
ACTA PHYSICA POLONICA A No. 2 Vol. 143 (2023)

Proceedings of the 20th National Conference on Superconductivity “New Phases, Concepts and Advances”

Degree of Atomicity in the Chemical Bonding:
Why Return to the H2 Molecule?

M. Hendzel and J. Spałek∗

Institute of Theoretical Physics, Jagiellonian University, Łojasiewicza 11, PL-30348 Kraków,
Poland

Doi: 10.12693/APhysPolA.143.189 ∗e-mail: jozef.spalek@uj.edu.pl

We analyze two-particle binding factors for the case of the H2 molecule with the help of our original
exact diagonalization ab initio approach. Explicitly, we redefine the many-particle covalency and ionicity
factors as a function of interatomic distance. Insufficiency of those basic characteristics is stressed, and
the concept of atomicity is introduced and corresponds to the Mott and Hubbard criteria concerning
the electron localization in many-particle systems. This additional characteristic introduces atomic
ingredients into the essentially molecular states and thus eliminates a spurious behavior of the standard
covalency factor with the increasing interatomic distance, and also provides a physical reinterpretation
of the chemical bond’s nature.
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1. Introduction

The concept of the chemical bond as the fun-
damental quantum–mechanical characteristic of
molecules such as H2 was firmly established by
Heitler–London [1] in 1927. This, by today’s stan-
dards, pioneering quantitative paper was based
on the Hartree–Fock approximation for the two-
particle wave function of the two electrons in an H2

molecule. Later, the two-particle function has been
expressed by the corresponding atomic 1s hydrogen
wave functions in the form of symmetrized prod-
uct of its spatial part with an antisymmetrized spin
part, the latter reflecting the spin-singlet ground
state. Such a selection of the component atomic
wave functions represented a rather drastic approx-
imation and has been corrected subsequently by
selecting the superposition of those single-particle
atomic wave functions into molecular single-particle
wave functions centered on individual atoms, which
have been subsequently brought into a proper two-
particle form [2]. This whole procedure established
a canonical viewpoint of the covalent bond, with
a degree of ionicity (double occupancy of individual
atoms) introduced ad hoc to it later (valence bond
theory) [2]. The theory of bonding reached its ma-
ture form with an excellent series of papers by Kołos
and Wolniewicz [3, 4], which included higher (virtu-
ally) excited states, supplemented with the nuclear
vibrations [5] to a fully quantitative form, which
has been subsequently tested experimentally since

the bonding in H2 molecule represents one of the
tests of quantum–mechanical-theory verification in
quantum chemistry [6].

In this brief paper, we address, first of all, the
question of why we must realize that there is a need
to return to the problem origins of the bonding na-
ture in the H2 molecule. Namely, we have observed
recently that the two-electron wave function, rep-
resenting the single bond, composed of originally
1s electrons of hydrogen atoms, contains an inher-
ent inconsistency when we interpret covalency in
the standard manner [7, 8]. Explicitly, when start-
ing from an exact solution of the Heitler–London
problem (with proper molecular single-particle wave
functions included at the start), we have detected
that the covalency increases with the increasing
distance between the nuclei, a clearly unphysi-
cal feature. As a subsidiary observation, we have
noted that the Heitler–London (Hartree–Fock) two-
electron wave function leads to a nonzero (actually,
maximal) value of covalency in the limit of entirely
separated atoms. Such inconsistencies have been
brought to our attention the old concept of Mott [9]
concerning electron localization in condensed mat-
ter physics (see also [10, 11]). In effect, we have de-
cided to introduce the concept of atomicity in the
context of correlated molecular electronic states [7].
This concept represents a novel nontrivial feature of
the chemical bond since it is introduced as an exter-
nal factor into an essentially molecular (collective)
language of the covalent bonding, including also
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ionicity. Hence, in this paper, we summarize and
mainly interpret our recent results [7, 8], which,
in our view, provide a connection between (cor-
related) states of small molecules and condensed
matter physics, as well as delineate the essential
difference between the two.

The structure of this paper is as follows. In
Sect. 2, we briefly summarize our method, and in
Sect. 3, regarded as the main part, we discuss our re-
sults and their meaning. This is followed in Sect. 4,
in which we summarize and briefly overview our
approach. In general, the aim of the paper is to
supplement previous papers [7, 8] with a detailed
discussion and interpretation of the results. Such
a discussion may be of importance when the con-
cept of atomicity is analyzed for more complicated
bonds such as C–C in hydrocarbons. The connect-
ing link between the condensed matter localization
and molecular atomicity may be then applied to
other nano-systems as well [11].

2. Method

Our approach is based on the exact diagonaliza-
tion ab initio (EDABI) method, which has been pro-
posed and developed in our group [12, 13]. Here we
use this method to provide complementary bonding
characteristics on the example of the H2 molecule.
The starting Hamiltonian, containing all Coulomb
interactions, formulated in the second quantization
language, is of the form

Ĥ = εa
∑
i

n̂iσ +
∑
ijσ

′
tij â

†
iσ âjσ + U

∑
i

n̂i↑ n̂i↓

+
1

2

∑
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1

2

∑
ij

′
JHij

(
Ŝi · Ŝj −

1

4
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Vij(n̂iσ + n̂jσ)(â
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(1)

where h.c. denotes the Hermitian conjugation; âiσ
(â†iσ) are fermionic annihilation (creation) opera-
tors for state i and spin σ; n̂iσ ≡ â†iσâiσ and
n̂i ≡ n̂i↑ + n̂i↓ ≡ n̂iσ + n̂iσ̄. The spin operators are
defined as Ŝi ≡ 1

2

∑
αβ â

†
iασ

αβ
i âiβ with σi represent-

ing Pauli matrices. The primed summations mean
that i 6= j. The Hamiltonian contains the atomic
and hopping parts (∝ εa and tij , respectively),
the so-called Hubbard term ∝ U representing the
intra-atomic interaction between the particles on
the same atomic site i with opposite spins, the direct
intersite Coulomb interaction ∝ Kij , Heisenberg ex-
change ∝ JHij , and the two-particle and the corre-
lated hopping terms (∝ J ′ij and Vij , respectively).
The last term describes the ion–ion Coulomb inter-
action, which is adopted here in its classical form.

By way of diagonalization of Hamiltonian (1), one
can write ground state energy with the ground state
two-particle wave function, obtained in the form
ψG(r1, r2) = ψcov(r1, r2)+ψion(r1, r2), where ionic
and covalent parts are

ψcov(r1, r2)=
2(t+V )√

2D(D−U+K)

[
w1(r1)w2(r2)

+w1(r2)w2(r1)
][
χ↑(1)χ↓(2)−χ↓(1)χ↑(2)

]
,

(2)
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2
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]
,

(3)

with

D ≡
√(

U −K
)2

+ 16
(
t+ V

)2
, (4)

and
wiσ(r) = β

(
φiσ(r)− γφjσ(r)

)
, (5)

with i = 1, j = 2 or i = 2, or j = 1, in this case.
The two functions are molecular functions and come
out naturally within our method, in which the two
neighboring atomic functions φi(r) are mixed, with
β and γ as mixing parameters. These atomic func-
tions can be in the form of Slater or Gaussian form
(Slater or Gaussian type orbitals, STO or GTO).
Furthermore, (2) and (3) can be rewritten, with the
use of (5), in the following way [7]

ψcov(r1, r2)=
(
Cβ2(1+γ2)−2γIβ2

)[
φ1(r1)φ2(r2)

+φ2(r1)φ1(r2)
] [
χ↑(1)χ↓(2)−χ↓(1)χ↑(2)

]
,

(6)

and
ψion(r1, r2) =

(
Iβ2(1−γ2)−2γCβ2

)[
φ1(r1)φ1(r2)

+φ2(r1)φ2(r2)
][
χ↑(1)χ↓(2)−χ↓(1)χ↑(2)

]
,

(7)

where C and I are the same coefficients as in (2)
and (3), respectively. Now the covalency, and ionic-
ity are defined as the squared coefficients before the
functions (6) and (7).

Parenthetically, for the sake of comparison, one
can write postulated VB two-particle wave func-
tions

ψVB
cov(r1, r2) =

[
φ1(r1)φ2(r2) + φ2(r1)φ1(r2)

]
√
2(1 + S2)

× 1√
2
[χ↑(1)χ↓(2)− χ↓(1)χ↑(2)],

(8)

and
ψVB

ion (r1, r2) =
[
φ1(r1)φ1(r2) + φ2(r1)φ2(r2)

]
× 1√

2

[
χ↑(1)χ↓(2)− χ↓(1)χ↑(2)

]
,

(9)
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where S is the overlap between the neighboring
atomic wave functions. However, the total wave
function, consisting of the sum of (8) and (9),
has not been obtained directly as a solution of
the respective Schrödinger equation, whereas in our
approach, its form comes out explicitly from our ex-
act solution and represents the exact treatment of
the Heitler–London problem.

Based on these functions, we redefine below ion-
icity and covalency [8] and define atomicity [7], the
last being the complementary characteristic to the
former two.

A remark is in place at this point. As said above,
the two-electron component wave functions (6)
and (7) have formally the same form as their VB
correspondents (8) and (9), albeit with two prin-
cipal differences. First, the coefficients before the
covalent and ionic parts, ψcov and ψion, are differ-
ent as they contain all Coulomb-interaction terms
between the particles composing the bond. Sec-
ond, the orbital size (α−1) of the original atomic
wave functions composing those functions is ad-
justed in the resultant two-particle ground state.
These two factors, in addition to the exact expres-
sion for the two-particle wave function, are the qual-
itative differences with the original Heitler–London
theory.

In Sect. 3, we discuss our results after min-
imizing the ground state energy, EG[ψG(α)] ≡
〈ψG(α)|Ĥ|ψG(α)〉/〈ψG(α)|ψG(α)〉, with respect to
α, and explicitly evaluating the microscopic param-
eters for the optimal value of α = α0.

3. Results and discussion

We now proceed with the presentation of our
results, followed up by a discussion on them. In
Fig. 1, we illustrate the interatomic distance, R,
and dependence of the quantities with marked Hub-
bard and Mott criteria of localization (upper and
lower red points, respectively). The Hubbard cri-
terion (purple line) delineates the point where the
kinetic-to-interaction ratio, 2|t+V |/(U −K), takes
the value of unity. The Mott criterion, in turn, de-
scribes the point where the atomic orbital size is
of the same magnitude as the interatomic distance.
The right-hand-side region (shaded) then describes
the regime, where both the interaction dominates
over the electron kinetic energy (according to the
Hubbard criterion) and, simultaneously, the atomic
size in the correlated state is decisively smaller than
the interatomic distance. Obviously, those criteria,
crucial for the Mott–Hubbard localization in con-
densed matter, are only of qualitative nature in the
case of molecules. They represent the finite–system
situation, and therefore, any sharp delocalization–
localization transformation of molecular states into
their atomic correspondents is ruled out. Before
discussing the details, we show that the coefficients
attached to the wave-function parts (2) and (3)
represent the standard definition of covalency and

Fig. 1. Mott (green, lower) and Hubbard (purple,
upper) lines with the marked corresponding Mott
and Hubbard criteria of localization. The shaded
area to the right of R = RMott represents the re-
gion with steadily increasing atomicity with increas-
ing R. For details see the main text.

Fig. 2. Comparison of starting binding factors
(ionicity and standard covalency) vs interatomic
distance. Those microscopic parameters are de-
termined, respectively: from Hubbard model —
curves I, extended Hubbard model — curves II.
The shaded area corresponds to the Mott–Hubbard
(“Mottness”) regime, where the interactions domi-
nate over the kinetic energy particles (for details
see [7, 8]). The broken vertical line marks the equi-
librium bond length RBond = 1.43a0.

ionicity, as is evident from the form of the corre-
sponding component wave functions (second factors
of the products in (6) and (7), respectively). Their
numerical values are displayed in Fig. 2. For the sake
of completeness, we have included in Fig. 2 also the
results for the full solutions (curves labeled by I)
and those corresponding to the Hubbard model so-
lutions (curves II). Parenthetically, the curves II de-
scribe the situation when we disregard all intersite
Coulomb interaction and retain only the dominant
term with intraatomic interaction ∼ U . In either
case, the covalency behaves unphysically with the
interatomic distance R→∞ (R > RMott).
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Fig. 3. Participation of true covalency and atom-
icity in the resultant correlated state of electrons
in H2. Note that the two curves cross the marked
point, which corresponds accurately to the one
shown in Fig. 1.

Fig. 4. Single-particle mixing parameter γ, over-
lap integral without orbital size renormalization S,
and orbital size calculated for renormalized orbital
size S′ versus interatomic distance R. They evolve
continuously as a function of interatomic distance.
The dashed vertical line marks, as in all previous
figures, the equilibrium bond length, whereas the
shaded area represent the “Mottness” regime.

To restore physical meaning to the covalency,
we make use of our earlier observation that in the
R→∞ limit, the Heitler–London wave function re-
duces to the Slater determinant of the correspond-
ing atomic states, with no ionicity, as it represents
the probability amplitude of double occupancy on
the same atom. We have proposed to exclude the
atomicity γat from the covalency presented in Fig. 3
by extracting from the corresponding expression (6)
for covalency the part taken for γ = 0 at the given
R (not only in the atomic limit). As a result, we get
the true covalency versus atomicity, both as a func-
tion of R, depicted in Fig. 3. The ionicity remains
without change since it expresses the complemen-
tary factor of bonding — double occupancy. One
should stress the fundamental difference between

TABLE I

Binding energy of H2 calculated with restricted
Hartree–Fock (RHF), configurational interaction
(CI), and EDABI (with Hubbard Hamiltonian
(HM-EDABI) and with extended Hamiltonian
(EM-EDABI)) methods and percentage difference
with the exact Kołos–Wolniewicz (K–W) results [4].

Binding
energy [eV]

Difference
with K–W [%]

RHF −3.5963 5.6

Full CI −4.3824 0.6

HM-EDABI −3.9783 3.1

EM-EDABI −4.0749 2.7

TABLE II

Bond length and correlation energy (calculated as
EHF − E, where EHF is Hartree–Fock energy and E
is energy in appropriate method) for H2 calculated
with restricted Hartree–Fock (RHF), configurational
interaction (CI), and EDABI (with Hubbard Hamil-
tonian (HM-EDABI) and with extended Hamiltonian
(EM-EDABI)) methods.

Bond length (a0)
Correlation
energy [eV]

RHF 1.450 N/A

Full CI 1.501 −0.5136

HM-EDABI 1.442 −0.0978

EM-EDABI 1.430 −0.1706

TABLE III

Binding factors at R = RBond calculated for many-
particle wave function from extended second quan-
tized Hamiltonian and Hubbard Hamiltonian, as well
as for single-particle wave function from valence bond
(VB) theory (with and without renormalizing orbital
size).

Covalency Ionicity

full Hubbard model 0.59 0.41

Hubbard model 0.86 0.14

VB theory 0.52 0.48

VB theory (renormalized) 0.63 0.37

space bonding descriptor [14] 0.57 0.43

TABLE IV

True binding characteristics for H2 at equilibrium
point of R with subtracted atomicity. Note that in
Table III the atomicity is an integral part of the stan-
dard covalency.

True covalency Atomicity Ionicity

0.48 0.19 0.33
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Fig. 5. Probability density profiles according to valence bond (VB) approach panels (a)–(c)), as well as those
taking the two-particle wave functions (2) and (3) (panels (d)–(f)). The interatomic distance R is specified.

the covalency and ionicity factors, γcov and γion,
shown in Fig. 2 and those exhibited in Fig. 3. In the
former case, we have that γcov + γion = 1, whereas
in the present situation, γcov + γion + γat = 1 (for
details, see [7]). It is remarkable that the Mott–
Hubbard criterion for localization meets the point,
where the atomicity γat and redefined covalency
γcov are equal. Obviously, for larger R values, the
atomicity prevails, whereas the ionicity γion (not
shown) decreases steadily to zero.

To illustrate our results by way of showing that
the onset of atomicity is a collective phenomenon,
i.e., induced by electron–electron Coulomb interac-
tion, we have plotted in Fig. 4 the single-particle
characteristics γ as an admixture of the neighboring
and readjusted (in the correlated state) wave func-
tion, while S and S′ are overlap integrals, for read-
justed (S′) and original s-state (S) wave functions,
respectively. All those functions diminish gradually
with the increasing R, without showing any sign of
difference at either R = RBond and R = RMott. In
other words, the atomicity appears as a result of
interelectronic interaction induced by the correla-
tions.

To summarize, as well as to put our results
in a broader perspective, we have listed selected
properties of our calculations/computations in Ta-
bles I and II. There, we have specified some stan-
dard quantities for the equilibrium state of the H2

molecule (cf. Table I), as well as singled out the
bond characteristics (Table II). Additionally, we
have supplemented these results with the true co-
valency, atomicity, and ionicity factors in Tables III
and IV.

4. Conclusions

The principal concept introduced in our ap-
proach [8] is the concept of atomicity in a nomi-
nally covalent bond of H2 (albeit also with a non-
trivial degree of ionicity). One should be aware of
the fact that hydrogen molecule, in the hypothet-
ical so far limit R → ∞, composed of separated
atoms, is in an incoherent quantum–mechanical
state. Here we introduce such an incoherent ad-
mixture in the situation of still finite interatomic
distance. This means that the entangled state of
the two electrons in the correlated molecular state
is then partially disentangled. One should still ex-
amine whether this quantum-coherence limitation
appears only for bound states, i.e., it is present
also at a finite distance when the particles inter-
act, which is not the case with photons at any dis-
tance [15]. Until our last statement is proved, our
proposal of atomicity in bound molecular states at
a finite distance should be regarded as intuitive in
nature, even though it helps to remove the princi-
pal inconsistency in the evolution of the covalency
as a function of interatomic distance.

Finally, the overall behavior of the H2 system
is illustrated in Fig. 5, where the probability den-
sity profiles are shown for the three interatomic
distances specified: at equilibrium bond distance
(R = 1.43a0), at the Mott–Hubbard boundary
(R = 2.3a0), and in the asymptotic regime of large
distances (R = 4a0). The density profiles are arti-
ficially distorted from their almost spherical shapes
by choice of scale to expose the details of the den-
sity isolines in that case. One sees the quasi-atomic
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character of the wave functions for R > RMott in
either approach, VB or EDABI. Nevertheless, the
principal difference between the two is as follows.
The limitation of the Heitler–London approach is
caused by the selection of atomic 1s wave function
to construct the two-particle state and the choice
of the latter for the purely covalent state. In our
case (EDABI), the single-particle states (molecular
orbitals) with the adjusted size are taken — this
effect is mainly due to the orbital size renormaliza-
tion by their interaction. Additionally, the form of
the two-particle wave function is more general as it
contains also the ionic part.
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