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1 Introduction

The choice of the evolution variable in the QCD evolution of the partonic densities is one

of the key issues in the construction of any Monte Carlo parton shower [1]. The most

popular choices are related to the virtuality, angle or transverse momentum of the emitted

partons [2–4]. At the leading order (LO) level, commonly used for the simulations, the

splitting functions are identical for all variables. In this note we investigate whether it is

the case also beyond the LO. To calculate the evolution kernels we use slightly modified

methodology of the Curci-Furmanski-Petronzio classical paper [5]. It is based on the direct

calculation of the contributing Feynman graphs in the axial gauge, cf. [6]. The graphs are

extracted by means of the projection operators which act by closing the fermionic or gluonic

lines, putting the incoming partons on-shell and extracting pole parts of the expressions.

The distinct feature of this approach is the fact that the singularities are regularized by

means of the dimensional regularization, except for the “spurious” ones which are regulated

by the principal value (PV) prescription. To this end, a dummy regulator δ is introduced

with the help of the replacement

1

ln
→ ln

(ln)2 + δ2(pn)2
. (1.1)
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Figure 1. Real graphs with double poles contributing to the NLO non-singlet Pqq kernel. The

solid lines represent quarks and the dotted lines stand for gluons.

The regulator δ is directly linked to the definition of the PV operation and has a simple

geometrical cut-off-like interpretation. This way some of the poles in ε are replaced by the

logarithms of δ. For more details we refer to the original paper [5] or to later calculations,

for example [7–9]. The difference of our method with respect to the approach of [5] is the

use of the New PV (NPV) prescription which we have introduced in [10, 11]. NPV amounts

to the extension of the geometrical regularization to all singularities in the light cone l+

variable, not only to the “spurious” ones. This modification turns out to be essential, as

it further reduces the number of higher-order poles in ε by replacing them with the log δ

terms, and simplifies the contributions of the individual graphs.

There are three mechanisms which keep the kernel invariant under the change of the

cut-off: (1) Invariance of a particular diagram. This applies to all diagrams with the single

poles in ε. (2) Pairwise cancellation between the matching real and virtual graphs, as in

Vg and Vf graphs of figure 1. (3) Cancellation between a graph and its counter-term. This

is the case for ladder graphs. We will demonstrate that the mechanism (2) can fail already

at the NLO level.

Our plan is the following. We will individually analyse the most singular diagrams con-

tributing to the Pqq kernel. There are three graphs with second-order poles in ε contributing

to the kernel; they are depicted in figure 1. We will calculate the difference between the

kernel with the virtuality cut-off −q2 < Q2, as in the original paper [5], and with a set of

different cut-offs. The cut-offs we consider are: the maximum and the scalar sum of the

transverse momenta of the emitted partons, i.e. max{k1⊥, k2⊥} and k1⊥ + k2⊥, as well as

the maximum and the total rapidity of the emitted partons, i.e. max{k1⊥/α1, k2⊥/α2} and

|~k1⊥ + ~k2⊥|/(α1 + α2).1 The calculation will show that three of these cut-offs leave the

kernel unchanged with respect to the standard MS result, whereas, the one on the maxi-

mum of the transverse momenta leads to the change of the kernel. We will demonstrate in

detail the mechanism of this change and we will formulate a general rule to identify cut-offs

leading to it.

We will start with the diagram named Vg and its sibling Vf. Next, we will discuss the

ladder graph Br and its counter term, Ct. Our analysis will demonstrate that only the Vg

and Vf diagrams depend on the chosen cut-off variable. In the case of the ladder graph the

counter term cancels the dependence. Finally, we will comment on why the graphs with

1We define ki⊥ ≡ |~ki⊥|.
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Figure 2. The graph Yg contributing to the NLO non-singlet Pqq kernel. The solid lines represent

quarks and the dotted lines stand for gluons.

only single ε poles do not contribute. This is also the reason why NPV is instrumental:

it replaces 1/ε3 poles of the diagram Yg (depicted in figure 2) by the single poles and

logarithms of the regulator δ. As a consequence, this diagram does not contribute in NPV,

whereas it would have a nontrivial contribution in the original PV prescription.

2 Diagram Vg

In order to establish our notation and conventions, we give explicitly the starting formula

for the contribution of the diagram Vg, corresponding to figure 1:

ΓG = cVGg
4 x PP

[
1

µ4ε

∫
dΨδ

(
x− qn

pn

) 1

q4
WG

]
, (2.1)

dΨ =
dmk1

(2π)m
2πδ+(k2

1)
dmk2

(2π)m
2πδ+(k2

2) = (2π)−2m+2 1

4

dα1

α1

dα2

α2
dm−2~k1⊥d

m−2~k2⊥, (2.2)

cVG =
1

2
CGCF , (2.3)

WG =
1

4qn

1

k4
Tr
(
n̂q̂γµp̂γλq̂

)
dν′′ν′(k2)dµµ′′(k1 + k2)dλ′′µ′(k1)dµ′λ(k1 + k2)

× V (kµ
′′

1 + kµ
′′

2 ,−kν′′2 ,−kλ′′1 )V (kµ
′

1 , k
ν′
2 ,−kλ

′
1 − kλ

′
2 ). (2.4)

We work in m = 4 + 2ε dimensions. The Sudakov variables are defined with the help of

the light-like vector n and the initial-quark momentum p:

ki = αip+ α−i n+ k
(m)
i⊥ , qi = xip+ x−i n+ q

(m)
i⊥ , (2.5)

p = (P,~0, P ), n =
( pn

2P
,~0,− pn

2P

)
. (2.6)

Note that the vector symbol ~ denotes (m − 2)-dimensional Euclidean vectors in the

transverse plane. Let us introduce the new integration variables, ~κ1 and ~κ2, instead of ~k1⊥
and ~k2⊥:

~k1⊥ = ~κ1 − ~κ2, ~k2⊥ =
α2

α1
~κ1 + ~κ2, (2.7)

i.e. ~κ1 =
α1

α1 + α2

(
~k1⊥ + ~k2⊥

)
, ~κ2 =

α1α2

α1 + α2

(
~k2⊥
α2
−
~k1⊥
α1

)
, (2.8)

– 3 –
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∂~k1⊥~k2⊥
∂~κ1~κ2

=

(
1− x
α1

)m−2

, (2.9)

dΨ = (2π)−2m+2 1

4

dα1

α1

dα2

α2

(
1− x
α1

)m−2 1

4
dκ2

1dκ
2
2dΩ

(1)
m−3dΩ

(2)
m−3κ

m−4
1 κm−4

2 . (2.10)

The benefit of these variables is the diagonal form of the variables k2 and q2 in which our

formula is singular:

k2 =
(1− x)2

α1α2
κ2

2, −q2 =
1− x
α1

(
κ2

1

1

α1
+ κ2

2

x

α2

)
. (2.11)

The trace WG is of the form (θ is the angle between ~κ1 and ~κ2)

WG =
8

x (1− x)2

(
κ2

1

κ2
2

TGc2 cos2 θ +

√
κ2

1

κ2
2

TGc cos θ +
κ2

1

κ2
2

TGK + TGn

)
, (2.12)

TGc2 = 4 (1 + ε)
xα2

2

(1− x)2 , (2.13)

TGc = x (1 + x)

(
(1 + ε) 2 (α1 − α2)

α2

(1− x)2 +
α2 − α1

α1

)
, (2.14)

TGK =
α2

1 + α2
2

α2
1

(
1 + x2 + ε (1− x)2

)
+ α2

2 (1 + ε) , (2.15)

TGn = (1 + ε)
x2

(1− x)2 (α1 − α2)2 . (2.16)

This allows us to rewrite formula (2.1) as

ΓG = cVGg
4 x PP

[
1

µ4ε

∫
(2π)−2m+2 1

4

dα1

α1

dα2

α2

(
1− x
α1

)m−2

(2.17)

× 1

4
dκ2

1dκ
2
2dΩ

(1)
m−3dΩ

(2)
m−3κ

m−4
1 κm−4

2 δ1−x−α1−α2

× 1

q4

8

x(1− x)2

(
κ2

1

κ2
2

TGc2 cos2 θ +

√
κ2

1

κ2
2

TGc cos θ +
κ2

1

κ2
2

TGK + TGn

)]
.

2.1 Cut-off on max{k1⊥, k2⊥} < Q

Let us now perform the calculation of the Vg graph with the cut-off on the transverse

momentum: max{k1⊥, k2⊥} < Q. This diagram has two ε-type singularities, related to

1/q2 and 1/κ2
2 ∼ 1/k2. The kernel is constructed from the single-pole part of the diagram.

Therefore, if we were able to separate the part of the diagram containing a double pole,

we could considerably easier calculate the remaining single-pole part. This can be done if

we calculate the difference between max{k1⊥, k2⊥} < Q and the standard virtuality-based

cut-off −q2 < Q2. This way we exclude the region of the double ε pole. In the leftover

difference the dκ2
2 integral has to generate the single pole in ε and we can discard all terms

finite in ε.

– 4 –
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We now compute

∆Γk⊥−qV g = ΓG (max{k1⊥, k2⊥} < Q)− ΓG(−q2 < Q2). (2.18)

The −q2 > Q2 translates into (see eq. (2.11))

−q2 = c2
1κ

2
1 + c2

2κ
2
2 > Q2 ⇒

∫
0

dκ2
2(κ2

2)−1+ε

∫
(1/c1)2Q2−(c2/c1)2κ22

dκ2
1

(κ2
1)1+ε

(c2
1κ

2
1 + c2

2κ
2
2)2

, (2.19)

c2
1 =

1− x
α2

1

, c2
2 =

(1− x)x

α1α2
. (2.20)

In eq. (2.19) we have shown only the singular parts of the integrand. The singularities of the

integral are located at k2 = (1−x)2

α1α2
κ2

2 = 0, i.e. at κ2 = 0 and at −q2 = c2
1κ

2
1 +c2

2κ
2
2 = 0 i.e. at

κ1 = κ2 = 0. As we can see from (2.19), the q2 = 0 area is excluded due to the subtraction

of the ΓG(−q2 < Q2) which is available in the literature [5, 8]. The external integrals over

dα cannot contribute additional 1/ε poles as they are regulated by the NPV prescription.

This is one of the two key ingredients of the calculation. Since we are interested in the

pole part of ∆Γ, we can expand the dκ2 integrand in a standard way:

dκ2
2(κ2

2)−1+ε = dκ2
2

1

ε
δκ22=0 +O(ε0). (2.21)

This allows us to set κ2 to zero in the rest of the formula (2.17), both in the integrand and

in the integration limits. Furthermore, we can drop the terms TGc and TGn which do not

have singularities in κ2
2. Finally, we can set ε to zero in the remaining part of the formula.

Altogether we obtain

∆Γk⊥−qV g = cVGg
4 x(2π)−6 1

2

1

ε

1

x
PP

[∫
dα1

α3
1

dα2

α2

1

c4
1

δ1−x−α1−α2 (2.22)

×
∫

(1/c1)2Q2

dκ2
1

κ2
1

∫
dΩ

(1)
1 dΩ

(2)
1

(
TGc2 cos2 θ + TGK

)]
.

Next, we have to fix the upper limit of the dκ1 integral. We have

max{k1⊥, k2⊥} < Q

⇒ max

{
|~κ1 − ~κ2|,

∣∣∣∣α2

α1
~κ1 + ~κ2

∣∣∣∣} < Q

⇒ |~κ1 − ~κ2| < Q,

∣∣∣∣α2

α1
~κ1 + ~κ2

∣∣∣∣ < Q. (2.23)

We are interested in the limits for κ1 at the point κ2 = 0. Immediately from eq. (2.23)

we find

κ1 < Q,
α2

α1
κ1 < Q. (2.24)

– 5 –
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Comments are in order regarding the integration limits for both of the angular integrals.

One of the angles is trivial and covers the entire range (0, 2π), as the system has rotational

symmetry. The other angle, θ, between ~κ1 and ~κ2, has a non-trivial integration range,

which depends on the kappas and alphas. However, there is a subspace where this angle is

also unlimited. It is given by the conditions

κ1 + κ2 < Q,
α2

α1
κ1 + κ2 < Q. (2.25)

It just happens that in the limit κ2 = 0 eq. (2.25) coincides with the entire range of κ1.

This way we find (c0 = α2/α1)

min{Q2/c20,Q
2}∫

(1/c1)2Q2

dκ2
1

κ2
1

2π∫
0

dΩ
(1)
1

2π∫
0

dθ
(
TGc2 cos2 θ + TGK

)
(2.26)

=

(
θc0<1 ln c2

1 + θc0>1 ln
c2

1

c2
0

)
2π
(
πTGc2 + 2πTGK

)
=
(
θα2<α1 ln

1− x
α2

1

+ θα2>α1 ln
1− x
α2

2

)
4π2 α2

α1x
TS ,

TS = x(1 + x2)

(
1

(1− x)2
α1α2 +

α2
1 + α2

2

α1α2

)
. (2.27)

Going back to eq. (2.22) we obtain

∆Γk⊥−qV g = cVG
g4

(2π)4

1

2ε

1

x(1− x)2

∫
dα1dα2δ1−x−α1−α2

(
ln(1− x)− 4θα2<α1 lnα1

)
TS .

(2.28)

Performing the α-integrals we find

∆Γk⊥−qV g = cVG

(αS
π

)2 1

2ε

1+x2

1−x

[
ln

1

(1−x)

(
2I0+2 ln(1−x)− 11

6

)
−4

(
−11

12
ln 2+

131

144
−π

2

12

)]
,

(2.29)

where the symbol I0 denotes the IR-divergent integral regularized by means of the PV

prescription with the geometrical δ parameter:

I0 =

∫ 1

0
dα

α

α2 + δ2
= −1

2
ln δ2, (2.30)

I1 =

∫ 1

0
dα lnα

α

α2 + δ2
= −1

8
ln2 δ2 − π2

24
. (2.31)

The result (2.29) differs from the shift in virtual corrections shown later in section 4. We

have obtained a net change of the kernel.

2.2 Cut-off on k1⊥ + k2⊥ < Q

We have demonstrated in the previous section that the change of real and virtual Vg-type

diagrams do not compensate each other. Let’s consider the virtual correction Vg, figure 3.

– 6 –
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Figure 3. Real-virtual graph Vg contributing to NLO non-singlet Pqq kernel. The solid lines

represent quarks and the dotted lines stand for gluons.

The graph has one real gluon, labelled k, and the cut-off is unique and trivial: k⊥ ≤ Q.

However, if we look inside the graph we find two virtual momenta, k1 and k2, such that

k1 + k2 = k. Therefore, our k⊥-cut-off at the unintegrated level is |~k1⊥ + ~k2⊥| ≤ Q.

This cut-off can be problematic for the real gluons because it does not close the phase

space. We will get back to this issue in the next paragraph. For now, let us note that,

as argued in section 2.1, we calculate only the difference between the q2 and k⊥ cut-offs.

Therefore, we integrate only over the region singular in κ2, i.e. we expand the dκ2 integral

according to eq. (2.21). This introduces κ2
2 = [α1α2/(1 − x)2]k2 = 0, or, equivalently,

~k1⊥/α1 − ~k2⊥/α2 = 0. In this subspace the condition |~k1⊥ + ~k2⊥| ≤ Q simplifies to

κ2
1 ≤ [α1/(1−x)]2Q2 = [1/(1+c0)]2Q2. In analogy, the “scalar” condition |~k1⊥|+|~k2⊥| ≤ Q

simplifies to |~κ1| + |~κ1|(α2/α1) ≤ Q, i.e. κ2
1 ≤ [α1/(1 − x)]2Q2, identical to the previous

cut-off. Therefore, we expect that the “scalar” cut-off |~k1⊥|+ |~k2⊥| ≤ Q will give the result

compatible with the virtual correction. With this cut-off eq. (2.26) becomes

[1/(1+c0)]2Q2∫
(1/c1)2Q2

dκ2
1

κ2
1

2π∫
0

dΩ
(1)
1

2π∫
0

dθ
(
TGc2 cos2 θ + TGK

)
(2.32)

= ln
c2

1

(1 + c0)2
2π
(
πTGc2 + 2πTGK

)
= ln

1

1− x
4π2 α2

α1x
TS .

Consequently, eq. (2.28) becomes

∆ΓΣk⊥−q
V g = cVG

g4

(2π)4

1

2ε

1

x(1− x)2

∫
dα1dα2δ1−x−α1−α2 ln

1

1− x
TS (2.33)

= cVG

(αS
π

)2 1

2ε

1 + x2

1− x
ln

1

1− x

(
2I0 + 2 ln(1− x)− 11

6

)
. (2.34)

This way we reproduced result (2.29), but without the additional constant terms. It is

identical to the change in the virtual corrections and there is no modification of the kernel.

2.3 Cut-off on |~k1⊥ + ~k2⊥| ≤ Q

Let us come back to the cut-off on the vector variable |~k1⊥+~k2⊥| ≤ Q. It indeed allows for

the arbitrarily big values of |~ki⊥|. The question is however whether it leads to well-defined

and meaningful kernels? We will argue that it does.

– 7 –
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Translated into the κ-variables of eq. (2.8), the cut-off is simply κ1 ≤ α1/(1 − x)Q,

identical to the one of section 2.2. The ~κ2 = ~κ1 − ~k1⊥ variable is unbounded because so is
~k1⊥ (the ~k2⊥ can always be adjusted to fulfill the cut-off) and the angle is also unlimited,

0 ≤ θ ≤ 2π. Keeping in mind the discussion on the origin of the poles given around

eq. (2.21), we conclude that the upper limit on κ2 does not matter at all, and we can set

it to infinity as well. Repeating all the steps of section 2.2 we recover the result (2.34). In

other words, we have just shown that the cut-off |~k1⊥ +~k2⊥| ≤ Q leads to a proper kernel.

One may be worried weather the higher order terms of the ε-expansion of eq. (2.21)

are finite. To answer this question let us inspect the original equations (2.1) and (2.12). In

the limit κ2
2 →∞ we have −q2 ∼ (1− x)x/(α1α2)κ2

2 and we find the integrals of the type
∞∫
dκ2

2

{
1

(κ2
2)3

,
1

(κ2
2)5/2

,
1

(κ2
2)2

}
, (2.35)

which are integrable at the infinity. We conclude that the ε expansion of eq. (2.21) is legit-

imate and the cut-off |~k1⊥ + ~k2⊥| ≤ Q is self consistent. The open question is though how

will this cut-off perform with other graphs. Another question concerns its generalization

to more than two real partons.

2.4 Cut-off on rapidity

Let us briefly comment on the cut-off on rapidity. By rapidity we understand the quan-

tity a = |~k⊥|/α (massless) or a =

√
|~k⊥|2 + k2/α (massive). For the case of two emis-

sions the analogy to virtual graph leads to a = |~k1⊥ + ~k2⊥|/(α1 + α2) ≤ Q or a =√
|~k1⊥ + ~k2⊥|2 + (k1 + k2)2/(α1 + α2) ≤ Q. In the subspace κ2

2 ∼ k2 = 0 both formulas

coincide and both are identical to the k⊥-type formula with the cut-off Q shifted to Q(1−x)

in the k⊥-type formula. This is just the result we have obtained for the virtual corrections.

Another option is max{a1, a2} ≤ Q. One has ~a1 = (~κ1 − ~κ2)/α1 and ~a2 = ~κ1/α1 + ~κ2/α2.

At κ2 = 0 this leads to κ1/α1 ≤ Q or equivalently |~k1⊥ + ~k2⊥|/(α1 + α2) ≤ Q. This is

identical to the previous case, so we expect the result to be in agreement with the virtual

correction as well.

Let us compute the correction from the q2-type to a-type cut-off. To this end, we

generalize eq. (2.26), which is the k⊥-type, by replacing Q2 → Q2(1−x)σ in the upper limit:

σ = 2 corresponds to the rapidity case discussed here, σ = 0 is the k⊥ case (reference)

and σ = 1 is the virtuality case (the correction vanishes). This is so because: Σk⊥ =

((1 − x)/α1)2κ2
1 ≤ Q2 is described by eq. (2.26). a = k⊥/(1 − x) → κ1/α1 ≤ Q requires

multiplication of Q2 by (1− x)2 (with respect to the k⊥ case). −q2 → (1− x)κ2
1/α

2
1 ≤ Q2

requires multiplication of Q2 by 1− x.

[(1−x)σ/(1+c0)]2Q2∫
(1/c1)2Q2

dκ2
1

κ2
1

2π∫
0

dΩ
(1)
1

2π∫
0

dθ
(
TGc2 cos2 θ + TGK

)
(2.36)

= ln
c2

1(1− x)σ

(1 + c0)2
2π
(
πTGc2 + 2πTGK

)
= ln (1− x)σ−14π2 α2

α1x
TS .

– 8 –



J
H
E
P
0
8
(
2
0
1
6
)
0
9
2

κ1

κ2 κ1= Q

−q  =Q
0
22

Figure 4. The (κ1, κ2) plane. The cut-off κ1 ≤ Q is shown in dark blue. A family of other cut-off

lines is shown in light blue. At the bottom left the −q2 ≤ Q2
0 line is plotted in red. The singularities

lie at the origin of the frame (q2 = 0) and along the line κ22 ∼ k2 = 0. The integration path is the

thick black line along κ2 = 0 between the crossing points of −q2 = Q2
0 and the cut-off with the axis.

Consequently, eq. (2.28) becomes

∆Γσ−qV g = cVG
g4

(2π)4

1

2ε

1

x(1− x)2

∫
dα1dα2δ1−x−α1−α2 ln (1− x)σ−1TS

= cVG

(αS
π

)2 1

2ε

1 + x2

1− x
ln (1− x)σ−1

(
2I0 + 2 ln(1− x)− 11

6

)
. (2.37)

2.5 General rule

We can now generalize the analysis of the previous sections and formulate a more universal

rule for identifying the variables that do or do not change the NLO kernel.

In figure 4 we show the (κ1, κ2) plane. The blue cut-off ~κ1 ≤ Q is shown along with a

family of other cut-off lines. Some of them (blue) are equivalent if they cross the κ1-axis

at the same point. The cut-offs may close the κ2-direction from above or leave it open. At

the bottom left we plot the red −q2 ≤ Q2
0 line. The singularities lie at the origin of the

frame (q2 = 0) and along the line κ2
2 ∼ k2 = 0. The integration path is the thick line along

κ2 = 0 between crossing points of −q2 = Q2
0 and the cut-off with the axis.

The strategy we use is the following. We take a group of variables that coincide at

the LO level (i.e. for single emission), we express them in terms of the variables κ and set

κ2 = 0. All the variables that cross the κ1 axis at the same point will lead to the same

result. It is now a matter of choosing one of them, calculating the shift as outlined, and

comparing it with the shift in the virtual corrections. We collect the shifts in the virtual

corrections for the basic three types of variables in section 4.

3 Diagram Vf

Let us now perform the analysis of the Vf graph. It will heavily rely on the analysis done

for the Vg graph. Let us begin with the max{k1⊥, k2⊥} calculation. Our starting point is

– 9 –
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the diagram depicted in figure 1. The analytical formula is analogous to eq. (2.1):

ΓF = cVF g
4 x PP

[
1

µ4ε

∫
dΨδ

(
x− qn

pn

)
1

q4
WF

]
, (3.1)

cVF = CFTF , (3.2)

WF =
1

4qn

1

k4
Tr
(
n̂q̂γµp̂γλq̂

)
dµµ′′ (k1 + k2) Tr

(
k̂2γ

µ′′ k̂1γ
µ′
)
dµ′λ (k1 + k2)

=
32pn

4qn

1

(1− x)2

(
κ2

1

κ2
2

TFc2 cos2 θ +

√
κ2

1

κ2
2

TFc cos θ +
κ2

1

κ2
2

TFK + TFn

)
, (3.3)

TFc2 = −4x
α2

2

v2
, (3.4)

TFc = 2x (1 + x)α2 (α2 − α1)
1

v2
, (3.5)

TFK =
1

2
εv2α2

α1
+

1

2

(
1 + x2

) α2

α1
− α2

2, (3.6)

TFn = 4
x2

v2
α1α2. (3.7)

The calculation goes now in a complete analogy to the Vg case and we arrive at the adapted

version of eq. (2.28) into which we plug in the expression for the T
(F )
S function

∆Γk⊥−qV f = cVF
g4

(2π)4

1

2ε

1

x(1− x)2

∫
dα1dα2δ1−x−α1−α2

(
ln(1− x)− 4θα2<α1 lnα1

)
T

(F )
S ,

(3.8)

T
(F )
S =

α1

α2
x

(
1

2
T

(0)
Fc2 + T

(0)
FK

)
=

1

2
x(1 + x2)

(
−2

1

(1− x)2
α1α2 + 1

)
. (3.9)

Once the dα-integration is done we obtain the final result for the Vf graph with the cut-off

on max k⊥

∆Γk⊥−qV f = cVF

( α
2π

)2 2

ε

1 + x2

1− x

[
−1

3
ln(1− x) +

23

36
− 2

3
ln 2

]
. (3.10)

Let us discuss also the other choices of the cut-offs: the sum of k⊥, virtuality and rapidity,

labelled as σ = 0, 1, 2, respectively. For this purpose it is enough to repeat the analysis

and reuse the formulas for the Vg graph. The formula (2.37) can be directly used to give

∆Γσ−qV f = cVF
g4

(2π)4

1

2ε

1

x(1− x)2

∫
dα1dα2δ1−x−α1−α2 ln (1− x)σ−1T

(F )
S

= cVF

(αS
2π

)2 2

ε

1 + x2

1− x
1

3
ln (1− x)σ−1. (3.11)

∆ΓΣk⊥−q
V f = cVF

( α
2π

)2 2

ε

1 + x2

1− x

[
−1

3
ln(1− x)

]
, (3.12)

∆Γa−qV f = cVF

( α
2π

)2 2

ε

1 + x2

1− x

[
1

3
ln(1− x)

]
. (3.13)
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4 Virtual diagrams

The shift in the virtual corrections due to the change of the cut-off can be found in ref. [9].

The σ-dependence of each diagram is given there. One finds that there is no σ-dependence

for the C2
F -type graphs and the only ones that do depend on σ are Vg and Vf, see eqs.

(4.25) and (4.31) in ref. [9]. Here we quote the change with respect to the virtuality case:

∆Γσ−qvirt =
( α

2π

)2 1

2ε
CF

1 + x2

1− x

(
β0 − 4CA

(
I0 + ln(1− x)

))
lnσ−1(1− x). (4.1)

5 Combined Vg+Vf real diagrams

Let us combine the Vg and Vf real graphs for the case of max{k1⊥, k2⊥}. The formulas to

be added are (2.29) and (3.10) with cVG = (1/2)CFCA and cVF = CFTF :

∆Γk⊥−qV f+V g = CF

(αS
2π

)2 2

ε

1 + x2

1− x

[
−CA

(
I0 + ln(1− x)

)
ln(1− x)

+ CA
π2

6
− CA

1

16
+

1

4
β0 ln(1− x) +

1

2
β0 ln 2− 23

48
β0

]
, (5.1)

β0 =
11

3
CA −

4

3
TF . (5.2)

Anticipating the results of the following sections we can state that this result represents

the change of the Pqq kernel due to the real corrections when the evolution variable (cut-

off) is changed from the standard q2 one to the max{k1⊥, k2⊥}. Supplied with the virtual

corrections it will give the complete effect.

Let us combine also the σ-type cut-offs for the real Vf+Vg graphs

∆Γσ−qV f+V g = CF

(αS
2π

)2 1

2ε

1 + x2

1− x
ln (1− x)σ−1

[
−β0 + 4CA

(
I0 + ln(1− x)

)]
. (5.3)

6 Added real and virtual diagrams

We can now add changes of the real and the virtual Vf+Vg graphs. For the σ-type cut-offs

we observe that the contributions cancel each other and there is no net effect, as expected.

The situation is different for the cut-off on max{k1⊥, k2⊥}, where we find the following shift

∆Γk⊥−qV f+V g,R+V = CF

(αS
2π

)2 1

2ε

1 + x2

1− x

[
CA

2π2

3
− CA

1

4
+ 2β0 ln 2− 23

12
β0

]
. (6.1)

This result can be translated into the kernel Pqq which is the residue of Γ [5]:

Γ = δ1−x +
1

ε

[( α
2π

)
P (1) +

1

2

( α
2π

)2
P (2) + . . .

]
, (6.2)

Pqq =
( α

2π

)
P (1) +

( α
2π

)2
P (2) + . . . , (6.3)

– 11 –
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and we obtain the following change of the Pqq kernel

Pqq(max{k1⊥, k2⊥} < Q)− Pqq(−q2 < Q2) =

= CF

(αS
2π

)2 1 + x2

1− x

[
CA

(2π2

3
− 1

4

)
+ β0

(
2 ln 2− 23

12

)]
. (6.4)

This is the central new result of this paper.

7 Br (ladder) graph and counter term

We now turn to the ladder graph and the counter term associated with it, shown in figure 1.

Both of them have double ε poles and therefore can be modified once the evolution variable

changes. However, we will demonstrate that their difference remains unchanged.

The contribution ΓBr of the ladder graph is similar to the one given for the Vg graph

in eqs. (2.1), (2.2)

ΓBr = C2
F

g4 x

(2π)6
PP

[
(2π)−2ε

µ2ε

∫
dα2

2α2
d2+2ε~k2⊥

(2π)−2ε

µ2ε

∫
dα1

2α1
d2+2ε~k1⊥δ1−x−α1−α2

1

q4

1

q4
1

WBr

]
.

(7.1)

WBr =
1

4qn
Tr
(
n̂q̂γ̂µq̂1γ̂

αp̂γ̂β q̂1γ̂
ν q̂
)
dαβ(k1)dµν(k2). (7.2)

=
4

xα1α2

k2
1⊥
α1

(k2
1⊥
α1

T1 +
k2

2⊥
α2

T2 + 2~k1⊥ · ~k2⊥T3

)
, (7.3)

T1 = (x2 + x2
1 + 1)(1− x1)(x1 − x) +O(ε), (7.4)

T2 =
(
1 + x2

1 + ε(1− x1)2
)(
x2 + x2

1 + ε(x1 − x)2
)
, (7.5)

T3 = x1(x2 + x2
1 + 1) +O(ε), (7.6)

q2
1 = −

k2
1⊥
α1

= −
q2

1⊥
α1

. (7.7)

As before, we will calculate only the difference w.r.t. the result with cut-off on the virtuality,

−q2 < Q2. Therefore, the pole coming from the 1/q2 integrand is eliminated and we are

forced to keep only terms that generate the ε pole from the dk2
1⊥ integral. This means that

we keep only T2, set to zero all other ε-terms and expand dk2
1⊥-integral, i.e.

T1 = T3 = 0,

ε→ 0 except k2ε
1⊥, (7.8)∫

dk2
1⊥k

−2+2ε
1⊥ → 1

ε

∫
δ(k2

1⊥)dk2
1⊥.

This way we obtain

Γ
(q)
Br = C2

F

g4

(2π)6
4PP

[ ∫
−q2>Q2

dα2

2α3
2

d2~k2⊥

∫
dα1

2α1
d2+2ε~k1⊥δ1−x−α1−α2

k2
2⊥
q4

1

k2
1⊥
T2(ε = 0)

]
.

(7.9)
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The matching counter term ΓCtBr differs only by the “split” of the trace W ct
Br and an

additional projection operator. The projection operator performs two actions: picks the ε-

poles and sets on-shell the incoming quark (q1 in our case). These are minor modifications

to (7.1), (7.3):

ΓCtBr = C2
F

g4 x

(2π)6
PP

[
(2π)−2ε

µ2ε

∫
−q2>Q2

dα2

2α2
d2+2ε~k2⊥

1

q4
WBr2

∣∣∣∣
q21=0

× PP

(
(2π)−2ε

µ2ε

∫
dα1

2α1
d2+2ε~k1⊥

α2
1

k4
1⊥
WBr1δ1−x−α1−α2

)]
, (7.10)

where

WBr2 =
1

4qn
Tr
(
n̂q̂γ̂µq̂1γ̂

ν q̂
)
dµν(k2)∣∣∣

q21=0

= −2q2 1

xα2
(x2

1 + x2 + ε(x1 − x)2), (7.11)

WBr1 =
1

4q1n
Tr
(
n̂q̂1γ̂

αp̂γ̂β q̂1

)
dαβ(k1) = −2q2

1

1

x1α1
(1 + x2

1 + ε(1− x1)2), (7.12)

and thanks to the condition q2
1 = 0:

q2
1 = −

k2
1⊥
α1

, q2
∣∣∣
q21=0

= −x
(
k2

1⊥
α1

+
k2

2⊥
α2

)
− k2
⊥

∣∣∣
k21⊥=0

= −
x1k

2
2⊥

α2
. (7.13)

We obtain

ΓCtBr=C2
F

g4

(2π)6
4PP

[ ∫
−q2>Q2

dα2

2α3
2

d2~k2⊥
k2

2⊥
q4

∣∣∣∣
q21=0

∫
dα1

2α1
d2+2ε~k1⊥

1

k2
1⊥
δ1−x−α1−α2T2(ε = 0)

]
.

(7.14)

It is easy to verify now that these two quantities, ΓBr and ΓCtBr, are identical under the

conditions (7.8) and the net change of the kernel is zero.

In appendix A we evaluate the change of the ladder graph alone caused by the change

of the cut-off. This quantity is of interest, for example, in the construction of Monte

Carlo algorithms.

8 Conclusions

In this paper we have discussed the change of the DGLAP kernel Pqq due to the change

of the evolution variable within the CFP scheme. We have demonstrated that at the NLO

level majority of the choices of the evolution variables lead to the same kernel, but there are

ones, like the maximal transverse momentum, that correspond to the modified kernel. We

have explained the mechanism responsible for the change and we have formulated a simple

rule to identify classes of variables that leave the kernel unchanged at the NLO level.

There is an important open question related to our analysis: is the kernel dependence

specific to the CFP method and specifically to the presence of the geometrical cut-off δ?

If all the singularities, including the “spurious” ones, were regulated by the dimensional

– 13 –
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regularization, the structure of the ε poles would be more complex, more graphs would have

higher-order poles in ε and would contribute to the modification of the kernel. This would,

however, be a surprising result showing that the choice of the seemingly dummy technical

regulator has physical consequences. The same question holds for the modification of the

original PV prescription of [5] to the NPV one used in this note.

Of course, this question can be addressed also from the perspective of different methods

which employ calculation of the total cross sections for physical processes to obtain splitting

functions. Such a viewpoint would allow us to interpret our result in terms of a finite scheme

transformation. This however, goes beyond the scope of the current work and we leave it

for a future study. Our current results are valid within the CFP method.
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A Change of ladder graph with cut-off

In the appendix we calculate the change of the ΓBr for various cut-offs as it can be useful in

constructing Monte Carlo algorithms. Let us continue with eq. (7.1) and let us implement

the conditions (7.8):∫
d2+2ε~k1⊥

1

k2
1⊥

=

∫
1

2

dk2
1⊥

k2
1⊥

k2ε
1⊥dΩ

(k1⊥)
1+ε →

∫
1

2
dk2

1⊥
1

ε
δ(k2

1⊥)dΩ
(k1⊥)
1 = 2π

1

2ε
(A.1)∫ U

L
d2+2ε~k2⊥

1

k2
2⊥
→
∫ U

L

1

2
dk2

2⊥k
−2
2⊥dΩ

(k2⊥)
1 = π ln

U

L
. (A.2)

The lower limit on the integral d2+2ε~k2⊥ follows from the fact that we compute the difference

w.r.t. the virtuality-based formula. This leads to the condition

Q2 < −q2 =
x1k

2
2⊥

α2
→ k2

2⊥ > Q2α2

x1
. (A.3)

The upper limit depends on the chosen evolution variable. We will examine a few cases.

The cut-offs and their simplified versions once the condition (A.1), i.e. k1⊥ = 0, is applied

are as follows:

(A) : max{k1⊥, k2⊥}
(B) : k1⊥ + k2⊥
(C) : max

{
k1⊥
α1
, k2⊥α2

}
(D) : |~k1⊥+~k2⊥|

α1+α2


k1⊥=0
=⇒


(A) : k2⊥ < Q

(B) : k2⊥ < Q

(C) : k2⊥ < α2Q

(D) : k2⊥ < (1− x)Q

(A.4)

eq. (7.1) transforms now into

∆ΓU−q
2

Br = C2
F

( α
2π

)2
[∫

dα2

α2
ln
U

L

∫
dα1

α1

1

2ε
δ1−x−α1−α2

1

x2
1

(
1 + x2

1

)(
x2 + x2

1

)]
. (A.5)

Let us continue with each case separately.
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Cases (A) and (B): max{k1⊥, k2⊥} and k1⊥ + k2⊥

Γk⊥−q
2

Br = C2
F

( α
2π

)2 1

2ε

1−x∫
0

dα1

α1α2

1

x2
1

(
1 + x2

1

)(
x2 + x2

1

)
ln
x1

α2
(A.6)

= C2
F

( α
2π

)2 1

2ε

1

1− x

1−x∫
0

dα1(U0 + Ul + Uu),

U0 =
( 1

1− x1
+

1

x1 − x

) 1

x2
1

(
1 + x2

1

)(
x2 + x2

1

)
ln

x1

x1 − x
− Ul − Uu, (A.7)

Ul =
1

1− x1
2(1 + x2) ln

1

1− x
, (A.8)

Uu =
1

x1 − x
2(1 + x2) ln

x

x1 − x
, (A.9)

where we have subtracted and added the singular integrals of the I0,1 type. The direct

integration gives

1−x∫
0

dα1U0 = −(1− x)2 + (1 + x2) ln2 x+ (1 + 3x2)
π2

6
+ 2(1− x)2 ln(1− x)

− (x2 − 1)Li2(x) + x(1− x) lnx (A.10)

1−x∫
0

dα1Ul = 2(1 + x2)(I0 + ln(1− x)) ln
1

1− x
(A.11)

1−x∫
0

dα1Uu = 2(1 + x2)(I0 + ln(1− x)) lnx− 2(1 + x2)
(
I1 +

1

2
ln2(1− x)

)
= 2(1 + x2)

(
−I(1−x)

1 + I
(1−x)
0 ln

x

1− x

)
, (A.12)

where

I
(1−x)
0 = I0 + ln(1− x),

I
(1−x)
1 = I1 − I0 ln(1− x) +

1

2
ln2(1− x).

(A.13)

Hence

Γk⊥−q
2

Br = C2
F

( α
2π

)2 1

2ε

[
−(1− x)− (1 + x)

π2

6
+ 2(1− x) ln(1− x) + (1 + x)Li2(x)

+ x lnx+ 2
1 + x2

1− x

(
−I(1−x)

1 + I
(1−x)
0 ln

x

(1− x)2
+

1

2
ln2 x+

π2

6

)]
. (A.14)

Case (C): max
{
k1⊥
α1
, k2⊥
α2

}
Γ
k⊥/a−q2
Br = C2

F

( α
2π

)2 1

2ε

1−x∫
0

dα1

α1α2

1

x2
1

(
1+x2

1

)(
x2+x2

1

)
ln(x1α2) (A.15)
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= C2
F

( α
2π

)2 1

2ε

[
1−x+(1+x) ln2 x+(1+x)

π2

6
−2(1−x) ln(1−x)−(2−x) lnx

− (1+x)Li2(x)+2
1+x2

1−x

(
I

(1−x)
1 +I

(1−x)
0 ln

(
x(1−x)2

)
−π

2

6
+

1

2
ln2 x

)]
. (A.16)

Case (D): |~k1⊥ + ~k2⊥|/(α1 + α2)

Γ
k⊥/(1−x)−q2
Br = C2

F

( α
2π

)2 1

2ε

1−x∫
0

dα1

α1α2

1

x2
1

(
1 + x2

1

)(
x2 + x2

1

)
ln
x1(1− x)

α2

= C2
F

( α
2π

)2 1

2ε

[
−(1− x)− (1 + x)Li2(1− x) + x lnx

2
1 + x2

1− x

(
−I(1−x)

1 + I
(1−x)
0 lnx+

π2

6
+

1

2
ln2 x

)]
. (A.17)
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