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Abstract
Weadapt an algorithmic approach to the problemof local realism in a bipartite scenario.We assume
that local outcomes are simulated by spatially separated universal Turingmachines. The outcomes are
calculated from inputs encoding information about a localmeasurement setting and a description of
the bipartite system sent to both parties. In general, such a description can encode some additional
information not available in quantum theory, i.e., local hidden variables. Using theKolmogorov
complexity of local outcomeswe derive an inequality thatmust be obeyed by any local realistic theory.
Since the Kolmogorov complexity is in general uncomputable, we show that this inequality can be
expressed in terms of lossless compression of the data generated in such experiments and that
quantummechanics violates it. Finally, we confirm experimentally our findings using pairs of
polarisation-entangled photons and readily available compression software.We argue that our
approach relaxes the independent and identically distributed (i.i.d.) assumption, namely that
individual bits in the outcome bit-strings do not have to be i.i.d.

1. Introduction

In a standard Bell scenario [1]Alice andBob share a bipartite system and each of themperforms a randomly
chosen localmeasurement on their subsystems. Then, they evaluate correlations between their outcomes. A
violation of a suitable correlation-based Bell inequality refutes local realism.

The correlations are obtainedby repeating themeasurements on independent and identically distributed
(i.i.d.)pairs and estimating the statistical frequencies p x y a b N x y a b N a b, , , , ,( ∣ ) ( ∣ ) ( )= , where N x y a b, ,( ∣ )
is thenumber of times outcomes x and y are obtained formeasurement settings a and b, andN(a, b) is the total
number ofmeasurementswith settings a and b.

An interesting information theoretic approach to Bell inequalities was proposed in the 80s by Braunstein and
Caves [2]. They constructed a test of local realismusing the conditional Shannon entropy

H a b H a b H b,( ∣ ) ( ) ( )= - , where H x p x x p x xlogi i i2( ) ( ) ( )= -å = = . This is ameasure of howmuch
information about Aliceʼs outcomes is contained in Bobʼs outcomes. Although these inequalities are not tight,
their immediate advantage is that they can be applied to experiments withmore than two outcomeswithout any
modifications. The simplest information-theoretic Bell inequality is

H a b H a b H b a H a b , 10 1 0 0 0 1 1 1( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( ) + +

which holds for local realism, but it is violated by quantumphysics.
Although themethod of Braunstein andCaves offers a conceptually new approach, it requires the estimation

of probabilities p x y a b, ,( ∣ ) in an experiment. Therefore, actual implementations of such information-theoretic
Bell tests are akin to the standard ones, and require a similar statistical analysis of the data strings obtained by
Alice and Bobʼsmeasurement outcomes.
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The Shannon entropy of a data string generated by an i.i.d. source has an important operationalmeaning: it
tells us howmuch such a data string can bemaximally compressedwithout losses [3]. However, Shannonʼs
source coding theoremdoes not give a prescription for how to achieve thismaximumcompression.

Formost data strings it is hard or impossible to prove that a compression algorithm is optimal. However, this
does not stop us from introducing the concept of a best possible compression algorithm for a given data string x.
This is exactly the idea behind theKolmogorov complexity.More formally, the concept of Kolmogorov
complexity requires a reference to a universalmodel of computation, for example a universal Turingmachine
(UTM). In this case theKolmogorov complexityK(x) of a data string x is the length l(Λ) of the shortest program
Λ, which, when fed into aUTM, produces an output string x. In general,K(x) is uncomputable. However,
realistic compression algorithms can boundK(x) from above [4]. Formally, thismeansK(x)�C(x), whereC(x)
is the length of the compressed string. A notable property of compression algorithms is that they can be applied
to data strings that are generated by non-i.i.d. sources.

In this paper, we show that one can observe violations of local realism by studying the compression ratio of
realistic compression algorithms, applied to outcomes of Bell tests, and derive a compression-based Bell
inequality.We then test this inequality in a real experimentmeasuring polarizations of pairs of entangled
photons, andfind a violation of the compression-based inequality for properly chosen localmeasurement
settings, and a properly chosen compression algorithm.Wenote that our approach is related to an earlier one by
Fuchs [5], and that an alternative approach to non-i.i.d. sources was discussed byGill [6].

2. Algorithmic approach to Bell scenario

The core of any test for local realism is to acquire some information about possible hidden variables from
measurement outcomes. The standard approach for Bell tests is based on the statistical inference of correlations
betweenmeasurements. This implies repeating an experimentmany times, sorting the results according to the
measurement basis, and estimating the probability of each possible outcome from the observed frequencies. The
algorithmic approachwe present instead considers the output of a long sequence ofmeasurements, the strings x
and y, as primitives. The analysis of these strings, combinedwith the sequence ofmeasurement bases, relies on
their complexity, not on the statistics of the individualmeasurements outcomes.

This algorithmicmodel of a Bell test can be designed, in itsmost general form, in terms of input programs,
UTMs, and their corresponding outputs.We can describe the sequence ofmeasurement results of each party,
independently, as the output of aUTM towhich, in addition to the sequence of basis settings, the programΛ has
been supplied, as shown in the top part offigure 1.We are interested in detecting any correlation between two
parties, sowe introduce two spatially separatedUTMs:UTMA andUTMB, with the corresponding outputs, x
and y.We assume that the twomachines are supplied with a common input programΛ that can encode the
physical description of the test system, and additional programs for eachUTMencoding the sequence of local
measurement settings aj and bk (j, k=0, 1). The spatial separation of the two parties ensures that aj and bk are
only accessible to their correspondingUTM.This situation is depicted in the lower part of figure 1.

TheChurch–Turing thesis, in theDeutsch formulation, states that a universal computing device can simulate
every physical process [7]. If there is a local hidden variable theory that describes the outputs of the test system
above, it can be encoded in the programΛ. An experimental result that cannot be simulated by a ourUTMs
would therefore falsify any local realistic description of that process.

2.1. Analysis of the outcome strings
Similarly to a standard Bell test, we sort the bits of x and y into four pairs of strings, based on the corresponding
measurement basis: {x0, y0}, {x0, y1}, {x1, y0} and {x1, y1}. To quantify howmuch information is shared
between the strings of each pair we use theNormalized InformationDistance (NID) introduced in [8]. This
distance, based on theKolmogorov complexity, compares two strings x and ywithout any knowledge about their
origin, and is ametric up to a correction N Nlog2( ) , whereN is the length of strings x and y. TheNID is defined
as

x y
K x y K x K y

K x K y
NID ,

, min ,

max ,
, 2( ) ( ) { ( ) ( )}

{ ( ) ( )}
( )=

-

whereK(x, y) is theKolmogorov complexity of the string obtained by concatenating x and y. In general,
K x y K x K y,( ) ( ) ( ) + , and x y0 NID , 0( )  . If both strings are the same (i.e., x=y),K(x, y)=
K(x)=K(y) and consequently x yNID , 0( ) = . On the other hand, if x and y are completely independent,
K x y K x K y,( ) ( ) ( )= + , so x yNID , 1( ) = .
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2.2. Algorithmic Bell inequality
Wenowuse themetric properties ofNID to construct a Bell inequality, similar to the approach used before in
[9–12]. TheNIDobeys the triangle inequality

x y y z x zNID , NID , NID , , 3( ) ( ) ( ) ( )+

wherewe use the the result strings for different settings on each side:

x y y y x yNID , NID , NID , . 40 0 0 1 0 1( ) ( ) ( ) ( )+

However, y yNID ,0 1( ) cannot be determined experimentally because the strings y0 and y1 cannot be obtained at
the same time since they come from incompatiblemeasurements. Thus, we follow a standard reasoning used in
the derivations of all knownBell inequalities, referred to as counterfactual definiteness, which states that it is
admissible to consider outcomes of unperformed experiments.We apply it to our case, assuming that it is
possible to associate a definite Kolmogorov complexity to a string that has not been generated. Using a second
triangle inequality x y x y y yNID , NID , NID , ,1 0 1 1 0 1( ) ( ) ( )+ and combining it with (4), we get

x y x y x y x yNID , NID , NID , NID , . 50 0 1 0 1 1 0 1( ) ( ) ( ) ( ) ( )+ +

Asmentioned above, theNID is only approximately ametric, therefore the above inequality holds only up to a
term N Nlog2( ) . For convenience, we further introduce a parameter S′ that quantifies the violation of
inequality (5):

S x y x y x y x yNID , NID , NID , NID , 0. 60 1 0 0 1 0 1 1( ) ( ) ( ) ( ) ( )¢ = - - -

Aviolation of the local realismhypothesis occurs if S′ is positive.
Beforemoving on to testing the positivity of S′, we have to address a problem that also appears in standard

Bell scenarios: every time the experiment is carried out (with allN particles and settings)with the same

Figure 1.Measurement:N particles enter ameasuring device characterized by two polarizer settings a0 and a1 generatingN-outcome
bit strings. A universal Turingmachine (UTM) fedwith a programΛi and information about the settings a0 and a1 can reproduce the
string of lengthN. The bottompart shows amodel to reproduce correlated strings x and y generated frommeasurements on a bipartite
systemwith local UTMs and a commonprogramΛ.
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preparation, the resulting local strings xj and ykwill be different.We therefore assume uniform complexity: for
every two repetitions of the experiment i and i′, the complexity of the generated strings remains the same:
K x K xi j i j( ) ( )= ¢ and K x y K x y, ,i j k i j k( ) ( )= ¢ , up to a term N Nlog2( ) . It follows that if inequality (6) is
violated, either local realism or uniform complexity are invalid. This is especially relevant for experimental
verificationswhere the bases {aj, bk} for each particle are not chosen randomly. It is worth noting that i.i.d.
implies uniform complexity, as can be seen by segmenting a long string from a streamof i.i.d. particles.
Therefore, the class ofmodels rejected by inequality (6) is at least as large as the one rejected by standard Bell
tests.We expect that it is possible tofind non-i.i.d. systemswith uniform complexity and, consequently, a
violation of inequality (6)would reject a larger class ofmodels.

3. Estimation of theKolmogorov complexity of a string

In general, the Kolmogorov complexity of a string cannot be evaluated, but it can be estimated. One can adopt
two conceptually different approaches. Thefirst one, based on statistics, results in an inequality similar to (1).
Wewill briefly discuss it, however ourmain focus is the algorithmic approach.

3.1. Statistical estimation
For an ensembleX of strings, and assuming i.i.d., the expected Kolmogorov complexity for each string is equal to
the Shannon entropyH(X) [13]. In experiments, the value ofH(X) can be inferred by repeatedmeasurements,
and a statistical derivation of the probability distribution leading toH from the frequency ofmeasurements
outcomes. Replacing theKolmogorov complexity with Shannon entropy, we obtain ameasurable expression for
NID:

x y
H x y H x H y

H x H y
NID ,

, min ,

max ,
. 7( ) ( ) { ( ) ( )}

{ ( ) ( )}
( )á ñ =

-

Assuming the probability distributions of standard quantummechanics (QM), it is straightforward to show that
formaximally entangled polarization states of two photons and linear polarizers, inequality (5) becomes an
entropic Bell inequality similar to (1). The conditional Shannon entropy only depends on the angle θ between
measurement directions a and b [2]: H x y H y x HQM QM( ∣ ) ( ∣ ) ( )q= º . FromBayesʼs theorem,
H x y H x y H y H y x H x,( ) ( ∣ ) ( ) ( ∣ ) ( )= + = + , hence H x H yQM QM( ) ( )= . By substitution, we obtain

x y HNID ,( ) ( )qá ñ = . Braunstein andCaves showed that for coplanarmeasurements satisfying

a b cos 30 1· q=
 

and a b a b a b cos0 0 1 0 1 1· · · q= = =
     

, inequality (1) is violated for an appropriate range of
θ.We can directly calculate the expected value of S′ as a function of θ for the case ofmaximally polarization
entangled photon pairs.We plot S′ infigure 2(a) as a benchmark for the experimental values. Under this
geometry, we find amaximal violation of S′=0.24 for θ=8.6°.

Figure 2.Plots of S versus angle of separation θ. (a)Result obtained from equation (7), (b) result obtained fromusing the LZMA
compressor on numerically generated data, (c)measurement of S in the experiment shown infigure 5, and (d) longermeasurement at
the optimal angle θ= 8.6°.
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3.2. Algorithmic estimation
It is possible to avoid a statistical estimation: theKolmogorov complexity can bewell approximated by
compression algorithms [4]. For a string x, we defineC(x) as the length of the string resulting from the
compression of x.

Following [4], we introduce theNormalized CompressionDistance(NCD):

x y
C x y C x C y

C x C y
NCD ,

, min ,

max ,
. 8( ) ( ) { ( ) ( )}

{ ( ) ( )}
( )=

-

ReplacingNIDwithNCD in inequality (6) leads to a new inequality:

S S x y x y

x y x y

NCD , NCD ,

NCD , NCD , 0. 9

a b a b

a b a b

0 1 0 0

1 0 1 1

( ) ( )
( ) ( ) ( )

¢  = -

- -

This expression can be tested in a real experiment because theNCD is operationally defined.Moreover, it was
shown in [4] thatNCD is also ametric up to a term N Nlog2( ) , therefore inequality (9) holds up to the
same term.

4. Choice of compressor

Most compression algorithms use some prediction about the data composition. If itmatches this prediction, the
compression can be done efficiently. To conduct an experiment we need to ensure the suitability of the
compression software we use to evaluate theNCD. For this, we numerically simulate the outcome of an
experiment based on a distribution of results predicted by quantumphysics.

In order to evaluate theNCDs of the binary strings, we need to choose a compression algorithm that
performs close to the Shannon limit [3]. This is necessary to ensure that the NCD is a good approximation of the
NID, and that it does not introduce any unintended artifacts that lead to an overestimation of the violation.
Preferably wewant towork in the regimewhere the obtainedNCDs always underestimate the violation. For this
purpose, we characterized four compression algorithms implemented by freely available compression
programs: LZMA [14], BZIP2 [15], GZIP [16] and LZW [17]. To eliminate the overhead associatedwith the
compression of ASCII textfiles, we save data in binary format.

For this characterization, and the following simulation of the experiment, we need to generate a ‘random’

string of bits (1, 0) or pairs of bits (00, 01, 10, and 11) of various lengthwith various probability distributions.We
generate these strings using theMATLAB [18] function randsample () that uses the pseudo randomnumber
generatormt19937arwith a long period of 2 119937 - . It is based on theMersenne Twister [19], with ziggurat
[20] as the algorithm that generates the required probability distribution. The complexity of this (deterministic)
source of pseudorandomnumbers should be high enough to not be captured as algorithmic.

Thefirst part of this characterization involves establishing theminimum string length required for the
compression algorithms to perform consistently.We start by generating binary strings, x, with equal probability
of 1’s and 0’s, i.e. random strings, of varying length. For each x, we evaluate the compression overheadQ as

Q
C x H x

l x
. 10

( ) ( )
( )

( )=
-

For a good compressor, we expectQ to be close to 0. Fromfigure 3, it can be seen that for all the compressors,Q
starts to converge after about 105 bits, setting theminimum string length required for the compressors towork
consistently.

In the second part of this characterization, test the compressors with stringswith a known amount of
correlation.We generate a random string x of length 107 using the same technique already described.We then
generate a second string y of equal length andwith probability p of being correlated to x. For p=0 the two
strings are equal, i.e. perfectly correlated. For p=0.5 they are uncorrelated. Strings x and y are combined to
form the string xy. To avoid artifacts due to the limited data block size of the compression algorithms, the
elements of x and y are interleaved: for example, for string x=(0, 0, 0) and y=(1, 1, 1), the resulting
concatenated string is xy=(0, 1, 0, 1, 0, 1). The same interleaving procedure is also implemented for the strings
generated in the experiment, as described later on.We then compress xy and evaluate the compression overhead
Q as a function of p. The results for different compressors are shown infigure 4. Although there are ranges of p,
where BZIP2 andGZIP performbetter than LZMA, the latter shows amore uniformperformance over the
entire interval of p. On the other hand, LZWperforms poorly in all respects. It is reasonable to assume that the
use of LZMA should reduce the possibility of artifacts in the estimation of theNCDalso for the data obtained
from the experiment.
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In general, ourmethod can be used for data from any source byfinding a suitable compression algorithm [4].
Thus, we are not limited to i.i.d. sources, as it is commonly assumed in standard statistical ensemble-based
experiments, like, for instance, Bell-type tests.

The numerical simulation also verifies the angle thatmaximizes the violation of inequality (9). The results of
this simulation are presented infigure 2.

5. Experiment

In our experiment (see figure 5), the output of a grating-stabilized laser diode (LD, central wavelength 405 nm)
passes through a singlemode opticalfiber (SMF) for spatialmode filtering, and is focused to a beamwaist of
80 μminto a 2 mm thick BBO crystal cut for type-II phase-matching. There, photon pairs are generated via
spontaneous parametric down-conversion (SPDC) in a slightly non-collinear configuration. A half-wave plate
(λ/2) and a pair of compensation crystals (CC) take care of the temporal and transversal walk-off [21]. Two
spatialmodes (A,B) of down- converted light, defined by the SMFs for 810 nm, arematched to the pumpmode
to optimize the collection [22]. In type-II SPDC, each down- converted pair consists of an ordinary and
extraordinarily polarized photon, corresponding to horizontal (H) and vertical (V) in our setup. A pair of
polarization controllers (PC) ensures that the SMFs do not affect the polarization of the collected photons. To

Figure 3.Comparison of the compression overheadQ obtained using four different compression algorithms on pseudo- random
strings of varying lengths. The expected value for an ideal compressor is 0. From this characterizationwe can exclude LZWas a useful
compressor for our application.

Figure 4.Compression overheadQ for the string xy as a function of the probability of pairwise correlation p between the bits of the
generating strings x and y for three different compressors: BZIP2, GZIP, and LZMA.

6

New J. Phys. 18 (2016) 035011 H SPoh et al



arrive at an approximate singlet Bell state, the phasef between the two decay possibilities in the polarization
state H V V H1 2 eA B A B

i∣ (∣ ∣ ∣ ∣ )yñ = ñ ñ + ñ ñf is adjusted tof=π by tilting theCC.
In the polarization analyzers (inset offigure 5), photons fromSPDC are projected onto arbitrary linear

polarization byλ/2 plates, set to half of the analyzing angles A B( )q , and polarization beam splitter (extinction
ratio 1/2000 and 1/200 respectively for transmitted and reflected arm) in each analyzer. Photons are detected by
avalanche photo diodes (APD), and corresponding detection events from the same pair identified by a
coincidence unit if they arrive within≈±3 ns of each other.

The quality of polarization entanglement is tested by probing the polarization correlations in a basis
complementary to the intrinsicHVbasis of the crystal.With interference filters (IF) of 5 nmbandwidth
(FWHM) centered at 810 nm, in the 45° linear polarization basis we observe a visibilityV45= 99.9±0.1%. The
visibility in the naturalH/Vbasis of the type-II down-conversion process also reachesVHV= 99.9±0.1%. A
separate test of a CHSH-type Bell inequality [23] leads to a value of S=2.826±0.0015. This indicates a high
quality of polarization entanglement; the uncertainties in the visibilities are obtained frompropagated
Poissonian counting statistics.

5.1.Measurement and data post-processing
In the realization of this proof of principle experiment, we did not intend to provide a loophole-free
demonstration. Due to the limited efficiency of the APDdetectors, we assume that the fraction of the photonwe
detected is a fair representation of the entire ensemble (fair sampling assumption).

Similarly, even if Alice and Bob are not space-like separated, we assume that no communication happens
between the twomeasurements.Moreover, the basis choice is not random, as expected in an ideal Bell-like
experiment.We instead set the basis and record the number of events in afixed time.We are assuming that the
state generated by the source, and all the other parameters of the experiment, do not change between
experimental runs.

The basicmeasurement lasts 60 s, duringwhichwe record an average of 16 103´ two-fold coincidences
between detectors atA andB. A detection event at the transmitted output of each PBS is associatedwith 0,
reflected onewith 1. Three- and four-fold coincidences, as well as two-fold coincidences between detectors
belonging to the same party, correspond tomultiple pairs of photos generatedwithin the coincidence time
window. The rate of these events is negligible, therefore we discarded them.

In order to avoid biases due to the asymmetries in detector efficiencies, tomeasure one basis (aj, bk)we also
measure three complementary basis: a b45 ,j k( )+  , a b, 45j k( )+  , and a b45 , 45j k( )+  +  . A rotation by
45° effectively swaps the roles of the transmitted and reflected detectors. Each party, whenmeasuring on the
rotated basis, needs to apply aNOT operation to themeasurement outcome. The results of these four
measurements are combined into two binary files, x a b,j k( ) and y a b,j k( ), by interleaving their respective bits.
In order to obtain long enough strings for a stable compression, see figure 3, thismeasurement is repeated 11
times and the results concatenated, obtaining strings of average length 105bits.

Figure 5. Schematic of the experimental set-up. Polarization correlations of entangled-photon pairs aremeasured by the polarization
analyzersMA andMB, each consisting of a half wave plate (λ/2) followed by a polarization beam splitter (PBS). All photons are
detected byAvalanche photodetectors DH andDV, and registered in a coincidence unit (CU).
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For each angle of separation θ, wemeasure four bases (a0, b0), (a1, b0), (a1, b1), and (a0, b1), then calculate the
NCDbetween x(aj, bk) and y(aj, bk) using equation (8), in order to obtain the value of S.

6. Results

The inequality is experimentally tested by evaluating S in equation (9) for a range of θ; the results (points (c) and
(d) infigure 2) are consistently lower than the trace (a) calculated via entropy using equation (7), and than a
simulationwith the same compressor (b). This is because the LZMAUtility is not working exactly at the
Shannon limit, and also due to imperfect state generation and detection.

Althoughwe set out in this work to avoid a statistical argument in the interpretation ofmeasurement results,
we do resort to statistical techniques to assess the confidence in an experimental finding of a violation of
inequality (9). To estimate an uncertainty of the experimentally obtained values for S, we set 8.6q = , for which
we expect themaximumviolation, and collected results from a larger number of photon pairs.We then repeated
themeasurement of S, as described in the previous section, eight times, and considered the average value and
standard deviation of this set obtaining the final result of S(θ=8.6°)= 0.0494± 0.0076.

The data collected in this lastmeasurement allow us to check the uniformity of themeasured complexity
across the eightmeasurements for each basis setting. TheNCDvalues corresponding to each trial are shown in
figure 6. It is evident how the complexity of the generated strings do not vary significantly between trials, with a
maximumvariation of the order of 2%, supporting the uniform complexity assumption.

7.Discussion

There is a trend to look at physical systems and processes as programs run on a computermade of the
constituents of ourUniverse. Although this point of viewhas been already extensively used in quantum
information theory, we present a complementary algorithmic approach for an explicit, experimentally testable
example. This algorithmic approach is complementary to the orthodoxBell inequality approach to quantum
non-locality [1] that is statistical in its nature.

TheKolmogorov complexity of the output ofUTMmust obey distance properties as shown in [4, 8] and can
be approximated by compression. The distance properties lead to inequality (9), whichwefind violated in the
specific case of polarization-entangled photon pairs. Therefore, no hidden variables can be encoded as programs
for spatially separatedUTMs,with the additional assumption of uniform complexity for our specific
experimental implementation of the test.

Wewould like to stress that our analysis of the experimental data is purely and consistently algorithmic. This
approach does not use the notion of an ensemble and the assumption that each bit in a data string comes froman
i.i.d. source. The compression treats the string of data as a single entity, and does not ignore correlations between
subsequent string elements.

We have become aware of a recent article byWolf [24], where this algorithmic approach is used to provide a
different viewpoint on non-locality that does not require counterfactual reasoning.

Figure 6.Measured value of theNCD for eight trials for the four bases (a0, b0), (a1, b0), (a1, b1), and (a0, b1), andfixed angle θ= 8.6°.
The evident stability of the values supports the uniform complexity assumption.
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