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This is a consecutive paper on the timelike geodesic structure of static
spherically symmetric spacetimes. First, we show that for a stable circular
orbit (if it exists) in any of these spacetimes all the infinitesimally close to
it timelike geodesics constructed with the aid of the general geodesic devi-
ation vector have the same length between a pair of conjugate points. In
Reissner–Nordström black hole metric, we explicitly find the Jacobi fields
on the radial geodesics and show that they are locally (and globally) max-
imal curves between any pair of their points outside the outer horizon. If
a radial and circular geodesics in R–N metric have common endpoints, the
radial one is longer. If a static spherically symmetric spacetime is ultra-
static, its gravitational field exerts no force on a free particle which may
stay at rest; the free particle in motion has a constant velocity (in this
sense the motion is uniform) and its total energy always exceeds the rest
energy, i.e. it has no gravitational energy. Previously, the absence of the
gravitational force has been known only for the global Barriola–Vilenkin
monopole. In the spacetime of the monopole, we explicitly find all time-
like geodesics, the Jacobi fields on them and the condition under which a
generic geodesic may have conjugate points.
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1. Introduction

This work is fourth in a series of papers [1–3] on the geodesic structure of
various spacetimes. These investigations have originated from recent interest
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in the twin paradox in curved spacetimes [4–9]. As is well known, there is
no paradox at all and there is a purely geometrical problem of which curve
of all timelike paths connecting two given spacetime points is the longest
one. Actually, the problem consists of two different problems. Firstly, one is
interested in the problem of determining the locally maximal curve. Assume
that two given points, p and q, are connected by a timelike geodesic γ(0)
and let us take a bundle of nearby timelike curves from p to q, that is the
curves which are everywhere at ε-distance from γ(0). Then, one seeks for
the longest curve in the bundle. A general formalism for dealing with this
local maximality problem was presented in the monograph [10] and the most
relevant theorems were quoted in [1]. The method of solving it is algorithmic:
one solves the geodesic deviation equation on γ(0) and finds the points at
which the geodesic deviation vector field vanishes, these are conjugate points
on the geodesic. If the segment of γ(0) from p to q contains no points
conjugate to p, the geodesic is locally the longest curve. In practice, one
expands the deviation vector field in a suitably chosen basis of three spacelike
mutually orthogonal and parallelly transported along γ(0) vector fields, then
the geodesic deviation equation containing second absolute derivatives of the
deviation vector is replaced by three equations for the Jacobi scalars (the
coefficients of the expansion).

Yet the global problem concerns finding out the longest curve among all
possible timelike curves joining p and q and one should take into account
curves which are arbitrarily far from each other (besides the endpoints).
Clearly, the problem is different from the local one because it is not algo-
rithmic: there is no effective method allowing one to determine in a finite
number of steps the globally maximal worldline. In [2], we briefly show what
is known on the subject by quoting the most relevant ‘existence theorems’
from the monograph [11]. It turns out that a timelike geodesic is not globally
maximal beyond the future cut point which in the problem takes place of
the conjugate point. If the spacetime admits an isometry, such as spherical
symmetry, it is possible to determine globally maximal timelike geodesics
between pairs of points which are distinguished by the isometry.

Our investigations here are heavily based on the formalisms developed
in [2] and partially in [1]. The paper is organised as follows. In Section 2
we deal with one aspect of the problem of the locally maximal worldlines.
A future directed timelike geodesic from p to q is locally maximal if the
first future conjugate point to p lies beyond the segment pq. Yet to the
best of our knowledge, there are no theorems stating what occurs if q is
conjugate to p besides the fact that the geodesic γ(0) is not the unique
one locally maximal; the question is whether the geodesics γ(ε) nearby to
γ(0) are of equal length or not. Here (Sect. 2) we show that in the case
of static spherically symmetric spacetimes and circular geodesics, all the



The Local and Global Geometrical Aspects of the Twin Paradox in Static . . . 1715

nearby geodesic curves determined by the general geodesic deviation vec-
tor field have the same length as the circular one from any p to the first
conjugate point q. One is unable to determine conjugate points (and pos-
sibly cut points) on a generic timelike geodesic in the given spacetime due
to technical difficulties: the geodesic deviation equation is intractable in the
general case, even for high symmetries. Usually, the investigation must be
restricted to geometrically distinguished geodesic lines, such as radial or cir-
cular ones (if exist). Therefore, in Section 3 we study radial and circular
geodesics in the Reissner–Nordström black hole metric. An exception to
the restriction is provided by a narrow class of Lorentzian manifolds, the
ultrastatic spherically symmetric spacetimes which are so simple that allow
one to explicitly find generic timelike geodesic curves and furthermore to
explicitly solve (in the form of some integrals) the equations for the Jacobi
scalars along these lines. In Section 4, we develop a general formalism for
these spacetimes. The formalism is applied in Section 5 to the spacetime of
the global Barriola–Vilenkin monopole without mass. Brief conclusions are
contained in Section 6.

For concreteness and as a trace of the original twin paradox, we assume
that a circular geodesic is followed by the twin B and the radial one is the
worldline of the twin C. We consider only timelike geodesics and do not
mark this fact each time. We use all the concepts and conventions as in [2]
and [1].

2. Properties of timelike geodesics which intersect the timelike
circular geodesics in two points in static spherically symmetric

spacetimes

In [2], we investigated the conjugate points for timelike circular geodesic
curves in a general static spherically symmetric (SSS) spacetime with the
metric in the standard coordinates

ds2 = eν(r) dt2 − eλ(r) dr2 − r2
(
dθ2 + sin2 θ dφ2

)
(1)

for arbitrary functions ν(r) and λ(r). It was found that a timelike circular
geodesic exists at r = r0 if and only if ν ′0 ≡ dν/dr(r0) > 0 and r0 ν ′0 < 2. In
other terms, if g00 = eν is a decreasing function (e.g. in the de Sitter space),
circular particle orbits do not exist. On physical grounds, one is interested
in stable particle orbits and the orbit r = r0 is stable if the effective potential
reaches minimum on it, what amounts to [2]

ν ′′0 − ν ′02 +
3ν ′0
r0

> 0 (2)

and this means that r0 is larger than the radius rI of the innermost stable
circular orbit (ISCO). It is also clear that an unstable geodesic (circular or
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not) cannot contain conjugate points to any of its points and the explicit
form of the deviation vectors confirms this expectation in the case of circular
orbits.

Let r = r0 > rI be a stable circular orbit denoted by B. As it was shown
in [2] there are, in general, three infinite sequences of points conjugate to
each point of the curve (assuming that the geodesic is infinitely extended to
the future). Each sequence determines a continuous set of timelike geodesics
intersecting B at points conjugate to an arbitrary initial point P0. Here, we
shall compute the lengths of geodesics in each of the three sets from P0 to a
conjugate point. Let B be parametrized by its arc length τ (we shall denote
by s the arc length of the geodesics intersecting B at the conjugate points)
and, as usual, the angular coordinates are so chosen that the spatial circle
of B lies in the 2-surface θ = π/2, then its equation is xα = xα0 (τ) with

t− t0 =
k

κ
e−ν0 τ and φ− φ0 =

L

r20
τ , (3)

where
k2

κ2
=

2eν0

2− r0 ν ′0
and L2 =

r30ν
′
0

2− r0ν ′0
. (4)

Here, k is the conserved (dimensionless) energy per unit particle’s mass
determined by the unique timelike Killing vector (and κ is the normalization
factor of the Killing field) and L is the conserved angular momentum. An
infinitesimal deviation vector εZα(τ) (Jacobi vector field) being any solution
of the geodesic deviation equation on B connects the point xα0 (τ) on B to
the corresponding point xα(τ) on an infinitesimally close geodesic γ(ε). In
other terms, the nearby geodesic γ(ε) is parametrized by the arc length of B

xα(τ) = xα0 (τ) + εZα(τ) , |ε| � 1 . (5)

Whereas the functions xα0 (τ) exactly represent a timelike geodesic, the co-
ordinates xα(τ) satisfy the geodesic equation merely in the linear approxi-
mation in ε. In this sense, the curve γ(ε) is regarded as a geodesic one and
if emanates from P0 on B, then it intersects B at points conjugate to P0.
According to the well known theorem (cited in [1]), a timelike geodesic has
the locally maximal length between points P0 and P1 if and only if there
is no point conjugate to P0 in the open segment P0P1, otherwise there is
a nearby timelike curve from P0 to P1 which is longer than the geodesic.
Here, we compare the lengths of the geodesic curves γ(ε) with the length
of B from P0 to the first conjugate point.

We first generally show that the variation of the geodesic length is of the
order of ε2. Let γ0 = γ(0) be any timelike geodesic parametrized by its arc
length τ , xα0 = xα0 (τ), and let γ(ε) be any timelike (not necessarily geodesic)
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infinitesimally close curve also parametrized by τ , given by Eq. (5), where
Zα(τ) is a vector field (not necessarily a Jacobi field) orthogonal to γ0, i.e.
gαβu

α
0 Z

β = 0 along γ0; here uα0 = dxα0 /dτ is the unit tangent vector to γ0.
The vector tangent to γ(ε) is

uα =
dxα0
dτ

+ ε
dZα

dτ
≡ uα0 + εŻα . (6)

Denoting by D/dτ the absolute derivative along γ0, one finds

d

dτ

(
gαβu

α
0Z

β
)

=
D

dτ

(
gαβu

α
0Z

β
)

=gαβu
α
0

D

dτ
Zβ=gαβu

α
0

(
Żβ + Γ βµνu

µ
0Z

ν
)

= gαβu
α
0 Ż

β +
1

2
gαβ,µu

α
0u

β
0Z

µ=0 , (7)

where we have used the symmetric Levi–Civita connection. On the other
hand, the squared length of the tangent vector uα on γ(ε) is

gαβ(xµ)uαuβ = gαβ (xµ0 + εZµ)
(
uα0 + εŻα

)(
uβ0 + εŻβ

)
∼= 1 + ε

(
2gαβ (x0)u

α
0 Ż

β + gαβ,µZ
µuα0u

β
0

)
+ε2

(
gαβ(x0)ŻαŻβ + 2gαβ,µu

α
0 Ż

βZµ + 1
2gαβ,µνu

α
0u

β
0Z

µZν
)
(8)

and applying (7) one sees that uαuα differs from 1 by a term of the order
of ε2, uαuα = 1 + ε2W with some scalar function W .

We now return to the circular geodesic B in an SSS spacetime, r = r0.
Its length from P0 to the first conjugate point at distance τc is by definition
L(B) = τc, whereas the length of each geodesic γ(ε) from P0 to that point is

L(γ(ε)) =

τc∫
0

[
gµν(xα)

dxµ

dτ

dxν

dτ

]1/2
dτ ∼= τc +

1

2
ε2

τc∫
0

W dτ . (9)

1. The simplest deviation field on B is Zα = C sin(Lτ/r20)(0, 0, 1, 0) with
arbitrary dimensionless constant C and γ(ε) is given by

t− t0 =
k

κ
e−ν0τ , r = r0 , θ =

π

2
+ εC sin

(
Lτ

r20

)
, φ− φ0 =

L

r20
τ .

(10)
The points conjugate to P0(t0, r0, π/2, φ0) are at equal distances τn =
nπr20/L, n = 1, 2, . . . and from (3) one sees that they are located in space
at φn = φ0 + nπ. The first conjugate point Q1 is antipodal to P0 in
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the 2-surface θ = π/2. Geometrically this is obvious, for if one rotates
in the space the surface by any angle about the axis joining the points
φ = φ0 and φ = φ0 + π one gets a circular geodesic intersecting B at
these two points. By symmetry, one expects that each geodesic (including
the nearby γ(ε)) formed in this way has the same length as B. In fact,
applying (10), (8) and (9) one gets L(γ(ε)) = L(B) = τ1 = πr20/L.

2. Next, we take a special solution to the geodesic deviation equation de-
pending on one integration constant, which generates a family of close
geodesics γ(ε) whose spatial orbits also lie in the surface θ = π/2. These
are given by [2]

t− t0 =
k

κ
e−ν0τ − εTA(1− cos y) ,

r − r0 =
1

2
εXA

√
4− b sin y , θ =

π

2
,

φ− φ0 =
L

r20
τ − εY A(1− cos y) , (11)

where y ≡
√

4− b qτ and T , X, Y , b and q are constants determined
by the values of r0, ν ′0, ν ′′0 and λ0. For the stable circular orbits, the
condition (2) implies b < 4. The curves of this family intersect B at the
conjugate points Q′n(τ ′n), n = 1, 2, . . ., where

τ ′n =
2nπ

q
√

4− b
= 2nπ

(
r0 (2− r0ν ′0) eλ0

3ν ′0 + r0ν ′′0 − r0ν ′02

)1/2

. (12)

For γ(ε), the scalar W defined in (9) is

W = −A2 e
−λ0

2r0ν ′0

(
2− r0ν ′0

)−2 (
3ν ′0 + r0ν

′′
0 − r0ν ′02

)2
cos 2y ≡ −D2 cos 2y

(13)
and its length from P0 to Q′1 is

L(γ(ε)) = τ ′1 −
1

2
ε2D2

2π∫
0

cos 2y
dy

q
√

4− b
= τ ′1 = L(B) . (14)

3. Finally, we consider the most general Jacobi vector field depending on two
integration constants A1 and A4 and, again, giving rise to orbits in the
2-surface θ = π/2. Since the Jacobi field is determined up to a constant
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factor, we can put A1 = 2 and the modified value of A4 denote by A.
(The solution (11) corresponds to A4 = 0 and A1 ≡ A 6= 0.) Then γ(ε)
is [2]

t− t0 =
k

κ
e−ν0τ + εTF (y) ,

r − r0 = εX
√

4− b [sin y +A(cos y − 1)] , θ =
π

2
,

φ− φ0 =
L

r20
τ + εY F (y) (15)

with
F (y) ≡ 2(cos y − 1) +A

(
1
2by − 2 sin y

)
. (16)

As previously, y =
√

4− bqτ . If γ(ε) is to intersect B at some y > 0, then
two equations should hold, A(cos y− 1) + sin y = 0 and F (y) = 0. These
have an infinite sequence of roots, yn(b), n = 1, 2, . . ., and each root is a
solution of

cos y +
b

8
y sin y − 1 = 0 (17)

and, in consequence, it determines A,

A(n, b) =
sin yn(b)

1− cos yn(b)
. (18)

This means that one actually has a two-parameter family of geodesics
γ(ε, n, b(r0)) close to the circular B. Each geodesic of this family emanates
from P0(τ = 0) on B, spatially belongs to the 2-surface θ = π/2 and
intersects B only once at Q̄n(τ̄n),

τ̄n =
yn(b(r0))

q
√

4− b(r0)
=

(
r0(2− r0ν ′0)eλ0

3ν ′0 + r0ν ′′0 − r0ν ′02

)1/2

yn(b) . (19)

In fact, for given A(n, b) the two equations have no roots other than yn(b).
By expanding Eq. (17) into a power series around y = (2n+1)π, one finds
an analytic approximate expression for yn(b). The first few roots are well
approximated by

yn(b) =
(2n+ 1)2π2b− 16

(2n+ 1)πb
, n < 10 , (20)

whereas for large n a good approximation is

yn = (2n+ 1)π − δn(b) , δn(b) =
16(2n+ 1)π

(2n+ 1)2π2b− 16
. (21)
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For example, for b = 3.6 the difference between the numerically found
value y15 = 97.3437 and the analytic value given by (21) is of the order
of 10−5. The geometrical interpretation of the origin of these conjugate
points is unclear.

One computes the length of γ(ε, n, b(r0)) between P0 and Q̄n(τ̄n) apply-
ing (15), (16) and (9)

L(γ(ε, n, b)) ∼= τ̄n + ε2
ν ′0

16r0q
(4− b)3/2e−λ0

(
sin yn

1− cos yn

)2

×
(
byn −

8(1− cos yn)

sin yn

)
. (22)

By applying Eq. (17), one immediately sees that the last round bracket
vanishes implying that for each geodesic of this family its length between
the two conjugate points P0 and Q̄n is also equal to the length of the circular
geodesic B, L(γ(ε, n, b)) = L(B) = τ̄n.

One concludes from these three cases that at least in the case of circular
geodesics in SSS spacetimes all the nearby geodesic curves determined by
the infinitesimal deviation vector fields have the same length from any initial
point to the first future point conjugate to it, equal to the length of the
circular geodesic. It is well known (see Theorem 1 cited in [2]) that the
future cut point of P0 comes no later than the first future conjugate point
to P0. Whether or not there exist distant timelike geodesics joining the two
points which are longer than the circular B remains an open problem. A
definite answer is known in the case of the first sequence of conjugate points
on B if one asks about geodesic lengths to the second conjugate point. In this
case, the second conjugate point Q2 coincides in the space with P0 (B makes
one revolution) and in the Schwarzschild metric it is known [1] that the
radial geodesic directed outwards and returning to r = r0 simultaneously
with B is longer than the latter. We will see in the next section that the
same holds in the Reissner–Nordström spacetime.

3. Reissner–Nordström spacetime

We assume that the spacetime represents a non-rotating charged black
hole, then the metric is

ds2 =

(
1− 2M

r
+
Q2

r2

)
dt2 −

(
1− 2M

r
+
Q2

r2

)−1
dr2 − r2dΩ2 (23)

(c = G = 1) with the mass parameter exceeding the charge, M2 > Q2. The
timelike Killing vector Kα = δα0 , normalized to +1 at the spatial infinity,
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actually remains timelike in the region where g00 = eν > 0, i.e. for r > r+,
and for r < r− where r± = M ±

√
M2 −Q2. We shall deal only with

the region outside the outer event horizon, r > r+ = M +
√
M2 −Q2.

The equations for a timelike geodesic reduce to an equation for the radial
coordinate

−r̈ +
Mr −Q2

r (r2 − 2Mr +Q2)

(
ṙ2 − k2

)
+
L2

r3

(
1− 2M

r
+
Q2

r2

)
= 0 (24)

(ḟ ≡ df/ds) plus the integral of energy k per unit particle’s mass, k ≡
E/(mc2), E ≡ mc2ẋαKα, giving rise to

ṫ = k

(
1− 2M

r
+
Q2

r2

)−1
(25)

and the conserved angular momentum L, φ̇ = L/r2. The motion is ‘flat’,
θ = π/2, and the universal integral of motion, gαβẋαẋβ = 1, allows one to
replace Eq. (24) by the following first order equation

ṙ2 = k2 −
(
L2

r2
+ 1

)(
1− 2M

r
+
Q2

r2

)
. (26)

We first consider radial geodesics.

3.1. Radial timelike geodesics

We assume that the radial timelike geodesic representing the worldline of
the twin C emanates from the event P0(t = t0, r = r0 > r+, θ = π/2, φ = φ0)
outwards with initial velocity ṙ(t0) = u > 0, reaches the maximal height
r = rM at t = tM , turns down and at P1(t = t1) returns to the initial point
r = r0 and then goes downwards to the outer horizon r = r+. We do not
follow farther the geodesic which actually crosses the horizon since it would
require the appropriate change of the chart. The integral of motion (26) is
reduced to

ṙ2 = k2 − 1 +
2M

r
− Q2

r2
(27)

and one sees that ṙ ≥ 0 for r → ∞ if k ≥ 1, what means that (as in the
Schwarzschild spacetime) if the total energy (kinetic, potential and rest mass
one) exceeds the rest energy, the twin C may escape to the spatial infinity
and will not return. We, therefore, assume that the energy of the geodesic
C is 0 < k < 1. Then, the height of the flight is

rM =
1

1− k2
(
M +

√
M2 − (1− k2)Q2

)
, (28)
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this is a monotonically growing function of k from rM = r0 for k2 = g00(r0)
to infinity for k → 1. Conversely, the energy may be expressed in terms of
rM as k2 = g00(rM ). It is convenient to parametrize C on the entire arc
from P0 to the horizon by an angle η,

r(η) = rM cos2 η ≡ 1
2rM (cos 2η + 1) . (29)

Then η = −α/2 at P0 and η = +α/2 at P1, or r(±α/2) = 1
2rM (cosα+1) = r0

and it follows that cosα = 2r0/rM − 1 or cos2 α2 = r0/rM . If rM = r0 then
α = 0 and if rM → ∞ then α → π, hence 0 ≤ α < π. The initial point is
−α/2 < 0, since r(0) = rM . On the ingoing segment of the geodesic η > 0
and it reaches the outer horizon for ηH, r(ηH) = r+ = rM cos2 ηH, what
implies ηH = arccos(r+/rM )1/2 and since cos α2 =

√
r0
rM

>
√

r+
rM

, one finally
gets η ∈ [−α

2 , ηH), where 0 ≤ α/2 < ηH < π/2. The radial component of
the velocity ṙ may be expressed from (27) in terms of η as

dr

ds
= −

(
1− k2 − Q2

r2M cos2 η

)1/2

tan η . (30)

The length of the geodesic C from P0 to any point η may be computed as
follows. The metric along this curve is ds2 = eν dt2 − e−ν dr2 and one finds
from it that (

ds

dη

)2

= e−ν
(
dr

dη

)2
[
eν
(
dt

ds

)2

− 1

]−1
. (31)

Then applying (25) and (29), one gets after some manipulations that for
both the outgoing and ingoing segments of C

ds

dη
= 2

(
r3M
M

)1/2 [
(2− β) cos2 η − β

]−1/2
cos3 η , (32)

where β ≡ Q2/(MrM ) < 1/2. This expression is integrated out and the
outcome is expressed in terms of the function

F (β, η) ≡ (2− β) cos2 η − β (33)

as

s(η) =

(
r3M
M

)1/2

(2− β)−3/2

[
2 arctan

[√
2− β
F (β, η)

sin η

]

+2 arctan

[√
2− β

F
(
β, α2

) sin
α

2

]

+
√

2− β
[√

F (β, η) sin η +

√
F
(
β,
α

2

)
sin

α

2

]]
(34)
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and this formula immediately gives the length of C from P0 to P1

sC = s
(α

2

)
=

(
r3M
M

)1/2

(2− β)−3/2

[
4 arctan

[√
2− β

F
(
β, α2

) sin
α

2

]

+ 2
√

2− β
√
F
(
β,
α

2

)
sin

α

2

]
. (35)

The last two formulae make sense if F > 0 in the whole interval −α/2 ≤
η < ηH. This requires cos2 η > β/(2−β) in the interval and since the lowest
value of cos2 η is for η = ηH, one gets r+/rM > β/(2−β). The ratio of these
two quantities is

r+
rM

(
β

2− β

)−1
= r+

(
2M

Q2
− 1

rM

)
and applying r+ > M , 2M/Q2 > 2/M and 1/rM < 1/M , one finds that
the ratio is greater than 1 showing that F > 0 along the geodesic up to the
horizon.

Our aim is to compare the length of C between P0 and P1 with the length
of the circular geodesic connecting these two points in the spacetime. The
coordinate time of making one circle ∆tB on the circular geodesic is uniquely
determined by its radius r0, yet the time of flight on the radial C from r0 to
rM and back to r0 depends on rM (or equivalently on the energy k). Thus
if the twin B following the circular geodesic and the twin C on the radial
curve start from P0 and are to meet again at P1 the height of flight rM must
be precisely tuned to make the flight duration equal to ∆tB. To this end,
one expresses the time coordinate on C as a function of η. From (25) and
(32), one gets

dt

dη
= 2k

(
r5M
M3

)1/2 (rM
M

cos4 η − 2 cos2 η + β
)−1

[F (β, η)]−1/2 cos7 η . (36)

It is quite surprising and fortunate that t(η) is expressed in terms of elemen-
tary functions. By substitution x ≡ cos2 η the indefinite integral of Eq. (36)
is reduced to

−εk
(
r5M
M3

)1/2 ∫
x3 [F (β, x)]−1/2

rM
M x2 − 2x+ β

dx√
1− x

≡ εJ(x) , (37)

where ε = −1 for sin η < 0 and ε = +1 for sin η > 0. Calculating this
integral requires considerable amount of ingenious work supported by the
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program Mathematica and the outcome reads

J(x) = −k
(
r5M
M3

)1/2{
− g(x)

2 rMM − µ
+

1

σ
(2− β)−3/2 arcsin

[
(2− β)x− 1

1− β

]
− 2M2

√
2− β

(σ + β − 2)

r2Mσ
arctan

[
(2− β)(1− x)

(2− β)x− β

]1/2
+a+b+ ln

∣∣∣∣f(x) + a+
f(x)− a+

∣∣∣∣− a−b− ln

∣∣∣∣f(x) + a−
f(x)− a−

∣∣∣∣} . (38)

Here,

g(x) =
√

1− x
√

(2− β)x− β =
√

(1− x)F (β, x) ,

f(x) =

(
1− x
F (β, x)

)1/2

, µ =
Q2

M2
, σ =

rM
M

+ β − 2 ,

a± =
1

β
√
σ

[
2(1− β)

(
1±

√
1− µ

)
− µ+ β2

]1/2
,

b± =
β3
(
1− β ±

√
1− µ

)
2
√

1− µ[(2− β)
(
1±
√

1− µ
)
− µ]2

, (39)

all the functions are well defined for β/(2−β) < x ≤ 1 and this condition is
satisfied along the geodesic from η = −α/2 up to rM and down to the outer
horizon. The time lapse to any η > 0 is then t(η)− t0 = [t(0)− t0] + [t(η)−
t(0)] = (−1)[J(1)−J(cos2 α/2)] + (+1)[J(cos2 η)−J(1)]. We need the time
of flight to rM and back to r0

t
(α

2

)
− t0 = 2J

(
cos2

α

2

)
− 2J(1) , (40)

where

J(1) = −π
2
k

1

σ

(
r5M
M3

)1/2

(2− β)−3/2 . (41)

We shall use this result in Subsect. 3.3.

3.2. The deviation vector fields on the radial timelike geodesics

As mentioned in Introduction, we replace the geodesic deviation equation
for the deviation vector by three scalar equations for the Jacobi scalars Za(s),
a = 1, 2, 3. The spacelike orthonormal basis triad orthogonal to the radial
geodesic C is chosen as in [2]

eµ1 =
[
εe−ν

(
k2 − eν

)1/2
, k, 0, 0

]
, eµ2 =

1

r
δµ2 , eµ3 =

1

r
δµ3 , (42)
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where ε = +1 on the outward directed segment of C and ε = −1 for the
ingoing one; r = r(η) according to (29). In terms of this basis, the equations
read

d2Z1

ds2
=

2Mr − 3Q2

r4
Z1 ,

d2Z2

ds2
=

Q2 −Mr

r4
Z2 ,

d2Z3

ds2
=

Q2 −Mr

r4
Z3 . (43)

Simplicity of these decoupled equations is deceptive, for their left-hand sides
are derivatives with respect to the proper time instead of r or η. Replacing
d/ds by derivatives with respect to η, one arrives at

F (β, η)
d2Z1

dη2
+

sin 2η

cos 2η + 1
[2F (β, η)− β]

dZ1

dη

− 8

cos 2η + 1
(cos 2η + 1− 3β)Z1 = 0 ,

F (β, η)
d2Z2

dη2
+

sin 2η

cos 2η + 1
(2F (β, η)− β)

dZ2

dη

− 8

cos 2η + 1

(
β − 1

2
(cos 2η + 1)

)
Z2 = 0 . (44)

(F as in (33)) and the equation for Z3 is identical with that for Z2. The
first integrals for these equations [2] are generated by the timelike Killing
vector Kα

t = δα0 and the three spacelike rotational Killing fields, which at
the points of C are equal to

Kα
x = (0, 0,− sinφ0, 0) , Kα

y = (0, 0, cosφ0, 0) , Kα
z = δα3 ; (45)

clearly Kα
x and Kα

y give rise to the same conserved quantity. Applying the
general formalism [2], one finds that Kα

t generates a first integral for Z1,

F (β, η) sin 2η
dZ1

dη
− 2(cos 2η + 1− 2β)Z1 = C1(cos 2η + 1)3 , (46)

whereas Kα
x and Kα

y generate the same first integral for Z2,

dZ2

dη
+ 2Z2 tan η =

C2 cos η

[F (β, η)]1/2
, (47)

ultimately Kα
z generates the first integral for Z3 which is identical with (47)

for a different constant C3. Clearly, C1, C2 and C3 are arbitrary constants.
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Equations (44) are linear homogeneous, hence their general solutions are
Za(η) = Ca1 Za1(β, η) + Ca2 Za2(β, η), a = 1, 2, 3. Equations (44) are sym-
metric (invariant) under the inversion η → −η, also the first integral (46) is
symmetric, whereas the first integrals for Z2 and Z3 are antisymmetric. This
means that the special solutions Za1and Za2 have definite symmetry and if
their symmetry agrees with that of the first integral (46) (resp. (47)), then
the solutions satisfy the first integral equations for some Ca 6= 0, otherwise
they satisfy the latter for Ca = 0.

1. Solutions for Z1. The first solution is

Z11(β, η) =
√
F (β, η)

sin η

cos2 η
= −Z11(β,−η) (48)

and (46) holds for C1 = 0. The second solution is quite complicated,

Z12(β, η) =

{
6

√
F (β, η)

2− β
sin η arctan

[√
2− β
F (β, η)

sin η

]
+

1

(1− β)2
[
−3β + 4β2 − 2β3 +

(
6− 10β + 5β2

)
cos2 η

+
(
−2 + 5β − 4β2 + β3

)
cos4 η

]} 1

cos2 η
(49)

and is symmetric, Z12(β,−η) = +Z12(β, η), and it satisfies (46) for
C1 = −1. In the limit β → 0 (Q2 → 0), one recovers the solutions
valid for the Schwarzschild metric [1].

2. The first solution for Z2,
Z21 = cos2 η , (50)

is independent of β, symmetric and satisfies (47) for C2 = 0, clearly it
also holds for the Schwarzschild metric. Yet the second solution,

Z22(β, η) = cos2 η arctan

(√
β

F (β, η)
sin η

)
, (51)

is antisymmetric, yields C2 =
√
β in (47), is non-analytic for β = 0 and

in this limit tends to 0. (The corresponding special solution for Q2 = 0
is just sin 2η [1].)

We now seek for points conjugate on the geodesic C to P0(η = −α/2).
Since the generic deviation vector is Zµ =

∑3
a=1 Zae

µ
a , all the Jacobi scalars

Za should vanish both at P0 and at the sought for conjugate points. In the
search, one sets two scalars identically zero and seeks for zeros of the third
scalar.
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(a) First, we set Z2 = Z3 = 0. From (48) and (49), one finds that
Z11(β,−α/2) 6= 0 and Z12(β,−α/2) 6= 0. We set C12 = 1, then the
condition Z1(β,−α/2) = C11Z11(β,−α/2) + Z12(β,−α/2) = 0 deter-
mines C11(β,−α/2) and we seek for roots of the function Z1(β,C11, η)
for η > −α/2. The numerical analysis shows that this Z1 has no roots.

(b) Let Z1 = Z3 = 0. Since Z21 and Z22 are different from 0 for η = −α/2,
we set C22 = 1 and analogously from the condition Z2(β,−α/2) = 0
determine C21(β,−α/2). Again, the function Z2(β,C21, η) nowhere
vanishes.

The case Z1 = Z2 = 0 is identical to the second one. In this way, we
have shown that the radial timelike geodesic C has no conjugate points to
the initial point P0 for any r0 > r+; this means that C is the locally max-
imal curve between any pair of its points. In [2], we have shown that in
the R–N spacetime one can introduce the Gaussian normal geodesic (GNG)
coordinates, i.e. the comoving ones, and the domain of these at least cov-
ers the same domain of the manifold as the standard coordinates (t, r, θ, φ)
do, i.e. from the outer horizon to the spatial infinity. In the GNG coordi-
nates, the radial geodesic C becomes the time coordinate line (the spatial
coordinates are constant) and it is straightforward to prove [2] that there
is no timelike curve joining any pair of points on C whose length would be
equal or greater than the length of the segment of C between these points.
This means that each radial timelike geodesic is the globally maximal curve
between its points.

3.3. Circular timelike geodesics

In this spacetime, the general conditions of Sect. 2 for the existence of
circular geodesics reduce to 2 − r0ν

′
0 > 0 since ν ′ is positive outside the

outer horizon, r > r+ (and for M2 > Q2). The former condition implies
N ≡ r20 − 3Mr0 + 2Q2 > 0 and this amounts to

r0 > rm ≡
3

2
M

(
1 +

√
1− 8Q2

9M2

)
, (52)

where 2M < rm < 3M . The value of r0 determines all the parameters of
the circular orbit, the energy k and the angular momentum L. From (3)

k2 =

(
r20 − 2Mr0 +Q2

)2
r20N

, L2 =
r20
N

(
Mr0 −Q2

)
(53)
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and according to (3), the time and azimuthal coordinate are parametrized
by the arc length of the geodesic B,

t− t0 = ke−ν0 s =
r0√
N
s , φ− φ0 =

1

r0

(
Mr0 −Q2

N

)1/2

s . (54)

The length of B corresponding to one revolution around the black hole is
then

sB =
2π

L
r20 = 2πr0

(
N

Mr0 −Q2

)1/2

(55)

and the corresponding lapse of the coordinate time is

∆tB = t(sB)− t0 =
2πr20

(Mr0 −Q2)1/2
. (56)

If r0 is very close to rm the geodesic is unstable. In the R–N spacetime the
radius rI of the ISCO is given by the unique real root of the cubic equation

J(rI) ≡ r3I − 6Mr2I + 9Q2rI − 4
Q4

M
= 0 . (57)

For fixed mass M , the values of rI(Q) are given in Table I as a function of
the ratio µ ≡ Q2/M2, 0 < µ < 1.

TABLE I

The values of rI(Q)/M as a function of µ = Q2/M2.

µ rI/M

0 6
0.1 5.84725
0.2 5.68852
0.3 5.52293
0.4 5.34939
0.5 5.16646
0.6 4.97221
0.7 4.76392
0.8 4.53759
0.9 4.28678
1 4
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One sees that rI(Q) decreases approximately linearly from 6M to 4M .
We shall assume that the geodesic B is stable, r0 > rI(Q), then, as it was
mentioned in Sect. 2, B has infinite number of conjugate points ordered in
three sequences.

We are now able to compare the lengths of the radial and the circular
geodesic having common endpoints P0 and P1. The time interval between
these two events is equal to t(α/2) − t0 if counted along the radial C and
∆tB as necessary for one revolution around the black hole. Equating the
two intervals, (40) and (56),

2πr20

(Mr0 −Q2)1/2
= 2J

(
cos2

α

2

)
− 2J(1) , (58)

one gets an algebraic transcendental equation for the height rM of the radial
flight. The roots of the equation depend on two parameters: r0 and the
ratio µ = Q2/M2. The equation was numerically solved for three values
of µ; for each value of µ, two values of r0 were taken: one very close to
the corresponding radius of the ISCO and the other was larger. The solu-
tions rM (r0, µ) are unique (in the space of variables r0, rM and µ Eq. (58)
represents a surface which is almost exactly a plane) and are inserted into
Eq. (35) for the length sC of the radial geodesic and this length is compared
with the length sB of the circular one in (55). Table II shows values of rM/r0
and sC/sB for the chosen values of r0 and µ.

TABLE II

Six values of rM/r0 and sC/sB for chosen values of r0/M and µ = Q2/M2.

µ = 0.1

r0/M rM/r0 sC/sB

5.86 2.07086 1.23795
10 2.14253 1.10736

µ = 0.5

r0/M rM/r0 sC/sB

5.17 2.07478 1.26553
6 2.09954 1.20797

µ = 0.9

r0/M rM/r0 sC/sB

4.3 2.07995 1.4321
10 2.17053 1.11617
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One sees that sC is always larger than sB and their ratio slowly diminishes
with growing r0. A similar behaviour was found for the Schwarzschild black
hole [1].

3.4. Jacobi fields and conjugate points on circular timelike geodesics

For all SSS spacetimes, all quantities and equations concerning stable
circular geodesics are the same, only the constants appearing in the formal-
ism depend in a different way on the radius r0; we therefore refer the reader
to [2] for all definitions and equations. We only recall the orthonormal space-
like basis triad which is orthogonal to the circular geodesic B and parallelly
transported along it

eµ1 = [−T sin qs,X cos qs, 0,−Y sin qs] , eµ2 =

[
0, 0,

1

r0
, 0

]
,

eµ3 = [T cos qs,X sin qs, 0, Y cos qs] . (59)

The constants already appeared in (11) and now are equal to

T =

[
1

N
e−ν0

(
Mr0 −Q2

)]1/2
, X = eν0/2 , Y =

[
eν0

N

]1/2
,

q2 =
1

r40

(
Mr0 −Q2

)
, (60)

furthermore, in the equations for the Jacobi scalars Za [2], there appears the
constant

b ≡ 3 +
1

N

(
3Mr0 − 4Q2

)
− Q2

Mr0 −Q2
(61)

which varies in the range 3 < b < ∞. The ISCO corresponds to b = 4
and for stable orbits 3 < b < 4. The two equations for Z1 and Z3 are
coupled and possess one first integral generated by both the Killing vectors
Kα
t and Kα

z . On the other hand, the equation for Z2 is simple and may
easily be integrated, what is actually unnecessary since its solutions are
determined (without any integration) by the two first integrals generated by
Kα
x and Kα

y ,

Z2(s) = C ′ sin

(
L

r20
s

)
+ C ′′ cos

(
L

r20
s

)
(62)

and from (53), L/r20 = 1
r0
N−1/2(Mr0 −Q2)1/2.

The Jacobi vector field generated by Z2 and vanishing at P0(s = 0) is

Zµ = Cδµ2 sin

(
L

r20
s

)
(63)
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(this is the case 1 in Sect. 2) and gives rise to the first infinite sequence of
points Qn(sn) conjugate to P0 and located at distances

sn = nπ
r20
L

= nπr0N
1/2
(
Mr0 −Q2

)−1/2
. (64)

The subsequent points Qn are separated by equal angular distance ∆φ = π.
The deviation vectors spanned on the basis vectors eµ1 and eµ3 give rise to
two other infinite sequences of conjugate points.

1. The second sequence (the case 2 in Sect. 2) Q′n(s′n) consists of points on B
at distances (12) from P0,

s′n = 2nπr20N
1/2(MJ(r0))

−1/2 , (65)

where J(r) is defined as the left-hand side of Eq. (57). To find out the
spatial location of the first conjugate point Q′1, one computes from (55)
the ratio

s′1
sB

= r0
(
Mr0 −Q2

)1/2
(MJ(r0))

−1/2 ; (66)

clearly J(r0) > 0 since r0 > rI. For the orbits tending to the ISCO,
one has r0(Mr0 − Q2)1/2 > rI(MrI −M2)1/2 > 0 and J(r0) → 0, then
the twin B following a circular orbit close to the ISCO must make a
large number of revolutions to encounter the first conjugate point Q′1.
For example, for Q2 = 0.5M2 and r0 = 5.17M , there is s′1/sB = 38.32.
The ratio quickly diminishes and again for Q2 = 0.5M2 and r0 = 6M
it is 2.760, nevertheless it is always larger than 1 and for r0 → ∞ it
tends to 1 from above. Qualitatively, the behaviour is the same as in the
Schwarzschild spacetime [1].

2. For the third sequence (the case 3 in Sect. 2), the Eq. (19) for the distance
of Q̄n from P0 on B takes now on the form

s̄n = r20N
1/2(MJ(r0))

−1/2 yn (67)

and from (65) one sees that the relative location of the conjugate points
Q′n and Q̄n is given by

s̄n
s′n

=
yn

2nπ
(68)

and for n → ∞ this ratio tends to 1 + 1/(2n) − 4/(n2π2b) and for all n
it is larger than 1.
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4. Ultrastatic spherically symmetric spacetimes

The class of SSS spacetimes contains a special subclass of ultrastatic
spherically symmetric (USSS) manifolds. We first provide a brief descrip-
tion of ultrastatic spacetimes. These are static spacetimes such that the
unique timelike hypersurface orthogonal Killing vector field Kα

t is actually
a gradient, Ktα = ∂αΦ. One chooses (in a non-unique way) a coordinate
system (xα) in which the metric is time-independent, what is equivalent to
Kα
t = δα0 . Then, Ktα = gα0 = ∂αΦ or Φ = Ct+ f(xk), with C > 0 constant

and an arbitrary function f(xk). Next, one makes a coordinate transfor-
mation t′ = t + 1

C f(xk) and x′i = xi yielding g′0i = 0, Φ = Ct′ and again
K ′αt = δα0 . Then rescaling time, t′ → C−1/2t, and denoting the new coordi-
nates by xα, one gets ds2 = dt2 + gij(x

k) dxi dxj and the Killing vector has
the constant length, gαβKα

t K
β
t = +1. Any USSS metric furthermore admits

the three rotational Killing vectors, Kα
x , Kα

y and Kα
z and in the standard

chart it reads
ds2 = dt2 − eλ(r)dr2 − r2 dΩ2 , (69)

in other words the metric function ν(r) = 0. These coordinates are, at the
same time, the comoving ones, i.e. the metric in the comoving coordinates
is time-independent. The best known USSS spacetime is the Einstein static
universe with λ = − ln(1− r2/a2), where the constant a has the dimension
of length and r ≥ 0; the spacetime physically is of merely historical signif-
icance since it is unstable. Other known USSS spacetimes do not include
physically significant solutions, nevertheless, they are interesting from the
geometrical viewpoint because one is able to study not only radial and/or
circular geodesic curves, but all properties of generic timelike geodesics in-
cluding deviation vector fields and conjugate points. It is also interesting to
notice that the comoving coordinates in each USSS spacetime imitate the
inertial frame in special relativity: a free particle initially at rest remains
always at rest and interparticle distances (between free particles at rest in
the system) are time-independent. Furthermore, as we shall see below, a
particle in a free motion has a constant velocity with respect to the comov-
ing frame; the motion is not rectilinear since the notion is not well defined
in these spacetimes. The similarity is not complete since there is a funda-
mental geometric difference: the space t = const in any USSS spacetime is
not flat, although in the special cases where the space is the 3-sphere S3 or
Lobatchevsky (hyperbolic) space H3, it is homogeneous and isotropic (i.e.
maximally symmetric). In other words, the similarity of the system to the
inertial frame concerns its dynamical properties.
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A particle of mass m moving on a timelike geodesic has the conserved
energy E and as previously k ≡ E/(mc2) and

ṫ ≡ dt

ds
= k > 0 ⇒ t− t0 = ks . (70)

The geodesic spatially lies in the 2-surface θ = π/2, has the angular mo-
mentum L and φ̇ ≡ dφ/ds = L/r2. The radial component of the velocity
uα = dxα/ds satisfies

r̈ +
1

2
λ′ṙ2 − L2

r3
e−λ = 0 (71)

(λ′ = dλ/dr) and from the integral of motion uαuα = 1 is equal to

ṙ2 = e−λ
(
k2 − 1− L2

r2

)
. (72)

The particle freely moving with respect to the coordinate frame has
3-velocity vi ≡ dxi/dt with the constant modulus,

|v|2 = −gijvivj =
k2 − 1

k2
< 1 , (73)

or the motion is uniform.
From (72), one sees that k2−1 ≥ 0. If k = 1⇔ E = mc2, one gets ṙ2 ≤ 0

and this is possible only for L = 0, the radial motion, which actually reduces
to ṙ = 0 and r(s) = const. The particle stands still in the space what means
that no gravitational force is exerted on it; this surprising effect was first
found in the special case of the global Barriola–Vilenkin monopole [12], here
we show that this is a common feature of all USSS spacetimes. Conversely,
this fact implies that circular geodesics in any USSS manifold reduce to the
trivial case of remaining at rest in the space. In fact, for r = r0 = const
it follows from (71) that L = 0, there is no azimuthal motion, then (72)
implies k = 1 and the geodesic is t− t0 = s, r = r0, θ = π/2 and φ = φ0.

We, therefore, separately study radial and general non-radial geodesics.

4.1. Radial geodesics

By definition, the radial geodesic C has L = 0 and is given by t− t0 = ks
with k > 1, θ = π/2 and φ = φ0. We assume that the radial coordinate
in the comoving system varies in the range 0 ≤ r1 ≤ r ≤ r2 ≤ ∞. Let
the initial point of C be P0(t0, r0 > r1, π/2, φ0) with the initial velocity
ṙ2(t0) = u2. The formula (72) is reduced to

ṙ2 =
(
k2 − 1

)
e−λ . (74)
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If u > 0, then u = +
√
k2 − 1 exp(−1

2λ(r0)) and ṙ = +
√
k2 − 1 exp(−1

2λ(r))

for t > t0, similarly ṙ = −
√
k2 − 1 exp(−1

2λ(r)) for u < 0. In both the
cases, the sign of ṙ remains unaltered for all times t > t0 and the motion
is unbounded, the radial coordinate either grows to the upper boundary r2
or decreases to r1 and this is in accordance with the fact that the particle
is subject to no gravitational force. From (74), one finds the length of the
geodesic C between r0 and r(s)

s(r) =
ε√

k2 − 1

r∫
r0

eλ/2 dr , (75)

where ε = +1 for the outgoing geodesic and ε = −1 for the ingoing one. For
some functions λ(r), it is possible to invert this relationship to r = r(s).

Now, we seek for Jacobi fields on the radial C. Applying the general
formalism [2], we introduce the spacelike orthonormal basis triad which rep-
resents the special case ν = 0

eµ1 =
[
ε
√
k2 − 1, ke−λ/2, 0, 0

]
, eµ2 =

1

r
δµ2 , eµ3 =

1

r
δµ3 (76)

and the equations for the Jacobi scalars are

d2Z1

ds2
= 0 , (77)

d2Z2

ds2
= −k

2 − 1

2r
λ′e−λ Z2 (78)

and the equation for Z3 is identical to that for Z2. The vector Zµ = Z1e
µ
1

varies linearly since Z1 = C11s + C12. In (78) one replaces the derivative
with respect to s by derivatives w.r.t. r and denoting collectively Z2 and Z3

by Z, one gets
d2Z

dr2
− 1

2
λ′
dZ

dr
+
λ′

2r
Z = 0 . (79)

This equation may be solved for a given function λ = ln(−g11).
It is known from [2] that the radial geodesics are globally maximal in the

domain of the comoving coordinate chart, hence in the range r1 < r < r2
they contain neither cut nor conjugate points to any of their points in this
range.

4.2. Properties of generic non-radial timelike geodesics

A non-radial geodesic has L 6= 0 (we always assume that L > 0). These
curves require a separate treatment since most of their properties depend
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on 0 < L−2 < ∞. We denote such a geodesic by G (and as usual θ = π/2
along it) and assume that it emanates from P0(t0, r0, π/2, φ0). Its behaviour
depends on whether its initial radial velocity ṙ(t0) = u is positive or negative.

I. The initial velocity u > 0.
Let λ(r0) = λ0. Then from (72) u = +(k2 − 1 − L2/r20)1/2 exp(−λ0/2)
and G is directed outwards and r increases. Since k2 − 1 − L/r2 >
k2−1−L/r20 > 0 for r > r0, the radial velocity is always ṙ > 0 (assuming
e−λ > 0 for all finite r) and r(s) is unbounded and tends to the chart
boundary r = r2. The non-radial G qualitatively behaves as the radial C.
For L 6= 0, one introduces a parameter p by p2 ≡ (k2−1)/L2, 0 < p <∞.
The length of G between r0 and any r ≥ r0 is then

s(r) =
1

L

r∫
r0

reλ/2√
p2r2 − 1

dr . (80)

In general, this relationship cannot be inverted, therefore, instead of φ(s)
we seek for the dependence φ = φ(r). From dφ/dr = L

r2
(dr/ds)−1, one

easily derives

φ(r)− φ0 =

r∫
r0

eλ/2

r

dr√
p2r2 − 1

. (81)

II. The initial velocity u < 0.
For some time interval after t = t0, there is ṙ = −(k2 − 1 − L2/r2)1/2

exp(−λ/2) < 0 and r(s) monotonically decreases. Further evolution de-
pends on the value of p.

(a) If p2 ≥ 1/r21, the geodesic G reaches (at least asymptotically) the
lower boundary of the chart r = r1 and its further evolution cannot
be traced in the formalism we apply here. In this sense, G is akin
to the ingoing radial C.

(b) If p2 = 1/r2m for some rm > r1 the geodesic G reaches the lowest
point r = rm where its radial velocity vanishes, ṙ(rm) =

−L
√
p2 − 1/r2m exp(−λ/2) = 0, while its azimuthal velocity φ̇ =

L/r2 6= 0. The full 3-velocity squared is still equal to (k2− 1)/k2 at
rm and the particle is expelled outwards with positive radial accel-
eration following from (71)

r̈(rm) = +
L2

r3m
e−λ(rm) .
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For later times r(s) increases and correspondingly ṙ > 0 increases
and φ̇ diminishes. The geodesic G qualitatively behaves as that em-
anating from P0 with u > 0. Analogously to (80), one finds that the
length of G from r0 down to rm and then upwards to r is

s(r0, rm, r) =
1

L

 r0∫
rm

+

r∫
rm

 r eλ/2√
p2r2 − 1

dr (82)

and if the indefinite integral of the integrand is F (r), then
s(r0, rm, r) = F (r)−F (r0)− 2F (rm). The φ(r) dependence may be
found in the similar way.

4.3. The geodesic deviation equations for a generic non-radial geodesic

For the sake of simplicity, we consider geodesics consisting only of one
segment, i.e. the curves emanating outwards (ṙ > 0) from the initial P0,
then t− t0 = ks and (80) and (81) hold. The vector tangent to G is

uα =

[
k,
L

r
e−λ/2

(
p2r2 − 1

)1/2
, 0,

L

r2

]
. (83)

(Here and below always p2r2 > 1.) It is not easy to find the spacelike
basis triad possessing the required properties on G [2] and only after many
manipulations and solving a system of two coupled first order ODEs one
arrives at

eµ1 =

[
0,

1

pr
e−λ/2, 0,− 1

pr2

√
p2r2 − 1

]
, eµ2 =

1

r
δµ2 ,

eµ3 =

[√
k2 − 1,

k

pr
e−λ/2

√
p2r2 − 1, 0,

k

pr2

]
. (84)

The curvature tensor for the metric (69) is

R1212 = −r
2
λ′ , R1313 = −r

2
λ′ sin2 θ , R2323 = r2

(
e−λ − 1

)
sin2 θ .

(85)
Applying (83), (84) and (85), one derives the equations for the Jacobi scalars

d2Z1

ds2
= −1

2

(
k2 − 1

) λ′
r
e−λ Z1 , (86)

d2Z2

ds2
=

L2

r3

[
1

r

(
e−λ − 1

)
− λ′

2
e−λ

(
p2r2 − 1

)]
Z2 , (87)

d2Z3

ds2
= 0 . (88)
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Since Z3 = C31s+ C32, one sees that the deviation vector Zµ = Z3 e
µ
3 does

not generate conjugate points on G. To make the equations for Z1 and Z2

solvable, one replaces d/ds by d/dr, then the equivalent equations read

d2Z1

dr2
+

[
1

r (p2r2 − 1)
− λ′

2

]
dZ1

dr
+

1

2

p2rλ′

p2r2 − 1
Z1 = 0 , (89)

d2Z2

dr2
+

[
1

r (p2r2 − 1)
− λ′

2

]
dZ2

dr
− 1

r

[
1− eλ

r (p2r2 − 1)
− λ′

2

]
Z2 = 0 . (90)

The timelike and the three rotational Killing vector fields generate four
integral of motion; that generated by Kα

t = δα0 gives rise to the solution
for Z3. The vectors Kα

x and Kα
y generate two independent first integrals for

Eq. (90)

f(r)
dZ2

dr
sinφ− 1

r
(f(r) sinφ+ cosφ)Z2 = C1 , (91)

−f(r)
dZ2

dr
cosφ+

1

r
(f(r) cosφ− sinφ)Z2 = C2 (92)

with f(r) ≡ e−λ/2
√
p2r2 − 1. Multiplying (91) by cosφ and (92) by sinφ

and adding the two equations, one gets Z2 without any integration; the
general solution is

Z2(r) = C21 r cosφ(r) + C22 r sinφ(r) , (93)

here φ(r) is given by (81). A first integral for Z1 is generated by Kα
z = δα3

and reads
1

r

(
p2r2 − 1

) dZ1

dr
− p2 Z1 = C1e

λ/2 (94)

and is easily solved by the following general solution

Z1(r) = C11

√
p2r2 − 1 + C12

√
p2r2 − 1

∫
reλ/2

(
p2r2 − 1

)−3/2
dr . (95)

Without knowledge of λ(r), one can say very little about this solution. Yet
concerning Z2(r), one can find a generic condition for the existence of conju-
gate points to P0 generated by Zµ = Z2e

µ
2 = (C21 cosφ+C22 sinφ)δµ2 . This

vector is directed off the 2-surface θ = π/2. Without loss of generality, one
can rotate the coordinate system in the surface to put φ0 = 0. Then the
deviation vector vanishing for φ = 0 is

Zµ(r) = C22 δ
µ
2 sinφ(r) (96)

and is zero at points φn(r) = nπ, n = 1, 2, . . . The first conjugate point
exists if the difference φ(r)−φ0 given in (81) exceeds π for some r <∞ and
this may be concluded only when λ(r) is known.

In this work, we discuss only one special case of USSS spacetimes and
postpone other examples to a forthcoming paper.
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5. The global Barriola–Vilenkin monopole

This is an approximate solution of Einstein’s field equations with a source
being a triplet of scalar fields, describing the spacetime outside a monopole
resulting from the breaking of a global O(3) symmetry of the triplet [12].
Assuming that in the astrophysically relevant situations, the monopole mass
is negligibly small, the resulting metric is approximated by [12]

ds2 = dt2 − 1

h2
dr2 − r2dΩ2 , (97)

here r is larger than some r1 > 0 and h is a dimensionless constant, 0 < h < 1
(to fit the general USSS formalism of Sect. 4, we have rescaled the radial
coordinate applied in [12]). The metric function λ = −2 lnh = const.

The general outgoing (ṙ > 0) non-radial geodesic has the length

s(r) =
1

hp2L

(√
p2r2 − 1−

√
p2r20 − 1

)
(98)

and this function may be inverted to

r2(s) = (hpL)2s2 + 2hL
√
p2r20 − 1 s+ r20 , (99)

whereas the integral (81) is

φ(r)− φ0 =
1

h

[
arccos

[
1

pr

]
− arccos

[
1

pr0

]]
, (100)

here, 0 < 1/(pr) ≤ 1/(pr0) ≤ 1. That the spacetime admits no bound orbits
was found by Chakraborty [13] using the Hamilton–Jacobi formalism; the
coordinates of a timelike geodesic were given as integrals with respect to the
radial coordinate without employing the fact that the motion is ‘flat’.

1. The outgoing radial geodesic C has the length

s(r) =
r − r0

h
√
k2 − 1

and r − r0 = h
√
k2 − 1 s . (101)

For λ′ = 0, the equations for the Jacobi scalars reduce to d2Za/ds2 = 0,
hence Za(s) = Ca1s+Ca2 and the distances between the radial geodesics
(all in θ = π/2) grow linearly.

2. For the non-radial (L > 0) outgoing geodesic G, the Jacobi scalars are

Z1(r) = C11

√
p2r2 − 1 + C12 (102)
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from (95), Z2 is as in (93) and Z3 = C31s + C32. We check whether Z1

generates a conjugate point. We put Z2 = Z3 = 0 and require Z1(r0) = 0,
this yields (for C11 = 1)

Z1(r) =
√
p2r2 − 1−

√
p2r20 − 1 (103)

and this function has no roots for r > r0. It remains to study the vector
Zµ = Z2e

µ
2 and we know that the candidates for the conjugate points are

at φn = nπ. We denote α ≡ arccos(1/(pr0)) and since pr0 ≥ 1, one gets
0 < α ≥ π/2 and setting φ0 = 0, Eq. (100) is replaced by

φ(r) =
1

h

[
arccos

[
1

pr

]
− α

]
. (104)

For r → ∞, this expression tends to 1
h(π/2 − α) and for α < π/2

and h sufficiently small it is arbitrarily large admitting many conjugate
points. The first conjugate point Q1 to P0 occurs for r = rc such that
arccos( 1

prc
)−α = hπ and the obvious inequality 0 < arccos( 1

prc
) < π/2 is

equivalent to 0 < hπ+α < π/2 or 0 < α < π/2−hπ. The last inequality
means that cosα = 1/(pr0) > cos(π/2− hπ) = sinhπ. The value of h is
fixed and assigned to the spacetime. Therefore, the necessary condition
for the existence of the conjugate points on some timelike geodesics is
h < 1/2. If it holds then the sufficient condition for the geodesic G to
contain the conjugate point Q1 (and possibly the successive points) to
P0 is

pr0 <
1

sinhπ
. (105)

It is worth stressing that all these properties hold if the spacetime outside
the monopole is described in the astrophysical approximation of negligible
mass. If M 6= 0, all the geometrical features of the resulting spacetime
are significantly altered. For a positive mass, one gets an SSS manifold
outside the USSS subclass and its metric may be rescaled to take on
the Schwarzschild form implying the geodesic structure as in the latter
spacetime, whereas for M < 0 the gravitation is repulsive and there are
no bound orbits [14].

6. Conclusions

Our conclusions to this work are brief and partial because any general
rules concerning the qualitative properties of timelike worldlines in vari-
ous spacetimes may be formulated only after completing the research pro-
gramme, i.e. after studying a sufficiently large number of different Lorentzian
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manifolds. In our opinion, this statement should not be interpreted as a dec-
laration that the research programme will never terminate. On the contrary,
we believe that the wealth of geodesic structures in various gravitational
fields is not immense and can be grasped in its dominant features in a not
far future.

We have shown in the previous three papers that static spherically sym-
metric spacetimes are different in some properties of timelike geodesic curves
and very similar in many other ones. Here, we show that for all stable cir-
cular orbits in these spacetimes all the infinitesimally close geodesics to the
circular ones, constructed by means of the geodesic deviation vector fields,
have the same length between a pair of conjugate points on the circular
curves. The radial and circular geodesics in the Reissner–Nordström space-
time behave similarly to those in the Schwarzschild field, in particular if
a circular and radial geodesics have common endpoints, the radial one is
longer. Spherically symmetric spacetimes which furthermore are ultrastatic,
exhibit a rather astonishing property that a free test particle may be in
the state of absolute rest, i.e. no gravitational force is exerted on it. If a
free particle moves, its velocity is constant — this means that the comov-
ing frame in these spacetimes is dynamically akin to the inertial frame in
Minkowski space of special relativity. Here, we have studied one example
of ultrastatic manifolds, the Barriola–Vilenkin global (massless) monopole;
the metric contains one arbitrary function which in this case is a constant
and a generic non-radial geodesic may have conjugate points if the constant
is sufficiently small.

We are grateful to our colleagues from the Kraków Relativity Group for
valuable comments. This work was supported by a grant from the John
Templeton Foundation.
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