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Abstract
Noise driven escape from the potential well is the basic component of various noise induced effects.
The efficiency of the escape process or time scalesmatching is responsible for occurrence of the
stochastic resonance and (stochastic) resonant activation.Here, we are extending the discussion on
how the structure of the potential can be used to optimize themean first passage time. It is
demonstrated that corrugation of the potential can be beneficial under action of theweakGaussian
white noise. Furthermore, we show that the noise tuning can bemore effective than shaping the
potential. Therefore, action of the tuned additiveα-stable noise can accelerate the escape kinetics
more than corrugation of the potential. Finally, we demonstrate thatmeanfirst passage time from a
potential well can be a non-monotonous function of the stability indexα.

1. Introduction

Stochastic resonant activation [1, 2] and stochastic resonance [3–5] changed our perception of noise [4]. These
two seminal effects have indicated that efficiency of some processes depends on noise—optimal dose of noise
can significantly increase system efficiency, asmeasured bymeanfirst passage time, or input output
synchronization. These effects play an important role not only as theoretical concepts but also in real life
situations and biological realms [6–8].

In the overdamped regime, without a noise, a particle cannot surmount the potential barrier. Therefore, the
escape from the potential well is possible due to the action of noise only. Themeanfirst passage time is one of the
main quantities which characterizes escape kinetics. The escape from the potential well [9, 10]underlines
various noise induced effects. In (stochastic) resonant activation [1] amodulation of the potential barrier is used
tominimize themeanfirst passage time, while in the stochastic resonance [3, 4] the noise is used to amplify weak
signal byfine-tuning time scales associatedwith the noise driven escape and externalmodulation. Analogously,
in ratchets [11], themotion in periodic potential, assumesmultiple escapes from sequence of periodic potential
wells.

The noise driven dynamics in the static potentials is sensitive to the shape and structure of the potential
[12–14]. In ratchets [15, 16], it has been demonstrated that the corrugated structure of the potential can increase
the efficiency of the ratcheting devices [17, 18]. It indicates that themeanfirst passage time depends not only on
the potential shape but also on its internal structure [19]. Superimposed corrugation [20] on the potential profile
can be used tomodify the escape rate.

Typically it is assumed that the noise is Gaussian andwhite [21], which is the natural consequence of the large
number of statistically independent interactions of a test particle with othermolecules which are bounded in
time.Nevertheless, various non-Gaussian and non-white extensions have been suggested [22, 23]. One can
assume that noise is still white but follow amore general power-law, heavy-tailed distributions, often of theα-
stable Lévy type [24, 25, 23], what resembles the transition from the central limit theorem to the generalized
central limit theorem [26, 27]. Thewhite Lévy noise naturally appears in descriptions of out-of-equilibrium
systems. It breaks themicroscopic reversibility [28] and changes properties of stationary states of systems
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compared to their equilibrium counterparts [29, 30]. Classical examples of systems displaying heavy-tailed
fluctuations of theα-stable type includes, but are not limited to, turbulent fluidflows [31–34], magnetized
plasmas [35, 36], optical lattices [37], heartbeat dynamics [38], neural networks [39], search on a folding
polymers [40], animalmovement [41], climate dynamics [42],financial time series [43], spreading of diseases
and dispersal of banknotes [44].α-stable variables are also used infinancialmarkets [45], portfolio optimization
[46] and neuroscience [47, 48].

Here, we explore how the corrugation of the potential, modeled as superimposed oscillations [20], affect the
meanfirst passage time froman interval restricted by two absorbing boundaries. In particular, we compare the
gain due to corrugation of the potential with yield due to noise tuning aswe relax the assumption that themotion
is driven by theGaussianwhite noise. Themore general noise of theα-stable type [23] can be used tomodify the
meanfirst passage time froma potential well. Themodel under study is described and analyzed in the next
section (section 2Model andResults). Themanuscript is closedwith Summary andConclusions (section 3).

2.Model andResults

The (overdamped) Langevin equation [49–51]

( ) ( ) ( )dx

dt
V x t , 1sx= - ¢ +

is used as an efficient tool to describe stochastic dynamics. In equation (1), x(t) represents the particle position,
( )V x- ¢ stands for the deterministic forcewhile ξ(t) represents the random forcesmodeled here by the zero

mean and delta correlatedGaussianwhite noise

( ) ( ) ( ) ( ) ( )t t s t s0 and . 2x x x dá ñ = á ñ = -

The overdamped Langevin equation is the strong friction limit of the full (underdamped) Langevin equation
[52, 53], which is obtained via the adiabatic elimination of the fast variables [21]. The problemof dimensionality
of the (overdamped) Langevin equation is discussed in the appendix. Examination of the Langevin equation
underlines studies on noise induced effects like (stochastic) resonant activation [1], stochastic resonance [3, 4],
noise enhanced stability [54] to name a few.

In the overdamped regime, in the absence of stochastic force the system is fully determined by the
deterministic force. The observed dynamics is especially simple—if there are localminima of the potential—a
particle deterministically slides towards one of themormoves towards infinity. After reaching a localminimum
it stands there forever. The situation drastically changes in the presence of noise. Action of noise can result in a
noise induced escape. Now,minima of the potential are not absolutely stable—deeperminima aremore stable
because it is harder to leave them.Under action of theGaussianwhite noise, themean time to escape from the
potential well grows exponentially with the barrier height.

We study the problemof thefirst escape from thefinite interval under combined action of the deterministic
and random forces. Thefirst escape is characterized by themeanfirst passage time (MFPT)which is the average
offirst passage times, i.e. times needed to leave the domain ofmotionΩ for thefirst time

{ ( ) ( ) } ( ) t t x x x tmin : 0 , 3fp 0= á ñ = á =  Ï W ñ

where x0 is the initial position (x0 äΩ). For example, for escape from the interval [a, b] restricted by two
absorbing boundaries themeanfirst passage time reads [21]
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where x is the initial position (a� x� b) and ( ) ( ( ) )x V xexp 2 2y s= - . Considering symmetries, under action
of theGaussianwhite noise, for x= 0, a=− b and evenV(x), i.e.V(x)= V(− x), the escape from the interval
restricted by two absorbing boundaries is equivalent to the escape from the interval restricted by reflecting
boundary at a= 0 and the absorbing boundary at b (b> 0). In such a case theMFPT reads
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TheMFPT is fully determined by barrier type, barrier position, starting point and the potential, see equations (4)
and (5).
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Herewe assume that the potential well is not fully smooth, but it has the internal structure in the formof
superimposed oscillations. The potentialV(x) is corrugated, i.e. on the dominating x2/2 profile ripples are
added. For that purpose we use

( ) ( ) ( )V x
x kx

2

sin

50
, 61

2 2

= +

and

( ) ( ) ( ) ( )V x
x kx x

2

sin exp 5

10
. 72

2 2 2

= +
-

For both potentials k is the parameter controlling the corrugation level. For k= 0,V1(x) andV2(x) reduce to the
harmonic potentialV(x)= x2/2. Exemplary potentialsV1(x) andV2(x) corresponding to various values of the
corrugation parameter k are presented in top panels offigures 1 and 2. PotentialsV1(x) andV2(x) differ by the
corrugation type. ForV1(x) corrugations are undamped, i.e. superimposed oscillations are of the same order,
while forV2(x) they are exponentially dampedwith the increasing distance from the origin, c.f., figures 1(a) and
2(a). For setups studied infigures 1 and 2 absorbing boundaries are located at±1, while the scale parameterσ is
set toσ= 1.

From equation (4) one can calculate theMFPT from [−1, 1] for the noise drivenmotion in the deterministic
potentialV1(x) andV2(x). Theoretical dependence of theMFPT is plottedwith the solid line in bottompanels of
figures 1 (V1(x)) and 2 (V2(x)). ForV1(x), as a function of the corrugation parameter k, theMFPTdisplays
multiple localminima andmaxima as its shape resembles damped oscillations. Thesemultipleminima could be
attributed to the corrugation induced locking, in amanner similar to emergence of non-equilibrium stationary
states [55]. ForV2(x) theMFPT is a non-monotonous function of kwith aminimumat k≈ 18.2. Theoretical
dependence ofMFPT clearly demonstrates that the corrugation parameter k can be used to optimize the process
of the first escape. The internal structure of the potential builds steps/micro-wells like structure which
simultaneously helps climbing up the potential andweakens the deterministic sliding [17]. Now, instead of
sliding to the globalminimum (x= 0) a particle slides to the nearest localminimum,which can be left due to the
action of the noise only. Therefore, for themotion in the corrugated potential, it is harder to lose reached

Figure 1.The corrugated potentialV1(x), see equation (6), for various values of the control (corrugation) parameter k (top panel—
(a)), obtained values of theMFPT (bottompanel—(b)). Solid line in the bottompanel shows the theoretical value of theMFPT, see
equation (4). Absorbing boundaries are located at±1, while the scale parameterσ is set to unity. Numerical results, see equations (3)
and (11) have been averaged over 105 realizations. Various points correspond to different values of the integration time stepΔt. Error
bars represent the standard deviation of themean.
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‘height’. Figures 1(b) and 2(b) indicate that the corrugation of the potential can be used for optimization of the
first escape process. Therefore, among considered values of the parameter k controlling the level of corrugation
there are such valueswhich result in the fastest escape process asmeasured by theMFPT. ForV1(x) extrema of
MFPT (startingwith themaximum) are approximately recorded at k ä {1.92, 5.99, 9.22, 12.39, 15.6, 18.72,
21.93, 25.1, 28.21}. Interestingly forV1(x)with k> 5 extrema ofMFPTs are recorded at k values that do not
change the height of the potential barriermeasured at the absorbing boundary (x = 1), i.e. ( )∣V x x1 1

1

2
== .

Therefore, decrease or increase of theMFPT (except k≈ 1.92 case) cannot be attributed to lowering or
increasing the potential barrier.Moreover, exploration ofV1(x) has revealed thatminima of theMFPT are
recordedwhen the last bending is convex. At the same timemaxima are recordedwhen the last bending is
concave.When thefinal bending is convex it builds a stepwhich allows for additionalaccumulation of the
probabilitymass closer to the absorbing boundary. Contrary toV1(x), exploration of thefirst escape process
fromV2(x) indicates a different source of optimization as the damping term ( )xexp 5 2- makes final parts of the
potential well practically k independent. Therefore, the problemof optimization of the escape kinetics calls for
further studies.

Infigures 1(b) and 2(b) in addition to theoretical values of theMFPT  th, see equation (4), results of
computer simulations are presented. In order to estimatefirst passage timewe simulate the Langevin
equation (1) using the Euler-Maruyama scheme (11) until absorption at the absorbing boundaries located at
x=± b=± 1. From the ensemble of estimated first passage timeswe calculate themean first passage time and
its error (standard deviation of themean). Points infigures 1(b) and 2(b) represent results of computer
simulationswith varying the integration time stepΔtä {10−4, 10−5, 10−6} and averaged over 105 realizations,
butwe have also verified that averaging over 104 realizations produces statistically same results.

Forσ= 1, results corresponding toΔt= 10−4 reconstruct the dependence of theMFPT, but the level of
agreement is not very good. Decrease in the integration time step improves the level of agreement andmakes it
sufficient. Nevertheless, the problem is hard to tackle numerically. Subsequent figure 3 shows the ratio between
numerically obtained and theoretical results, namely

[ ] ( )


1 100 % , 8
th

- ´

for both potentialsV1(x) (top panel) andV2(x) (bottompanel). Fromfigure 3 it is clearly visible that already for
Δt= 10−4 the relative errors are smaller than 2.5%. The decrease of the integration time step decreases the

Figure 2.The same as infigure 1 for theV2(x) potential, see equation (7).
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relative errors well below 1%.Moreover, forΔt= 10−6 the relative errors are slightly smaller than for
Δt= 10−5. The problemof reconstruction of theoretical results bymethods of stochastic dynamics originates in
the fact thatminima ofMFPT, as a function of the corrugation parameter k, are very shallow. Exact values of the
MFPT can be calculated by use of equations (4) and (5). For instance, forV1(x), theminimalMFPT, i.e.

{ }mink th , is smaller than theMFPT for the non corrugated potential, i.e. ( ) k 0th = , by 1.8%,while forV2(x) it
is 3.1%, but this time theminimum is not verywell localized and separated fromMFPTs at large k values. For
that reason, the very high precision of simulations is required. In order to increase accuracy it is necessary to
decrease the time step of integration and increase the number of repetitions. However, within the used class of
potentials, the decrease inMFPTdue to the structure of the potential isminimal. Nevertheless, one can playwith
themodel parameters. For instance, for the same potentials decrease ofσ from1 to 0.5 results in a stronger effect,
i.e. due to potential rougheningMFPT can be reduced by 11.8% forV1(x) and by 15.1% forV2(x)what can be
verified by numeric evaluation of the integral (5). Smaller acceleration is observed for the potentialV1(x),
because superimposed oscillations are undamped and they produce deeper localminima of the potential, which
are harder to escape from. Contrary to the potentialV1(x) forV2(x) corrugations are damped and consequently
localminima are shallower. They still act as steps but now these steps do not introduce (strong) additional
trapping like forV1(x)On the one hand, numerical evaluation of equation (5) gives trustworthy results and can
be used to assess the role of potential roughening on the optimization of the escape kinetics under action of the
Gaussianwhite noise. On the other hand, we are interested in verifying if a change of the driving noise type can
bemore beneficial than shaping of the potential. Therefore, in the next stepwe exchange theGaussianwhite
noise in equation (1) by the symmetricα-stable noise [23] to check if noise tuning can bemore beneficial than
corrugation of the potential. Trajectories of overdamped processes driven byα-stable noises are discontinuous
[24, 27]. A particle driven by Lévy noise does not need to hit the boundary but it can jumpover it [56]. The
possibility of not visiting intermediate points due to long jumpsmakes the escape scenario different than for the
Gaussianwhite noise driving [57–59], which is going to be explored inmore details in the further part of the
manuscript. Contrary to theGaussian driving, under Lévy noise the barrier width ismore important than its
height [57–59].

Theα-stable noise is a generalization of theGaussianwhite noise to the nonequilibrium realms [24], where
heavy tailed fluctuations are abundant [42, 60–65]. The noise produces independent increments which follow a
heavy-tailedα-stable density [24, 27]. The symmetricα-stable noise is the formal time derivative of the
symmetricα-stable process L(t), see [23, 24]. Increments,ΔL= L(t+Δt)− L(t), of the symmetricα-stable

Figure 3.The ratio between theoretical  th and numerically approximatedMFPTs  forV1(x) (top panel—(a)) andV2(x) (bottom
panel—(b)) as a function of k, seefigures 1 and 2. Various curves depict results with different integration time stepsΔt. Results have
been averaged over 105 realizations.

5

Phys. Scr. 98 (2023) 025216 BDybiec andMZawiślak



process L(t) are stationary, independent and identically distributed according to theα-stable density. Symmetric
α-stable distributions are defined by the characteristic function [24, 27]

( ) [ ∣ ∣ ] ( )k e kexp 2 , 9ikx
0j s= á ñ = - a a

whereσ0 is the scale parameter.Without loss of generality, within themanuscript we useσ0= 1, because the
scale parameterσ0 can be incorporated into the fluctuation strengthσ in equation (1). The characteristic
function (9) is a slightlymodified [26, 66] standard formof the characteristic function ofα-stable densities. Such
an amendment assures that forα= 2 theGaussianwhite noise with 〈ξ(t)ξ(s)〉= δ(t− s) is recovered, see
equation (1). Therefore, forα= 2, the characteristic function ofα-stable densities, see equation (9), reduces to
the characteristic function of the normal distribution ( ) ( )N N0, 0, 10

2s = .
IncrementsΔL are distributed according to the unimodal probability density with the characteristic

function [ ∣ ∣ ]e t kexp 2ik L
0sá ñ = -D a aD . The stability indexα (0< α� 2) controls the asymptotics of the

distribution, which forα< 2 is of power-law type p(x)∝ |x|−(α+1). The scale parameterσ0 (σ0> 0) determines
thewidth of the distribution, which can be defined by an interquantile width or by fractionalmoments, i.e. 〈|x|ν〉
with ν< α, because the variance ofα-stable variables withα< 2 diverges. The scale parameterσ0 in equation (9)
andfluctuation strengthσ in equation (1) play the same role.More precisely, setups {σ0= σ,σ= 1} and
{σ0= 1,σ= σ} are equivalent. Consequently, without loss of generality,σ0 can be set to unity and thewidth of
theα-stable distribution is controlled by the strength offluctuationsσ. Fromgeneral theory, it implies that anα-
stable process L(t) can be decomposed [67–69] into a compound Poisson process that describes long jumps and
theWiener part responsible for small displacements. Possibility of long jumpsmakes theMFPTmore dependent
on the barrier width [57–59] than its height [21], which is themain factor determining theMFPTunder
Gaussianwhite noise driving.

Trajectories of processes driven byα-stable noise are no longer continuous [24]. Therefore, systems driven
by such a noise do not display the property present forGaussianwhite noise allowing for transformation of
equation (4) into equation (5), i.e. absorbing-absorbing setup cannot be replaced by the reflecting-absorbing
one.Moreover, analytical results for systems driven by Lévy noise are very limited. The general formula for the
escape of a free particle from [−L, L] interval reads [70–74]

( )
( )

( )
( )

( ) x
L x1

1 2
. 10

2 2 2

a s
=

G +
- a

a

The 2 factor in the denominator comes from the used formof the characteristic function, see equation (9). For
x= 0, theMFPT reduces to ( ) [ ( )] ( ) L0 2 1 .s a= G +a The scaling of theMFPTon the scale parameterσ
and the interval width can be deducted fromarithmetic properties ofα-stable distributions [75]. Inmore general
cases than escape from afinite interval some scaling [76] orweak noise limits [77, 78] are known. Therefore, we
continue studies on theMFPT, see equation (3), numerically. The Langevin equation, see equation (1), is
approximated by the (stochastic)Euler–Maruyamamethod [79, 80]

( ) ( ) ( ) ( )x t t x t V x t t . 11t1s x+ D = - ¢ D + D a
a

In equation (11) txa represents the sequence of independent identically distributedα-stable random variables
which can be generated usingwell-known algorithms [81–83]. TheGaussianwhite noise is recovered forα= 2,
see [27], and the Euler-Maruyama scheme attains the standard form [84]. Figure 4 presents results for theMFPT
under action ofα-stable noise for a particlemoving inV1(x) (top panel) andV2(x) (bottompanel) as a function
of the corrugation parameter k. Various curves correspond to different values of the stability indexα (α ä {0.5,
0.75, 1, 1.25, 1.5, 1.75, 2.0}). The scale parameterσ is set toσ= 1. In addition toα= 2, forV1(x)withα ä {0.75,
1, 1.25}, theweak periodicity ofMFPT is visible, see figure 4(a). Actually, forα= 0.75 localminima ofMFPT are
(relatively) deeper than for theGaussianwhite noise. Importantly, theMFPT ismore sensitive to the value of the
stability indexα than to the structure of the potential as the curves corresponding to various values of the
stability indexα are spread along thefigures, c.f., figure 4.

For the escape of a Lévy noise driven free particle from a finite interval [70, 72–74, 85] theMFPT can be a
non-monotonous function of the stability indexα, see [86]. Therefore, one can expect a similar behavior for a
particlemoving in a deterministic potential, see figure 5.Due to the action of the deterministic, restoring force,
recorded values of theMFPT are significantly larger than for a free particle. For studied setups, theMFPT is a
non-monotonous function of the stability indexα. Therefore, it is possible tofind suchαwhichminimizes
MFPT. In themodels under study it isα= 2 (Gaussianwhite noise) andα= 0.5 (heavy tailed, non-equilibrium
noise).Maximal values ofMFPT, for both setupsV1(x) andV2(x), are recorded forα≈ 1.25. Figure 5 clearly
indicates that it can bemore beneficial to optimize theα-stable noise type (α) than the potential structure (k).
Accidentally, theGaussianwhite noise, whichwe startedwith, resulted in theminimalMFPT. Figure 5 confirms
that variability in theMFPTdue to change ofα is significantly larger than the spread due to the corrugation
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parameter k.Moreover, exceptα= 2 case, recordedMFPTdonot differ between both setupsV1(x) andV2(x)
significantly, see figures 5(a) and (b).

Using formula (10) it can bedemonstrated that for a free particle theMFPTcan benot only a non-
monotonous function of the stability indexα, see [86], but it can change itsmonotonicity depending onσ.
Therefore,finally,wehave repeated someof the simulationswith other values ofσ in order to see differences and
similarities between escape kinetics fromfinite intervals and the potentialwell. The case ofα= 2 can be studied
with use of equation (5), whileα< 2needs to be analyzed numerically.Not surprisingly, the inspectionof
equation (5) shows that for theGaussianwhite noisewithdecreasingσ corrugationplays an increasing role.
Nevertheless, changes in the recorded values of theMFPT caused by the noise type dominate over amendments
produced by the potential roughening. Furthermore, as forσ= 1 results forV1(x) andV2(x) are very similar, we
present additional results, seefigure 6, forV1(x)only, seefigure 1.Despite the fact that decrease inσ canmake
MFPTmore sensitive to corrugation optimization, in the studied caseswehave observed larger spread ofMFPT
values due to noise type, than corrugation strength, seefigure 6. Figure 6 presentsmeanfirst passage time  as a
function of the stability indexα. Variouspoints correspond todifferent values of the corrugation parameter k.
Various panels (a)—( f )display results for different values of the scale parameterσ ( { }0.5, 1, 2 , 2, 4, 16s Î ).
Additional solid lines in each panel depict themeanfirst passage timeof a free particle fromafinite interval, see
equation (10). Spreadof resultswith afixed value of the stability indexα is produced by the corrugationof the
potential,which is particularlywell visible forα= 2 and smallσ, e.g.σ= 0.5. Especially at lowvalues ofσ,
corrugationof the potential can beused forfine-tuning of escape kinetics, but amore important role is played by
the adjustment of thenoise type, i.e. the exponentα. The change inσnot only changes recorded values, but also
modifiesmonotonicity of ( ) a in an analogousway like for the escape of a free particle fromafinite interval, see
[86]. In the largeσ limit, e.g.σä {4, 16}, a particle practically doesnot feel thedeterministic force and theMFPT
approaches theMFPTof a free particle fromafinite interval, see equation (10). Formoderate and smallσ, escape
from the potentialwell is visibly slower than escape fromafinite interval. These results are not only coherentwith
studies on the escape fromafinite interval but also on the escape fromapotentialwell [76], indicating that the
escape kinetics is affected by the scale parameterσ.

Figure 4.MFPT forV1(x) (top panel—(a)) andV2(x) (bottompanel—(b)) as a function of the corrugation parameter k. Various curves
correspond to differentα-stable noises, see equation (9). Results have been constructed numerically, see equations (3) and (11), with
Δt = 10−6 and averaged over 105 realizations.
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3. Summary and conclusions

Themeanfirst passage time is an important quantifier characterizing efficiency of the noise driven dynamics.
MFPT can be optimized in numerousways, like shaping of the potential and noise tuning.Here, we have
demonstrated that the internal structure of the potential produced by the additional corrugation superimposed
on the potential profile can be used to decrease theMFPT.Nevertheless, the decrease in theMFPTdoes not need
to be significant. It turned out that tuning of theα-stable noise can bemore beneficial than corrugation of the
potential. The type of the optimal noise is sensitive to the noise strengthmeasured by the scale parameterσ. For
smallσ fastest escape is recorded at lowest values of the stability indexα, while for largeσ, Gaussianwhite noise
produces the fastest escape. There is also an intermediate range, withminima recorded at small andα= 2
drivings. Finally, we have verified that for strong noise (largeσ) the escape kinetics approaches the one of a free
particle from a finite interval.
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Appendix. Units in the Langevin equation

Units in the Langevin equation can be established from general physical principles [21, 52] like equipartition
theoremor fromprobabilistic considerations. Both approaches are fully coherent.We start with the use of the

Figure 5.MFPT forV1(x) (top panel—(a)) andV2(x) (bottompanel—(b)) as a function of the stability indexα. Various curves
correspond to different corrugations of the potential. Results have been constructed numerically, see equations (3) and (11), with
Δt = 10−6 and averaged over 105 realizations.
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following (overdamped) Langevin equation [50]

( ) ( ) ( ) ( )x t
f x

t , A.1
g

sx= +

where: x—is a position of the particle,γ—stands for a friction coefficient,σ—represents strength of the noise and ξ
(t)—is theα-stable, Lévy typewhite noise characterized by the stability indexα (αä (0, 2]). The force f (x) acting on
aparticle is determinedby the external potential, f (x)=− dV(x)/dx. Correspondingunits in equation (A.1) are:
[x]= [length], [γ]= [mass]/[time], [ ( )] [ ( )] [ ] [ ] [ ] [ ]f x V x mass length time force ,2= ¢ = ´ = [V(x)]=
[force]× [length]= [energy], [σ]= [length]/[time]1/α and [ξ(t)]= 1/[time]1−1/α. Stability indexα is dimension-
less. In the asymptotic limit ofα= 2 the Lévywhite noise is equivalent to theGaussianwhite noise and it has
standards units, i.e. [ ( )] [ ]t 1 time2x =a= .Moreover, in an alternative approach, the strength offluctuationσ
canbe transformed into thediffusion constantD∝ σα, see [25, 76, 87]. Forα= 2, the diffusion constant is related
to the system temperature and frictionD= kBT/γby theEinstein-Smoluchowski-Sutherland relation. For a free
particle (withα= 2) 〈[x(t)− x(0)]2(t)〉= 2Dt. Forα< 2, the frictionand the strength offluctuations are two
independent parameters. Furthermore, themean square displacement diverges. TheMFPTgivenby equation (10)
ismeasured in units of time. Finally, the Langevin equation (1) is obtained fromequation (A.1)by settingγ= 1.

ORCID iDs
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Figure 6.Dependence of themean first passage time  on the stability indexα. Various points correspond to different values
of the corrugation parameter k, while various panels (a)—( f ) represent different values of the scale parameterσ
( { }0.5, 1, 2 , 2, 4, 16s Î ). The solid lines show theMFPT from thefinite interval, see equation (10).

9

Phys. Scr. 98 (2023) 025216 BDybiec andMZawiślak

https://orcid.org/0000-0002-6540-3906
https://orcid.org/0000-0002-6540-3906
https://orcid.org/0000-0002-6540-3906
https://orcid.org/0000-0002-6540-3906


References

[1] DoeringCR andGadoua J C 1992Phys. Rev. Lett. 69 2318–21
[2] SpaldingC,Doering CR and Flierl GR 2017Phys. Rev.E 96 042411
[3] McNamara B andWiesenfeld K 1989Phys. Rev.A 39 4854–69
[4] Gammaitoni L, Hänggi P, Jung P andMarchesoni F 2009Eur. Phys. J.B 69 1–3
[5] Krauss P,Metzner C, Schilling A, Schütz C, Tziridis K, Fabry B and SchulzeH2017 Sci. Rep. 7 1–8
[6] Simonotto E, RianiM, Seife C, RobertsM, Twitty J andMoss F 1997Phys. Rev. Lett. 78 1186
[7] Russell D F,Wilkens LA andMoss F 1999Nature 402 291–4
[8] Hänggi P 2002ChemPhysChem 3 285–90
[9] Farkas L 1927Z. Chem. Phys. (Leipzig) 125 236–42
[10] KramersHA1940Physica (Utrecht) 7 284
[11] AstumianRD1997 Science 276 917–22
[12] DellagoC, Bolhuis P andGeissler P L 2002Adv. Chem. Phys. 123 1–78
[13] PalyulinVV andMetzler R 2012 J. Stat.Mech.J. Stat.Mech. 2012 L03001
[14] ChupeauM,Gladrow J, Chepelianskii A, KeyserU F andTrizac E 2020Proc. Natl. Acad. Sci. U.S.A. 117 1383–8
[15] MagnascoMO1993Phys. Rev. Lett. 71 1477–81
[16] ReimannP 2002Phys. Rep. 361 57–265
[17] Li Y, XuY,Kurths J andYueX 2017Chaos 27 103102
[18] Li Y, XuY andKurths J 2017Phys. Rev.E 96 052121
[19] Li Y, XuY,Kurths J andYueX 2016Phys. Rev.E 94 042222
[20] Zwanzig R 1988Proc. Natl. Acad. Sci. U.S.A. 85 2029–30
[21] Gardiner CW2009Handbook of StochasticMethods for Physics, Chemistry andNatural Sciences (Berlin: Springer Verlag)
[22] Hänggi P and Jung P 2007Adv. Chem. Phys. 89 239–326
[23] DubkovAA, Spagnolo B andUchaikinVV2008 Int. J. Bifurcation Chaos. Appl. Sci. Eng. 18 2649–72
[24] Janicki A andWeronA 1994 Simulation andChaotic Behavior ofα-Stable Stochastic Processes (NewYork:Marcel Dekker)
[25] Chechkin AV,Gonchar VY,Klafter J andMetzler R 2006 Fundamentals of Lévyflight processes Fractals, Diffusion, andRelaxation in

Disordered Complex Systems: Advances in Chemical Physics, Part B vol 133 edTCoffeyWandPKalmykov Y (NewYork: JohnWiley &
Sons) pp 439–96

[26] Nolan J P 2020Univariate Stable Distributions (NewYork,NY: Springer)
[27] SamorodnitskyG andTaqquMS 1994 StableNon-Gaussian RandomProcesses: StochasticModels with Infinite Variance (NewYork:

Chapman andHall)
[28] Garbaczewski P and StephanovichV 2011Phys. Rev.E 84 011142
[29] Chechkin AV, Klafter J, Gonchar VY,Metzler R andTanatarov LV 2003Phys. Rev.E 67 010102(R)
[30] Chechkin AV,Gonchar VY,Klafter J,Metzler R andTanatarov LV 2004 J. Stat. Phys. 115 1505–35
[31] ShlesingerMF, Zaslavski GMandKlafter J 1993Nature (London) 363 31
[32] Klafter J, ShlesingerMF andZumofenG1996Phys. Today 49 33–9
[33] SolomonTH,Weeks ER and SwinneyHL 1993Phys. Rev. Lett. 71 3975–8
[34] del Castillo-Negrete D 1998Phys. Fluids 10 576
[35] Chechkin AV,Gonchar VY and SzydłowskiM2002Phys. Plasmas 9 78–88
[36] del Castillo-Negrete D, Carreras BA and LynchVE 2005Phys. Rev. Lett. 94 065003
[37] KatoriH, Schlipf S andWaltherH1997Phys. Rev. Lett. 79 2221–4
[38] PengCK,Mietus J,Hausdorff JM,Havlin S, StanleyHE andGoldberger A L 1993Phys. Rev. Lett. 70 1343–6
[39] Segev R, BenvenisteM,Hulata E, CohenN, Palevski A, Kapon E, Shapira Y andBen-Jacob E 2002Phys. Rev. Lett. 88 118102
[40] LomholtMA,AmbjörnssonT andMetzler R 2005Phys. Rev. Lett. 95 260603
[41] ViswanathanGM,AfanasyevV, Buldyrev SV,Murphy E J, Prince PA and StanleyHE 1996Nature (London) 381 413–5
[42] Ditlevsen PD1999Geophys. Res. Lett. 26 1441–4
[43] MantegnaRNand StanleyHE 2000An Introduction to Econophysics. Correlations andComplexity in Finance (Cambridge: Cambridge

University Press)
[44] BrockmannD,Hufnagel L andGeisel T 2006Nature (London) 439 462–5
[45] Kabašinskas A, Rachev S, Sakalauskas L, SunWandBelovas I 2009 J. Comput. Anal. Appl. 11 641–68
[46] Stoyanov SV, Samorodnitsky G, Rachev S andOrtobelli Lozza S 2006Probab.Math. Stat. 26 1–22
[47] JasM,Dupré la Tour T, Simsekli U andGramfort A 2017Adv.Neural. Inf. Process. Syst. ed IGuyon et al (CurranAssociates) 30 30,

pp 1099–108
[48] WangZ, Li Y, XuY,Kapitaniak T andKurths J 2022 J. Stat.Mech. 2022 053501
[49] Langevin P 1908C. R. Acad. Sci. (Paris) 146 530–3
[50] SekimotoK 1998Prog. Theor. Phys. Suppl. 130 17–27
[51] CoffeyWTandKalmykov YP 2012The Langevin equation: with applications to stochastic problems Physics, Chemistry and Electrical

Engineering (Singapore:World Scientific Publishing)
[52] RiskenHThe Fokker-Planck Equation.Methods of Solution andApplication (Berlin: Springer Verlag)
[53] Dybiec B,Gudowska-Nowak E and Sokolov IM2017Phys. Rev.E 96 042118
[54] MantegnaRNand Spagnolo B 1996Phys. Rev. Llett. 76 563
[55] ŠilerM,Ornigotti L, Brzobohaty`O, Jákl P, RyabovA,HolubecV, Zemánek P and Filip R 2018 Phys. Rev. Lett. 121 230601
[56] KorenT, LomholtMA,Chechkin AV, Klafter J andMetzler R 2007Phys. Rev. Lett. 99 160602–5
[57] BierM2018Phys. Rev.E 97 022113
[58] CapałaK,Dybiec B andGudowska-Nowak E 2020Chaos 30 013127
[59] CapałaK, PadashA,Chechkin AV, Shokri B,Metzler R andDybiec B 2020Chaos 30 123103
[60] MercadierM,GuerinW,MChevrollierM andKaiser R 2009Nat. Phys. 5 602–5
[61] Barkai E, Aghion E andKessler DA 2014Phys. Rev.X 4 021036–69
[62] AmorTA, Reis SD S, CamposD,HerrmannH J andAndrade J S 2016 Sci. Rep. 6 20815
[63] Barthelemy P, Bertolotti J andWiersmaD2008Nature (London) 453 495–8
[64] Fioriti V, Fratichini F, Chiesa S andMoriconi C 2015 Int. J. Adv. Robot. Syst. 12 98
[65] Lera SC and Sornette D 2018Phys. Rev.E 97 012150

10

Phys. Scr. 98 (2023) 025216 BDybiec andMZawiślak

https://doi.org/10.1103/PhysRevLett.69.2318
https://doi.org/10.1103/PhysRevLett.69.2318
https://doi.org/10.1103/PhysRevLett.69.2318
https://doi.org/10.1103/PhysRevE.96.042411
https://doi.org/10.1103/PhysRevA.39.4854
https://doi.org/10.1103/PhysRevA.39.4854
https://doi.org/10.1103/PhysRevA.39.4854
https://doi.org/10.1140/epjb/e2009-00163-x
https://doi.org/10.1140/epjb/e2009-00163-x
https://doi.org/10.1140/epjb/e2009-00163-x
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1038/s41598-016-0028-x
https://doi.org/10.1103/PhysRevLett.78.1186
https://doi.org/10.1038/46279
https://doi.org/10.1038/46279
https://doi.org/10.1038/46279
https://doi.org/10.1002/1439-7641(20020315)3:3<285::AID-CPHC285>3.0.CO;2-A
https://doi.org/10.1002/1439-7641(20020315)3:3<285::AID-CPHC285>3.0.CO;2-A
https://doi.org/10.1002/1439-7641(20020315)3:3<285::AID-CPHC285>3.0.CO;2-A
https://doi.org/10.1515/zpch-1927-12513
https://doi.org/10.1515/zpch-1927-12513
https://doi.org/10.1515/zpch-1927-12513
https://doi.org/10.1016/S0031-8914(40)90098-2
https://doi.org/10.1126/science.276.5314.917
https://doi.org/10.1126/science.276.5314.917
https://doi.org/10.1126/science.276.5314.917
https://doi.org/10.1073/pnas.1910677116
https://doi.org/10.1073/pnas.1910677116
https://doi.org/10.1073/pnas.1910677116
https://doi.org/10.1103/PhysRevLett.71.1477
https://doi.org/10.1103/PhysRevLett.71.1477
https://doi.org/10.1103/PhysRevLett.71.1477
https://doi.org/10.1016/S0370-1573(01)00081-3
https://doi.org/10.1016/S0370-1573(01)00081-3
https://doi.org/10.1016/S0370-1573(01)00081-3
https://doi.org/10.1063/1.4996264
https://doi.org/10.1103/PhysRevE.96.052121
https://doi.org/10.1103/PhysRevE.94.042222
https://doi.org/10.1073/pnas.85.7.2029
https://doi.org/10.1073/pnas.85.7.2029
https://doi.org/10.1073/pnas.85.7.2029
https://doi.org/10.1142/S0218127408021877
https://doi.org/10.1142/S0218127408021877
https://doi.org/10.1142/S0218127408021877
https://doi.org/10.1103/PhysRevE.84.011142
https://doi.org/10.1103/PhysRevE.67.010102
https://doi.org/10.1023/B:JOSS.0000028067.63365.04
https://doi.org/10.1023/B:JOSS.0000028067.63365.04
https://doi.org/10.1023/B:JOSS.0000028067.63365.04
https://doi.org/10.1038/363031a0
https://doi.org/10.1063/1.881487
https://doi.org/10.1063/1.881487
https://doi.org/10.1063/1.881487
https://doi.org/10.1103/PhysRevLett.71.3975
https://doi.org/10.1103/PhysRevLett.71.3975
https://doi.org/10.1103/PhysRevLett.71.3975
https://doi.org/10.1063/1.869585
https://doi.org/10.1063/1.1421617
https://doi.org/10.1063/1.1421617
https://doi.org/10.1063/1.1421617
https://doi.org/10.1103/PhysRevLett.94.065003
https://doi.org/10.1103/PhysRevLett.79.2221
https://doi.org/10.1103/PhysRevLett.79.2221
https://doi.org/10.1103/PhysRevLett.79.2221
https://doi.org/10.1103/PhysRevLett.70.1343
https://doi.org/10.1103/PhysRevLett.70.1343
https://doi.org/10.1103/PhysRevLett.70.1343
https://doi.org/10.1103/PhysRevLett.88.118102
https://doi.org/10.1103/PhysRevLett.95.260603
https://doi.org/10.1038/381413a0
https://doi.org/10.1038/381413a0
https://doi.org/10.1038/381413a0
https://doi.org/10.1029/1999GL900252
https://doi.org/10.1029/1999GL900252
https://doi.org/10.1029/1999GL900252
https://doi.org/10.1038/nature04292
https://doi.org/10.1038/nature04292
https://doi.org/10.1038/nature04292
https://doi.org/10.1088/1742-5468/ac6254
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1103/PhysRevE.96.042118
https://doi.org/10.1103/PhysRevLett.76.563
https://doi.org/10.1103/PhysRevLett.121.230601
https://doi.org/10.1103/PhysRevLett.99.160602
https://doi.org/10.1103/PhysRevLett.99.160602
https://doi.org/10.1103/PhysRevLett.99.160602
https://doi.org/10.1103/PhysRevE.97.022113
https://doi.org/10.1063/1.5126263
https://doi.org/10.1063/5.0021795
https://doi.org/10.1038/nphys1286
https://doi.org/10.1038/nphys1286
https://doi.org/10.1038/nphys1286
https://doi.org/10.1038/srep20815
https://doi.org/10.1038/nature06948
https://doi.org/10.1038/nature06948
https://doi.org/10.1038/nature06948
https://doi.org/10.5772/60414
https://doi.org/10.1103/PhysRevE.97.012150


[66] Hall P 1981Bull. Lond.Math. Soc. 13 23–7
[67] Ditlevsen PD1999Phys. Rev.E 60 172
[68] Imkeller P and Pavlyukevich I 2006 Stoch. Proc. Appl. 116 611–42
[69] Imkeller P and Pavlyukevich I 2006 J. Phys. A:Math. Gen. 39 L237–46
[70] Getoor RK 1961Trans. Am.Math. Soc. 101 75–90
[71] WidomH1961Trans. Am.Math. Soc. 100 252–62
[72] KestenH1961 Illinois J.Math. 5 267–90
[73] KestenH1961 Illinois J.Math. 5 246–66
[74] Zoia A, RossoA andKardarM2007Phys. Rev.E 76 021116–26
[75] Bouchaud J P andGeorges A 1990Phys. Rep. 195 127–293
[76] Chechkin AV, SliusarenkoOY,Metzler R andKlafter J 2007Phys. Rev.E 75 041101
[77] Pavlyukevich I, Dybiec B, Chechkin AV and Sokolov IM2010Eur. Phys. J. ST 191 223–37
[78] Hintze R and Pavlyukevich I 2014Bernoulli 20 265–81
[79] HighamD J 2001 SIAMRev. 43 525–46
[80] Mannella R 2002 Int. J.Mod. Phys.C 13 1177–94
[81] Chambers JM,MallowsC L and Stuck BW1976 J. Am. Stat. Assoc. 71 340–4
[82] WeronA andWeronR1995 Lect. Not. Phys. 457 379–92
[83] WeronR 1996 Statist. Probab. Lett. 28 165–71
[84] Kloeden P and Platen E 2011Numerical Solution of Stochastic Differential Equations StochasticModelling andApplied Probability (Berlin:

Springer Verlag)
[85] WidomH1961Trans. Am.Math. Soc. 98 430–49
[86] Szczepaniec K andDybiec B 2015 J. Stat.Mech. 2015P06031–46
[87] PadashA,Chechkin AV,Dybiec B, Pavlyukevich I, Shokri B andMetzler R 2019 J. Phys. A:Math. Theor. 52 454004

11

Phys. Scr. 98 (2023) 025216 BDybiec andMZawiślak

https://doi.org/10.1112/blms/13.1.23
https://doi.org/10.1112/blms/13.1.23
https://doi.org/10.1112/blms/13.1.23
https://doi.org/10.1103/PhysRevE.60.172
https://doi.org/10.1016/j.spa.2005.11.006
https://doi.org/10.1016/j.spa.2005.11.006
https://doi.org/10.1016/j.spa.2005.11.006
https://doi.org/10.1088/0305-4470/39/15/L01
https://doi.org/10.1088/0305-4470/39/15/L01
https://doi.org/10.1088/0305-4470/39/15/L01
https://doi.org/10.1090/S0002-9947-1961-0137148-5
https://doi.org/10.1090/S0002-9947-1961-0137148-5
https://doi.org/10.1090/S0002-9947-1961-0137148-5
https://doi.org/10.1090/S0002-9947-1961-0138980-4
https://doi.org/10.1090/S0002-9947-1961-0138980-4
https://doi.org/10.1090/S0002-9947-1961-0138980-4
https://doi.org/10.1103/PhysRevE.76.021116
https://doi.org/10.1103/PhysRevE.76.021116
https://doi.org/10.1103/PhysRevE.76.021116
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1016/0370-1573(90)90099-N
https://doi.org/10.1103/PhysRevE.75.041101
https://doi.org/10.1140/epjst/e2010-01352-6
https://doi.org/10.1140/epjst/e2010-01352-6
https://doi.org/10.1140/epjst/e2010-01352-6
https://doi.org/10.3150/12-BEJ485
https://doi.org/10.3150/12-BEJ485
https://doi.org/10.3150/12-BEJ485
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1137/S0036144500378302
https://doi.org/10.1142/S0129183102004042
https://doi.org/10.1142/S0129183102004042
https://doi.org/10.1142/S0129183102004042
https://doi.org/10.1080/01621459.1976.10480344
https://doi.org/10.1080/01621459.1976.10480344
https://doi.org/10.1080/01621459.1976.10480344
https://doi.org/10.1016/0167-7152(95)00113-1
https://doi.org/10.1016/0167-7152(95)00113-1
https://doi.org/10.1016/0167-7152(95)00113-1
https://doi.org/10.1090/S0002-9947-1961-0121882-7
https://doi.org/10.1090/S0002-9947-1961-0121882-7
https://doi.org/10.1090/S0002-9947-1961-0121882-7
https://doi.org/10.1088/1742-5468/2015/06/P06031
https://doi.org/10.1088/1742-5468/2015/06/P06031
https://doi.org/10.1088/1742-5468/2015/06/P06031
https://doi.org/10.1088/1751-8121/ab493e

	1. Introduction
	2. Model and Results
	3. Summary and conclusions
	Acknowledgments
	Data availability statement
	Appendix. Units in the Langevin equation
	References



