
New J. Phys. 18 (2016) 113051 doi:10.1088/1367-2630/18/11/113051

PAPER

Chemical ordering beyond the superstructure in long-range ordered
systems

Markus Stana1,4, Bogdan Sepiol1, RafałKozubski2 andMichael Leitner3,4

1 UniversitätWien, Fakultät für Physik, Boltzmanngasse 5, 1090Wien, Austria
2 M. Smoluchowski Institute of Physics, JagiellonianUniversity inKrakow, Reymonta 4 30-059Krakow, Poland
3 TUMünchen, Physik-Department E13, 85747Garching, Germany
4 Authors towhomany correspondence should be addressed.

E-mail:markus.stana@univie.ac.at andmichael.leitner@frm2.tum.de

Keywords: short-range order, long-range order,Warren–Cowley parameters, intermetallics, alloy

Abstract
Todescribe chemical ordering in solid solutions systemsWarren–Cowley short-range parameters are
ordinarily used.However, they are not directly suited for application to long-range ordered systems,
as they do not converge to zero for large separations. In this paper, the theory is generalized to long-
range ordered systems and chemical short-range order beyond the superstructure arrangements is
discussed quantitatively on the example of a non-stoichiometric B2-ordered intermetallic alloy.
Parameters of interatomic potentials are taken from an embedded atommethod calculations and the
degree of order is simulated by theMonte Carlomethod. Both on-lattice and off-latticemethods,
where the latter allows individual atoms to deviate from their regular lattice sites, were used, and the
resulting effects are discussed.

1. Introduction

In elemental systems consisting of one type of atom, the structural configuration on the atomic scale in principle
is defined by the crystal lattice. In contrast, inmulti-component systems aspects of order give rise to additional
degrees of freedom.On the one hand, this pertains to long-range order, where the crystal structure’s sublattices
have different elementalmake-ups. On the other hand, short-range order corresponds to energetically preferred
local arrangements within the stochastic occupations of the lattice sites by chemically distinct atoms.

While the state of long-range order is determined by the sublattice compositions, the number of degrees of
freedomof short-range order is in principle unbounded. In the simplest case of a binary systemon aBravais
lattice, theWarren–Cawley short-range order parameters (Cowley 1950,Warren et al 1951) quantify the
probabilities of pairs of sites being occupied by a given combination of elements. These pair-level correlations
are accessible directly in the intensity variations of diffuse scattering, and both elastic neutron scattering
(Schweika 1998) and x-ray scattering (Schönfeld 1999) in the diffuse regime have been used for determining
short-range order in a range of systems.

Determination of long-range order via the intensities of Bragg and super-structure peaks is a routine
experimental procedure (Inden and Pepperhoff 1990, Xiao andBaker 1995). In contrast, diffuse scattering
experiments aremuchmore labourious. This pertains evenmore for studies of short-range order in long-range
ordered compounds, where after the pioneeringwork byGeorgopoulos andCohen (1981) on b¢-NiAl notmuch
information has been published. The richness of aspects of short-range order that can generally be expected in
ordered compounds, including both correlations of the occupations of sites within a given sublattice and on
distinct sublattices,might be a reason for this. Note that even in the above-mentioned example of b¢-NiAl the
occupational disorder is restricted to a single sublattice, which allowed it to be describedwithin the conventional
Bravais lattice formalism.

The outstanding properties of ordered intermetallics, including high yield strengths and high Young’s
moduli at lowmass densities, corrosion resistance and high-temperature creep resistance (Sauthoff 1995,
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Pfeiler 2007), to name just a few, are due to the ordered arrangement of the atoms.However, lacking a detailed
picture of local atomic arrangements, this has hitherto been considered only in terms of long-range order
parameters. It is the aimof this work to take the first step towards a fullmodel by generalizing theWarren–
Cowley theory of short-range order to long-range ordered systems, thereby providing the necessary framework.
Further, wewill elucidate the accompanying phenomena byway of simulating temperature-dependent long-
and short-range order. Specifically, wewill consider the evolution of short-range order over an order-disorder
transition in a non-stoichiometric B2 (CsCl) intermetallic alloy.Wewill assume a realistic potential in the vein of
the embedded-atommethod (EAM) (Daw andBaskes 1984). Such potentials are non-discrete, which allows us
to compare simulations that explore the full classical parameter space including atomic displacements to
simulationswhere the atoms are restricted to positions on an ideal lattice. To the best of our knowledge, this is
thefirst time that short-range order resulting from a physically plausible,many-body phenomenological
potential is derived.

The paper will be organized in the followingway: in section 2, wewill review the classical short-range order
parameters and give a generalization for defining ordering on sublattices.Wewill detail the applied simulation
technique in section 3, whichwill be followed by a discussion of the results in section 4 and a brief summary in
section 5.

2. Theory

Warren andCowley (Cowley 1950,Warren et al 1951, Cowley 1960) introduced parameters to quantify short-
range order in binary systems. They can be defined as

a = - ( )
p

c c
1 , 1lmn

lmn
AB

A B

where c A (cB) is the overall concentration of atoms of type A (B) and plmn
AB is the probability that a given pair of

sites separated by a lattice vector

rlmn is occupied by distinct atoms. These parameters were originally introduced

to describe SRO in systemswhere no LRO is present.Without symmetry breaking, short-range interactions lead
to correlations that decaywith distance, so that for large separations the occupation of the sites is independent
and therefore =p c clmn

AB A B and a = 0lmn .
Generally, the scattered intensity due to the sites of a Bravais lattice being occupied by different elements can

be described by the expression (Schwartz andCohen 2013)
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Here

q denotes the position in reciprocal space,


rlmn are the lattice vectors, and the intensity is understood in

terms of the Laue unit -( )c c f fA B A B 2, where f X is the

q -dependent scattering factor.

If the temperature compared to the ordering forces in the system is sufficiently low, a long-range
superstructure lattice is formed. To give an example onemay consider a B2 ordered system (ClCs structure),
where the underlying body-centred cubic Bravais lattice dissociates into two simple cubic sublattices denoted as
α and β. The long-range order parameter is given by the difference of the occupations of the sublattices

h = - = -a b a b( ) ( ) ( )c c c c , 3A A 2 B B 2

where cc
X is the concentration of elementX on sublattice χ, that is, the probability that a given site on sublattice χ

is occupied by an atomof elementX.
With long-range order, the definition given in (1)will give non-zero values even for large


rlmn. For a

stoichiometric systemwith perfect order and no defects the short-range order parameter almn is either−1 or 1,
depending onwhether


rlmn connects sites on the same or on different sublattices. In this case (2) gives δ-like

superstructure peaks. The same is true for a long-range ordered systemwhere the atomic concentration is non-
stoichiometric, only that the excess atoms lead to the absolute value of the short-range order parameters being
smaller than 1.

Specifically, assuming no short-range order we have
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for atomswithin different sublattices and for atomswithin the same sublattice respectively.With the definition
of η and (1)we get
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where the positive sign is for same sublattices (x c= ) and the negative sign for different sublattices.
Under the presence of short-range order, theWarren–Cowley parameters for small


rlmn will reflect the actual

short-range order, but for large separations theywill converge to the appropriate limiting value of the above two.
The short-range ordering can nowbe quantified by the difference of the actual value to the uncorrelated
expression of (5)
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which indeedwill converge towards zero after a small number of shells for non-critical temperatures. This allows
the classical short-range order parameter to bewritten as a combination of a part that is due to long range order
and a part that is strictly due to short-range ordering.

Note that for the B2 case considered here, with two inequivalent sublattices, for given lmn there are either
two intra-sublattice short-range order coefficients or one inter-sublattice coefficient, corresponding to the cases:

a
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3. Simulation

Configurations representative for the equilibrium configuration of the systemwere generated by the
Metropolis–HastingsMonte Carlomethod (Landau andBinder 2009). The internal energies of the specific
configurationswere computed according to the EAM-like potentials with long-range atomic interactions
proposed byOuyang et al (2012) for Fe–Al intermetallic alloys. For the two superstructures on the body-centred
cubic lattice, the B2 phase with FeAl stoichiometry and theD03 phasewith Fe3Al stoichiometry, the resulting
lattice constants, elastic constants, heat of fusion, point defect formation enthalpies, and the phonon dispersions
were reported to agree verywell with available experimental data (Ouyang et al 2012). In the followingwewill
identify FewithA andAlwith B.

We implemented a grand-canonicalMonte Carlo simulation, where a lattice site is chosen stochastically and
its occupation isflippedwith a probability that depends on the difference in the internal energies of the original
and theflipped configuration and on a chemical potential. In order to achieve high efficiencies in the face of
highly differing sublattice occupations, we allowed for a bias in attempt frequencies: specifically, if for a given
sublattice the trial frequency for A B swaps is w A B and analogously for the reverse transition, then
performing the exchangeswith probabilities

w
w

=
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fulfills detailed balance (Hastings 1970). Note that hereDH incorporates both the differences in internal energy
aswell as the effect of the chemical potential.We implemented this bias by keeping lists of the sites on each
sublattice occupied by either element. Choosing w w A B B A approximately as x xc cB A (butfixed for the
duration of the simulation)maximizes the acceptance rate and therefore the efficiency.We ensured the correct
composition of the system via a temperature-dependent chemical potential.We simulate a physically
meaningful evolution of time by incrementing at each trial with an exponentially-distributed randomvariable
with a parameter according to the instantaneous trial frequency, which depends on the sublattice occupations.

We considered two statistical ensembles. The on-lattice approach constrains the atoms to their periodical
lattice sites, so that the occupations of the sites are the only degrees of freedom. In the off-lattice approach, the
atoms have the additional degree of freedomof deviating from their ideal positions. This was implemented by
shifting random single atoms by randomvectors and accepting themovewith theMetropolis probabilities. As
specific occupations of the lattice sites prefer specific off-lattice deviations (for instance, antistructure atoms of
the larger elementwill lead to outward relaxations), allowing this degree of freedom slows down the
occupational dynamics.We observed a slowing-down of about a factor of ten. Further, in the off-lattice
simulations the lattice parameter was considered as an additional degree of freedom subject toMetropolis
dynamics under zero external pressure, allowing the simulation cell to thermallyfluctuate in size and to expand
with increasing temperature.

We performed the averaging necessary to compute the simulated statistical parameters (such as the internal
energy, lattice constant, sublattice occupations and pair distribution functions) by an exact temporal integral
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over the configurations as opposed to the conventional sampling approach. This was implemented by keeping
records of the point in time a given quantity was changed the last time, and adding its value to the accumulating
averagewith aweight given by the elapsed timespanwhen it is changed the next time. For the example of the pair
distribution function, the neighbours of aflipped site are gone over, and the appropriate entry in the pair
distributions is incremented proportional to the age of the pair, which is theminimumof the age of the two
participating sites. Thanks to this approach and to the biasing discussed above, we can detect also correlations in
defect species that become very small at low temperature, whichwould not be possible by a sampling approach.

The size of the systemwith periodic boundary conditions for the simulation cell was chosen to be
´ =32 2 655363 atoms. By varying the simulation cell size, we have verified that this was large enough to avoid

seriousfinite-size effects, which is also corroborated by the sharpness of the ordering phase transitionwewill
report below. For being able to observe sizeable short-range order while still having access to large bcc andB2
phase regions, we used a composition of =c 54%A for the calculations. In the on-lattice case, we used a lattice
constant of a= 2.978Å at all temperatures, which is the low-temperature zero-pressure equilibrium value for
this composition. No vacant sites were allowed.

Ideally, in the off-lattice case atoms are kept on their position in the lattice only by the interactionswith their
neighbours. At elevated temperatures this would give a non-zero possibility for the system to transition towards
a neighbouring localminimumof the high-dimensional potential landscape even under the absence of point
defects, corresponding to diffusional jumps via somemechanism of direct exchange. This would break
neighbourhood relations and prohibit the computation of order parameters. Therefore, during atom
displacements we enforced the constraint that the position of each atom in relation to its eight direct neighbours
has to conform to the order relations on the lattice, specifically, along each dimension the coordinate of a given
central atomhas to be larger than those of the four neighbours on one side and smaller that those of the
neighbour on the other side.

Of course, this constraint suppressesmelting and leads to a different ensemble to be simulated.However, it is
plausible that significant probabilities of such large displacements would lead to amelting of the unconstrained
crystal, and indeed they appear only at temperatures where the lattice parameter has expanded by 3% and root-
mean-square displacements with respect to the nearest neighbours have reached 18%of the nearest-neighbour
distance. Following the Lindemann criterion (Grimvall and Sjödin 1974), we assume that the range of existence
of the crystal has been covered and stop our simulation at this point. In contrast, in the on-lattice ensemble the
atoms arefixed to their lattice sites so that crystals of arbitrarily large temperature can be considered and
simulated.

4. Results

As themost obvious aspect of chemical ordering in the system, long-range order was calculated as a function of
temperatures in keepingwith (3). Results are shown infigure 1. They display the prototypical behaviour of Ising-
like systemswith only finite-energy excitations, so that the order parameter converges to its zero-temperature
value faster than any power law. Specifically, below about T0.5 c the system is practically fully long-range
ordered, that is, the α sublattice is occupied exclusively byA atoms, while the surplus of A atoms leads to
constitutional antisites on the β sublattice.

Figure 1. Long-range order parameter η as a function of temperature for on- and off-lattice approaches.
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Further, it is evident that the choice of the statistical ensemble has a significant effect on the bcc↔B2 phase
transition temperature, with k TB c equal to 0.282 eV in the on-lattice case and about 0.183 eV in the off-lattice
case. This is not surprising for two reasons:first, it is widely assumed (Fultz 2010) that oscillatory normalmodes
in a given system get softer with disorder, thereby increasing vibrational entropy and lowering the free energy of
the disordered phase. Of course, the systemhas this freedomonly in the off-lattice approach, whichwould imply
a lowering of the critical temperature compared to the on-lattice case. Second, the relaxations around
antistructure atomsmentioned above decrease their formation energy compared to the on-lattice case. This
results in disorder being also less costly in energy in case of the off-lattice approach.

The temperature-dependent short-range order parameters for thefirst four neighbouring shells were
calculated according to (1). The results are given infigure 2. It can be seen that at low temperatures, where the
system iswell ordered, the classical short-range order parameters do not deviate appreciably from the
appropriate non-correlated values according to (5). This holds true evenmore for the inter-sublattice
parameters, as the vanishing antisite concentration on theα sublattice ac

B does not allow for any correlations to
develop. For the intra-sublattice parameters very small deviations are discernible at low temperatures, which
have to be due to short-range ordering of the constitutional antisites on the β sublattice. In contrast, on the high-
temperature side sizeable short-range correlations are stable to the highest simulated temperatures, which, as
was to be expected, are largest for closest neighbours.

While the classical short-range order parameters are sufficient to calculate the total occupational scattering
according to (2), in the long-range ordered phase a large fraction of this intensity goes into the superstructure
peaks. For discussing additional short-range order (or equivalently diffuse scattering), we also computed the
sublattice-resolved short-range order coefficients according to (6). Results are shown infigure 3.

From the on-lattice results it is evident that aboveTc the two sublattices are equivalent, and therefore the
pertaining short-range order parameters are equal, and, as can be deduced from (7), they are also equal to the
classical parameters infigure 2.Obviously also aboveTc, the short-range order already hints at the eventual B2
symmetry breaking, as the inter-sublattice parameters are consistently negative, corresponding to a preference
for pairs of unlike atoms if the sites are on different sublattices. Long-range order as illustrated infigure 1
obviously is not sensitive to these issues.Mutatis mutandi, the same holds for the intra-sublattice parameters.
Here it is worth pointing out that, perhaps contrary to intuition, over awide temperature range correlations over
á ñ220 are stronger than those over á ñ200 , even though the latter correspond to smaller separations.

The general behaviour of negative inter- and positive intra-sublattice short-range order parameters persists
also someway belowTc, while the antisite concentration on the α-sublattice is becoming increasingly smaller
and correlations between these antisites vanish. The constitutional antisites on the β-sublattice, on the other
hand, develop a characteristic signature corresponding to an increasing preference for nearest-neighbour pairs
of unlike atomswithin the sublattice. This suggests that the systemwould undergo D03 ordering at even lower
temperatures. Further, it is remarkable that up to a nonlinear rescaling of temperature, the off-lattice short-
range order parameters behave quantitatively very similar to the on-lattice parameters.

The short-range order diffuse scattering intensity as given by (2) is depicted infigure 4. For the two chosen
temperatures both above and belowTc, the diffuse scattering looks qualitatively very similar. However, while the
intensity stays roughly constant at theΓ point, it decreases pronouncedly over the rest of the Brillouin zone
during the ordering of the system.Note that the integrated scattering that is due to the sites of a lattice being

Figure 2.Classical short-range order parameter almn as a function of temperature for the on-lattice approach. Values were calculated
according to (1). The solid black lines correspond to the values under absence of local short-range ordering according to (5).
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occupied by idealized point-like scatterers (as assumed in the definition of short-range order intensity) does not
depend on the arrangement of the scatterers.When long-range ordering is present, the δ-like superstructure
peaks compensate the reduction in short-range order diffuse scattering intensity. This is a consequence of a
version of Parseval’s theorem,which relates the squared l2-normof a function on a lattice (here the scattering
lengths) to the squared L2-normof its Fourier transform (here the intensity). The Laue unit is chosen just so that
themean intensity is unity. If there is no long-range order, this directly holds also for the diffuse short-range
order intensity. Under non-zero long-range order, on the other hand, the super-structure peaks account for a
part of this scattered intensity, which in turn decreases themean diffuse intensity.

Apart from the decrease in intensity, the figures also demonstrate that the short-range order diffuse
scattering in general has only the periodicity of the reciprocal lattice of the Bravais lattice. In the present case,
only at very low temperatures, where because of the vanishing antisite concentration on the α-sublattice all inter-
sublattice parameters go to zero, the short-range order intensity would increasingly display the simple-cubic
reciprocal-space symmetry of the B2 structure.

5. Conclusion

In the theoretical part of this work, we have shown how for long-range ordered systems the classical short-range
order coefficients can be split into a term that depends only on the degree of long-range order and a term that is
due to actual short-range order. Thefirst termdepends only on the sublattices the respective sites are on and
does therefore not decaywith distance. It is responsible for the sharp super-structure peaks. The second term
represents deviations in the correlations in pair occupations from the long-range order term. For vectors in the

Figure 3. Sublattice-resolved chemical short-range order according to (6). Inter-sublattice (x c¹ ) parameters are illustrated in the
left panel, intra-sublattice (x c= ) parameters in the right, where dashed lines represent parameters for themajority atom sublattice
and dotted lines parameters for theminority atom sublattice with structural antisites at low temperatures. Off-lattice values are shifted
with respect to on-lattice values, and drawn only up to themelting of the system.

Figure 4.Diffuse scattering above (left) and below (right) the bcc↔B2 transition, computed in the on-lattice approach for
=k T 0.35 eVB and 0.25 eV, respectively. The intensity is depicted over all facets of the irreducible element of the bcc Brillouin zone (a

model of which can be prepared by cutting and folding back along the dashed lines).
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structure’s Bravais lattice, i.e. vectors that connect sites within a given sublattice, this short-range order term can
further bewritten as a sumof parameters of correlationswithin the distinct sublattices.

Going beyond standardMetropolis simulations, we have presented an implementation of aMonte Carlo
simulation inHastings’ framework, with a site-age based computation of the desired statistical quantities. These
two complications allowed for an efficient study also of the very rare defects on themajority sublattice of an off-
stoichiometric system.We simulated according to an EAMmodel of the Fe–Al system and demonstrated an
increase in disordering temperaturewhen constraining the atoms to the ideal lattice positions.

Finally, as an exemplary use of the formalism introduced in thefirst part of this work, we computed the
evolution of the distinct short-range order coefficients with temperature, showing an increase of short-range
order correlations with decreasing temperature in the disordered phase, with amaximumat the ordering
temperature, and a successive decrease as the correlations become long-ranged.We also illustrated the
corresponding diffuse scattering.

Additionally we could show that even though on-lattice and off-lattice simulation approaches show
qualitatively similar results for ordering parameters, the differences can not be neglected.

Apart from exemplifying the concepts as done here, it is also conceivable to use simulations of diffuse
scattering as substitutes for experimental data when short-range order information is necessary. Specifically, this
pertains to the problemof datamodelling in atomic-scale x-ray photon correlation spectroscopy (aXPCS)
(Leitner 2012, Stana et al 2014), where in the simplest approximation (Leitner andVogl 2011) themeasured
q -dependent correlation times are a product of the short-range order diffuse scattering and a factor depending
on the jump geometry. Only in rare cases (Leitner et al 2009) experimental short-range order data is available for
the same composition and temperature range (Schönfeld et al 1999), or simple qualitativemodels such as
nearest-neighbour site exclusions (Stana et al 2013) can describe the data. In the general case, simulations of the
diffuse intensity as presented here can serve as a starting point for interpretation (Stana et al 2016). Further,
studies as presented here can also be used to test potentials against each other or against experimental data, as the
diffuse short-range order intensity is sensitive tominute details of the atomic interactions.
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