Krakow (decision number 99/2006).  

Five male and five female voles, each 75–80 days old, were euthanized using an 

overdose of isoflurane (Aerrane). The animals were dissected immediately, and a small part 

(ca. 0.01 g) of the left liver lobe was placed in RNAlater. The samples were stored overnight 

at 4 °C and then frozen at -20 °C.  

Total RNA was extracted using RNAzol (Molecular Research Center) in accordance 

with the manufacturer’s instructions. Residual DNA was removed with a DNA-free Kit 

(Ambion). RNA concentration and quality were measured using Nanodrop and Agilent 2100 

Bioanalyzer, respectively. All samples had an RNA integrity number (RIN) > 7.0, which 

indicated quality sufficient for poly-A selection and cDNA library preparation.  

The pooled sample was prepared using an equal amount of total RNA from each 

individual. RNA concentration  and quality in the pool were assessed as described earlier.  

In the final step, the eleven RNA samples (ten individual and one pooled) were used 

in poly-A selection and the preparation of barcoded cDNA libraries by the Georgia Genomics 

Facility. Paired-end 2 x 100 bp sequencing was performed in one lane of an Illumina HiSeq 

2000, a process that produced a similar number of reads from all the individually tagged 

samples together and from the pool. 

 

Reference transcriptome reconstruction 

After  trimming low-quality reads using DynamicTrim (Cox et al. 2010), the Trinity 

assembler (version 2012-06-08) was employed to reconstruct the bank vole liver 
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transcriptome de novo (Grabherr et al. 2011). For computational reasons, only reads from the 

pool were used in the assembly. We then processed the Trinity output by merging transcripts 

that were probably derived from the same genomic location and subsequently produced 

transcriptome-based gene models (M. Stuglik, W. Babik & J. Radwan, unpublished data). In 

brief, in the first step of this process, we aggregated Trinity transcripts with overlapping ends 

using CAP3 (Huang & Madan 1999). The cut-offs for overlap length and per cent identity of 

the overlap were 40 bases and 99%, respectively. In the next step, we discarded contigs that 

were entirely contained within other sequences using CD-HIT (Li & Godzik 2006) (settings: 

identity 0.95 and word size 8). Finally, MegaBLAST was employed to merge all sequences 

that shared at least 70% of the length of the shortest sequence and had a minimum identity 

value of 0.96. Contigs were clustered, aligned and merged to form a single consensus 

sequence. The ‘reference transcriptome’ that results from this procedure should contain 

sequences from all exons from all genes that are expressed in at least one transcript and 

should thus correspond to an assembly of transcriptome-based gene models. 

 

Mapping, SNP calling and allele frequency estimation 

Because mapping algorithms take into account quality scores, we used nontrimmed reads 

when mapping and SNP calling. Reads that mapped onto multiple locations in the reference 

transcriptome were discarded. Reads were mapped onto the reconstructed reference 

transcriptome using Bowtie 2 (2.0.0-beta6) and employing a very sensitive alignment 

approach (Langmead & Salzberg 2012). The resulting bam file was post-processed using 

SAMtools (Li et al. 2009). SNP calling was performed separately for the 10 individually 

tagged samples and for the pool using mpileup in SAMtools. For SNP calling in individual 

samples, the default settings were applied; for SNP calling in the pool, a flat prior for the 

allele frequency spectrum was used.  

Low-quality SNPs were filtered out of the VCF file that contained information on the 

individual genotypes. We excluded SNPs with individual genotypes that were based on less 

than five reads, and sites at which more than two variants were present. We then retained only 

SNPs that were reliably genotyped for all 10 individuals (Phred scores of at least 30 for SNP 

quality and individual genotype quality). Moreover, we discarded all contigs that contained 

one or more SNPs that would have led us to classify 9 or 10 of the individuals as 

heterozygotes. As the probability of obtaining such a sample by chance, even assuming equal 
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allele frequencies for both variants, is only 0.01, reads that mapped onto such contigs were 

most probably derived from highly similar paralogues. Such stringent filtering practices 

allowed us to classify the genotypes at these polymorphic sites as high-quality SNPs with 

known ‘true’ allele frequencies in the sample. In the next step, we assessed how accurately 

these ‘true’ values were reflected by the pool. 

 

Accuracy estimates 

For each high-quality SNP position, the number of non-reference bases was calculated (NO). 

The expected number of non-reference bases (NE) was the ‘true’ allele frequency estimated 

from individually tagged samples multiplied by the coverage at the SNP position. The 

accuracy of the allele frequency estimates was quantified as the relative estimation error, 

which was defined as the absolute value of (NE – NO)/NE. 

To quantify the effect of allele-specific expression level (ASE) on relative estimation 

error, we first selected contigs showing evidence of ASE using the following procedure. For 

each contig, one SNP with  the  highest number of heterozygotes (max 8 for the reasons 

explained earlier) was selected. Then, for each heterozygous individual, the hypothesis of 

equal expression of both alleles was tested (chi-squared test), using the number of reads 

derived from each allele. SNPs with at least 80% of heterozygotes showing P < 0.001 were 

considered as indicators of contigs exhibiting ASE. Mean relative estimation error was 

compared between ASE genes and SNPs randomly selected from the data (sampling the same 

number of SNPs from each MAF class as in genes with ASE), and the significance of the 

difference between these two groups was tested using randomization test.  

To assess the effect of inaccuracy in allele frequency estimation on the results of a 

typical population genetic analysis, we simulated a Wright–Fisher population (N e = 10 000,  

u = 10-9), in which the expected distribution of allele frequencies is given by equation φ(i) = 

4Neu/i (where 0 < i < 2N; i is the number of copies of the derived allele) (Charlesworth & 

Charlesworth 2010). We estimated FST under two scenarios: (i) differentiation was only due to 

sampling error (allele frequencies in the sample were known precisely) and (ii) differentiation 

was due to errors resulting from both sampling a limited number of individuals  and form 

estimation of allele frequency from pool. In each of 10 000 simulations, we sampled one SNP 

from the expected distribution of allele frequencies and simulated two samples of 10 
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individuals each (sampling from binomial distribution with P set to population allele 

frequency) and calculated FST according to the formula (HT - HS)/HT (Hartl & Clark 2006). 

Next, we simulated second scenario by adding estimation error caused by pooling. We 

replaced the sample allele frequencies by frequencies randomly drawn from our empirical 

results obtained from pool for the given ‘true’ allele frequency. We calculated FST and 

compared FST distributions between two scenarios using the Wilcoxon signed-rank test. 

 

Accuracy of gene expression estimation 

To estimate gene expression, we used RSEM package (Li & Dewey 2011). We performed 

TMM normalization (Robinson & Oshlack 2010) to account for differences in the mass of the 

RNA-Seq samples and thus provide a scaling parameter for each sample. This parameter was 

then used to calculate the fragments per kilobase of transcript per million fragments mapped 

(FPKM). FPKM was calculated for each transcriptome-based gene model in each sample. 

Accuracy was estimated for each contig with a mean FPKM value higher than one. Relative 

estimation error was calculated in the same way as for allele frequency. The mean expression 

level calculated from 10 individuals was used as the expected value, and observed values were 

the FPKM values calculated using the pool. 

 

Results 

Reference transcriptome assembly 

A total of 194.1 million read pairs (2 x 100 bp) were obtained; the average per individual was 

8.0 (SD 0.41) million pairs, and 114.1 million pairs were re-covered from the pool. Trimming 

resulted in the removal of 9.6% of the bases. Trimmed reads from the pool were used to 

assemble the liver transcriptome de novo; 181 698 contigs (contig length max: 16 742 bp; 

mean: 1111.8 bp; median: 429 bp; N50: 2662 bp) totalling 202.0 megabases were generated. 

Transcriptome assemblers attempt to reconstruct the sequences of all the transcripts present in 

the sample, which results in considerable redundancy in the assembled transcriptome – a large 

fraction of exons will be represented many times, reflecting their presence in multiple 

alternatively spliced transcripts. While such redundancy reflects biological reality, it is 

undesirable if one wants to construct transcriptome-based gene models in order to detect 
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polymorphism. We therefore further processed the results generated by Trinity using a custom 

pipeline that aims to produce transcriptome-based gene models, or a ‘reference 

transcriptome’. The reference transcriptome comprised 146 758 contigs (contig length max, 

mean, median and N50, respectively: 16 742 bp, 702.7 bp, 353 bp and 1225 bp) and had a 

total length of 103.1 Mb  (Table 1). These contigs represented protein and nonprotein coding 

sequences expressed in the liver. 

 

Tab. 1 Overview of the assembly of a hepatic transcriptome for bank voles (Myodes 
[=Clethrionomys] glareolus). The transcriptome was assembled using Trinity and filtered 
using CAP3, CD-HIT, and MegaBLAST. Statistics for the final transcriptome-based gene 
models are provided in the last column 
  TRINITY CAP3 CD-HIT MEGABLAST 
Min contig length 201 201 201 201 
Max contig length 16 742 16 742 16 742 16 742 
Mean contig length 1 111.8 1 061.6 1 030.6 702.7 
SD contig length 1 529.4 1 487.4 1 440.9 977.3 
Median contig length 429 411 406 353 
N50 2 662 2 587 2 504 1 225 
N contigs 181 698 173 496 171 077 146 758 
N contigs > 1kb 51 988 46 524 44 551 23 512 
N contigs in N50 22 252 2 0648 20 371 19 101 
N bases in contigs 202 007 816 184 191 537 176 303 671 103 123 071 
N bases in contigs > 1kb 151 525 798 135 260 359 127 596 475 56 436 078 
 

 

Mapping and SNP calling 

Reads that mapped uniquely onto the reference transcriptome (83.8% of raw reads) were used 

to identify polymorphic sites. SNPs were identified separately in individually tagged samples 

and the pool. SNP calling performed on the 10 individually barcoded libraries yielded 

264,310 putative SNPs and 40,277 short indels that had scaled Phred quality scores of greater 

than 10. 

The same analysis on the pooled sample (which differed only in the use of the flat 

prior for the allele frequency distribution) yielded 246,122 putative SNPs and 40,621 short 

indels. High-quality SNPs were further analysed. We found 95 contigs that were extremely 

heterozygous at one or more sites (probably representing pairs of paralogues), and all SNPs 
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from these sequences were discarded. In total, we identified 23 682 high-quality 

polymorphisms within 4,128 contigs. Only 6,336 (26.8%) of high-quality SNPs within 2380 

(57.7%) contigs were called from the pool. Not surprisingly, polymorphisms with  rare 

variants (Fig. 2) and a low proportion of alternative variant reads  were  under-represented 

among the SNPs called from the pool. We found that 7% of SNPs with minor allele frequency 

(MAF) values of less than 0.25 and 74% of SNPs with MAF values greater than 0.25 were 

called from the pool. 

 

 

Fig. 2 Polymorphic sites discovered  in the pool. The number of identified (dark) and 
unidentified high-quality SNPs in the pooled sample. 

 

 

Accuracy of allele frequency estimation 

The observed and expected number of reads were strongly correlated (R2 = 0.96; P < 10-14; 

Fig 3). Mean relative estimation error was 0.21 ± 0.001 SE (median 0.16), and it was 

negatively correlated with the minor allele frequency (Fig. 4). Relative estimation error was 

relatively high for SNPs for which MAF equaled 0.05 (mean = 0.33,  median = 0.25), but it 

decreased significantly when MAF was greater than 0.25 (mean = 0.12, median = 0.09) (Fig. 

5). However, the absolute differences in frequencies did not decrease with increasing MAF 
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(Fig. 6). We found a very weak negative correlation between the sequencing depth for a given 

SNP (‘SNP expression level’) and the relative estimation error (R2 = 0.002; P < 10-11; Figs 5 

and 7). 

Relative estimation error correlated significantly with the coefficient of variation in 

gene expression level among individuals (R2 = 0.04, P < 0.10-15; Fig. 8). We identified 43 

contigs (containing 283 SNPs) with signatures of ASE. These genes have higher relative 

estimation error than randomly sampled genes (mean = 0.32, P < 0.0001, randomization test). 

FST values were generally overestimated in the pool simulation (meanind = 0.026, 

meanpool = 0.033; Wilcoxon test: P < 10-15). Also, we observed some extreme outliers for 

pools (0.3% observations higher than twice maximum FSTind), which suggests that in some 

cases, FST may be strongly overestimated due to inaccuracy in estimation of allele frequencies 

introduced by pooling. 

 

 

Fig. 3 Relationship between the observed and expected frequencies of minor alleles in the 
pool. The observed and expected numbers of bases for minor alleles in the pool are 
represented for 23 682 high-quality SNPs. SNPs were originally identified during individual 
genotyping, and the expected numbers of minor allele bases were calculated based on allele 
frequency and coverage. 
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Fig. 4 Relationship between MAF and allele frequency relative estimation error values for the 
pooled sample. Columns represent the 25% (Q25), 50% (Q50), 75% (Q75) and  90% (Q90) 
percentiles for all the relative estimation error values associated with the minor allele 
frequency classes. 

 

 

 

Fig.5 Allele frequency relative estimation errors for different sequencing coverage and MAF 
values. The surface contours were obtained using the distance-weighted least squares method 
for all 23,682  high-quality SNP positions. Relative estimation error was calculated using the 
expected and observed number of reads of minor frequency alleles in the pooled sample. 
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Fig. 6 Allele frequencies estimates from the pool sample within minor allele frequency 
classes. Boxes indicate 50% of observations, whiskers – 98% of all estimates. Horizontal lines 
represent  medians. 

 

 

Fig. 7 Relationship between sequencing coverage and the accuracy of the allele frequency 
estimates. The correlation plot includes all high-quality SNPs. The regression line is given by 
equation y = 0.22 – 6 · 10-6x. 
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Fig. 8 Relationship between coefficient of expression level variation and the accuracy of the 
allele frequency estimates. The correlation plot includes all high-quality SNPs. The regression 
line is given by equation y = 0.13 + 0.41x. 

 

Accuracy of gene expression estimation 

In total, 17 861 contigs were analysed to quantify the accuracy of gene expression estimates. 

Mean relative estimation error was 0.14 ± 0.001 SE (median 0.12). We found a significant but 

very weak negative correlation between mean expression level and relative estimation error 

(R2 = 0.0004; P = 0.01). The means of expression levels calculated from the individual 

samples were highly correlated with those calculated from the pooled sample (R2 = 0.998; P < 

10-5). 

 

Discussion 

We used a nonmodel organism to quantitatively assess the accuracy of allele frequency 

estimates obtained from pooled RNA samples. Liver RNA samples of ten bank voles were 

sequenced both separately and as a pool. When we compared the allele frequencies estimated 

from the pool with the ‘true’ allele frequencies obtained from the individual samples, we 

found that the estimates from the pool were generally accurate.  
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We used only one pooled sample as variability introduced by technical issues should 

be similar for DNA and RNA pools, and the effect of such variability has been thoroughly 

explored for DNA pools (Barratt et al. 2002; Zhu et al. 2012). However, RNA pools differ 

from DNA pools in that the biological variation in the RNA pool is due to inherent differences 

in expression levels among genes and individuals. As a result, it is more important to examine 

the accuracy of frequency estimates for SNPs called from multiple genes found in a sample of 

individuals than to examine that of a few genes across a number of pools. 

 

SNP calling in the de novo assembled transcriptome 

For  nonmodel organisms, transcriptome assembly is the first, crucial step of RNA-based SNP 

identification (Singhal  2013). This step is challenging, as divergent alleles may be identified 

as separate transcripts, sequences of similar paralogues may be lumped together and chimeric 

transcripts may arise as artefacts of the assembly process. The effectiveness of transcriptome 

reconstruction has been discussed in several other studies (Bao et al. 2011; Earl et al. 2011; 

Martin & Wang 2011; De Wit et al. 2012; Singhal 2013), in which different sequencing 

strategies and assemblers were compared. We should note that, for a comprehensive test of 

this problem in silico, a high-quality reference genome is needed (Vijay et al. 2013). If no 

reference genome is available, we have to accept an unknown rate of false positives and 

subsequently test candidate SNPs in future analyses (Singhal  2013). While we recognize that 

there are problems related to de novo transcriptome assembly, we wish to emphasize that the 

results of our study appear to be robust to the many possible artefacts of transcriptome 

assembly. 

First, we focused on high-quality, high-coverage SNPs that were derived from genes 

that were at least moderately expressed and had well-assembled transcripts. Second, by 

discarding SNPs called from contigs that exhibited excessive heterozygosity, we probably 

filtered out similar paralogues that were represented by a single transcriptome-based gene 

model (TGM). Heterozygosity at a biallelic locus is not expected to exceed 0.5, and, even 

then, we are unlikely to observe 9 or 10 heterozygotes of 10 individuals (P = 0.01); therefore, 

sites with high heterozygosity probably indicate that the contigs represent more than one 

region in the genome. By removing them from our analyses, we reduced the number of falsely 

positive SNPs caused by merging paralogues during assembly and reference transcriptome 

reconstruction. Third, in chimeric transcripts, individual SNPs were most probably properly 
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called; consequently, the presence of such chimeras, which may constitute a noticeable 

fraction of transcripts (Edgar et al. 2011), should not systematically bias our results. Taken 

together, these filtering steps considerably reduced the number of putative SNPs, but the 

numbers of retained SNPs and genes were still  large. This data set provided information on 

the accuracy of allele frequency estimates for high-quality SNPs varying in sequence 

coverage and minor allele frequency. 

 

SNP identification in the sample pool 

Our results suggest that SNP calling from the pool remains challenging for rarer alleles. 

However, this problem is common to pooling approaches and has been widely discussed in 

genome resequencing studies focusing on improving the discovery of SNPs with rare variants 

(Bansal et al. 2010). Several programs dedicated to SNP calling from pools, such as 

PoPoolation2 (Kofler et al. 2011), vipR (Altmann et al. 2011) or Varscan (Koboldt et al. 

2009), are available, but they usually require at least two pooled samples. In most 

experimental and case–control studies, at least two pools are compared (Sham et al. 2002), 

and thus, the identification of polymorphic positions and the estimation of allele frequency 

may be considered somewhat separate tasks. If true sample allele frequencies can be 

accurately estimated from pools, then existing software used to identify SNPs in DNA pools 

could potentially be successfully applied to RNA-Seq surveys as well (Thumma et al. 2012). 

Moreover, in experimental and case–control studies, the aim is to identify SNPs whose allele 

frequencies differ between groups. At such sites, alternative variants should occur at least an 

intermediate frequency in one group and thus be easily detected with available software. For 

example, in our study, 74% of SNPs for which MAF values were greater than 0.25 were 

called from the pool. SNP discovery is therefore not a limiting factor in the identification of 

candidate sites from pooled samples because our results support the ability of a pooled 

approach to identify most of the relevant genetic variation. 

 

Accuracy of allele frequency estimation from the pooled sample 

Many population genetic analyses require estimates of allele frequencies for comparing 

different natural populations, experimental treatments or phenotypic classes. Sampling a finite 

number of individuals from population always introduce stochasticity to these estimates, 



38 
 

which was studied elsewhere (Futschik & Schlotterer  2010; Buerkle & Gompert 2013). 

Obviously, as more individuals are sequenced from a population, allele frequencies are 

estimated more precisely and bias is eliminated. In some cases, however, we are not able to 

sample as many individuals as required (small groups/populations, laboratory colonies of 

vertebrates, etc.). Estimates of allele frequencies obtained from small samples have wider 

confidence intervals and are biased, which should be taken into consideration (Gompert & 

Buerkle 2011). In this study, we estimated the magnitude of additional uncertainty in 

estimates of allele frequencies introduced by variation in expression level in pooled RNA 

sample. 

We found that estimates of allele frequency obtained from the RNA pool were 

acceptable for many purposes. The strong correlation between the observed and expected 

number of nonreference bases demonstrates the utility of pooled RNA samples in wide range 

of population genetic analyses. The correlation we found was only slightly weaker than that 

found in a study in which pooled DNA was used (Sham et al. 2002; Ramos et al. 2012). 

Moreover, almost no bias was present for SNPs with lower expression levels, and estimates of 

expression level obtained from the pool were accurate even for genes exhibiting moderate 

expression. However, it is important to note that we focused on genes that were at least 

moderately expressed by all individuals, and thus, extrapolating our results to genes expressed 

at very low levels would not be justified.  

On the other hand, in our analysis, some gene and SNP categories demonstrate 

elevated estimation error. We found a negative correlation between MAF and relative 

estimation error, a result that has been observed for DNA pools as well (Guo et al. 2013). 

Along with SNP discovery, the low accuracy of allele frequency estimates for rare alleles 

remains a challenge in analyses of both DNA and RNA pools. 

We found evidence that between-individual variation in expression increases 

estimation error only slightly but significantly: ca. 4% variation in relative estimation error 

can be explained by variation in expression level between individuals. Allele-specific 

expression also significantly influences estimates of allele frequency, but ASE seems to occur 

only in a minor fraction of genes (ca. 1% in our data set according to the applied criteria). 

These results suggest that inaccuracy in allele frequency estimation may be higher for some 

classes of genes, and, ideally, such genes should be identified and excluded or analysed 

separately. Finally, our simple simulations indicate that variation introduced by pooling 
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systematically increases estimates of population differentiation which may result in some 

false positives in outliers’ analyses. 

Using RNA pooling has some additional limitations, namely that a well-assembled 

reference transcriptome is needed. When using a pooling approach, we do not have access to 

individual genotypes and thus have no possibility of removing sites with excessive 

heterozygosity. Therefore, it is worthwhile to invest time and resources in obtaining a high-

quality reference transcriptome and sequencing several individually barcoded samples to test 

and remove the sequences of similar paralogues. These individuals can be used to explore 

variation in expression level between individuals, and for assessment of ASE. If such 

resources are available, one can control additional sources of variation in estimating allele 

frequency and then pooled RNA-Seq is a reliable technique to study nonmodel organisms at 

the genome- and population-wide scale. 

Obviously, pooled approach is not applicable to analyses, which require individual 

genotypes (e.g. estimating admixture coefficient or estimating linkage disequilibrium among 

loci). Therefore, clear arguments need to be made for using this approach for molecular 

ecology studies. Cost effectiveness of large-scale studies is the most obvious such case. 

Although sequencing itself has become relatively inexpensive, library preparation remains 

expensive, especially when many samples are processed. With two experimental treatments, 4 

replicates within treatment and only ten individuals sampled per treatment, at least 80 libraries 

need to be prepared. The cost of library preparation for such a modest experiment would be 

$4800 (NEBNext® Ultra TM Directional RNA Library Prep Kit for Illumina®) or even up  to 

$32,000 (Illumina TruSeq Kit (Stranded Total RNA LT)). This can be reduced ten times if 

samples within replicates are not barcoded. For studying many populations of nonmodel 

species pool RNA-seq may reduce laboratory costs drastically. If studied organisms and/or 

organs are very small and pooling is necessary to obtain enough material for library 

preparation – pooled RNA-seq is the only viable solution. 

Our study tested the accuracy of allele frequency estimates obtained from RNA pools 

sequenced using Illumina technology. We demonstrated that pooled RNA-Seq approach is a 

reliable, and cost-effective strategy for obtaining genome-wide information about potentially 

functionally relevant variation, provided that high-quality transcriptome assembly and 

stringent SNP-calling and filtering criteria based on sequencing of subset of individuals are 

used. The lack of such filtering can result in higher inaccuracy for some categories of 
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transcripts, which may in turn result in a higher rate of false positives in some downstream 

analyses.  When  aforementioned prerequisites are fulfilled, the accuracy obtained is very 

similar to that obtained for DNA pools. 
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Abstract 

Experimental evolution combined with genome or transcriptome resequencing (Evolve and 

Resequence) represents a promising approach for advancing our understanding of the genetic 

basis of adaptation. Here, we applied this strategy to investigate the effect of selection on a 

complex trait in lines derived from a natural population of a small mammal. We analyzed the 

liver and heart transcriptomes of bank voles (Myodes (=Clethrionomys) glareolus) that had 

been selected for increased aerobic metabolism. The organs were sampled from 13th 

generation voles; at that point, the voles from four replicate selected lines had 48% higher 

maximum rates of oxygen consumption than those from four control lines. At the molecular 

level, the response to selection was primarily observed in gene expression: over 300 genes 

were found to be differentially expressed between the selected and control lines and the 

transcriptome-wide pattern of expression distinguished selected lines from controls. No 

evidence for selection-driven changes of allele frequencies at coding sites was found: no SNP 

changed frequency more than expected under drift alone and frequency changes aggregated 

over all SNPs did not separate selected and control lines. Nevertheless, among genes which 

showed highest differentiation in allele frequencies between selected and control lines we 

identified, using information about gene functions and the biology of the selected phenotype, 

plausible targets of selection; these genes, together with those identified in expression analysis 

have been prioritized for further studies. Because our selection lines were derived from a 

natural population, the amount and the spectrum of variation available for selection probably 

closely approximated that typically found in populations of small mammals. Therefore our 

results are relevant to the understanding of the molecular basis of complex adaptations 

occurring in natural vertebrate populations. 
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Introduction 

One of the central goals of evolutionary biology is to understand the genetic mechanisms by 

which organisms evolve new, adaptive phenotypes under natural selection and thus diverge 

phenotypically (Stapley et al. 2010; Butlin et al. 2012). Despite decades of research, detecting 

and deciphering the molecular changes underlying adaptation remain challenging tasks to 

which researchers have applied various approaches, such as study of candidate genes, 

genome-wide scans for positive selection or experimental evolution (Sabeti et al. 2007; 

Garland and Rose 2009; Stapley et al. 2010; Barrett and Hoekstra 2011; Fournier-Level et al. 

2011). Recently, however, the Evolve and Resequence (E&R) approach has been gaining 

popularity. E&R studies provide better control over confounding factors than other 

approaches and allow investigators to choose the traits under selection (Turner et al. 2011; 

Kawecki et al. 2012). This approach involves genetic analyses of populations of organisms 

that are either adapted to specific, experimentally controlled ambient conditions, or that are 

selected for increased performance with respect to a specific behavioral, life-history, or 

morpho-physiological trait. Such studies have helped to answer questions concerning 

adaptation (Tenaillon et al. 2012; Soria-Carrasco et al. 2014), the importance of new 

mutations (Burke et al. 2010) and the genomic patterns of a recent response to selection 

(Johansson et al. 2010; Pettersson et al. 2013).  

The sources of adaptive variation appear to vary among evolutionary lineages. For 

example, extensive work on microorganisms has contributed to our understanding of 

adaptation scenarios that are driven by selection acting on new mutations: a substantial 

number of de novo mutations are expected during the course of experiments in such 

organisms as a result of the large population sizes involved (Herring et al. 2006; Barrick et al. 

2009; Tenaillon et al. 2012). However, in multicellular, sexually reproducing species (the 

subject of the present study), standing genetic variation is the main source of variation at the 

initial stages of adaptive evolution (Barrett and Schluter 2008; Burke et al. 2010). The E&R 

approach has been used to comprehensively and successfully investigate some traits in D. 

melanogaster (Teotónio et al. 2009; Burke et al. 2010; Turner et al. 2011); for example, Burke 

and colleagues (2010) studied flies that had been selected for accelerated development for 600 

generations. They concluded that the probability of fixation of selected variants is relatively 

low and that selection does not readily expunge genetic variation (Burke et al. 2010). 

Subsequent studies using fruit flies have confirmed the complex evolutionary trajectories of 
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selected variants and emphasized the importance of epistatic interactions (Huang et al. 2012; 

Orozco-Terwengel et al. 2012).  

The genetic response to selection at the early stages of adaptation is less well 

understood in vertebrates, which usually have smaller population sizes (Johansson et al. 2010; 

Chan et al. 2012; Pettersson et al. 2013). Interestingly, however, the results from the few 

experiments performed thus far contrast with those obtained from D. melanogaster. For 

instance, in lines of chickens that had been selected for high and low body mass, Johansson 

and colleagues (2010) observed many genetic regions with fixed differences; likewise, signals 

of classical, hard selective sweeps were detected in a mouse line that had been selected for 

high body mass (Chan et al. 2012). In these studies, the high number of regions detected that 

were presumably under the influence of divergent selection (50 in chickens and 67 in mice) 

suggests that the initial phase of selection substantially increases divergence between lines 

while simultaneously reducing polymorphism within them. However, these results may reflect 

the differences in experimental setup rather than true contrast between vertebrates and 

Drosophila. Both vertebrate experiments utilized crossed inbred lines as a base population. In 

such cases long haplotype blocks are present at the beginning of the experiment and they may 

be fixed rapidly in small experimental populations, mimicking the effects of hard sweeps. 

Such situations are less likely in nature, where at the early stage of adaptation standing genetic 

variation is subject to selection. To understand the basis of adaptive processes occurring in the 

wild, it is therefore crucial to conduct selection experiments that control for the effect of 

genetic drift and utilize lines derived from natural populations. Although selection 

experiments on non-model organisms were always possible to perform, in practice they were 

rarely undertaken, partly because until recently uncovering molecular genetic mechanisms of 

the evolution in non-model organisms was often not possible.  This has changed with the 

advent of high throughput sequencing (Schlötterer et al. 2014). 

In the present study, we used high-throughput transcriptome sequencing to test 

whether recent, intense selection acting over multiple generations in mammalian populations 

would result in repeatable changes in the frequencies of variants in protein-coding genes 

and/or patterns of gene expression. This study was performed using an experimental evolution 

model system, with four lines of bank voles (Myodes (=Clethrionomys) glareolus), selectively 

bred  for high swim-induced aerobic metabolism (A lines) and four unselected control lines (C 

lines; Sadowska et al. 2008). The experiment has been established as a tool for testing 

hypotheses concerning correlated evolution of aerobic locomotor performance and basal 
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metabolic rates, which is believed to have been a crucial element in evolution of terrestrial 

vertebrates (literature cited in Sadowska et al. 2005, 2008). Thus, the model is likely to 

illuminate many eco-physiological questions concerning physiological genomics and the 

evolution of endothermy (Nespolo et al. 2011; Pérusse et al. 2013). The swim-induced 

maximum rate of oxygen consumption differed significantly between the selected and control 

lines already in generation 2 (Sadowska et al. 2008), and in generation 13 it was 48% higher 

in A line voles than in C line voles (mean ± SD: 5.32 ± 0.64 ml O2/min vs. 3.59 ± 0.57 ml 

O2/min, respectively; Chrząścik et al. 2014, Stawski et al. 2015; see also Supplementary 

materials 1.3). Voles from the A lines (also referred to as “selected” lines) differed 

significantly from control voles not only in the trait directly under selection, but also in their 

basal metabolic rate and a number of other behavioral and morpho-physiological traits 

(Supplementary materials 1.3). This experiment presented a unique opportunity to study the 

genetic basis of the response to selection in mammals thanks to a combination of several 

factors: i) selection could operate on the natural genetic variation directly derived from a wild 

population, ii) known pedigrees allowed for the exact calculation of drift expectations, iii) the 

trait under selection was complex and ecologically important, and iv) the replicated lines 

provided an appropriate system to study the role of drift in phenotypic and genetic 

differentiation.  

The eight  lines (four selected and four control) were sequenced using a pooled RNA-

Seq approach (Konczal et al. 2014). We used transcriptome analysis as a convenient way to 

determine whether the response to selection at the molecular level was dominated by gene 

expression or structural changes. King and Wilson (1975) proposed that adaptive evolutionary 

change is largely due to changes in gene expression, and there is empirical evidence from 

genetic mapping and interspecies comparisons that both supports (Wray 2007; Jones et al. 

2012) and contradicts this view (Hoekstra and Coyne 2007). A recent study of patterns of 

polymorphism and divergence in murid rodents suggested that most of adaptive changes 

appear in regulatory regions. On the other hand, wider regions of reduced diversity around 

exons than around conserved noncoding elements may be interpreted as a result of 

substantially larger effects of adaptive substitutions  (Halligan et al. 2013). However, it is 

unclear whether rapid adaptation from standing genetic variation produces similar patterns. To 

address the question of the relative importance of coding mutations versus changes in 

expression levels, we studied the transcriptomes of two organs: the heart, which plays a 

crucial role in an organism’s aerobic capacity (Bye et al. 2008), and the liver, which, as a 
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central metabolic organ (Malarkey et al. 2005, Konczal et al. 2014), was a promising target 

for investigations of the molecular mechanisms that were responsible for the increased basal 

metabolism observed in selected lines. The scale of the project limited the possibility of 

detecting significant responses to selection in allele frequencies in coding regions or gene 

expression only to loci of large effects. However, we could still infer the role of many loci of 

small effect if selection changes allele frequencies in coding regions or gene expression of 

many genes in replicable way (across the four selected and four control lines). In such case, 

the aggregate effect of these changes should result in multi-dimensional differentiation of 

selected lines from controls (Turchin et al. 2012), although covariances of allele frequencies, 

resulting from between-population component of LD (Linkage Disequilibrium; Ohta 1982), 

may weaken this effect (Storz 2005, Le Corre and Kremer 2012). 

We identified over 300 differentially expressed genes that are associated with diverse 

molecular functions; many of these functions appeared to be highly relevant to the phenotypic 

response to selection for increased aerobic metabolism. This result, combined with significant 

clustering of genome-wide transcriptional profiles, highlights the role of rapid changes in 

gene expression at the early stages of adaptive evolution. In contrast, allele frequency changes 

in coding sequences appear to play, at best, a minor role: the differences observed in the allele 

frequencies between the selected and control lines could be entirely explained by drift and the 

aggregate effect of allele frequency changes does not separate selected lines from controls. 

Nevertheless, among the genes that showed the highest differentiation in allele frequencies, 

we identified, on the basis of their molecular function, a set of candidates, which may possibly 

contribute to phenotypic changes between the selected and control lines. These genes should 

be prioritized as a target for future research. 

 

Results 

Single nucleotide polymorphisms  

From each sample, an average of 37.1 (± 10.6 SD) million 1 x 100 bp reads were obtained; of 

these, 75.9% were uniquely mapped to the bank vole liver and heart reference transcriptomes 

(Tab. 1). After several steps of data filtering (see Methods), we identified 172,246 SNPs. The 

vast majority of identified variants were found in putative protein-coding genes, with an 
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average of 3.95 and 3.48 SNPs per kb in open reading frames (ORFs) and untranslated 

regions (UTRs) of SNP-containing contigs (Tab. 2).  

 

Table 1. Overview of the Assembly of Bank Vole Transcriptomes 
   Liver Heart 
No. of genes  146,758 252,281 
No. of genes >1kb  23,512 24,825 
N50 gene length (bp)  1,225 650 
No. of genes within N50  19,101 47,439 
No. of genes with likely CDS  18,050 11,110 
N50 of genes with likely CDS  3,296 3,081 
No. of bases (Mb)  103.1 134.9 
Note. – N50, 50% of the assembly length is in genes of the length of 
N50 bp or longer; genes, TGMs contain both coding and noncoding 
sequences; genes with likely CDS, genes containing successfully 
annotated ORFs. 

 

 

Table 2.Overview of SNPs Used  for Analyses 

 
  

No. of SNPs 172,246 
No. of genes with SNPs 15,043 
No. of nonsynonymous SNPs 22,963 
No. of synonymous SNPs 44,844 
No. of UTR-located SNPs 71,657 
No. of SNPs in noncoding genes 32,782 

 

 

To estimate effective population sizes, the mean inbreeding coefficient (F) was 

calculated from pedigree for each of the four selected (A) and four control (C) lines in each 

generation. The degree of inbreeding increased slightly faster in the selected lines, probably 

reflecting a subtle difference in the breeding scheme between the selected and control lines 

(see Methods). The mean effective population size (Ne) was about 16.4% lower in the 

selected than in the control lines (56.1 vs. 67.1; p = 0.06, t-test; Fig. 1A). To evaluate the 

effect of differences in Ne between lines on the amount of genetic variation we examined the 

allele frequency spectra (Fig. 1B). Specifically we calculated for each line the number of such 
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SNPs which were polymorphic in the entire dataset but showed little or no variation (minor 

allele frequency, MAF <0.05) within the line. An ANCOVA was used to examine how well 

Ne (covariate) and treatment (selected vs control lines) explained the number of such SNPs. 

We found a  significant effect of Ne (F(1,5) = 6.92, p=0.047), but no effect of treatment (F(1, 

5) = 0.14, p = 0.72; Fig. 1D). 

For each SNP, FST values were calculated between all pairs of lines. Mean pairwise 

FST distances did not reveal any clustering of selected or control lines (F(1, 6) =0.97, p = 

1.00, randomization test; Fig. 1C); and variation among selected lines (calculated as a mean 

distance to centroids) was slightly, but non-significantly higher than that between control lines 

(F(1, 6) = 1.17, p =0.32; ANOVA). The two control lines (C1, C3) with the largest effective 

population sizes were least distant from each other, suggesting that drift played the dominant 

role in the differentiation of allele frequencies among lines.  

Additionally, a principal components analysis (PCA) was performed to look for 

correlated changes in allele frequencies in various subsets of SNPs; such changes could reflect 

the response of multiple genes to the same selection pressure. None of the eight PCs clearly 

differentiated between selected and control lines (Fig. S2.1).  

In the next step, folded allele frequency spectra were compared both between 

selection regimes and with expectations generated from simulations of genetic drift over the 

course of the experiment. Forward simulations were performed using known pedigrees; for 

the initial allele frequency spectrum, these simulations used the average spectrum calculated 

from control lines.  

The allele frequency spectra were less skewed in the simulated data than in the 

observed data (Fig. 1B), which could have been caused by two effects: bias in the estimation 

of the initial allele frequency spectrum or selection against slightly deleterious alleles. We 

assessed the overall effect of deleterious alleles by comparing the allele frequency spectra of 

synonymous and nonsynonymous sites. Minor allele frequencies were lower for 

nonsynonymous SNPs than for synonymous SNPs (synonymous median MAF = 0.091, 

nonsynonymous median MAF = 0.068; p = 10-16; KS [Kolmogorov Smirnov] tests), 

indicating the presence of purifying selection. For synonymous sites, the difference in the 

percentage of rare variants between simulated and observed sites was 2.7% ; in contrast, the 

difference was 7.4% for nonsynonymous sites.  
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Fig. 1 Effect of selection and population size on allele frequency changes in the bank vole 
selection experiment. A. Effective population sizes (Ne) of selected (grey) and control (white) 
lines, calculated from pedigrees for 13 generations of the selection experiment. B. Folded 
allele frequency spectra for selected (grey) and control (white) lines, compared with pedigree-
based simulations (dots – expectations from simulations ). C. Multidimensional scaling plot 
(MDS) of genetic distances (pairwise FST) between selected and control lines. Triangles 
represent selected lines; circles represent controls. The MDS plot drawn using mean pairwise 
FST values calculated for all SNPs. D. Regression of the number of SNPs with rare variants 
(minor allele frequency < 0.05) on effective population size. Number of rare variants in 
thousands. 

 

If the same alleles contribute to the response to selection in all lines, SNP frequencies 

in the selected lines should diverge from those in the control lines to a greater degree than 

expected under neutrality. To investigate whether such effect occurred, we identified variants 

that had ranges of allele frequencies non-overlapping between the selected and the control 

lines (3233 (1.88%) SNPs in 1873 genes). The number of SNPs with non-overlapping allele 

frequencies was significantly lower than expected from drift simulations (p = 0.01; 

randomization test), but this effect was not significant for subsets of synonymous (1.97%, 

p=0.33, randomization test) or nonsynonymous SNPs (1.96%, p=0.78, randomization test). 

For each of these sites, the minimum allele frequency difference between the sixteen possible 

A-C comparisons (diffStat) was used as a composite statistic (Turner et al. 2011). The 

distribution of diffStat values did not differ between the data and drift simulations, and we did 

not observe overrepresentation of high diffStat values (Fig. S2.2).  
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The relatively small population sizes decrease the population recombination rates, 

which may cause entire long haplotypes to drift. To control for the effect of linkage within 

genes we used the following procedure. First, we generated 1000 datasets consisting of SNPs 

sampled randomly one per gene. Then, for each dataset the number of SNPs with the ranges 

of allele frequencies non-overlapping between selection and control lines was calculated. 

Finally, we recorded the proportion of datasets in which the number of SNPs with non-

overlapping allele frequencies was higher than expected under drift (upper 10% of the 

distribution from simulations). None of the datasets fell into the upper 10% of the distribution, 

and the relative number of differentiated SNPs was slightly lower than expected from 

simulations (p < 10-50; t test). In coding regions  this effect was mostly explained by 

nonsynonymous sites (p < 10-50, t test), while the fraction of synonymous SNPs with non-

overlapping allele frequencies closely followed drift expectations (p=0.15; t test; Fig. S2.3). 

To get some insight about the power to detect variants under selection in our 

experiment, we performed pedigree-based simulations of selection. These simulations were 

used to estimate the probability of obtaining non-overlapping allele frequencies between the 

selected and control lines, depending on the strength of selection and initial allele frequency. 

With increasing selective advantage the probability of obtaining non-overlapping frequencies 

increased considerably (s = 0.05 – 5.5%; s = 0.2 – 41.6%, averaged over the range of initial 

allele frequencies Fig. S2.4). The probability of obtaining non-overlapping frequencies after 

13 generations was highest when the favored allele initially segregated at an intermediate 

frequency  (initial frequency 0.05 – 5.8%; 0.5 – 29.9%; 0.9 – 4.0%, averaged over the range 

of selection coefficients). This probably reflects the fact, that rare positively selected variants 

will often be lost due to drift in some of selected lines. Similarly, selected variants at high 

initial frequencies will often become fixed in at least some control lines.  

Genes that harbored differentiated SNPs (diffStat > 0) had a higher density of 

polymorphisms (p < 10-6, randomization test) which in turn exhibited more equal allele 

frequencies (p = 10-12; KS test). This effect was present for nonsynonymous SNPs (p = 1.6 x 

10-5, randomization test), but not for synonymous (p=0.38, randomization test), what  may 

mean either that highly polymorphic genes are more likely to be targets of selection, or that 

they are more likely to differentiate by drift because of their effective neutrality. 

To explore whether some of the genes with differentiated nonsynonymous SNPs 

(Tab. S1) were somehow associated with phenotypic differences between selected and control 
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lines, we investigated their functions using relevant databases, and the most intriguing cases 

are described in Discussion. 

Overall, these results did not provide evidence that selection for increased maximum 

metabolic rate caused allele frequency changes at coding SNPs. The changes in allele 

frequencies that we did observe can be explained by the actions of two other evolutionary 

forces, namely drift and purifying selection, that acted in the same way in all lines. 

 

Gene expression 

To determine differences in expression levels between the selected and control lines, we 

investigated all expressed genes with at least 10 mapped reads and performed ordination of 

the lines using a multidimensional scaling analysis that was based on estimates of pairwise 

similarity in expression levels. In contrast with the SNP results, this analysis found that the 

selected lines and control lines clustered separately for the liver samples; for heart samples 

clustering was not significant (liver: p=0.002; heart: p=0.384; randomization tests; Fig. 2A, 

2B). Thus, it appears that similar changes in gene expression in the most important metabolic 

organ, the liver, might have occurred in all selected lines, distinguishing them from controls. 

In the heart samples, 79 genes were differentially expressed between selected and 

control lines (52 genes were overexpressed and 20 were underexpressed in selected lines; 

false discovery rate (FDR) = 0.05; Fig. 2C). Many more genes were differentially expressed 

in the liver (278 genes at FDR = 0.05; 123 genes were overexpressed and 155 were 

underexpressed in selected lines; Fig. 2D). We annotated 110 differentially expressed genes 

(28 in heart and 82 in liver), all putatively protein coding (Tab. S2, S3).  As an additional 

assessment of these differentially expressed genes we performed t-test on FPKM (Fragments 

Per Kilobase of transcript per Million mapped reads) values and calculated the proportion of 

genes with FPKM values non-overlapping between the selected and control lines. 63% of 

coding genes differentially expressed in liver and 61% in heart showed statistically significant 

result of the t-test (p<0.05) and 55% and 63% of them respectively had non-overlapping 

expression level values. The molecular functions of some of these 110 genes are described 

below.  
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Fig. 2 Effect of selection on expression changes in the bank vole selection experiment. A. B. - 
Multidimensional scaling plot (MDS) of transcriptome distances (in terms of the biological 
coefficient of variation (BCV)) between selected and control lines of the bank vole 
experiment. Triangles represent selected lines; circles represent controls. The MDS plots were 
drawn using the expression level values of 91,760 liver and 108,656 heart genes. C. D. - Log-
fold-change expression versus log abundance of gene expression in liver and heart samples. 
Gene expression data are TMM-normalized. Genes that qualified as significantly differentially 
expressed (FDR 0.05) are in red. 

 

Discussion 

Differentiation at the molecular level 

Using replicate selected and control lines derived from a natural population of a small 

mammal, we experimentally quantified the responses to artificial selection at the molecular 

level. The trait investigated here, maximum metabolic rate during exercise, likely has a 

complex genetic basis (Hagberg et al. 2011; Roth et al. 2012; Pérusse et al. 2013; Wolfarth et 

al. 2014) and since the genomic basis of evolutionary change in complex traits is still poorly 

understood (Rockman, 2012), our results are of interest from a broad evolutionary 

perspective. This experiment thus addresses a question of general evolutionary and 

physiological relevance by applying the strict criteria associated with the design of E&R 

studies (replicates and use of control populations). In doing so, it has provided insight into the 

genetic patterns of adaptation that arise from standing genetic variation in populations of 
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mammals. Here, we clearly observed that the effects of artificial selection were visible at both 

the phenotypic and molecular levels. However, while the artificial selection applied in this 

experiment resulted in reproducible changes in the expression levels of many genes, it did not 

cause appreciable changes in allele frequencies at coding SNPs, which were instead 

influenced predominately by drift.  

The importance and contribution of expression changes and coding mutations to 

adaptation has long been a topic of great interest (King and Wilson 1975; Hoekstra and Coyne 

2007; Wray 2007; Stern and Orgogozo 2008; Fraser 2013). Recent findings in human 

populations suggest that adaptation in regulatory elements, likely affecting gene expression, is 

10 times more frequent than in protein-coding parts of the genome (Fraser 2013). Similar 

evidence has been obtained from diverse taxa: since the split between marsupials and 

placental mammals, many more new regulatory elements than coding exons have emerged to 

differentiate the two groups (Mikkelsen et al. 2007), and in the evolution of rodents, most 

adaptive mutations have occurred in regulatory elements rather than in protein-coding exons 

(Halligan et al. 2013). Our results are consistent with these findings in showing that, during a 

relatively short period of selection in small populations, the pattern of expression of multiple 

genes can change rapidly and in a reproducible manner. Our two main observations—that 

more than 300 genes were differentially expressed between selected and control lines and that 

changes in allele frequencies were caused predominantly by drift—support the hypothesis that 

changes in gene expression, rather than changes in allele frequencies of coding regions, play a 

central role in adaptation. Other genetic analyses of rodent selection experiments found 

hundreds of differentially expressed genes by either eQTL investigations (Kelly et al. 2012, 

Kelly et al. 2014) or by comparing expression profiles between treatments (Bye et al. 2008, 

Roberts et al. 2013). These observations suggest that expression analyses may be among the 

most promising strategies to identify the molecular basis of phenotypic differences.  

The contrast between expression and frequency changes of coding alleles may be 

explained by selection acting mostly on alleles in regulatory elements. However other factors 

cannot be ignored here. Gene expression can be thought of as a first-order phenotype. Because 

many different SNPs, possibly located in many different genes may affect expression level of 

a particular gene it may be easier to observe the effects of selection on gene expression levels 

than on the frequency changes of individual alleles. Thus significant and reproducible changes 

in expression levels may result from the combined effects of a number of subtle (and not 

necessary repeatable among selected lines) allele frequency changes in regulatory elements. 
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For many genes expression is essentially a polygenic trait and as such might be less prone to 

drift. Therefore random variation between lines in gene expression might be lower than in 

SNPs, increasing statistical power to detect subtle changes. On the other hand, if the artificial 

selection in this experiment had resulted in subtle allele frequency changes in many coding 

SNPs, then this pattern should have been detected by the multidimensional scaling analysis: 

the selected lines would have formed clusters separated from the controls. However, we did 

not observe such clustering for the allele frequency data; it was only seen in the gene 

expression data. This suggest that the changes in gene expression, but not repeatable changes 

in coding variants, underlie the observed response to selection. 

Multidimensional scaling and additional analyses showed that the differences in allele 

frequencies in coding regions between selected and control lines were driven mainly by 

genetic drift. These results do not necessarily mean that selection does not affect variation in 

coding regions; however, they are not compatible with a scenario in which widespread 

positive selection on coding genes shapes the genomic patterns of polymorphism within, and 

divergence between, selection regimes. The fact that we did not find SNPs differentiated more 

than expected under drift effectively rules out the possibility that any genetic variant of large 

effect was repeatedly selected for. Therefore, we suspect that if positive selection affected the 

coding sequences in our experiment, it acted on a limited number of variants that provided a 

small-to-moderate fitness advantage. In this respect, our study contrasts with other selection 

experiments performed on vertebrates which showed large genomic regions being fixed for 

alternative variants between treatments (Johansson et al. 2010; Chan et al. 2012; Pettersson et 

al. 2013). This difference may be a consequence of differences in the genetic architecture of 

the traits investigated or result from differences in experimental setup, in particular the origin 

and genetic makeup (eg. presence of linkage disequilibria) of the base population. However, 

many previous studies relied on observations of reduced genetic diversity as evidence for the 

effects of selection and, in doing so, may have suffered from the confounding effects of 

genetic drift. For example, (Johansson et al. 2010) selected chicken lines for high body mass 

and interpreted the decrease in heterozygosity as reflecting the operation of selection. 

However, the high-body-mass selected line had an effective population size that was reduced 

by around 10% (44.5 vs. 49.3). Our experimental design allowed us to ascribe reduced 

polymorphism in the selected lines to their reduced effective population sizes, and we were 

able to show that even such minor differences can significantly affect polymorphism. 
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Our study differed from many other E&R studies (especially these performed on 

vertebrates) in the nature of the standing genetic variation available at the onset of the 

experiment. We directly utilized genetic variation that was segregating in a natural population. 

This has not been the case in many other experiments, in which source populations were 

created by crossing inbred or isofemale lines (Johansson et al. 2010; Chan et al. 2012; 

Orozco-Terwengel et al. 2012; Turner and Miller 2012). As a result, experimental populations 

may not have adequately reflected the standing genetic variation available for positive 

selection in natural populations. For example, inbred lines are likely to have been cleaned of 

large-effect recessive deleterious mutations but to have fixed many slightly deleterious ones. 

When inbred lines are crossed, slightly deleterious mutations become common, and the initial 

allele frequency spectrum is expected to depart from that observed in nature. In nature most of 

deleterious variants are rare and the shape of allele frequency spectrum depends on effective 

population size. Here, we inferred that negative selection is an important force that might 

shape allele frequencies, even in populations of small Ne.  

However, a small Ne is a limitation inherent to E&R studies in vertebrates, and 

because of this, our study had limited power to detect the effects of selection on SNPs. 

Pedigree-based selection simulations demonstrated that, due to the effect of drift in relatively 

small experimental populations, only strongly selected (s~ 0.2) variants  segregating at 

appreciable frequencies in the base population can be detected with high probability. 

Therefore the effective size of experimental populations has critical consequences for the 

E&R approach. Several theoretical studies have examined the effect of population size on 

analyses of artificial selection, and all of them have found that Ne is a crucial factor that 

influences the power of such analyses (Kofler and Schlötterer 2013; Baldwin-Brown et al. 

2014; Kessner D and Novembre J, unpublished data, http://dx.doi.org/10.1101/005892, last 

access August 15, 2014). Specifically, Baldwin-Brown and colleagues (2014) argue that, to 

localize causative SNPs with at least 80% success, researchers should use a population size of 

1000 diploid individuals. This is obviously not feasible for most laboratory experiments 

involving vertebrates, and therefore only variants with large effects can be detected with high 

probability (Baldwin-Brown et al. 2014). The same situation is however observed in nature — 

many vertebrate populations are small, having effective population sizes comparable to those 

reported here, which makes distinguishing effects of drift and selection a challenging task 

(Palstra and Ruzzante 2008). Additionally, population recombination rate is low in small 

populations, which increases the rate of false positives because drift affects entire long 
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haplotypes and leads to correlated allele frequency changes in multiple SNPs. We partially 

controlled for the effect of linkage by sampling one SNP per gene. However, this problem 

needs to be considered in future E&R studies.  

An alternative explanation for the lack of considerable changes in allele frequencies 

is that adaptation is due to different variants in different lines. Repeatability of adaptation is 

however surprisingly high on the gene level both in experimental evolution experiments and 

natural populations (Conte et al. 2012; Tenaillon et al. 2012; Martin and Orgogozo 2013). 

Because of that observation and the fact that initial standing genetic variation was similar in 

all selected lines derived from a single base population, many SNPs initially in moderate 

frequencies should be repetitively selected. Because the number of repetitively selected 

coding SNPs was probably modest, and the power to detect them was limited, we attempted to 

identify potential candidates by exploring the molecular functions of differentiated genes. We 

also carried out a similar analysis on genes with significantly different expression levels. This 

strategy is often used in experimental selection surveys (Bye et al. 2008; Kelly et al. 2012; 

Roberts et al. 2013; Kelly et al. 2014) allowing to pinpoint the most promising candidates for 

future investigations. Below, we very briefly discuss the molecular processes associated with 

these plausible candidates.  

 

Molecular function of plausible candidates 

To assess which biological pathways have possibly changed in response to selection, we 

investigated the genes that had been identified as having non-overlapping allele frequencies 

between selected and control lines (despite the overall lack of support for a role of selection in 

allele frequency changes, some variants may nevertheless be weakly selected for) and those 

that were differentially expressed in at least one organ. We refer to these genes as “plausible 

candidates” and list them in Tables S1, S2, and S3. None GO category was significantly 

overrepresented relative to all GO categories (FDR < 0.05). We argue, though, that some of 

these plausible candidates are more likely than others to explain some phenotypic changes. 

We narrowed down the list of candidates based on their functions and present the most 

interesting genes below.  

The stromal interaction molecule 1 (STIM1) gene showed highest differences in allele 

frequency between the selected and control lines, i.e. harbored nonsynonymous SNPs with the 
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highest diffStat values. STIM1 senses exhaustion of Ca2+ in the endoplasmic reticulum and 

activates an ion channel in the plasma membrane, causing continuous influx of the 

extracellular Ca2+ (Kurosaki and Baba 2010). Heterozygous mutations in human STIM1 

cause tubular aggregate myopathy (Bohm et al. 2013) and sotormorken syndrome (Misceo et 

al. 2014). In tubular aggregate myopathy all patients were characterized by mild and slowly 

progressive lower limb muscle weakness causing frequent falls and running difficulties 

(Bohm et al. 2013), which suggests that mutations in STIM1 may play an important role in 

swimming performance. Another gene of great interest is that of glycogen phosphorylase 

(PYGL). The physiological role of this liver phosphorylase is to ensure constant supply of 

glucose for extrahepatic tissues by catalyzing the rate-limiting step in glycogenolysis 

(Newgard et al. 1989; Bollen et al. 1998). Nonsynonymous mutations in human PYGL cause 

glycogen storage disease type VI. In substantial number of patients with such disease mild 

hypotonia, delayed motor development and muscle weakness and cramps were observed 

(Beauchamp et al. 2007). Interestingly, another nonsynonymous SNP that showed significant 

differences between selected and control lines was located in the gene that encodes the 

glycogen-debranching enzyme AGL, which acts together with PYGL to mobilize glucose 

from glycogen reserves. Mutations in human AGL cause Glycogen Storage Disease type III 

affecting calves and peroneal muscles (Lucchiari et al. 2007).  

The gene characterized by the highest number of differentiated nonsynonymous SNPs 

was MYO18B, encoding unconventional myosin XVIIIb. Previous studies have demonstrated 

the important role of this gene in myocardic structures (Ajima et al. 2008), as well as its 

contribution to cognitive phenotypes (Purcell et al. 2009; Ludwig et al. 2013). 

Another interesting gene is insulin-like growth factor 2 (IGF2), its expression 

increases in response to endurance training and extent of this change differs between humans 

with highest and lowest improvement in aerobic capacity (Keller et al. 2011). Next gene with 

an interesting function is the one that encodes fibroblast growth factor 21, which stimulates 

glucose uptake in adipocytes and plays a critical role in the regulation of lipid homeostasis 

(Badman et al. 2007). We also identified changes in other genes involved in lipid metabolism 

(e.g. ABCG1,CYP17A,APOB,LIPA,APOA1,APOA2,CYP4A14), the formation and proper 

functioning of the heart (e.g., XIRP2, KDM4A, JPH2), and stress responses (e.g., IRGM, 

DELE, PARP, HSP70, HSP105). All these genes may be involved in response to selection for 

aerobic performance. 
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In liver tissue, we found significant differences in expression of the gene that encodes 

retinoblastoma-like protein-2 (RBL2). RBL2 acts as a transcriptional repressor of the enzymes 

DNMT3A and DNMT3B, which catalyze the transfer of methyl groups to specific CpG 

structures in DNA, a process called DNA methylation (Benetti et al. 2008). Also on the list of 

differentially expressed liver genes are the genes encoding heterogeneous nuclear 

ribonucleoprotein H2 (HNRPH2), which plays an important role in pre-mRNA processing 

(Alkan et al. 2006), and methyl-CpG-binding domain protein 4 (MBD4), which takes part in 

the active demethylation process (Roloff et al. 2003). Additionally, one of the genes whose 

allele frequencies differed the most between selected and control lines was that coding for 

lysine-specific demethylase 4A (KDM4A), which plays a central role in modifying the 

“histone code” (Tan et al. 2011). Taken together, these observations suggest that genes 

associated with epigenetic changes might represent important targets of selection. 

One of the most significant changes in expression level was observed for the gene 

that encodes aphrodisin—a protein that transports pheromones that stimulate copulatory 

behavior (Briand et al. 2004, Stopková et al. 2010). Genes coding for aphrodisin-like proteins 

in bank voles may be used in chemical communication among individuals and thus may play 

an important role in aggression, dominance, and mate choice (Stopková et al. 2010). Changes 

in expression of this gene are interesting in the context of differences in reproductive success 

between the selected and control lines. Already in previous generations of the selection 

experiment we observed that voles from the selected lines produced litters sooner after the 

mating (Koteja et al. 2010). Also, in generation 12 and 13 (parents and siblings, respectively, 

of the voles used in transcriptome analysis), the proportion of mated pairs that produced 

offspring was significantly higher in the selected than in the control lines (generation 12 – 

selected: 93.2%, control: 70.1%, p = 0.011; generation 13 – selected: 92.9%, control: 68.2%, 

p = 0.010; GLIMMIX procedure in SAS 9.3). It is tempting to speculate that changes in the 

expression of aphrodisin may have been the underlying mechanism.  

 

Conclusions 

We characterized, through transcriptome sequencing, the response to selection for increased 

aerobic metabolism in lines derived from a natural population of the bank vole. We showed 

that the initial response to selection occurs mainly via changes in gene expression. After 

applying a rigorous control for the effect of drift, no repeatable changes in allele frequencies 



63 
 

at coding SNPs could be unambiguously attributed to directional selection. These results 

differ from a handful of previous analyses of selection experiments in birds and mammals, in 

which signals of multiple selective sweeps were detected by resequencing of genomes. 

Because our selection lines were derived from a natural population, the amount and spectrum 

of variation available for selection probably closely approximates these typically found in 

populations of small mammals. Therefore our results are relevant to the understanding of the 

molecular basis of complex adaptations occurring in vertebrate populations. By combining 

transcriptome analyses, information about gene functions, and knowledge about selected traits 

and phenotypes, we identified genes and pathways that could be the targets of selection for 

increased aerobic metabolism. To further investigate the patterns uncovered here, novel 

methods that combine knowledge from both population genetics and molecular biology 

should be developed and exploited in order to effectively characterize the candidate genes that 

were identified during this experiment. 

 

Materials and methods 

Selection experiment 

This study was performed using individuals from the 13th generation of a laboratory colony 

of bank voles (Myodes (=Clethrionomys) glareolus) that was subjected to selection for 

improved aerobic metabolism. The rationale for the selection experiment as well as detailed 

breeding and selection protocols are described elsewhere (Sadowska et al. 2008; 

Supplementary materials 1.1, 1.2). Briefly, the colony was founded using approximately 320 

voles captured in 2000 and 2001 in the Niepołomice Forest in southern Poland. For 6-7 

generations, the animals were bred randomly, and the colony was used for quantitative genetic 

analyses of metabolic rates (Sadowska et al. 2005). In 2004, a multidirectional selection 

experiment was established. In the A lines analyzed here, the selection criterion was the 

maximum mass-independent (residual from regression) 1-min rate of oxygen consumption 

achieved during 18 min of swimming. The swim test was conducted at 38ºC so that no 

thermoregulatory burden was imposed, and animals were tested when they were around 75 to 

85 days old (see Supplementary materials 1.1 and 1.2 for details of the protocol and results of 

the selection). 
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Estimating inbreeding effective population size 

To explore breeding differences among lines, individual inbreeding coefficients were 

calculated for each line using the R package “pedigree”. Changes in inbreeding over time 

were calculated as: 

∆𝐹𝑖 =  
𝐹𝑖 − 𝐹𝑖−1

1 − 𝐹𝑖−1
 

where Fi is the mean inbreeding coefficient in generation i (Falconer and MacKay 1996). The 

effective population size Ne was calculated for each line according to the formula:  

𝑁𝑒 =  
1

2 𝑥 ∆𝐹
 

where ΔF is the mean change in inbreeding over time.  

 

Sampling, RNA extraction, and sequencing 

For the transcriptome analysis, five males and five females of 75 to 80 days in age were 

sampled from each line; each individual came from a different family. These individuals had 

not been previously used in the swimming trials or for any other specific measurements 

(except routine measurements of body mass). Voles were euthanized by being placed one by 

one in a jar containing isoflurane (Aerane®) fumes; this process took place between 8.00 a.m. 

and 2.00 p.m. The animals were then weighed, and a small part of their left liver lobes and 

hearts were immediately excised and placed in RNAlater (Sigma). Samples were stored 

overnight at 4°C and then frozen at -20°C.   

Total RNA was extracted using RNAzol® (Molecular Research Center) in 

accordance with the manufacturer’s instructions. RNA concentration and quality were 

measured using Nanodrop and Agilent 2100 Bioanalyzer, respectively. All samples had an 

RNA Integrity Number (RIN) higher than 7.0 and were thus suitable for poly-A selection and 

cDNA library preparation.  

For each organ, we prepared one pooled sample per line—using equal amounts of 

total RNA from each individual—for a total of 16 samples. Residual DNA was removed from 
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pooled samples using a DNA-free Kit (Ambion®). RNA quality and concentration following 

the DNAse treatment were assessed as described above.  

Poly-A selection, reverse transcription, and the preparation of barcoded cDNA 

libraries with the TrueSeq RNA kit were performed by the Georgia Genomics Facility, USA. 

Liver samples from one control line (C3) were pair-end (2 x 100bp) sequenced on an Illumina 

HiSeq 2000 and used for reference transcriptome construction (Konczal et al. 2014). For the 

remaining 15 pools, single-end (1 x 100 bp) sequencing was performed. The reads were 

deposited in Sequence Read Archive (Bioproject PRJNA267038). 

 

Reference transcriptome reconstruction and annotation 

We first trimmed low-quality reads using DynamicTrim, removed adaptors with Cutadapt, 

and removed reads shorter than 20bp with LengthSort (Cox et al. 2010; Grabherr et al., 2011; 

Martin 2011). As references, we used a previously assembled liver transcriptome (Konczal et 

al. 2014) and the heart reference transcriptome generated by Kaczyńska and colleagues 

(unpublished), which had been assembled for other purposes. The transcriptomes were 

processed by merging transcripts that were likely derived from the same genomic locations. 

This produced transcriptome-based gene models (TGMs), which we refer to here as “genes” 

(Stuglik et al. 2014).   

We did not assemble one transcriptome from pooled reads of two organs to avoid the 

problem of potential redundancy of the reference transcriptome. Transcriptome complexity 

negatively affects de novo assembly and TGMs reconstruction (Vija et al. 2013), and it is 

known that most alternative splicing occurs between organs (Wang et al. 2008). Redundancy 

of the reference transcriptome has serious implications for SNP calling, because reads 

mapping equally well to multiple locations are filtered out during this procedure. Because we 

assembled transcriptomes of each organ separately, this problem is reduced to within-organ 

splice variant variation and even if it occurs for one transcriptome, SNPs may be still 

identified using reference transcriptome from the other organ (see below). 

TGMs were annotated using Trinotate software. Trinotate makes use of a number of 

methods for functional annotation (e.g., homology search to Swissprot database, protein 

domain identification, protein signal prediction) of likely coding regions (likely CDSs). 

Likely CDSs were identified using a pipeline implemented in Trinity, but this approach did 
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not successfully annotate all of them. Non-annotated genes represent either errors, fast 

evolving genes, or genes whose homologs are not present in the Swissprot database. 

 

Mapping and identification of SNPs  

Filtered reads were mapped to the reference transcriptomes using Bowtie2 (Langmead and 

Salzberg 2012). For liver samples of line C3, we subsampled reads to obtain a comparable 

number of single-end sequences. Reads mapped into multiple locations were removed from 

analyses. We mapped all reads from both organs together to the liver and heart transcriptomes 

to increase accuracy of allele frequency estimation.  

SNP calling was performed in two steps. First, we identified SNPs with samtools 

(mpileup with options: -Q 10, -E), which is dedicated to diploid genomes (Li et al. 2009). 

SNPs that contained more than two variants in samtools output were discarded. In the second 

step, we applied PoPoolation2 (Kofler, et al. 2011) to filter data and estimate allele 

frequencies. Only SNPs with a minimum of 10x coverage in each sample and a minimum of 

three reads that supported minor allele were considered. Additional to multi-allelic SNPs 

removal, two procedures were applied to identify and exclude similar paralogs that had been 

assembled into single genes: i) we removed most polymorphic genes (more than five SNPs 

per 100 bp using a minimum of 10x coverage) and ii) we discarded all genes that contained 

SNPs with an excess of observed heterozygotes or had BLASTN hits with E-value < 10-150 

to such genes. This procedure was based on those developed for the individually sequenced 

liver transcriptomes of 10 voles (Konczal et al. 2014) and the heart transcriptomes of 20 voles 

(Kaczyńska et al. unpublished)—these studies excluded SNPs for which more than 8/10 or 

14/20 samples, respectively, were heterozygotes. Using custom python scripts, SNPs were 

classified as being synonymous, nonsynonymous, UTRs, or localized in putative non-protein-

coding genes. 

The above procedure was performed for both liver and heart transcriptomes and 

yielded highly overlapping sets of SNPs. The differences resulted from differences in 

reference transcriptomes (lack of a SNP in one transcriptome may be caused by incompletely 

assembled or non-assembled genes or by splice variants which were not collapsed into a 

single gene model). To remove the redundancy in the SNP dataset we preformed the 

following procedure. First we clustered liver and heart SNPs-containing genes using 
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reciprocal blast searches (BLASTN hits with E-value < 10-100 and > 99% identity). Genes 

which did not form clusters were apparently expressed in one organ only and were retained 

(liver: 5,786 genes, heart: 1,759 genes). Genes with significant hits in the other transcriptome 

were reduced using the criterion of completeness From clusters with one to one relation 

(containing a single sequence from each transcriptome; 6082 clusters) we retained the longer 

one. The relation one to many (939 clusters) was mainly caused by fragmentation of the gene 

in one of the assemblies, therefore we retained SNPs from the transcriptome with the single 

assembled sequence. For clusters containing >1 sequence from liver and > 1 from heart (many 

to many, 200 clusters) we included in analyses sequences from this transcriptome in which the 

total length of sequences was larger. SNPs identified in thus selected genes were used for all 

analyses.  For genes that contained at least one SNP, FST was calculated using PoPoolation2. 

FST was calculated for each SNP using the formula FST = (πT – πW)/ πT . Mean FST values 

between each pair of lines were calculated, and this matrix of pairwise FST was used to test: i) 

whether the extent of variation among lines within treatments differed between selected and 

control lines and ii) whether selected and control lines cluster separately. Multivariate 

homogeneity of group dispersion was tested using betadisper{vegan}, (Oksanene et al. 2013) 

followed by an ANOVA.  To test for separate clustering of selected and control lines we 

calculated the ratio of between treatment to within treatment variance using 

adonis{vegan}and assessed its statistical significance through 1000 randomizations. 

Randomized matrices of mean FST were obtained by shuffling pairwise FST values for each 

gene independently. The original mean pairwise FST matrix was visualized using nonmetric 

multidimensional scaling. 

 

Simulations of allele frequency distribution under drift and positive selection 

To obtain the allele frequency distributions that would be expected under drift, we performed 

forward drift simulations on known pedigrees. Simulations were performed separately for 

allele frequency spectra derived from all, synonymous and nonsynonymous SNPs. 

The simulations were divided into four parts and were repeated 10 million times (steps 2-4): 

1. Estimation of the initial allele frequency distribution. As we did not know the allele 

frequencies in the ancestral population, we had to estimate them using data from the control 

lines. For each SNP, we calculated the mean allele frequency from the four control lines. If 
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control lines diverge mainly due to drift (a reasonable assumption for most polymorphisms), 

such averages are unbiased estimates of allele frequencies in the ancestral population, which 

may then be used to reconstruct the allele frequency spectrum in the ancestral population.  

2. Simulation of the genotypes of “generation 0” individuals. We simulated the 

genotype of each individual in the ancestral population by randomly choosing one initial 

allele frequency (p0) from the set of frequencies estimated in step 1. Then, for each 

individual, we sampled from a binomial distribution with n = 2 and p = p0 (n - number of 

draws, p - probability of success), thus obtaining the number of allele copies (0, 1, 2) for each 

individual.  

3. Simulation of the effect of drift on known pedigrees. Based on known pedigrees, 

we simulated genotypes for each individual by randomly choosing one chromosome from 

each of the parents. We then obtained genotypes for 10 individuals (that were selected for 

sequencing for each line) and calculated allele frequencies.   

4. Simulation of pooling and sequencing error. Pooling and sequencing cause 

inaccuracy in allele frequency estimation. Therefore, we decided to add relevant variation to 

the simulated allele frequencies using the relative errors of allele frequency estimation that 

had been previously calculated (Konczal et al. 2014). For a given MAF class, a gamma 

function was fitted to the distribution of experimentally obtained relative errors. Then, one 

value of estimation error was randomly chosen from the fitted gamma distribution and 

incorporated into the simulation results.   

To asses power to detect selected variant given its selective advantage and initial 

frequency we used the approach similar as in drift simulations. Several initial allele 

frequencies (f = 0.05, 0.1, 0.25, 0.5, 0.75, 0.9) and four different values of selection advantage 

(s  = 0, 0.05, 0.1, 0.2) were used. In the course of pedigree based simulations, in selectively 

bred lines advantageous allele was passed from heterozygote parents to offspring with higher 

probability (0.5 +  ½ s) than the alternative variant (0.5 – ½ s). For each combination of f and 

s we performed 100000 iterations and recorded the fraction iterations with diffStat > 0.     

Scripts used for simulations are available at http://www.molecol.eko.uj.edu.pl. 
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SNP analyses, polymorphism, and divergence between lines/selection regimes 

To study the effect of differences in Ne between lines on the amount of genetic variation we 

examined the allele frequency spectra. Specifically we calculated for each line the number of 

such SNPs which were polymorphic in the entire dataset but showed little or no variation 

(minor allele frequency, MAF <0.05) within the line. We used an ANCOVA in which Ne was 

a covariate and treatment (control vs. selected) was a fixed effect; the interaction between the 

two was included in order to check the assumption that the slopes were homogeneous between 

treatments. The interaction was not significant (F(1, 4) = 0.84, p = 0.41). As a consequence, 

we used a simple model without interactions to study the general effect of Ne and treatment 

on allele frequency spectra. 

To study differentiation between the selected and control lines, we investigated 

repeatable changes in allele frequencies. SNPs with frequencies that were either always higher 

or always lower in selected lines as compared to control lines (non-overlapping allele 

frequencies) were considered to be potential targets of selection (plausible candidates). For 

each such site, we calculated the diffStat statistic, which is the smallest difference in allele 

frequency between selected and control lines (Turner et al. 2011). The distribution of the 

number of unlinked candidate SNPs was estimated by sampling one SNP per gene 1000 

times. We then sampled the same number of SNPs (the number of genes with at least one 

SNP) from simulated pedigrees 600 times; in these simulations, drift was the only 

evolutionary force in operation. We subsequently compared the two sets of results. The 

difference between these two distributions should reveal the genome-wide effects of selection. 

These analyses were performed on the set of all SNPs, as well as separately for each class of 

SNPs (synonymous, nonsynonymous, UTR, noncoding).  

The biological functions and molecular processes associated with the differentiated 

genes were studied using custom scripts and Gowinda software (Kofler and Schlötterer 2012). 

 

Estimation and comparison of gene expression levels 

To identify differentially expressed genes, we mapped reads onto reference transcriptomes 

with bowtie and used the EdgeR Bioconductor and RSEM packages (Robinson et al. 2010). 

The matrix of expected counts over all samples was used for EdgeR analyses. Only genes for 

which the sum of expected counts over all samples was higher than 10 were counted. Using 
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the standard EdgeR procedure, we normalized counts for library size and RNA composition. 

We performed multidimensional scaling (BCV method, EdgeR package) over all genes to 

analyze general expression patterns within tissues. We also estimated dispersion and 

calculated exact tests for genes that were differentially expressed between control and selected 

lines. The FDR was calculated as per Benjamini and Hochberg (1995). 

The GO terms associated with the differentially expressed genes were investigated 

with GOrilla software (Eden et al. 2009). 

To statistically test for separate clustering of transcriptional profiles of selected and 

control lines  we developed a procedure analogous to that used for the FST matrix. We used 

table of expression values (FPKM, TMM normalized) which included only transcripts with 

the total FPKM > 1. For this table we calculated distance matrix (dist() function) and the ratio 

of between treatment to within treatment variance (adonis{vegan}). The statistical 

significance of this ratio was assessed through 1000 randomizations. Randomized matrices of 

mean gene expression distances were obtained by shuffling expression values of individual 

gene between lines. Differences between lines in genome-wide transcriptional profiles were 

visualized with multidimensional scaling (plotMDS{edgeR}). 
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Supplementary materials 

 

Supplement 1. Animal maintenance, selection protocol and effects of the selection in the 
first 15 generations of the selection experiment on bank voles  
 

Animal maintenance and welfare 

The animals were maintained in standard plastic mouse cages (mostly opaque, polypropylene) 

with sawdust bedding, at a constant temperature (20±1°C) and photoperiod (16h:8h light:dark; 

light phase starting at 2:00am). Breeding pairs and pairs with offspring (up to 17 days old) 

were maintained in model 1290D cages (Tecniplast, Bugugiatte, Italy; dimensions L x W x H: 

425 x 266 x 155 mm, floor area 800 cm2), equipped with a shelter (ceramic pot), additional 

nest material (paper towels) and cardboard tubes (environment enrichment). At the age of 17 

days the animals were weaned, marked temporarily by fur clipping and kept in family groups 

until the age of 30-35 days. At the age of about 34 days, all individuals were marked 

permanently with mouse ear tags (model 10005-1; National Band and Tag, Newport, KY; 

mass 0.18g) and later maintained in same-sex groups of three individuals in model 1264C 

cages (Tecniplast, Bugugiatte, Italy; dimensions L x W x H: 267 x 207 x 140 mm; floor area 

370 cm2) or up to five (usually four) individuals in the larger model 1290D cages (described 

above). Cages were changed every 5-14 days, depending on the number of animals in the 

cage, size of the cage and their cleanliness. Water and food (a "breeding type" rodent chow: 

24% protein, 3% fat, 4% fibre; Labofeed H, Kcynia, Poland) was provided ad libitum. Every 

day all cages were visually inspected for presence of food and water or dead animals. The 

colony was under supervision of a qualified veterinary surgeon. During any kind of 

measurements, if symptoms of poor condition were observed in an animal (problems with 

breathing or moving, injury, etc.), it was removed from the experiment. Depending on 

judgment of the observer or animal care personnel, it was either allowed to recover or was 

euthanized. Depending on circumstances, one of three methods of euthanasia was used: 

exposure to a rising concentration of CO2, cervical dislocation, or isoflurane inhalation 

(AEranne, Baxter; applied using open-drop technique).  

After completing all the measurements of the 13th generation, we discovered that the 

colony had been infected with Puumala hantavirus during that generation. The virus was not 

detected earlier because, under normal housing conditions, infection does not result in 
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pathology in bank voles (Bernshtein et al. 1999); some data suggest, however, that the virus 

may decrease vole survival under harsh winter conditions (Kallio et al. 2007). We confirmed 

that reproduction (litter mass and litter size during weaning), mortality, and condition (adult 

body mass) in the “infected” generations did not differ from the preceding, “uninfected” 

generations. Therefore, it is highly unlikely that infection influenced the results of the 

selection experiment. 

 

Selection protocol 

The whole selection experiment evolves lines selected in three distinct directions (Sadowska 

et al. 2008), but in this study we used only lines selected for high aerobic-exercise 

metabolism, measured as the highest 1-minute rate of oxygen consumption achieved by the 

voles during swimming. The measurements were performed in a positive pressure open-flow 

respirometric system (design 1b in Koteja 1996), similarly as described in our earlier reports 

(Sadowska et al. 2005). The voles swam in a 3L glass chamber partly filled with water with a 

drop of a shampoo for dogs (to ensure complete soaking of fur). Unlike in the earlier study, 

the measurements were performed at 38°C, to ensure that the increase of metabolism was 

solely due to locomotor activity and not due to thermoregulatory demand. The tests lasted for 

up to 18 minutes, unless an individual began to sink or oxygen consumption rapidly 

decreased. 

In each generation we used two custom built computerized respirometric systems:  1) 

with both O2 and CO2 analysers: FC2 Oxzilla and CA2-2A (Sable systems, Las Vegas, NV), 

or 2) with only O2 analyser:  either Applied Electrochemistry  S3-A/II (AMETEK, now AEI 

Technologies, Pittsburgh, PA)  or FC-1 (Sable Systems, Las Vegas, NV), depending on 

generation. Fresh air was pumped through the respirometric chamber at about 2000 ml/min 

(STPD), controlled with one of the following mass-flow controller systems:  either ERG3000 

(Beta-Erg, Warsaw, Poland)  or GFC-17A (Aalborg, Orangeburg, New York) or two parallel 

MFS-1 (Sable Systems, Las Vegas, NV). Actual flow rate controlled by the three mass-flow 

systems was calibrated against the same precise glass rotameter (LO 2.5/100, Rota, Germany).  

Sample of excurrent air (150-200ml/min) was dried and directed to the gas analyzers. 

Concentration of gases was recorded every second, and the rate of oxygen consumption was 

calculated according to appropriate equations (Koteja 1996; modified to include information 

about CO2 concentration, if available). Results obtained with the first system were used to 
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calculate respiratory exchange rate (RQ; ratio of CO2 production to O2 consumption rates), 

and averaged RQ values were used in calculation of oxygen consumption with the second 

system (which did not measure CO2). Raw values of oxygen consumption and CO2 

production calculated for each 1-sec interval were corrected for effective volume of the 

systems to achieve "instantaneous" rates (Bartholomew et al. 1981). 

In the first three generations the respirometric measurements were performed twice, 

at the age of 74-86 days and again about 10 days later. The two measurements were highly 

repeatable and selection decision did not change markedly after consideration of the second 

measurement. Therefore, in further generations the measurements were performed only once 

(in most individuals at the age of 75-85 days). The selection criterion was the 1-minute 

maximum instantaneous rate of oxygen consumption adjusted (residual from ANCOVA) for 

body mass, sex, number of litter, litter size, age, measurement date and the type of 

respirometer.  

In each generation we obtained offspring from at least 16 families, with 1-4 litters 

from a family (because average litter size in bank voles is about 4.5, multiple litters from a 

family were needed to allow effective selection). From each of the families 1-2 males and 1-2 

females with the highest adjusted (residual) values of the maximum metabolism were selected 

as breeders. However, the selection was not purely of "within-family" type, because a) more 

individuals were selected as breeders from "good" families, in which average scores were 

higher than a line mean, and b) if for a given line in a particular generation an excess number 

of families was available, we have not selected any individuals from "poor" families, in which 

scores of all individuals were below the line mean. Thus, the effective population size was 

lower than predicted for a breeding scheme with purely within-family selection (see Results). 

We decided to trade-off the effective population size for an increased efficiency of selection, 

because we anyway breed a larger number of families per line than in typical selection 

experiments on laboratory rodents (e.g. Swallow et al. 1998), but have a longer generation 

time (due to producing multiple litters). The males and females selected as breeders were 

mated in pairs randomly, but with the restriction that mating between siblings and first 

cousins was avoided. 

All the breeding and experimental protocols have been approved by the Polish State 

and Local Ethical Committee for Ethics in Animal Research in Kraków (decisions No. 

DB/KKE/PL-111/2001, 31/OP/2005, 99/2006, 21/2010 and 22/2010). 
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In addition to the direct response to the selection we observed several correlated 

responses in behavioral and morpho-physiological traits, which were presented as preliminary 

conference reports (e.g. Koteja et al 2009, 2010, 2012, 2013, Sadowska et al 2013). Voles 

from the selected lines were more active in home cages, had increased basal metabolic rates, 

maximum forced-running and cold-induced metabolic rates, and food consumption rate, 

increased mass of gastrocnemius leg muscle, heart, kidney, liver and brain, and reproduced 

better, compared to voles from the unselected control lines. On the other hand, we found no 

significant difference between the lines in learning capability (Chrząścik et al. 2014), 

oxidative damage to lipids or proteins (Ołdakowski et al. 2012) or non-shivering 

thermogenesis (Stawski et al., 2015). 
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Supplement 2. Supplementary Figures and Tables 
 

 

 

 

Fig. S2.1. PCA plot based on allele frequencies estimated from pooled transcriptomes of liver 
and heart samples. Blue circles represent four selected lines; red show four control lines of the 
selection experiment. PCA was performed to look for corelated changes in allele frequencies 
in various subsets of SNPs, which could reflect response of multiple genes to the same 
selection pressure.   
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Fig. S2.2. Distribution of diffStat values expected from simulations (grey shaded area 
indicates 90% of all simulations) and observed (red line) for all (A), synonymous (B), and 
nonsynonymous (C) SNPs. The simulations were performed on pedigree and expected 
distribution was obtained from iterations showing diffStat > 0. DiffStat is the minimum allele 
frequency difference between selected and control lines calculated for SNPs with non-
overlapping allele frequencies between treatments.  
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Fig. S2.3. Expected and observed fraction of SNPs with non-overlapping allele frequencies 
between selected and control lines (diffStat > 0). The plots are shown for all (A), synonymous 
(B) and nonsynonymous (C) SNPs. Red line represents observed variants, black – 
expectations from pedigree-based simulations. The distribution for observed values was 
obtained from 1000 datasets, consisting of SNPs sampled one per gene.  
 
 



87 
 

 
Fig. S2.4. Power of detection selected allele within alleles with non-overlapping allele 
frequencies between four selected lines and four controls. The results were obtained from 
pedigree-based simulations, where, in selected lines, one allele had higher probability being 
sampled from parents to offspring than alternative. The colors show the expected percent of 
SNPs with non-overlapping allele frequencies at the  13 generation of selection. 
 
 

Tables 

Tab. S1 List of plausible candidate genes from SNP analysis. Max nonsyn DiffStat –  
maximum value of DiffStat (minimum difference in allele frequency between treatments) for 
a given gene; N of nonsyn/syn cand. –  number of SNPs (nonsynonymous/synonymous) with 
non-overlapping allele frequencies; N of all SNPs –  number of all SNPs for given gene.  

Gene 

Max 
nonsyn 
DiffStat 

N of 
nonsyn 
cand. 

N of 
syn 

cand. 

N of 
all 

SNPs 
Stromal interaction molecule 1 0.28 1 0 5 
Cytosolic phospholipase A2 gamma 0.26 1 0 9 
Lysine-specific demethylase 4A 0.25 2 2 20 
Zinc finger FYVE domain-containing protein 9 0.22 2 2 18 
Glycogen phosphorylase, liver form 0.2 5 0 54 
Putative zinc finger protein 724 0.2 3 0 6 
H-2 class II histocompatibility antigen, E-K alpha chain 0.17 2 3 23 
H-2 class II histocompatibility antigen, E-K alpha chain 0.17 2 3 30 
Pentatricopeptide repeat-containing protein 1, mitochondrial 0.17 1 0 7 
LIM and senescent cell antigen-like-containing domain protein 2 0.17 1 1 3 
Apolipoprotein B-100 0.16 2 3 173 
Protein FAM98B 0.16 1 0 9 
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Monocarboxylate transporter 12 0.16 3 2 109 
Xin actin-binding repeat-containing protein 2 0.16 6 4 251 
Steroid 17-alpha-hydroxylase/17,20 lyase 0.15 1 1 14 
ATP-binding cassette sub-family G member 8 0.15 1 2 40 
Centrosomal protein of 89 kDa 0.15 1 0 22 
Cytochrome b5 reductase 4 0.14 2 1 31 
G patch domain and ankyrin repeat-containing protein 1 0.14 2 0 13 
Interferon-induced very large GTPase 1 0.14 2 1 164 
Polyamine-modulated factor 1 0.14 1 0 6 
Poly [ADP-ribose] polymerase 9 0.13 6 0 101 
O-phosphoseryl-tRNA(Sec) selenium transferase 0.13 2 0 3 
Alpha-2-macroglobulin 0.13 2 0 61 
Putative sodium-coupled neutral amino acid transporter 10 0.13 1 0 16 
Immunity-related GTPase family M protein 1 0.12 5 0 17 
Alpha-mannosidase 2 0.12 1 0 60 
N-acetyltransferase 10 0.12 1 0 22 
Peroxisomal membrane protein PEX14 0.12 1 0 10 
Alanine--glyoxylate aminotransferase 2, mitochondrial 0.12 1 4 42 
Nidogen-2 0.12 1 1 18 
Pleckstrin homology domain-containing family G member 3 0.11 3 0 44 
Uncharacterized protein C20orf194 homolog 0.11 1 0 41 
ATP-binding cassette sub-family B member 8, mitochondrial 0.11 2 2 13 
ERBB receptor feedback inhibitor 1 0.11 2 0 15 
Trinucleotide repeat-containing gene 18 protein 0.11 1 1 12 
Nuclear RNA export factor 1 0.11 1 0 9 
Microtubule-associated tumor suppressor 1 homolog 0.1 2 1 80 
Cytosolic 5'-nucleotidase III-like protein 0.1 1 0 15 
NADP-dependent malic enzyme 0.1 1 0 35 
Glycerol-3-phosphate acyltransferase 3 0.1 1 0 29 
Aldehyde dehydrogenase family 16 member A1 0.1 1 3 21 
Phospholipid transfer protein 0.09 2 2 34 
Death ligand signal enhancer 0.09 3 1 47 
Lysosomal acid lipase/cholesteryl ester hydrolase 0.09 3 0 37 
Protein LZIC 0.09 1 1 9 
E3 ubiquitin-protein ligase RFWD3 0.09 1 0 12 
Zinc finger protein with KRAB and SCAN domains 5 0.09 2 0 8 
MKI67 FHA domain-interacting nucleolar phosphoprotein 0.09 2 0 15 
Junctophilin-2 0.09 1 1 45 
Filamin-C 0.09 1 8 55 
Trans-1,2-dihydrobenzene-1,2-diol dehydrogenase 0.09 1 2 7 
Glycogen debranching enzyme 0.09 1 0 63 
Zinc finger protein 260 0.08 1 1 15 
ADP-ribosylation factor GTPase-activating protein 3 0.08 1 0 10 
Molybdenum cofactor sulfurase 0.08 1 0 61 
Early endosome antigen 1 0.08 1 0 52 
Titin 0.08 1 0 30 
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Transmembrane 9 superfamily member 3 0.08 1 0 19 
Laminin subunit gamma-2 0.08 1 0 18 
Transcription initiation factor TFIID subunit 2 0.08 1 0 15 
Centrosome-associated protein 350 0.08 1 0 15 
Coiled-coil domain-containing protein 66 0.08 1 0 7 
Protein FAN 0.08 1 0 15 
Retrograde Golgi transport protein RGP1 homolog 0.08 1 0 25 
EH domain-binding protein 1-like protein 1 0.07 4 0 30 
Basement membrane-specific heparan sulfate proteoglycan core 
protein 0.07 1 4 45 
Basement membrane-specific heparan sulfate proteoglycan core 
protein 0.07 1 3 6 
DNA-directed RNA polymerase III subunit RPC9 0.07 1 0 37 
Protein KRBA1 0.07 2 0 41 
Phosphoacetylglucosamine mutase 0.07 1 0 8 
Atrophin-1 0.07 1 1 29 
Coiled-coil domain-containing protein 68 0.07 3 1 33 
Eukaryotic translation initiation factor 2-alpha kinase 1 0.07 2 0 46 
Cytochrome P450 3A11 0.07 2 1 7 
Neurogenic locus notch homolog protein 4 0.07 2 2 191 
Non-lysosomal glucosylceramidase 0.07 2 0 36 
Mitochondrial assembly of ribosomal large subunit protein 1 0.07 1 1 10 
Thyroid transcription factor 1-associated protein 26 0.07 1 0 10 
Zinc finger protein 48 0.07 1 0 2 
Very-long-chain (3R)-3-hydroxyacyl-[acyl-carrier protein] 
dehydratase 3 0.07 1 0 30 
Coagulation factor X 0.07 1 1 23 
Phosphoenolpyruvate carboxykinase [GTP], mitochondrial 0.07 1 2 5 
LIM domain and actin-binding protein 1 0.07 1 0 39 
Zinc finger and BTB domain-containing protein 25 0.07 1 0 8 
Coiled-coil domain-containing protein 51 0.07 1 0 13 
Neuralized-like protein 2 0.06 4 2 34 
Acyl-coenzyme A thioesterase 2, mitochondrial 0.06 3 0 8 
Epiplakin 0.06 2 3 24 
Gag-Pro polyprotein 0.06 2 1 63 
7-alpha-hydroxycholest-4-en-3-one 12-alpha-hydroxylase 0.06 2 0 36 
Annexin A6 0.06 1 3 23 
Probable glutathione peroxidase 8 0.06 1 0 17 
Coagulation factor V 0.06 1 0 71 
KN motif and ankyrin repeat domain-containing protein 3 0.06 1 1 13 
Unconventional myosin-XVIIIb 0.06 10 7 105 
Protein DGCR14 0.06 2 0 37 
Cytochrome P450 2C26 0.06 2 1 7 
Transmembrane protein 175 0.06 1 0 15 
5'-AMP-activated protein kinase subunit gamma-2 0.06 1 0 12 
Inhibitor of Bruton tyrosine kinase 0.06 1 0 32 
Dystonin 0.05 3 6 82 
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Transmembrane emp24 domain-containing protein 3 0.05 2 0 19 
PR domain zinc finger protein 2 0.05 1 0 11 
Methionyl-tRNA formyltransferase, mitochondrial 0.05 1 1 18 
Alcohol dehydrogenase 4 0.05 1 0 22 
Transmembrane emp24 domain-containing protein 2 0.05 1 0 8 
Histone-lysine N-methyltransferase SETDB2 0.05 1 0 3 
Regulatory solute carrier protein family 1 member 1 0.05 1 0 64 
Sugar phosphate exchanger 3 0.05 1 0 7 
Cullin-associated NEDD8-dissociated protein 2 0.05 1 4 37 
Plexin-B2 0.05 2 1 40 
Alpha-methylacyl-CoA racemase 0.05 1 0 25 
D-3-phosphoglycerate dehydrogenase 0.05 1 1 33 
Podocalyxin 0.05 1 0 82 
Procollagen C-endopeptidase enhancer 1 0.05 1 2 4 
C-reactive protein 0.04 3 1 19 
Lysophospholipase-like protein 1 0.04 2 1 8 
Zinc finger protein 791 0.04 2 0 5 
Cytochrome P450 3A29 0.04 1 0 10 
Hydroxymethylglutaryl-CoA synthase, cytoplasmic 0.04 1 1 44 
Acyl-CoA dehydrogenase family member 9, mitochondrial 0.04 1 2 15 
Filamin A-interacting protein 1-like 0.04 1 0 11 
CDK5 regulatory subunit-associated protein 3 0.04 1 0 17 
DNA polymerase subunit gamma-1 0.04 1 5 40 
Conserved oligomeric Golgi complex subunit 1 0.04 1 0 39 
Dual specificity testis-specific protein kinase 1 0.04 1 5 25 
Ubiquitin carboxyl-terminal hydrolase 30 0.04 1 0 32 
DNA excision repair protein ERCC-8 0.04 1 0 7 
Cytochrome P450 2B19 0.04 2 1 84 
Coiled-coil and C2 domain-containing protein 1B 0.04 2 1 11 
RRP12-like protein 0.04 1 0 35 
Leucine-rich repeat-containing protein 28 0.04 1 0 16 
Cbp/p300-interacting transactivator 4 0.04 1 0 14 
Microtubule-associated protein 4 0.04 1 0 18 
Inactive serine protease PAMR1 0.04 1 1 14 
Zinc transporter 5 0.04 1 0 21 
Acyl-CoA desaturase 2 0.03 3 1 55 
Carcinoembryonic antigen-related cell adhesion molecule 1 0.03 3 1 45 
Interferon-induced protein with tetratricopeptide repeats 1 0.03 1 1 48 
Interferon-induced protein with tetratricopeptide repeats 1 0.03 1 1 55 
Cip1-interacting zinc finger protein 0.03 2 0 22 
Valine--tRNA ligase, mitochondrial 0.03 2 4 73 
Type 2 lactosamine alpha-2,3-sialyltransferase 0.03 1 0 14 
Microtubule-associated protein 1A 0.03 1 0 24 
Bifunctional epoxide hydrolase 2 0.03 1 2 17 
Methylcrotonoyl-CoA carboxylase subunit alpha, mitochondrial 0.03 1 0 36 
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NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 
8, mitochondrial 0.03 1 0 15 
Catenin alpha-1 0.03 1 0 41 
WSC domain-containing protein 2 0.03 1 0 61 
Adenylate cyclase type 5 0.03 1 1 12 
Serine/threonine-protein kinase RIO1 0.03 1 3 32 
Tripartite motif-containing protein 16 0.03 1 1 24 
Eukaryotic translation initiation factor 3 subunit A 0.03 1 0 12 
Unconventional myosin-X 0.03 1 3 69 
Mitotic spindle assembly checkpoint protein MAD1 0.03 1 0 14 
Interferon-induced guanylate-binding protein 1 0.03 1 1 10 
Tetratricopeptide repeat protein 32 0.03 1 1 5 
Complement component C7 0.03 1 2 37 
snRNA-activating protein complex subunit 2 0.03 1 0 2 
Ephexin-1 0.03 1 0 16 
GTPase IMAP family member 5 0.03 1 0 35 
A-kinase anchor protein 2 0.03 1 0 25 
Centrosomal protein of 44 kDa 0.03 1 0 16 
Protein sprouty homolog 2 0.03 1 0 22 
Tripartite motif-containing protein 34A 0.03 1 0 7 
Sialoadhesin 0.03 1 0 6 
Ectonucleotide pyrophosphatase/phosphodiesterase family 
member 2 0.03 1 0 23 
Macrophage colony-stimulating factor 1 receptor 0.03 1 0 16 
Isoaspartyl peptidase/L-asparaginase 0.03 1 0 4 
DnaJ homolog subfamily C member 16 0.03 1 0 29 
Fatty-acid amide hydrolase 1 0.03 1 2 32 
Aminopeptidase N 0.03 1 0 98 
Autophagy-related protein 2 homolog A 0.03 1 0 10 
Acyl-CoA dehydrogenase family member 10 0.03 1 0 2 
2-oxoglutarate and iron-dependent oxygenase domain-
containing protein 3 0.03 1 1 25 
Cordon-bleu protein-like 1 0.02 2 0 18 
Fatty acid desaturase 1 0.02 2 2 35 
Caskin-2 0.02 2 0 30 
Histone H1.3 0.02 1 1 28 
Protein phosphatase 1 regulatory subunit 21 0.02 1 0 36 
Heat shock 70 kDa protein 4L 0.02 1 0 5 
Forkhead box protein O4 0.02 1 0 2 
Phospholipase D3 0.02 1 0 9 
Probable leucine--tRNA ligase, mitochondrial 0.02 1 0 48 
UPF0568 protein C14orf166 homolog 0.02 1 0 5 
FAST kinase domain-containing protein 3 0.02 1 0 22 
RILP-like protein 1 0.02 1 3 16 
Disintegrin and metalloproteinase domain-containing protein 9 0.02 1 0 23 
Sarcosine dehydrogenase, mitochondrial 0.02 1 1 54 
Multiple inositol polyphosphate phosphatase 1 0.02 1 1 32 



92 
 

Nicotinamide mononucleotide adenylyltransferase 1 0.02 1 1 23 
Bestrophin-3 0.02 1 0 3 
RNA polymerase II-associated protein 3 0.02 1 0 19 
L-selectin 0.02 1 0 20 
Rho guanine nucleotide exchange factor 7 0.02 1 0 6 
Multidrug resistance-associated protein 6 0.02 1 1 71 
Urocanate hydratase 0.02 1 0 30 
WD repeat and FYVE domain-containing protein 3 0.02 1 0 34 
H/ACA ribonucleoprotein complex subunit 4 0.02 1 0 20 
Activity-dependent neuroprotector homeobox protein 0.02 1 0 10 
Aprataxin 0.02 1 0 36 
Putative deoxyribonuclease TATDN2 0.02 1 0 4 
TBC1 domain family member 9B 0.02 1 1 50 
Lipoprotein lipase 0.02 1 1 68 
SWI/SNF-related matrix-associated actin-dependent regulator of 
chromatin subfamily A member 5 0.02 1 0 31 
Rho guanine nucleotide exchange factor 37 0.02 1 0 33 
Growth hormone receptor 0.02 1 1 55 
Diphosphoinositol polyphosphate phosphohydrolase 2 0.02 1 0 5 
Pecanex-like protein 3 0.02 1 0 8 
Probable E3 ubiquitin-protein ligase HERC1 0.02 1 0 26 
Cytochrome c oxidase assembly protein COX14 0.01 3 0 7 
Complement component C9 0.01 3 1 52 
14-3-3 protein theta 0.01 2 0 33 
2-methoxy-6-polyprenyl-1,4-benzoquinol methylase, 
mitochondrial 0.01 2 0 18 
UDP-glucuronosyltransferase 3A2 0.01 2 0 32 
Receptor-transporting protein 3 0.01 2 0 30 
Macrophage-expressed gene 1 protein 0.01 1 0 60 
DnaJ homolog subfamily C member 24 0.01 1 0 1 
Fibronectin type III and SPRY domain-containing protein 2 0.01 1 6 52 
Ser/Thr-rich protein T10 in DGCR region 0.01 1 0 6 
Maleylacetoacetate isomerase 0.01 1 0 27 
Serine/threonine-protein kinase Nek3 0.01 1 1 16 
Arylacetamide deacetylase 0.01 1 0 9 
Activator of basal transcription 1 0.01 1 0 18 
Ubiquinone biosynthesis protein COQ9, mitochondrial 0.01 1 0 46 
Transmembrane protein 106A 0.01 1 0 19 
Glutamyl-tRNA(Gln) amidotransferase subunit A, mitochondrial 0.01 1 1 47 
Heat shock protein HSP 90-alpha 0.01 1 0 19 
SAYSvFN domain-containing protein 1 0.01 1 0 9 
Lipase maturation factor 2 0.01 1 0 36 
Lysosomal protective protein 0.01 1 0 34 
Ubiquitin-protein ligase E3C 0.01 1 0 6 
Acyl-CoA desaturase 1 0.01 1 0 45 
Protocadherin-12 0.01 1 0 35 
Platelet-activating factor acetylhydrolase 2, cytoplasmic 0.01 1 1 22 
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Protein PRRC2B 0.01 1 0 8 
Voltage-dependent calcium channel gamma-like subunit 0.01 1 0 11 
Bifunctional purine biosynthesis protein PURH 0.01 1 0 38 
Sulfated glycoprotein 1 0.01 1 0 12 
CD5 antigen-like 0.01 1 0 20 
Solute carrier family 2, facilitated glucose transporter member 2 0.01 1 0 56 
HLA class I histocompatibility antigen, B-37 alpha chain 0.01 1 0 3 
Semaphorin-4G 0.01 1 0 27 
Interferon-activable protein 204 0.01 1 0 80 
Nucleolar complex protein 4 homolog 0.01 1 0 5 
Probable cation-transporting ATPase 13A2 0.01 1 0 19 
Conserved oligomeric Golgi complex subunit 2 0.01 1 1 6 
Plectin 0.01 1 0 34 
Leucine-rich repeat flightless-interacting protein 2 0.01 1 0 13 
Laminin subunit beta-2 0.01 1 0 20 
Vacuolar-sorting protein SNF8 0.01 1 0 5 
Glutathione S-transferase Mu 1 0.01 1 0 25 
Sodium-dependent phosphate transport protein 3 0.01 1 0 20 
GH3 domain-containing protein 0.01 1 0 7 
Aldo-keto reductase family 1 member B15 0.01 1 0 4 
Testican-2 0.01 1 1 7 
Tetratricopeptide repeat protein 33 0.01 1 0 45 
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Tab. S2 List of annotated genes from liver samples with significantly differentiated expression 
between selected and control lines.  Overexpression in selected lines is denoted by negative 
values in the “Fold Change” column. Expression level values are given in log CPM (count per 
million reads). FDR (False Discovery Rate) calculated according to Benjamini and Hochberg 
1995. The second part of the table represent results of additional verification of these genes: P 
values of t test performed on FPKM and whether genes have non-overlapping FPKM values (+/- 
means yes/ no). 

 edgeR results Tests on FPKM 

Gene name Fold      
Change 

Expression 
level P value FDR P value  

(t test) 

diff
Stat 
> 0 

Retinoblastoma-like protein 2 -11.90 1.65 3.9E-21 3.5E-16 7.08E-02 + 
Heterogeneous nuclear 
ribonucleoprotein H2 9.50 -0.32 1.7E-20 7.6E-16 3.00E-02 + 
Methyl-CpG-binding domain 
protein 4 7.41 -2.63 3.9E-10 2.1E-06 6.63E-04 + 
H-2 class II histocompatibility 
antigen, I-E beta chain 3.95 -0.89 1.1E-09 4.9E-06 1.84E-02 + 
Inactive serine protease 35 1.80 1.02 1.2E-09 5.1E-06 4.12E-03 + 
Apolipoprotein A-I 1.29 9.03 9.7E-09 3.4E-05 1.02E-02 + 
Cytochrome P450 4A14 -13.99 4.08 1.8E-08 5.5E-05 3.56E-01 - 
Protein FAM92A1 7.63 -2.39 4.4E-08 1.3E-04 3.68E-02 - 
Heat shock protein 105 kDa -2.16 1.57 9.4E-08 2.5E-04 7.71E-02 + 
Cytochrome P450 4A12 -1.18 3.74 9.9E-08 2.5E-04 4.48E-04 + 
Testosterone 17-beta-
dehydrogenase 3 -1.20 3.21 1.3E-07 2.9E-04 8.60E-04 + 
Methylmalonate-semialdehyde 
dehydrogenase acylating, 
mitochondrial -9.75 4.22 1.7E-07 3.5E-04 3.56E-01 - 
Intraflagellar transport protein 
122 homolog 2.34 -0.16 1.8E-07 3.6E-04 2.65E-02 + 
Serotransferrin-B 10.46 -0.07 1.8E-07 3.7E-04 3.56E-01 - 
Zinc finger protein 3 -4.01 -2.87 2.0E-07 3.9E-04 6.17E-04 + 
HERV-K_22q11.21 provirus 
ancestral Gag polyprotein -1.29 1.52 2.2E-07 4.2E-04 6.13E-03 + 
Probable ATP-dependent RNA 
helicase DHX37 2.07 -0.54 2.9E-07 5.0E-04 1.34E-02 + 
Uncharacterized protein 
C1orf129 -1.45 2.04 3.3E-07 5.6E-04 6.33E-04 + 
Serum albumin B 10.06 -0.46 3.5E-07 5.7E-04 3.56E-01 - 
Serum albumin B 9.83 -0.69 5.3E-07 8.3E-04 3.56E-01 - 
Heat shock 70 kDa protein 
1A/1B -1.50 3.61 8.0E-07 1.1E-03 5.61E-02 + 
Uncharacterized protein 
C1orf129 -2.23 -1.60 9.3E-07 1.2E-03 2.86E-04 + 
Glyceraldehyde-3-phosphate 
dehydrogenase 9.33 -1.18 1.5E-06 1.8E-03 3.56E-01 - 
Fibroblast growth factor 21 2.29 -0.11 2.4E-06 2.6E-03 5.58E-02 - 
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Acyl-coenzyme A amino acid 
N-acyltransferase 2 -1.12 7.69 2.9E-06 3.0E-03 1.98E-03 + 
Suppressor of cytokine 
signaling 2 -1.39 3.11 3.8E-06 3.6E-03 2.74E-02 + 
Dedicator of cytokinesis 
protein 5 7.69 -2.63 4.1E-06 3.7E-03 1.40E-01 - 
Cytochrome P450 4A10 -0.94 5.53 5.9E-06 4.9E-03 1.33E-03 + 
Hemoglobin subunit beta-1 8.74 -1.75 5.9E-06 4.9E-03 3.56E-01 - 
Alpha-1-antiproteinase 2 8.68 -1.80 6.9E-06 5.6E-03 3.56E-01 - 
Cathepsin K -3.77 -2.48 8.5E-06 6.5E-03 4.69E-02 - 
Poly ADP-ribose polymerase 
14 -1.28 3.34 1.0E-05 7.7E-03 5.64E-02 + 
Apolipoprotein A-II 8.54 -1.94 1.0E-05 7.7E-03 3.56E-01 - 
Kynureninase -0.85 8.40 1.1E-05 7.8E-03 2.81E-03 + 
Alpha-fetoprotein 8.51 -1.97 1.1E-05 7.9E-03 3.56E-01 - 
Interferon-induced helicase C 
domain-containing protein 1 -1.85 -1.12 1.2E-05 8.1E-03 6.63E-04 + 
Alpha-actinin-4 -2.43 1.10 1.5E-05 9.6E-03 2.65E-02 - 
Retrovirus-related Pol 
polyprotein LINE-1 -1.05 1.15 1.6E-05 9.8E-03 2.83E-03 + 
Elongation factor 1-alpha, 
oocyte form 8.01 -2.42 1.7E-05 1.0E-02 3.37E-01 - 
Perilipin-2 0.94 6.83 1.7E-05 1.0E-02 2.00E-02 + 
Ras-related protein Rab-30 1.01 2.94 1.8E-05 1.1E-02 2.01E-03 + 
Hemoglobin subunit alpha-1 8.31 -2.16 1.9E-05 1.1E-02 3.56E-01 - 
Adenylate kinase isoenzyme 4, 
mitochondrial 1.09 3.66 1.9E-05 1.2E-02 4.25E-02 - 
Mucolipin-1 1.34 0.04 2.1E-05 1.2E-02 2.36E-03 + 
Protein GPR108 2.02 -0.68 2.3E-05 1.3E-02 2.63E-02 - 
EMI domain-containing 
protein 1 6.75 -3.19 2.4E-05 1.4E-02 1.16E-01 - 
Leucine-rich repeat and 
transmembrane domain-
containing protein 1 2.09 0.55 2.5E-05 1.4E-02 5.37E-02 - 
Aryl hydrocarbon receptor 
nuclear translocator 2 -1.27 2.84 2.5E-05 1.4E-02 5.58E-02 - 
Elongation factor 1-alpha, 
oocyte form 6.22 -1.89 2.6E-05 1.4E-02 3.48E-01 - 
Potassium-transporting 
ATPase alpha chain 1 -2.59 0.68 2.8E-05 1.5E-02 1.29E-01 - 
Pentraxin fusion protein 8.11 -2.34 3.2E-05 1.7E-02 3.56E-01 - 
Cytosolic phospholipase A2 
gamma -0.94 3.71 3.3E-05 1.7E-02 9.71E-03 + 
BSD domain-containing 
protein 1 1.01 2.95 3.9E-05 1.9E-02 8.03E-03 + 
EH domain-containing protein 
1 -7.12 -2.99 3.9E-05 1.9E-02 1.59E-01 - 
Tenascin-X -0.95 3.24 4.3E-05 2.1E-02 6.32E-03 + 
Intraflagellar transport protein 1.20 2.14 4.5E-05 2.1E-02 2.40E-02 + 
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122 homolog 
Ropporin-1-like protein -2.64 -1.54 4.6E-05 2.1E-02 1.62E-01 + 
Lysine-specific demethylase 
2A 7.99 -2.47 4.6E-05 2.2E-02 3.56E-01 - 
Glutathione S-transferase 
theta-1 0.70 8.05 5.3E-05 2.4E-02 3.21E-03 + 
Kielin/chordin-like protein 1.75 -1.01 5.3E-05 2.4E-02 3.38E-03 + 
Retinol-binding protein 4 7.92 -2.53 5.6E-05 2.5E-02 3.56E-01 - 
NADP-dependent malic 
enzyme 0.89 7.17 5.8E-05 2.5E-02 3.53E-02 - 
Meiosis-specific with OB 
domain-containing protein 2.38 -1.28 5.9E-05 2.6E-02 6.60E-02 - 
Homeobox protein cut-like 2 -1.09 0.92 6.4E-05 2.7E-02 8.47E-03 + 
Protein FAM92A1 6.32 -3.46 6.4E-05 2.7E-02 1.41E-01 - 
Aphrodisin -0.84 13.98 6.6E-05 2.7E-02 2.12E-02 + 
Suppressor of cytokine 
signaling 2 -1.61 0.73 8.3E-05 3.3E-02 1.07E-02 + 
Diacylglycerol O-
acyltransferase 2-like protein 6 3.13 -2.69 8.4E-05 3.3E-02 4.06E-03 + 
Cytochrome P450 4A2 -1.11 3.90 8.4E-05 3.3E-02 2.99E-02 - 
Transcription factor E2F2 -0.94 1.68 9.2E-05 3.6E-02 9.41E-03 + 
Fatty acid-binding protein 2, 
liver 7.74 -2.70 9.7E-05 3.7E-02 3.56E-01 - 
UDP-glucuronosyltransferase 
3A2 -0.90 3.21 9.9E-05 3.7E-02 7.40E-03 + 
Protein phosphatase 1 
regulatory subunit 3G -1.31 2.23 1.0E-04 3.7E-02 1.12E-01 - 
Bcl-2-associated transcription 
factor 1 -7.49 -2.59 1.1E-04 4.1E-02 3.56E-01 - 
Zinc finger protein 226 2.83 -1.40 1.1E-04 4.1E-02 8.71E-02 - 
Heat shock 70 kDa protein 
1A/1B -1.28 3.92 1.2E-04 4.2E-02 1.06E-01 - 
Fatty acid desaturase 2 0.78 9.68 1.2E-04 4.2E-02 3.02E-02 + 
Rho guanine nucleotide 
exchange factor 4 1.28 0.34 1.2E-04 4.3E-02 1.68E-02 - 
Rho guanine nucleotide 
exchange factor 4 3.07 -1.48 1.3E-04 4.5E-02 8.33E-02 - 
HEAT repeat-containing 
protein 4 -6.21 -3.80 1.4E-04 4.7E-02 4.78E-02 - 
Insulin-like growth factor-
binding protein 2 2.16 0.17 1.5E-04 4.9E-02 2.15E-01 - 
Zinc finger and BTB domain-
containing protein 47 0.90 1.30 1.5E-04 4.9E-02 7.84E-04 + 
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Tab. S3 List of annotated genes from heart samples with significantly differentiated expression 
between selected and control lines. Overexpression in selected lines is denoted by negative values 
in the “Fold Change” column. Expression level values are given in log CPM (count per million 
reads). FDR (False Discovery Rate) calculated according to Benjamini and Hochberg 1995. The 
second part of the table represent results of additional verification of these genes: P values of t test 
performed on FPKM and whether genes have non-overlapping FPKM values (+/- means yes/ no). 

 edgeR results Tests on FPKM 

Gene name Fold 
Change 

Expression 
level P value FDR P value  

(t test) 

diffS
tat > 

0 
Aphrodisin -2.63 0.85 1.2E-14 1.3E-09 2.25E-02 + 
Centromere protein S -2.88 -0.75 7.5E-14 4.1E-09 1.33E-03 + 
Synaptonemal complex 
protein 3 -3.21 -0.90 6.8E-11 1.5E-06 1.56E-02 + 
Fetuin-B -1.94 0.03 1.7E-09 2.3E-05 9.36E-03 + 
Interferon-induced guanylate-
binding protein 2 -8.73 -1.41 3.6E-09 4.3E-05 2.35E-01 - 
Transmembrane protein 114 -1.48 0.73 3.9E-09 4.3E-05 1.07E-03 + 
Aphrodisin -2.37 -0.03 9.1E-09 8.3E-05 3.32E-02 + 
Heat shock-related 70 kDa 
protein 2 -0.76 3.04 2.3E-07 1.6E-03 1.94E-05 + 
Arachidonate 12-
lipoxygenase, leukocyte-type -3.53 3.21 2.6E-07 1.7E-03 2.88E-01 - 
Apolipoprotein L3 -8.12 -2.02 2.8E-07 1.7E-03 2.65E-01 - 
Semaphorin-4F -1.31 0.29 3.5E-07 2.0E-03 1.81E-02 + 
Serum albumin -1.79 2.73 3.8E-07 2.1E-03 8.04E-02 + 
Geminin coiled-coil domain-
containing protein 1 8.46 -1.40 1.4E-06 5.3E-03 3.47E-01 - 
Rhophilin-2 -0.95 1.92 2.9E-06 9.3E-03 3.45E-03 + 
Interferon-induced protein 
with tetratricopeptide repeats 
1 -3.79 -0.48 3.1E-06 9.5E-03 2.92E-01 - 
Phenylalanine-4-hydroxylase -3.17 -2.24 5.2E-06 1.3E-02 3.62E-02 + 
Thyrotropin-releasing 
hormone receptor 2.04 -0.58 6.2E-06 1.5E-02 4.27E-02 - 
Ubiquitin-like protein ISG15 -4.05 2.38 6.3E-06 1.5E-02 3.51E-01 - 
Guanylate-binding protein 4 -2.30 1.23 7.5E-06 1.7E-02 2.36E-01 + 
Apolipoprotein C-III -2.97 -2.72 8.3E-06 1.8E-02 4.09E-04 + 
Cytochrome P450 2A3 -2.11 -0.39 1.0E-05 2.0E-02 1.14E-01 - 
Immunoglobulin lambda-like 
polypeptide 1 3.07 -1.90 1.3E-05 2.2E-02 

4.69E-02 
- 

Interferon-induced protein 
with tetratricopeptide repeats 
3 -2.02 1.68 1.2E-05 2.2E-02 1.51E-01 + 
Neuron-specific protein 
family member 2 -1.18 4.01 1.3E-05 2.2E-02 4.51E-02 + 
Soluble lamin-associated 
protein of 75 kDa -2.04 -1.58 1.6E-05 2.6E-02 1.20E-02 - 
2'-5'-oligoadenylate synthase- -3.38 1.52 2.0E-05 3.2E-02 3.39E-01 - 
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like protein 1 
Beta-2-glycoprotein 1 -2.55 -2.13 3.0E-05 4.4E-02 4.94E-02 + 
Retinaldehyde-binding 
protein 1 5.33 1.09 3.3E-05 4.6E-02 3.67E-01 - 
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Abstract 

Changes in foraging strategies are thought to be essential in many adaptive radiations, yet 

little is known about the nature of genetic variation underlying such behaviors. Here, we 

investigated genetic basis of the response to selection for predatory behavior using a unique 

laboratory model of vertebrate adaptive radiation. After 13 generations of selection for 

increased frequency of predatory behavior, the proportion of bank voles (Myodes 

[=Clethrionomys] glareolus) showing predatory behavior was 5 times higher in 4 replicated 

selected lines than in 4 control lines. We used RNAseq to analyze hippocampus and liver 

transcriptomes of voles from the selected and control lines and found that selection resulted in 

repeatable changes in allele frequencies and gene expression. We did not however find 

evidence for the role of nonsynonymous polymorphisms in response to selection, suggesting 

that most single nucleotide polymorphisms (SNPs) which did respond, affect gene expression 

or alternative splicing.  Expression analyses showed that substantial number of genes were 

differentially expressed between treatments (149). Together with results of the SNP analyses, 

this suggests that the initial response to selection for predatory behavior appears strongest in 

regulatory regions of the genome, what support hypothesis that changes in gene expression 

play predominant role at early stages  adaptive evolution. Repeatable changes in SNP allele 

frequencies, the pattern not observed in similar analyses of voles selected for maximum 

metabolism rate, suggests that architecture of adaptive variation differs between traits. We 

suspect that alleles at higher frequencies or of larger effects have responded to selection for 

predatory behavior than for aerobic performance, which caused higher repeatability between 

replicates. Finally, we characterized genes with the largest differences between predatory and 

control lines. They are associated with hunger, aggression, biological rhythm and functioning 

of the nervous system. 
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Introduction 

Many different strategies have been used to study the molecular basis of adaptive changes 

(Stapley et al. 2010). We are however still far from reaching a consensus about the role of 

natural selection vs. other processes in shaping genetic variation (Hahn 2008; Wagner 2008; 

Sella et al. 2009; Nei 2013). Important issues concerning the process of adaptation, such as 

the role of standing genetic variation, changes in gene expression or effect sizes of adaptive 

variants, remain controversial as well (Orr 2005, Barrett and Schluter 2008, Rockman 2012, 

Fraser 2013). Hence a major research program, in which researchers attempt to decipher the 

genetic architecture of adaptive traits, to establish links between genotype, phenotype and 

fitness and test hypotheses about the action of selection at the genomic level (Ellegren and 

Sheldon 2008, Dalziel et al. 2009, Radwan and Babik 2012, but see Travisano and Shawn 

2013).  Such studies contributed to better understanding of the molecular basis of 

morphological (e.g. height in humans, armor plates in sticklebacks, fur color in deer mice 

[Hoekstra et al. 2006, Frazer et al. 2009, Jones et al. 2012]) or physiological (performance, 

adaptation to high altitude [Storz et al. 2007, Yi et al. 2010, Konczal et al. 2015]) traits but we 

still know little about the genomic architecture of natural variation in complex behaviors 

(Boake et al. 2002, Bendesky and Bargmann 2011, Weber et al. 2013). It is unfortunate 

because during the initial phase of adaptation, response to selection may be primarily 

observed in behavioral traits (Mayr 1959, Blomberg et al. 2003, Garland and Rose 2009). 

Identification of genomic basis of variation in such traits (both underlying genes and genetic 

architecture) is therefore crucial for mechanistic and evolutionary understanding of behavioral 

adaptation.  

From ecological and evolutionary perspective, one of the most intriguing behaviors is 

predation (Curio 1976, Barbosa and Castellanos 2005, Ishii and Shimada 2010, Ritchie et al. 

2012). Predation is an ecological factor of almost universal importance for regulating 

ecosystems and sustaining biodiversity (Ritchie and Johnson 2009). At the organismal level it 

is associated with hunger, activity, searching behavior and prey recognition/selection (Curio 

1976). Motivation and ability for predation may have serious consequences for survival and 

reproductive success (Eisenberg and Leyhausen 1972, Curio 1976), but the genomic basis of 

variation in predatory behavior is largely unknown. Sequenced genomes of some predatory 

species revealed genome-wide signs of positive selection, however the identification of genes 

underlying predatory behavior per se is next to impossible using such comparative genomic 

approach (Zhan et al. 2013, Cho et al. 2013).  
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Another approach however, experimental evolution, allows to identify the genotype-

phenotype link, to test the role of selection in shaping genetic variation and to study evolution 

in real time (Garland and Rose 2009, Kawecki et al. 2012). The advantage of experimental 

evolution is the ability to focus on a well-defined selected trait, which is measured in 

experimentally controlled ambient conditions. Direct and correlated responses to selection can 

then be distinguished and separated (Garland and Rose 2009). Well-designed selection 

experiments minimize also the effect of complex demography and other historical factors, 

which may elevate the rate of false positives in scans for genomic signatures of adaptation in 

natural populations (Akey 2009).   

In this study we employ experimental evolution and high throughput sequencing to 

get insight into the early stages of predatory behavior evolution.  Specifically, we investigate 

the transcriptome-wide response to artificial selection for increased predatory behavior in a 

small mammal in an attempt to better understand the genomic architecture of variation 

affecting this trait. We analyzed bank vole (Myodes [=Clethrionomys] glareolus) selection 

experiment, with four lines selected for predatory behavior (referred to as selected lines or P 

lines) and four control lines (C lines; Sadowska at al. 2008). Bank voles are omnivore rodents 

with a very diverse diet that includes both invertebrates and green plant tissues, allowing  

selection to operate on feeding-related traits  (Petrusewicz 1983; Wereszczyńska et al. 2007; 

Sadowska et al. 2008). In the experiment selection was applied based on intensity of predatory 

behavior towards crickets. This trait was measured as the time to catch a live cricket which 

was placed in a cage together with a fasted vole as described by Sadowska et al. (2008). After 

13 generations of selection, the proportion of voles attacking crickets was 5 times higher in 

the selected P lines than in unselected control lines (Chrząścik et al. 2014).  

Transcriptomes of two tissues – liver and brain (hippocampus) – were sequenced and 

compared between the selected and control lines using a cost-effective pooled RNA-Seq 

approach (Konczal et al. 2014). We focus not only on gene expression changes, but also on 

differences in allele frequencies at expressed parts of the genome to assess the impact of 

selection on genome-wide patterns of polymorphism and divergence. Such approach is 

feasible because transcriptome represents substantial part of the functional genome and RNA-

seq is thus a convenient way to perform genome-wide studies of experimental evolution for 

species without the available reference genome (Konczal et al. 2014). Hippocampus was 

chosen, as a brain structure involved in feeding-related behaviors (Tracy et al. 2001) and as 

the structure where motivation and memory are coordinated to guide behavior (Kennedy and 
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Shapiro 2009). We also analyzed the liver transcriptome, because many genes expressed in 

this organ provide information about allele frequency changes in loci which are not expressed 

in the hippocampus. Moreover, if evolution of predatory behavior is accompanied by changes 

in overall physiology (e.g. hunger level, metabolism or stress) then gene expression changes 

may also be expected in liver.  

Our specific questions focused on several aspects of molecular-level response to 

selection. First, we asked  whether selection decreases genetic variation more than drift alone. 

Second, we were interested in repeatable changes associated with response to the same 

selection pressure. In particular, we wanted to compare repeatability of changes in SNPs allele 

frequencies with changes in genes expression. Third, we assessed whether the number of 

SNPs differentiated between treatments is higher than expected under drift and whether such 

differentiated SNPs are overrepresented at nonsynonymous sites. Fourth, we suspected that 

selection has affected more gene expression in hippocampus that in liver tissue. To test this 

hypothesis, we compared expression changes between both organs. Finally, we wanted to 

identify and characterize genes most differentiated between the P and C lines - candidates for 

molecular targets of selection for predatory behavior.    

 

Results 

Transcriptome sequencing, assembly and annotation 

We used  80.2 mln (M) of paired-end reads (2 x 100bp) from one control line (C3) for the 

reconstruction of the hippocampus transcriptome. De novo assembly resulted in 219,886 

transcripts, which were then reduced to 153,677 transcriptome-based gene models (referred to 

as genes; Tab. 1). Of these 28,743 were identified as putatively protein-coding, and 21,407 

(74.5%) were successfully annotated to 13,305 known genes deposited in SwissProt database 

(some genes were fragmented in the transcriptome assembly).  

For the remaining 7 lines (3 C lines and 4 P lines) we obtained altogether 250 M of 

100 bp single-end  reads from the hippocampus transcriptomes (35.6 M ± (SD) 15.3 M per 

sample). These reads, together with subsampled sequences from the C3 line (35 M single-end 

reads) were used to compare hippocampus transcriptomes between the selected and control 

lines.  
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For analyses of liver transcriptomes we used the previously published liver reference 

transcriptome (Konczal et al. 2014, Konczal et al. 2015). We sequenced liver transcriptomes 

of P lines (127 M single-end 100 bp reads, 31.9 M ± (SD) 3.7 per sample) and compared them 

with transcriptomes of control lines from the same generation of the selection experiment 

(Konczal et al. 2015).  

 

Tab. 1 Basic statistics of the hippocampus reference transcriptome.  
  

 No. of genes 153,677 
No. of genes >1kb 29,267 

N50 gene length 1,598 
No. of genes within N50 18,518 
No. of putative protein coding genes  28,743 
Total length (Mb) 122 

Note. – N50, 50% of the assembly length is in genes of the length 
of N50 bp or longer; genes, TGMs contain both coding and 
noncoding sequences. 

 

Polymorphism within the selection experiment 

Using reads from both organs we identified 179,468 SNPs, which were grouped into four 

classes: nonsynonymous, synonymous, UTR-located and noncoding (Tab. 2).  The SNPs were 

localized in 15,580 genes, 11,076 of which were putatively protein coding. In accordance with 

expectations, allele frequency spectra differed between the classes of SNPs and they were the 

most skewed for nonsynonymous variants, indicating the presence of purifying selection 

(Fig. 1). To test an effect of selection and effective population size (calculated from the 

available pedigree) on genetic variation within lines we counted number of polymorphic sites 

(minor allele frequency > 0.05) within each line. The number of such sites was mainly 

affected by effective population size (p=0.037, F(1,5)=7.97, ANCOVA), while treatment (C 

vs. P) did not affect polymorphism (p=0.123, F(1,5)=3.45, ANCOVA). 
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No. of SNPs 179,468 
No. of genes with SNPs 15,580 
No. of nonsynonymous SNPs 21,708 
No. of synonymous SNPs 44,102 
No. of UTR-located SNPs 82,422 
No. of SNPs in noncoding genes 31,236 
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Fig. 2 Genetic differentiation of predatory (red) and control (black) lines of the bank vole 
selection experiment. Multidimensional scaling was performed on the matrices of pairwise 
FST distances between lines calculated using all SNPs (A) and for top 500 SNPs with the 
highest mean pairwise FST, i.e. showing the most overall differentiation among lines (B).  

 

Above results provide evidence for repeatable allele frequency differentiation. To 

compare this effect with expectations produced from pedigree-based simulations, and to see, 

whether this repeatable differentiation  is associated with a particular class of SNPs, such as 

nonsynonymous polymorphisms, we investigated SNPs which have non-overlapping allele 

frequencies between selected and control lines (3,715 SNPs (2.07%) located in 2,050 genes). 

Within this dataset we found 419 (1.93%, in 338 genes) nonsynonymous, 965 (2.19%, in 696 

genes) synonymous, 1682 UTR-located (2.04 % in 962 genes) and 649 (2.08% in 407 genes) 

noncoding SNPs. The observed number of SNPs with non-overlapping allele frequencies was 

significantly higher than expected from pedigree-based simulations (p=0.02) and mostly 

synonymous SNPs were responsible for this effect: while the number of synonymous SNPs 

was higher than expected (p=0.01), the fraction of nonsynonymous (p=0.52), UTR-located 

(p=0.16) and non-coding (p=0.25) candidates did not differ from expectations generated by 

simulations. 

The relatively small population sizes translate into low population recombination rate, 

which may cause entire long haplotypes to drift. To control for this effect we sampled one 

SNP per gene and compared results with drift simulations. Contrary to the analysis involving 

all SNPs we found slightly fewer differentiated SNPs than expected from simulations 

(fobs=1.99%, fexp=2.00% ; p=0.003, t-test). The number of differentiated SNPs was lower for 

SNPs localized in coding genes (nonsynonymous: fobs=1.82%, fexp=1.94%; p=10-48, 

synonymous: fobs=1.98%  fexp=2.03%, p=10-12, UTR-located: fobs=1.93%, fexp=1.99%, p=10-16; 

t-test) while it was higher in noncoding sequences (fobs=2.15%, fexp=2.03%, p=10-33, t-test). 
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Overall, comparisons between observed and simulated allele frequencies do not 

provide evidence for larger than expected differentiation in nonsynonymous SNPs. Depending 

on the applied strategy of data analysis, noncoding or synonymous variants differed between 

treatments more than expected form drift alone. These SNPs may be involved in alternative 

splicing and regulation of gene expression or be linked to causative variants. 

 
 
Candidate genes for predatory behavior 

To identify genes most differentiated between treatments we sorted SNPs with non-

overlapping allele frequencies by diffStat value. DiffStat is the difference in allele frequency 

between a selected line with the highest frequency and a control line with the lowest (or vice 

versa). The distributions of diffStat values were compared with these generated from 

pedigree-based simulations (Fig. 3). The observed distributions generally follow expectations, 

but for noncoding variants we observed larger fraction of SNPs with diffStat > 0.2, than in 

any other class of SNPs (Fig. 3D). Because the probability of obtaining the diffStat value > 

0.2 by chance, as assessed by pedigree-based simulations was very low (4.5 x 10-4) therefore 

we considered genes harboring 94 such SNPs as promising candidates and investigated their 

molecular functions. Some of these genes are discussed below, and the full list is provided in 

Supplementary materials (Tab S1). 

 

 
Fig. 3 Distribution of allele frequency differences between predatory and control lines. The 
distributions show number of SNPs with given diffStat values. The DiffStat value is the 
smallest difference in allele frequency between a P- and a C- line, so for SNPs having 
overlapping allele frequencies between treatments diffStat =0; such SNPs are not included in 
the plots. Shaded area indicates 90% of all simulations, and red line represents distribution 
observed for nonsynonymous (A), synonymous (B), UTR-located (C) and noncoding (D) 
SNPs.  
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Changes in gene expression 

To determine differences in gene expression level between predatory and control lines, we 

mapped reads from the liver and hippocampus to the respective transcriptomes, and compared 

expression between the P and C lines. We investigated all expressed genes with at least 10 

mapped reads. Multidimensional scaling separated selected lines from controls for the 

hippocampus (p=0.012) but not for the liver (p=0.286).  The same pattern was observed in 

analyses limited to 500 genes showing the highest variation among all samples (hippocampus: 

p=0.016; liver: p=0.289, Fig. 4). On the other hand, the number of genes with statistically 

significant differences (FDR < 0.05) in expression between the P and C lines was higher in 

the liver (90) than in the hippocampus (59) (Tab S2, Tab S3).  Candidate genes potentially 

associated with predatory behavior are described in Discussion.  

 
Fig. 4 Expression differentiation of predatory (red) and control (black) lines of the bank vole 
selection experiment. Multidimensional scaling plots were drawn from top 500 genes with the 
largest variation in expression, treating all lines as a one group, for liver (A) and hippocampus 
(B) samples. Distances on the plot can be interpreted as leading log2-fold-change.    

 

Discussion 

In this study we used replicate selected and control lines derived from a natural population of 

an omnivore rodent to experimentally quantify the molecular level  response to selection for 

predatory behavior. The effect of selection is manifested as consistent allele frequency and 

gene expression differences between the selected and control lines. The pattern of line 

clustering based on allele frequencies distances suggests enrichment in SNPs associated with 

repeatable response to selection. For some SNP classes differentiation of allele frequencies 

between selected and control lines was higher than expected from drift, which provided 
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evidence that in many cases the same alleles are selected for in the P lines. We did not find 

however any evidence for overrepresentation of nonsynonymous polymorphisms among 

selected variants or for larger than expected from drift loss of variation in selected lines. 

Because changes in gene expression were much more pronounced in the hippocampus than in 

the liver we suspect that selection is mainly associated with genes involved in functioning of 

the nervous system. 

 

Changes in allele frequencies 

Two lines of evidence indicate that selection caused repeatable allele frequency changes in the 

lines selected for predatory behavior. First, the P lines group separately from the C lines in 

ordination analysis based on the 500 SNPs most differentiated among the lines (regardless of 

the selective regime). Second, the number of SNPs with allele frequencies nonoverlapping 

between the P and C lines was higher than expected under drift; this effect was driven by 

synonymous polymorphisms. It is difficult to propose an explanation other than the effect of 

selection, for the pattern revealed by the ordination analysis. The excess of SNPs highly 

differentiated between the P and C lines is also suggestive, but potential limitations of the 

analytical approach need to be considered. The original analysis did not control for linkage 

between sites. When one SNP per gene was sampled, in an attempt to control for linkage, the 

number of differentiated SNPs higher than expected under drift was obtained only for 

noncoding sites, while the overall number differentiated SNPs was slightly lower than 

expected. However the control for linkage based on sampling one SNP per gene is far from 

ideal, because this approach may be affected by nonrandom distribution of differentiated 

SNPs across genes. If differentiated SNPs are localized in more polymorphic genes, their 

number will be underestimated and if they are located in less polymorphic genes their number 

will be overestimated.  

In model species more efficient and realistic control of the effect of linkage is 

possible with information about haplotypes and recombination rate (Kessner et al. 2013), 

which is not available for our system. One potential solution in our case could be using the 

standard coalescent (Wakeley 2009) to simulate for each gene haplotypes in the base 

population. Such approach requires information about polymorphism of individual genes, 

which is available, and assumptions about demographic history and recombination rate 

(Hudson 2002). Expectations of the number of highly differentiated SNPs under neutrality can 

then be obtained through simulations of haplotype drift on the known pedigree. Drift 
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simulations could assume free recombination between and no recombination within genes, 

which appears reasonable given the time scale of the experiment and effective population 

sizes.  

Overall, the comparison of SNP differentiation among lines robustly demonstrated 

repeatable changes in allele frequencies between selection regimes, but showed that 

polymorphisms affecting protein sequences are underrepresented among differentiated SNPs. 

Instead polymorphisms in other classes of sites, synonymous or noncoding (depending on the 

analytical approach used) are overrepresented, which suggests the importance of changes 

affecting gene expression or alternative splicing.  Thus the initial response to selection for 

predatory behavior appears strongest in regulatory regions of the genome, supporting King 

and Wilson’s hypothesis (King and Wilson 1975) about predominant role of gene expression 

changes in adaptive evolution. It is now becoming clear that selection often acts  in distributed 

fashion on the expression of many genes, what was supported by studies performed on yeast, 

mice or humans (Fraser 2010, Fraser 2013, Halligan et al. 2014) as well as by analyses of 

bank voles selected for aerobic capacity (Konczal et al. 2015).  

 

Repeatable changes in gene expression  

Expression analyses showed that the overall pattern of gene expression changed in 

hippocampus, while we did not observe transcriptome-wide effect of selection in liver 

(Fig. 4). Hippocampus is a major component of the brain and it receives information from 

each of the sensory modalities and projects widely throughout the brain (Swanson 1983). 

Hippocampus also plays an important role in learning, memory, motivation and motor 

behavior (Morris and Hagan 1983, Tracy et al. 2001) and is one of the few regions in the adult 

mammalian brain that can generate new nerve cells (Gage 2000; Rhodes et al. 2003). For 

these reasons we suspected, that it plays an important role in response to selection for 

predatory behavior. The results of transcriptome-wide clustering do not mean that there is no 

selection-driven expression changes in liver. Contrary, we found some interesting genes with 

significant changed expression in this organ (see below). But the multidimensional analyses 

should be rather interpreted as a support for notion that aggregate effect of expression changes 

in many genes is more pronounced in hippocampus than in liver.    

Precisely deciphering molecular changes in hippocampus requires additional studies 

focusing on individual data and candidate genes. First, effect sizes of candidate genes should 
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be evaluated at the individual level of many voles, to increase statistical power and to estimate 

amount of genetic variation explaining by candidate genes. Second, adaptive significance of 

candidate genes should be assessed in natural populations, using association studies or with 

the common garden experiments, to further test their role in evolution of predatory behavior.  

This is especially important, because laboratory conditions, epistasis and other cofounding 

factors may seriously affect identification of candidate genes (Carabbe et al. 1999; 

MacKay 2014). 

 

Behavioral vs. physiological adaptation 

The selection experiment we have analyzed is designed as a model of adaptive radiation with 

lines selected not only for predatory behavior, but also for high aerobic metabolism during 

swimming (A lines) and for the ability to maintain body weight on poor quality herbivorous 

diet (H lines) (Sadowska et al. 2008). This system provides unique opportunity for 

comprehensive comparison of the response to selection for different, ecologically important, 

traits, while minimizing the influence of confounding factors. All lines were derived from the 

single base population, have similar effective population sizes, and equal number of replicate 

lines are selected in each direction. Selected lines differ from unselected controls only with 

respect to the selection procedure. Thus, if molecular-level response to selection differs 

between treatments, it results most likely from differences in genetic architecture of traits 

under selection. 

Previous RNAseq analysis of the A lines, selected for high metabolism, revealed that 

initial molecular level response to selection occurs primarily via changes in gene expression 

(Konczal et. al 2015). Unlike in the present study, no evidence was found that selection 

caused repeatable allele frequency changes in the A lines. Additional analysis of A lines, 

based on top 500 most differentiated SNPs mirroring the analysis applied to P lines here (see 

above), confirms the lack of evidence for repeatable allele frequency changes (p=0.81, 

randomization test, Fig. 5). Potentially, this difference may be result of differences in allele 

frequency spectra of 500 SNPs with the highest overall FST. If they represent variants of lower 

frequencies in base population for A lines, they may not respond to selection in repeatable 

manner due high probability of being lost by drift. However, the overall expected 

heterozygosity (HT) calculated for the control lines did not differ between the two sets of 

SNPs (p=0.91, Wilcoxon test), indicating no difference in the initial allele frequency spectra. 

Thus, this qualitative difference between the A and P lines suggests that architecture of 
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genetic variation differs between the selected traits, which appear to result from differences in 

selection pressure acting on common variants in these two selection regimes. We conclude, 

that response to selection for predatory behavior appears to be associated with a smaller 

number of loci with higher individual selection coefficients, because alleles that segregated at 

intermediate frequencies in the base population show rapid and repeatable frequency changes. 

On the contrary, selection for high aerobic metabolism in the A lines has resulted in changes 

in expression of many genes, while allele frequency changes were not repeatable indicating 

smaller per locus selection coefficients or repeatable changes in in parts of the genome not 

expressed in liver or heart. 

 
Fig. 5 Genetic differentiation of selected (blue) and control (black) lines of bank vole 
selection experiment. The selection was applied for increasing maximum metabolism rate 
during swimming. Multidimensional scaling plot  was performed on the matrices of pairwise 
FST distances between lines calculated using top 500 SNPs with the highest mean pairwise 
FST, i.e. showing the most overall differentiation among lines. The plot is shown to compare 
genetic differentiation in lines selected for aerobic performance with lines selected for 
predatory behavior (Fig. 2B).  

 

Our comparison of response to selection in P and A lines is relevant in a wider 

context of evolution of physiological and behavioral traits. A long standing idea in 

evolutionary biology is that “behavior evolves first” (Mayr 1958, Garland and Rose 2009) and  

behavioral shift may then alter the selective environment of other traits and drive their 

evolution. Phylogenetic analyses support this hypothesis providing evidence that compared to 

other traits behavior is relatively labile evolutionarily, which may be attributed to frequent 

adaptive changes (Blomberg et al. 2003). Also many selection experiments demonstrated that 

variation in behavior has a substantial genetic component. Mice were successfully selected for 

voluntary wheel running (Swallow et al. 1998), honeybees responded to selection for 
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specialization in foraging for pollen versus nectar (Page et al. 1995), mice were selectively 

bred for high and low activity in an open-field area (DeFries et al. 1978); many other 

examples of successful selection experiments which targeted behavior are reviewed in 

Garland and Rose (2009). However, the genetic architecture of the natural heritable variation 

underlying evolutionary change in behavior has rarely been traced all the way to the DNA 

level in vertebrates. One example is the prairie vole, in which specific motif of DNA upstream 

of a gene that encodes arginine vasopressine receptor protein strongly influence pair-bonding 

behavior (Hammock and Young 2005). Studies on laboratory mice found single chromosomal 

regions influencing avoidance behavior, exploration and activity (Turri et al. 2001). On the 

other hand, study of five human personality traits, concluded that many small-effect genes 

influence behavior (Terracciano et al. 2008). Because of few available examples we are still 

far away from the understanding of general properties of genetic variation in behavioral traits. 

However, if genetic architecture of behavioral traits differs from that of physiological or 

morphological traits, in particular if response to selection is associated with variants typically 

segregating at higher frequencies as suggested by our results, then genomic signals of 

selection may be more subtle or even indistinguishable from the neutral background in natural 

populations (Hermisson and Pennings 2005, Messer and Petrov 2013).  On the contrary, 

replicated lines derived from the same base population and selected for the same behavior 

should show higher repeatability at the molecular level, because common variants are less 

prone to the loss by drift in any of replicated lines. Thus, studies focusing on more traits in 

multiple species are needed, to evaluate whether general properties of genetic architecture 

indeed differ between behavioral and physiological traits.  

 

Candidate genes 

Below, we present promising candidates for future studies; they were selected from genes 

showing largest differences between the predatory and control lines based on molecular 

functions potentially associated with biology of the selected trait. The minimum criteria for 

inclusion in the set of candidate genes were: at least one SNP with diffStat > 0.2 or significant 

(FDR <0.05) differences in expression and mean expression > 1 FPKM (to filter out genes 

with overall low expression). Such stringent criteria require  repeatable changes in all 4 lines 

(all candidate SNPs and most of genes with differentiated expression) which may be 

considered independent replicates, thus should allow to identify genetic changes of the large 

effect on phenotype.  
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We found evidence for notion, that repeatable allele frequency changes are observed 

mainly in regulatory elements. An additional support for the effect of selection on allele 

frequencies in regulatory regions is provided by the observation of a larger fraction of SNPs 

with diffStat > 0.2 among noncoding SNPs (Fig. 2D). The noncoding SNPs can be located in 

noncoding RNAs, transcripts which were not automatically annotated and in partially 

assembled genes. To get insight into molecular function of noncoding candidate SNPs 

(diffStat > 0.2) we performed manual annotation of respective genes. We blasted them against 

the mouse genome and found that many of these sequences represent 3’ untranslated regions 

(3’UTRs) or regions immediately downstream of genes, probably expressing expanded 

3’UTRs in bank vole or unannotated transcribed regions in mouse (Tab. S1). Existing 

assembly strategies often fragment long 3’UTRs (Shenker et al. 2015) and some 3’UTRs may 

express separately from the associated protein coding sequences to which they are normally 

linked (Mercer et al. 2011). Allele frequency changes in such sequences may be caused by 

either linkage to causative variants in noncoding regions (coding nonsynonymous changes 

were investigated), or may be functionally important per se. The 3’UTRs and downstream 

sequences affect the expression of eukaryotic genes by regulation of mRNA translation, 

stability and subcellular localization (Kuersten and Goodwin 2003). 3’UTRs undergone a 

massive expansion during metazoan evolution and some of them are highly conserved within 

the mammalian genome (Siepel et al. 2005, Sandberg et al. 2008). These observations suggest 

that 3’UTRs have assumed an increasingly important role in the evolution of the eukaryotic 

genomes, thus they may be important target of selection, associated with pre- and post-

transcriptional regulation of expression and evolution of alternative splicing. Although 

functional importance of candidate SNPs localized in 3’UTRs is more challenging to assess 

comparing with nonsynonymous changes, they should be proposed for future investigations, 

together with SNPs located in coding sequences, as a variants potentially underlying genetic 

variance in predatory behavior. 

Two SNPs with the highest diffStat values (0.47) were localized in a noncoding 

transcript, which was manually annotated as 3’UTR region of cAMP-specific 3',5'-cyclic 

phosphodiesterase 4D (PDE4D). PDE4D acts as antidepressant in both animals and humans 

via enhancement of cAMP signaling in the brain (Zhang 2009). Mice deficient in PDE4D 

displayed memory enhancement and increased hippocampal neurogenesis (Li et. al 2011). 

Moreover, cAMP can act as a hunger signal in several tissues such as liver and muscle where 

glucagon can promote glycogen breakdown by activating cAMP signaling (Jiang and Zhang 
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2003). Changes in 3’UTR of PDE4D may thus be linked to functionally important variants, or 

cause changes in gene expression or alternative splicing of PDE4D (Li et al. 2011).  

Some changes of gene expression in liver also suggest that a hunger level may play 

an important role in the response to selection. G0/G1 switch gene 2 (G0S2), a gene which was 

upregulated during chronic fasting in mouse (Zandbergen et. al 2005), showed lower 

expression in livers of voles from P lines. Another gene (Protein phosphatase 1 regulatory 

subunit 3G, PPP1R3G) with differences of expression in liver was reported as upregulated 

during fasting and downregulated after feeding in mouse (Luo et al. 2011). Finally, the leptin 

hormone  serves as a mediator of the adaptation to fasting, and regulation of feeding and 

energy balance (Ahima and Flier 2000). Normal liver tissue does not express leptin, but leptin 

receptor (Otte et al. 2004), which expression was upregulated in predatory lines.  

The motivation to catch a prey may be associated not only with a hunger but also 

with an aggression level. We found overexpression in liver of  testosterone 17-beta-

dehydrogenase 3 (HSD17B3), the gene encoding an enzyme which favors the reduction of 

androstenedione to testosterone, and thus may be potentially associated with an aggression 

level (Nelson nad Chiavegatto 2001).  

Another potential factor associated with the selected trait are changes in nervous 

system. Differentiated SNPs were localized in an intron of calsyntenin 2 (CLSTN2), which is 

associated with episodic memory in humans (Preuschhof et al. 2010).  Changes in expression 

of the hippocampus gene NDRG4-A may be associated with preservation of spatial learning 

and the resistance to neuronal cell death caused by stress (Yamamoto et al. 2011). Also genes 

reported as influencing mental disorders may play an important role in the evolution of the 

nervous system. One of the most differentiated SNPs was localized in proline dehydrogenase 

1 (PRODH), a gene associated with cognitive dysfunctions in humans (Kempf et al. 2008). 

Other candidate SNPs are localized in such genes as Ubiquitin Carboxyl-Terminal Hydrolase 

15 (USP15), associated with Parkinson disease (Cornelissen et al. 2014), or Phospholipase A2 

(PLA2), gene linked to schizophrenia and autism (Bell et al. 2004). 

We found also molecular signs of selection in genes associated with activity and 

circadian rhythm – differentiated expression of Aryl hydrocarbon receptor nuclear 

translocator 2 (ARNT2) in liver and differentiated allele frequencies in delta-aminolevulinate 

synthase 1 (ALAS1) intron SNPs. These findings suggest, that future phenotypic studies of 
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general activity and biological rhythm may show differences between predatory and control 

lines.  

Finally, changes of neurotransmitters may also affect motivation and ability to 

successfully involve in predation. Candidate SNPs were detected in pyridoxine-5'-phosphate 

oxidase (PNPO); gene encoding enzyme that catalyzes the rate limiting step in the synthesis 

of pyridoxal 5'-phosphate, which is an important cofactor in biosynthesis of many 

neurotransmitters including GABA (Petroff 2002). Interestingly, one of the differentially 

expressed genes between treatments in hippocampus was 3’UTR of gamma-aminobutyric acid 

B receptor 1 (GABBR1). GABA is the main inhibitory neurotransmitter in the central nervous 

system; its actions are mediated by GABAB receptors. We thus suspect, that changes 

associated with GABAergic signaling may be  responsible for the evolution of predatory 

behavior. 

 

Conclusions 

Selection for predatory behavior affected allele frequencies in multiple genes and overall 

pattern of hippocampal gene expression, while it did not affect polymorphism within lines and 

overall gene expression pattern in liver. Our results indicate that response to selection for 

predatory behavior is associated with variants of relatively large effect and/or variants which 

were segregating at relatively high frequencies in the base population. These results are 

qualitatively different from those obtained in a similar analysis of lines selected for maximum 

metabolism, in which no repeatable changes of allele frequencies were detected. We thus 

hypothesize that the nature of genetic variation available for selection acting on behavioral 

and physiological traits may be fundamentally different. Combination of selection experiment 

and transcriptome sequencing allowed us to select candidate genes, potentially underlying 

predatory behavior in bank vole. These candidate genes are associated with hunger, 

aggression, biological rhythm and functioning  of the nervous system. Overall, the description 

of the genetic architecture and genes underlying predatory behavior in bank voles is relevant 

to advance general understanding of evolution of ecologically important traits. 
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Sampling, sequencing and data filtering 

Five females and five males of 75-80 days in age were sampled from each line; each 

individual came from a different family. The individuals were previously used only for 

routine measurements of body mass. Voles were euthanized by being placed individually in a 

jar containing isofulrane (Aerane®) fumes. After that small part of the left liver lobe and 

entire hippocampus were excised and immediately placed in RNAlater (Sigma). Tissues were 

collected between 8.00 am and 2.00 pm. Samples were stored overnight at 4°C and then 

frozen at -20°C. Hippocampus samples were collected from individuals from four selected 

and four control lines. Liver samples were collected only from the P lines. For the C lines we 

used previously reported liver transcriptomes, obtained from tissue collected at the same time 

and using identical procedure (Konczal et al. 2015). 

Total RNA was extracted with RNAzol® (MRC); RNA concentration and quality 

were measured with Nanodrop and Agilent 2100 Bioanalyzer. All samples had RNA Integrity 

Number higher than 7.0. Then, for each organ, we prepared one pooled sample per line using 

equal amounts of total RNA from each individual. Residual DNA was removed from pooled 

samples using DNA-free Kit (Ambion®).  

Preparation of barcoded cDNA libraries with TrueSeq RNA kit was performed by 

Georgia Genomic Facility, USA. Hippocampus sample from one control line (C3) was paired-

end sequenced (2 x 100bp) and used for reference transcriptome reconstruction. For the 

remaining 11 pools, single-end (1 x 100 bp)  sequencing was performed. 

 

Hippocampus reference transcriptome reconstruction and annotation 

Pair end reads were trimmed with DynamicTrim (Cox  et al. 2010) and used for the 

reconstruction of bank vole hippocampus transcriptome de novo with Trinity assembler 

(version 2013-02-15 with –REDUCE option; Grabherr et al. 2011). We then processed the 

Trinity output by merging transcripts that were probably derived from the same genomic 

location and subsequently produced transcriptome-based gene models, which we refer to here 

as “genes” (Stuglik et al. 2014). 

Putative coding sequences were identified using the pipeline implemented in Trinity and they 

were annotated using Trinotate software and homology search to Swissprot database.  For 

candidate genes which could not be annotated automatically, we attempted manual annotation 

using blast searches against the mouse genome.  
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SNP analyses 

Single-end reads were trimmed with DynamicTrim (Cox et al. 2010) and adaptors were 

removed with Cutadapt (Martin 2011). We subsampled also single-end reads from pair-end 

reads, to obtain comparable amount of data for all lines and organs. Reads were mapped to the 

reference transcriptomes using Bowtie2 (Langmead and Salzberg 2012) and we considered 

only reads with mapping quality > 20 and positions with base quality > 20 phred. SNP calling 

was performed with samtools (Li et al. 2009), Popoolation2 (Kofler et al. 2011) and custom 

scripts as described in detail elsewhere (Konczal et al. 2015).  

FST distances were calculated for each SNP with PoPoolation2 (Kofler et al. 2011). To test for 

separate clustering of selected and control lines we calculated the ratio of between treatment 

to within treatment variance using adonis {vegan} (Oksanen et al. 2013) and assessed its 

statistical significance through 1000 randomizations. Randomized matrices of mean FST were  

obtained by shuffling pairwise FST values for each SNP independently.  

 

Simulations of allele frequency differentiation under drift 

To obtain the rate of allele frequency differentiation that would be expected under drift, we 

performed forward drift simulations on known pedigrees. Simulations were performed 

separately for allele frequency spectra derived from all, synonymous, nonsynonymous, UTR-

located and noncoding SNPs using scripts available from http://www.molecol.eko.uj.edu.pl. 

  

Expression analyses 

To identify differentially expressed genes, we mapped reads to the reference transcriptomes 

with bowtie and used Trinity pipeline with EdgeR Bioconductor and RSEM (Gentleman et al. 

2004, Grabherr et al. 2011, Li and Dewey 2011). Only genes for which the sum of expected 

counts over all samples was higher than 10 were used for analyses.   

To statistically test for separate clustering of transcriptional profiles of selected and control 

lines we used similar strategy to that for FST. We used table of expression values (FPKM, 

TMM normalized) and calculated distance matrix (dist() function) followed by calculation of 

the ratio of between treatment to within treatment variance. The statistical significance of this 

ratio was assessed through 1000 randomizations. Differences between lines in genome-wide  

transcriptional profiles were visualized with multidimensional scaling (plotMDS {edgeR}). 
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Tab. S1 SNPs with the largest differences in allele frequencies (diffStat > 0.2) between predatory and control lines. Gene annotation was 
performed either with Trinotate and SwissProt database, or manually (M) with mouse genome.  SNP class nonORF indicates SNPs localized in 
genes without likely protein coding sequences and analyzed as noncoding. Column Ma show major allele and next columns present its frequencies 
in selection experiment lines. DiffStat is a minimum allele frequency difference between selected and control lines.     

Gene annotation Ensembl symbol of 
mouse gene 

SNP 
class 

Contig name Pos Ma  C1 C2 C3 C4 P1 P2 P3 P4 Diff 
Stat 

Phosphodiesterase 4D, 
cAMP-specific, 3'UTR 
and upstrem UTR (M) 

ENSMUSG00000021699 nonORF comp129965 3630 C 0.43 0.23 0.53 0.48 1.00 1.00 1.00 1.00 0.47 

Phosphodiesterase 4D, 
cAMP-specific, 3'UTR 
and upstrem UTR (M) 

ENSMUSG00000021699 nonORF comp129965 3631 A 0.41 0.23 0.53 0.48 1.00 1.00 1.00 1.00 0.47 

ATP-binding cassette 
sub-family A member 9 

ENSMUSG00000030249  UTR Contig_88975 255 T 0.37 0.22 0.25 0.38 0.84 0.98 0.95 0.94 0.46 

Ubiquitin carboxyl-
terminal hydrolase 15 

ENSMUSG00000020124 UTR Contig_69084 3026 A 0.83 0.80 0.95 1.00 0.35 0.34 0.29 0.36 0.44 

Calsyntenin 2, 3'UTR 
(M) 

ENSMUSG00000032452 UTR comp138591 6290 A 0.84 0.73 0.92 0.86 0.28 0.35 0.10 0.00 0.38 

SLAIN motif-containing 
protein 2 

ENSMUSG00000036087 UTR comp130355 2814 G 0.31 0.35 0.33 0.05 0.95 0.92 0.86 0.70 0.35 

RAB6B, member RAS 
oncogene family (M) 

ENSMUSG00000032549 UTR comp79801 1198 A 0.50 0.52 0.47 0.28 0.90 0.96 0.86 0.88 0.34 

SLAIN motif-containing 
protein 2 

ENSMUSG00000036087 UTR comp130355 2819 T 0.79 0.84 0.79 0.95 0.09 0.21 0.46 0.42 0.33 

SLAIN motif-containing 
protein 2 

ENSMUSG00000036087 UTR comp130355 3222 A 0.69 0.82 0.65 0.90 0.23 0.05 0.32 0.21 0.33 

Delta-aminolevulinate 
synthase 1, intron (M) 

ENSMUSG00000032786 nonORF Contig_37392 146 A 0.91 0.76 0.78 0.90 0.26 0.35 0.26 0.43 0.33 
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SLAIN motif-containing 
protein 2 

ENSMUSG00000036087 UTR comp130355 3227 C 0.69 0.82 0.65 0.89 0.26 0.05 0.33 0.22 0.32 

CB1 cannabinoid 
receptor-interacting 
protein 1 

ENSMUSG00000044629 UTR comp95622 2868 T 0.51 0.38 0.29 0.43 0.87 0.89 0.84 0.83 0.32 

Probable RNA-binding 
protein 19 

ENSMUSG00000097368 UTR comp114111 1344 A 0.46 0.45 0.48 0.22 0.79 0.89 0.89 0.84 0.31 

Kinesin-like protein 
KIFC3 

ENSMUSG00000031788 syn comp138183 3816 C 0.17 0.39 0.32 0.40 0.75 0.84 0.71 0.78 0.31 

- - nonORF Contig_95669 2514 T 0.37 0.43 0.53 0.30 0.92 0.84 0.95 0.86 0.31 

BMP-binding 
endothelial regulator 
protein (M) 

ENSMUSG00000031963 nsyn comp88485 2811 T 0.52 0.45 0.36 0.00 1.00 1.00 0.81 0.88 0.29 

SLAIN motif-containing 
protein 2 

ENSMUSG00000036087 UTR comp130355 4030 C 0.35 0.14 0.37 0.13 0.86 0.89 0.70 0.66 0.29 

BMP-binding 
endothelial regulator 
protein 

ENSMUSG00000031963 UTR comp88485 3000 T 0.46 0.45 0.48 0.14 1.00 1.00 0.81 0.77 0.29 

Hippcalin (M) ENSMUSG00000028785 UTR comp67098 1412 G 0.59 0.31 0.45 0.65 1.00 0.95 0.94 1.00 0.29 

Proline dehydrogenase 
1, mitochondrial 

ENSMUSG00000003526 syn comp124278 841 C 0.30 0.40 0.35 0.29 0.68 0.72 0.81 0.75 0.28 

Mitogen-activated 
protein kinase 4 

ENSMUSG00000024558 UTR comp128832 989 G 0.88 0.81 0.66 0.72 0.27 0.24 0.36 0.38 0.28 

Delta-aminolevulinate 
synthase 1, intron (M) 

ENSMUSG00000032786 nonORF Contig_37392 166 T 0.88 0.78 0.79 0.95 0.29 0.40 0.19 0.50 0.28 

Copine-2 ENSMUSG00000034361 UTR comp91950 3166 G 0.75 0.85 0.78 0.74 0.04 0.46 0.43 0.43 0.28 

UPF0258 protein 
KIAA1024-like homolog 

ENSMUSG00000050875 nsyn comp116305 815 C 0.85 0.75 1.00 0.69 0.42 0.34 0.32 0.35 0.27 
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SHC-transforming 
protein 2 

ENSMUSG00000020312 syn Contig_11286
8 

82 A 0.46 0.33 0.37 0.41 0.97 0.73 0.73 0.94 0.27 

ATP-binding cassette 
sub-family A member 9 

ENSMUSG00000030249  UTR Contig_88975 552 A 0.34 0.04 0.08 0.32 0.86 0.66 0.61 0.89 0.27 

V-Set And 
Transmembrane 
Domain Containing 2A, 
3'UTR (M) 

ENSMUSG00000048834 nonORF comp126038 3276 G 0.42 0.19 0.07 0.36 0.73 0.68 0.88 0.83 0.26 

Membrane magnesium 
transporter 2, upstrem 
DNA (M) 

ENSMUSG00000048497 nonORF comp91416 286 G 0.24 0.27 0.41 0.24 0.80 0.86 0.67 0.84 0.26 

PQ-loop repeat-
containing protein 1 

ENSMUSG00000034006 syn comp128921 7738 A 0.96 1.00 0.95 0.89 0.63 0.63 0.11 0.49 0.26 

ADNP homeobox 
protein 2 

ENSMUSG00000051149 UTR comp90500 4586 G 0.81 1.00 0.94 0.79 0.53 0.51 0.17 0.04 0.26 

Peptide chain release 
factor 1-like, 
mitochondrial 

ENSMUSG00000019774 UTR comp2146 1614 C 0.42 0.45 0.40 0.18 0.75 0.84 0.71 1.00 0.26 

Interferon gamma 
receptor 1 

ENSMUSG00000020009 UTR comp121809 445 G 0.28 0.46 0.41 0.38 0.80 0.72 0.74 0.92 0.26 

Mannosyl-
oligosaccharide 1,2-
alpha-mannosidase IB 

ENSMUSG00000008763 UTR Contig_82607 4753 T 0.75 0.83 0.75 0.72 0.38 0.30 0.46 0.23 0.26 

V-Set And 
Transmembrane 
Domain Containing 2A, 
3'UTR (M) 

ENSMUSG00000048834 nonORF comp60800 322 C 0.42 0.06 0.19 0.24 0.78 0.67 0.82 0.82 0.25 

- - nonORF Contig_90579 1474 A 0.29 0.19 0.16 0.43 0.68 0.79 0.80 0.71 0.25 

Pyridoxine-5'-
phosphate oxidase 

ENSMUSG00000018659 syn comp117077 262 G 0.30 0.64 0.68 0.75 1.00 1.00 1.00 1.00 0.25 
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Integrin Alpha 7 Chain 
(M) 

ENSMUSG00000025348 UTR comp131887 6216 G 1.00 1.00 1.00 1.00 0.46 0.63 0.57 0.75 0.25 

Semaphorin-4G (M) ENSMUSG00000025207  UTR Contig_79198 3726 A 0.74 0.85 0.61 0.61 0.32 0.34 0.31 0.36 0.25 

Ring finger protein 165, 
intron (M) 

ENSMUSG00000025427 nonORF comp131856 2751 C 0.68 0.70 0.65 0.59 0.95 1.00 1.00 1.00 0.25 

Neurofibromin 2, 3'UTR 
(M) 

ENSMUSG00000009073 nonORF comp69409 888 G 0.66 0.57 0.64 0.62 1.00 0.91 0.98 1.00 0.25 

Steroid 5-alpha-
reductase, 3'UTR and 
upstream DNA (M) 

ENSMUSG00000021594  nonORF comp107686 1152 A 0.93 0.90 0.95 0.94 0.43 0.65 0.60 0.54 0.25 

Myeloid differentiation 
primary response gene 
88, 3'UTR (M) 

ENSMUSG00000032508 nonORF Contig_89210 286 T 0.39 0.36 0.25 0.25 0.91 0.78 0.64 0.76 0.25 

Neurofibromin 2, 3'UTR 
(M) 

ENSMUSG00000009073 nonORF comp69409 911 T 0.69 0.53 0.66 0.55 1.00 0.93 1.00 1.00 0.24 

Zinc finger protein 295 ENSMUSG00000046962 UTR comp96589 2320 T 0.68 0.73 0.69 0.72 0.20 0.21 0.44 0.44 0.24 

Transmembrane 
protein 120A 

ENSMUSG00000039886 nsyn comp67874 425 T 0.41 0.41 0.48 0.42 0.83 0.91 0.74 0.72 0.24 

Testican-2, 3'UTR (M) ENSMUSG00000058297 nsyn comp106451 61 T 0.20 0.36 0.48 0.35 0.84 0.83 0.72 0.79 0.24 

Protein-tyrosine kinase 
2-beta 

ENSMUSG00000059456 syn Contig_82228 496 C 0.49 0.55 0.64 0.57 0.88 1.00 0.91 0.91 0.24 

PILR Alpha Associated 
Neural Protein (M) 

ENSMUSG00000030329  UTR comp103257 734 C 0.50 0.25 0.50 0.48 0.78 0.90 0.74 0.75 0.24 

Uncharacterized 
protein KIAA1211-like 

- UTR comp113945 172 G 0.15 0.60 0.46 0.55 0.84 0.94 0.91 0.90 0.24 

Integrin Alpha 7 Chain 
(M) 

ENSMUSG00000025348 UTR comp131887 6218 G 1.00 1.00 1.00 1.00 0.50 0.66 0.59 0.76 0.24 
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RAB6B, member RAS 
oncogene family (M) 

ENSMUSG00000032549 UTR comp79801 1930 T 0.48 0.60 0.50 0.34 0.92 0.95 0.84 0.90 0.24 

Transmembrane Emp24 
Protein Transport 
Domain Containing 4, 
3'UTR (M) 

ENSMUSG00000004394 nonORF Contig_56898 1329 T 0.94 1.00 0.94 0.94 0.52 0.70 0.65 0.59 0.24 

Plastin-1 ENSMUSG00000049493 UTR Contig_80587 317 A 0.24 0.33 0.17 0.11 0.88 0.88 0.57 0.88 0.24 

N-acetylglucosamine-1-
phosphotransferase 
subunits alpha/beta 

ENSMUSG00000035311 nsyn comp137737 2603 G 0.94 1.00 0.92 0.97 0.69 0.69 0.25 0.52 0.23 

Receptor expression-
enhancing protein 5 

ENSMUSG00000005873 UTR comp135739 549 G 0.81 1.00 0.93 0.90 0.53 0.58 0.54 0.57 0.23 

Yippee-Like 2 (M) ENSMUSG00000018427 UTR Contig_4209 1638 C 0.93 1.00 0.96 0.92 0.67 0.69 0.61 0.65 0.23 

Plexin-D1 ENSMUSG00000030123 UTR comp3292 828 G 0.45 0.31 0.33 0.36 0.71 0.68 0.77 0.71 0.23 

Angiomotin-like protein 
2 

ENSMUSG00000032531 UTR comp104477 3147 A 0.33 0.21 0.44 0.43 0.71 0.94 0.87 0.67 0.23 

Serine protease HTRA1 ENSMUSG00000006205 syn comp78712 1041 C 0.49 0.52 0.54 0.56 1.00 0.79 0.83 0.85 0.23 

H-2 class II 
histocompatibility 
antigen, E-K alpha chain 

- syn Contig_75434 605 A 0.70 0.12 0.40 0.71 1.00 1.00 0.94 1.00 0.23 

Gamma-aminobutyric 
acid receptor subunit 
gamma-2 

ENSMUSG00000020436 UTR comp125841 972 C 0.45 0.60 0.41 0.62 1.00 0.87 1.00 0.85 0.23 

Golgi SNAP receptor 
complex member 1 

ENSMUSG00000010392 UTR Contig_2352 1107 T 0.96 1.00 1.00 0.89 0.61 0.66 0.60 0.62 0.23 

Carboxypeptidase D ENSMUSG00000020841 UTR Contig_66587 1238 C 1.00 0.90 1.00 0.88 0.64 0.65 0.61 0.53 0.23 
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kallikrein-related 
peptidase 9, 3'UTR and 
upstrem DNA (M) 

ENSMUSG00000047884 nonORF comp110212 2106 G 0.32 0.60 0.27 0.50 0.94 0.97 0.84 0.83 0.23 

D16Ertd472e (M) ENSMUSG00000022864 nonORF Contig_85509 75 C 0.27 0.36 0.32 0.33 0.62 0.85 0.59 0.83 0.23 

- - nonORF Contig_74825 846 T 0.95 1.00 1.00 0.87 0.61 0.64 0.62 0.46 0.23 

SLAIN motif-containing 
protein 2 

ENSMUSG00000036087 UTR comp130355 3281 G 0.79 0.88 0.69 0.86 0.17 0.14 0.46 0.40 0.23 

Long-chain-fatty-acid--
CoA ligase ACSBG1 

ENSMUSG00000032281 syn comp87279 1043 C 0.35 0.13 0.42 0.41 0.78 0.98 0.64 0.67 0.22 

SHC-transforming 
protein 3, 3'UTR (M) 

ENSMUSG00000021448 syn comp138222 3272 G 0.84 0.74 0.89 0.76 0.44 0.52 0.46 0.47 0.22 

Transient receptor 
potential cation 
channel subfamily M 
member 4 (M) 

ENSMUSG00000038260 syn comp5057 1345 A 0.76 0.82 0.72 0.70 0.44 0.48 0.00 0.41 0.22 

Serpin B6 ENSMUSG00000060147 syn Contig_96291 4880 T 0.88 0.96 1.00 0.89 0.42 0.66 0.65 0.33 0.22 

Glutamate receptor 1, 
intron (M) 

ENSMUSG00000020524 UTR comp134072 3100 G 0.48 0.40 0.52 0.63 1.00 0.92 1.00 0.85 0.22 

CD5 antigen-like ENSMUSG00000015854 UTR Contig_60567 1174 C 0.52 0.42 0.57 0.68 0.90 0.99 0.94 0.93 0.22 

- - nonORF Contig_4861 974 C 0.50 0.38 0.29 0.21 0.72 0.72 1.00 0.76 0.22 

Interferon gamma 
receptor 1 

ENSMUSG00000020009 nsyn comp121809 800 G 0.53 0.48 0.59 0.40 0.84 0.90 0.80 0.92 0.21 

Cytochrome P450 26A1 ENSMUSG00000024987 syn Contig_67458 1590 C 0.94 0.95 0.79 0.95 0.48 0.58 0.58 0.12 0.21 

FCH Domain Only 1 (M) ENSMUSG00000070000 UTR comp119681 1264 T 0.37 0.36 0.44 0.57 0.89 0.93 0.78 0.89 0.21 
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Ridine-Cytidine Kinase 2 
(M) 

ENSMUSG00000026558 UTR comp4443 2380 C 0.45 0.47 0.35 0.29 0.74 0.70 0.80 0.68 0.21 

Glutamate receptor 1, 
intron (M) 

ENSMUSG00000020524 UTR comp134072 2746 T 0.57 0.35 0.70 0.58 1.00 0.94 1.00 0.91 0.21 

- - UTR Contig_30676 712 T 0.92 1.00 1.00 1.00 0.70 0.71 0.69 0.69 0.21 

- - nonORF comp91703 509 C 0.96 0.80 0.85 0.83 0.56 0.43 0.50 0.59 0.21 

neurofibromin 2, 3'UTR 
(M) 

ENSMUSG00000009073 nonORF comp69409 1089 A 0.63 0.72 0.69 0.59 1.00 0.93 1.00 1.00 0.21 

Insulin-Like Growth 
Factor 11 (M) 

ENSMUSG00000022790 nsyn comp136218 2490 G 0.65 0.73 0.83 0.69 0.22 0.44 0.18 0.43 0.21 

CDK5 regulatory 
subunit-associated 
protein 3 

ENSMUSG00000018669 nsyn Contig_50394 762 C 0.52 0.68 0.74 0.68 0.95 0.99 1.00 0.98 0.21 

Ras-related protein 
Rab-13 

ENSMUSG00000027935 syn comp72964 241 C 0.72 0.67 0.78 0.79 1.00 1.00 1.00 1.00 0.21 

Deoxynucleotidyltransf
erase terminal-
interacting protein 1 

ENSMUSG00000017299 syn comp57960 513 G 0.41 0.61 0.41 0.68 0.97 0.93 1.00 0.89 0.21 

Ral GTPase-activating 
protein subunit beta 

ENSMUSG00000027652 syn comp3196 5159 C 0.55 0.55 0.61 0.42 1.00 0.86 0.82 0.95 0.21 

Liver carboxylesterase 1 ENSMUSG00000071047 syn Contig_788 91 C 0.69 0.70 0.76 0.68 1.00 1.00 0.97 1.00 0.21 

Nesprin-1 ENSMUSG00000096054 syn Contig_96388 3389 C 0.77 0.89 0.74 0.93 0.48 0.26 0.42 0.53 0.21 

GTP-binding nuclear 
protein Ran 

ENSMUSG00000029430 UTR comp115810 1495 G 0.74 0.44 0.56 0.70 1.00 1.00 0.95 0.99 0.21 

Coagulation factor V ENSMUSG00000026579 UTR Contig_91316 7330 C 0.79 0.71 0.71 0.59 1.00 1.00 1.00 1.00 0.21 

Kallikrein-related 
peptidase 9, 3'UTR and 
upstrem DNA (M) 

ENSMUSG00000047884 nonORF comp110212 2535 C 0.38 0.50 0.38 0.54 0.85 0.78 0.75 0.82 0.21 
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Neurofibromin 2, 3'UTR 
(M) 

ENSMUSG00000009073 nonORF comp69409 320 G 0.67 0.60 0.62 0.63 1.00 0.88 1.00 1.00 0.21 

- - nonORF Contig_4861 977 T 0.51 0.37 0.28 0.22 0.75 0.72 0.83 0.75 0.21 
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Tab. S2 Genes differentially expressed (FDR < 0.05) between predatory and control lines in hippocampus. Presented are only genes 
having moderate to high expression (mean FPKM > 1), which were annotated to known genes in SwissProt database, or manually 
annotated to using mouse genome (M). For each line FPKM value TMM-normalized is given and false discovery rate value is 
provided. 
Gene annotation Ensembl symbol of 

mouse gene 

Contig name C1 C2 C3 C4 P1 P2 P3 P4 FDR 

3'UTR of Gamma-

aminobutyric acid B 

receptor 1 (M) 

ENSMUSG00000024462 comp125314 15.35 11.47 14.66 14.62 22.62 23.45 19.46 18.27 1.93E-02 

Hemoglobin subunit 

beta-1 

ENSMUSG00000052305 comp61009 0 0 40.85 0 0 0 0 0 9.34E-03 

Protein NDRG4-A ENSMUSG00000036564 comp82808 6.03 6.4 5.4 6.21 3.84 4.23 3.9 3.23 6.85E-03 

- - comp115007 2.82 3.99 2.59 3.35 5.25 4.87 5.95 6.5 6.93E-03 

Hemoglobin subunit 

alpha-1 

ENSMUSG00000069919 comp55968 0 0 33.12 0 0 0 0 0 1.61E-02 

Death-associated 

protein 1 

ENSMUSG00000039168 comp80742 2.29 2.6 2.57 2.44 3.69 3.31 4.18 4.36 1.54E-02 

Peptidylprolyl 

isomerase 

(cyclophilin)-like 2 (M) 

ENSMUSG00000022771 comp106583 1.38 1.14 1.07 0.68 3.77 2.54 2.1 1.82 1.94E-02 

Sin3A associated 

protein (M) 

ENSMUSG00000024260 comp102628 1.06 0.9 0.75 1.54 1.81 2.21 3.61 2 2.22E-02 
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SH3/ankyrin domain 

gene 1 (M) 

ENSMUSG00000038738 comp113420 2.32 3.13 1.53 1.72 1.19 1.09 0.72 1.02 2.04E-02 

Interferon-induced 

GTP-binding protein 

Mx2 

ENSMUSG00000023341 comp66523 1.08 0.22 0.53 0.68 1.75 1.75 3.06 1.81 5.31E-04 

F-box/WD repeat-

containing protein 8 

ENSMUSG00000032867 comp80437 1.77 2.04 1.55 1.51 1.19 0.84 0.67 0.82 7.22E-03 

- - comp65388 0.32 0 0.4 0.69 1.29 1.95 3.49 1.31 7.22E-03 
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Tab S3 Genes differentially expressed (FDR < 0.05) between predatory and control lines in liver. Presented are only genes having 
moderate to high expression (mean FPKM > 1), which were annotated to known genes in SwissProt database, or manually annotated 
to using mouse genome (M). For each line FPKM value TMM-normalized is given and false discovery rate value is provided 
Gene annotation Ensembl symbol of 

mouse gene 
Contig name C1 C2 C3 C4 P1 P2 P3 P4 FDR 

NADP-dependent 
malic enzyme 

ENSMUSG00000032418 Contig_69956 65.15 51.29 34.37 78.22 32.43 32.49 20.11 17.36 1.94E-02 

G0/G1 switch gene 
2 (M) 

ENSMUSG00000009633 Contig_41592 47.31 49.81 55.77 58.93 12.48 23.86 29.49 27.11 3.96E-03 

Ribosome binding 
protein 1 (M) 

ENSMUSG00000027422 Contig_88901 17.9 21.79 22.32 19.81 33.72 36 33.49 40.91 3.69E-02 

- - Contig_88895 12.15 18.39 17.86 11.67 25.29 27.58 34 36.27 1.67E-02 

Phospholipase A2 ENSMUSG00000056220  Contig_47128 24.59 69.27 3.58 0.44 0.13 1.93 1.26 2.12 4.89E-02 

- - Contig_42802 0.84 0.32 3.33 1.22 12.35 18.9 21.03 19.84 2.05E-13 

Testosterone 17-
beta-
dehydrogenase 3 

ENSMUSG00000033122 Contig_79364 4.42 7.05 6.72 5.02 14.68 10.25 11.51 10.42 1.62E-02 

- - Contig_56236 0 32.39 9.39 0 0 0.07 0 0 1.70E-02 

- - Contig_55080 2.84 0.28 1.76 1.49 6.14 4.73 11.88 7.94 1.36E-03 

Poly [ADP-ribose] 
polymerase 14 

ENSMUSG00000034422 Contig_96742 2.93 1.47 2.13 2.19 9.19 8.38 5.58 2.21 2.15E-02 

 IQ motif containing 
G (M) 

ENSMUSG00000035578 Contig_83221 5.12 7.06 5.88 3.5 1.66 1.79 3.29 2.1 4.25E-02 

- - Contig_24041 1.44 3.14 2.42 2.82 5.38 5.55 4.47 5.14 4.08E-02 

- - Contig_41830 0.99 0.14 1.07 1.47 3.6 5.49 6.29 2.45 6.59E-04 

Protein 
phosphatase 1 
regulatory subunit 
3G 

ENSMUSG00000050423 Contig_66518 1.38 1.57 1.23 1.41 6.15 2.52 2.65 4.45 2.56E-03 

- - Contig_46518 1.24 1.93 0.97 0.99 4.08 3.97 4.25 2.96 1.53E-04 

- - Contig_42514 1.22 0.17 0.49 1.56 5.5 3.46 5.22 1.37 1.94E-02 



139 
 

- - Contig_44016 1.73 0 0.63 0.44 3.77 2.95 5.02 3.86 3.96E-03 

- - Contig_101471 16.59 0 0.33 0 0 0 0.06 0 2.76E-02 

- - Contig_3442 1.49 1.1 1.59 1.11 2.88 3.32 1.83 2.93 1.62E-02 

- - Contig_194 1.49 0.58 0.49 0.61 1.55 2.36 3.78 4.28 3.96E-03 

- - Contig_81892 5.72 2.75 3.15 1.39 0.26 0.79 0.39 0.67 9.49E-06 

- - Contig_43818 1.31 0.62 0.37 0 2.56 2.85 2.86 3.72 6.97E-03 

Transcriptional 
repressor CTCFL 

ENSMUSG0000007049 Contig_65729 0.51 1.03 1.1 0.91 2.49 2.41 3.28 1.82 1.94E-02 

- - Contig_83445 0.88 0.96 0.77 0.45 3.36 2.53 1.67 2.86 2.56E-03 

- - Contig_56233 0 9.48 2.96 0 0 0.01 0 0 1.06E-02 

- - Contig_65480 0.67 0.49 0.61 0.46 1.77 2.16 1.92 2.88 2.58E-02 

Protease, serine 35 
(M) 

ENSMUSG00000033491 Contig_51709 2.41 2.39 1.55 2.54 0.78 0.38 0.54 0.04 1.59E-04 

Aryl hydrocarbon 
receptor nuclear 
translocator 2 

ENSMUSG00000015709 Contig_1448 1.16 0.6 0.85 0.59 2.07 2.06 1.41 1.48 2.20E-02 

- - Contig_103697 0.48 0.53 0.38 0.47 3.21 2.62 1.37 1.04 1.94E-02 

Transient receptor 
potential cation 
channel, subfamily 
C, member 1 (M) 

ENSMUSG00000032839 Contig_34437 0.91 0.75 0.58 0.59 2.29 2.03 1.34 1.39 2.90E-02 

- - Contig_67720 0.75 0.36 0.48 0.62 1.47 1.83 2.36 1.68 3.01E-03 

- - Contig_97564 0.09 0.2 0.86 0.3 1.94 3.21 1.04 1.81 3.59E-02 

- - Contig_27010 0.4 0.13 0.55 0.67 1.95 2.45 1.51 0.97 1.93E-02 

 Leptin receptor (M) ENSMUSG00000057722 Contig_1474 0.43 0.5 0.48 0.15 2.51 2.12 0.86 1.56 1.59E-04 

- - Contig_65292 0 0 0 0 1.73 2.4 2.22 1.87 5.38E-11 
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