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Light-front wave functions play a fundamental role in the light-front quantization approach to QCD and
hadron structure. However, a naive implementation of the light-front quantization suffers from various
subtleties including the well-known zero-mode problem, the associated rapidity divergences which mixes
ultraviolet divergences with infrared physics, as well as breaking of spatial rotational symmetry. We
advocate that the light-front quantization should be viewed as an effective theory in which small kþ modes
have been effectively “integrated out,” with an infinite number of renormalization constants. Instead of
solving light-front quantized field theories directly, we make the large momentum expansion of the equal-
time Euclidean correlation functions in instant quantization as an effective way to systematically calculate
light-front correlations, including the light-front wave function amplitudes. This large-momentum effective
theory accomplishes an effective light-front quantization through lattice QCD calculations. We demonstrate
our approach using an example of a pseudoscalar meson wave function.
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I. INTRODUCTION

Light-front (LF) quantization (LFQ) or formalism is a
natural language for parton physics in which partons are
made manifest in all stages of calculations. The goal of the
Hamilton formulation of LFQ is to solve nonperturbative
quantum chromodynamics (QCD) just like a nonrelativistic
quantum mechanical system, i.e., diagonalizing the
Hamiltonian and obtaining the wave functions for the
QCD bound states [1],

P̂−jΨni ¼
M2

n

2Pþ jΨni ð1Þ

where Pþ is the LF momentum (see Eq. (5) below for light-
front coordinate definition) and P̂− is the LF Hamiltonian,
and Mn and jΨni are a hadron mass and wave function,
respectively. Then all the partonic densities and correlations

functions may be calculated as the expectation values of the
LF wave functions (LFWF). The LFWFs naturally arise in
high-energy processes. For exclusive processes [2,3], one
usually probe a given Fock component and the nonpertur-
bative distributions for these components are exactly
LFWFs and the k⃗⊥ integrated LFWF or the distribution
amplitude (DA). They have been applied to various form
factors such as the pion electromagnetic form factor [4,5],
the proton form factors [6–9] and exclusive processes such
as B decays [2,3,10,11]. A good introduction to hadronic
form factors in perturbative QCD is given in [12].
Moreover, like in condensed matter physics, knowing

quantum many-body wave functions allows one to under-
stand interesting aspects of quantum coherence and entan-
glement, as well as the fundamental nature of quantum
systems. Therefore, a practical realization of the LFQ
program clearly would be a big step forward in under-
standing the fundamental structure of hadrons, particularly
the nucleon (proton and neutron), which are the funda-
mental building blocks of visible matter.
To be sure, wave functions for the hadron bound states

are not the most natural objects in quantum field theory
(QFT) due to the nontrivial QCD vacuum, ultraviolet (UV)
divergences as well as Lorentz symmetry, according to the
latter the space and time shall be treated on the equal
footing. The proton and other hadrons are excitations of the
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QCD vacuum which by themselves are very complicated
because of the well-known phenomena of chiral symmetry
breaking and color confinement. To build a proton on the
top of this vacuum, one naturally has a question about what
part of the wave function reflects the property of the bound
state and what reflects the QCD vacuum: This difference
yields the properties of the proton that are experimentally
measurable. There is no clean way to make this separation
unless one builds the proton out of elementary excitations
or quasiparticles that do not exist in the vacuum, as often
have been done in condensed matter systems.
The parton degrees of freedom in the infinite momentum

frame (IMF) fulfill the above purpose to some degree. Due
to the kinematic effects, all zero modes in the vacuum have
longitudinal momentum kþ ¼ 0, and to some degree of
accuracy (incorrect for higher-twist observables as we will
discuss), the proton is made of partons with kþ > 0. This
separation of degrees of freedom is particularly welcome,
making a wave function description of the proton more
natural and interesting than in any other frame. Moreover,
one can impose an infrared (ir) cutoff on the kþ ≥ ϵ in the
effective Hilbert space, such that all physics below kþ ¼ ϵ
are taken into account into counterterms in a way similar to
the renormalization of uv divergences. The result is an
effective LF theory with “trivial” vacuum,

aiðxi; k⃗i⊥Þj0i ¼ 0; ð2Þ

where j0i is the vacuum of QCD, aiðxi; k⃗i⊥Þ is an generic
notation for annihilation operator of parton species i with
longitudinal momentum fraction xi and transverse momen-
tum k⃗i⊥. Therefore schematically one can write down the
Fock-space expansion for the proton state in LF gauge
Aþ ¼ 0,

jPi ¼
X∞
n¼1

Z
dΓnψnðxi; k⃗i⊥Þ

Yn
i¼1

a†i ðxi; k⃗i⊥Þj0i; ð3Þ

where the phase-space integral reads dΓn ¼
Q dkþi d

2ki⊥
2kþi ð2πÞ3

,

with xi ¼ kþi =P
þ, ψnðxi; k⃗i⊥Þ are LFWF or LFWF ampli-

tudes or simply LF amplitudes. The latter are a complete set
of nonperturbative quantities which describe the partonic
landscape of the proton.
We should mention that if one is not satisfied with an

effective theory for kþ > 0 partons, but instead would like
to apply the LF quantization procedure to construct the full
theory, then the zero-mode problem must be treated with
great care. The naive idea that the vacuum of LF QFT is
trivial turns out to be inaccurate. In fact, it have been proved
in Ref. [13,14] that not only the nontrivial QFT vacuum
cannot be simple, even the Green’s functions of the theory
together cannot pose generic meaningful restrictions to
the null planes ξþ ¼ constant. Therefore, zero modes do

contain nontrivial dynamics and contribute to the high-twist
properties of the proton, such as mass and transverse spin
[15]. As we explain in the next section, an effective theory
view of LFQ simply cuts off the zero-mode complication
and relegates these physics to renormalization constants,
and this view point, when applied to the covariantly
quantized theory, is sufficient for us to make sense the
LFWF amplitudes in a self-consistent manner. In very few
cases when frontal attack of the zero mode problem are
practically feasible, the more ambitious goal of solving the
full theory can be achieved [16,17].
With the above caveat, it is possible to invert the LF

quantum state, by express the LFWFs in terms of invariant
matrix element amplitudes,

ψnðxi; k⃗i⊥Þ ¼ h0j
Yn
i¼1

aiðxi; k⃗i⊥ÞjPi: ð4Þ

As we will show in the paper, the above can be expressed
equivalently as equal LF time field correlators similar to
other standard LF quantities such as parton distribution
functions (PDFs) and transverse momentum dependent
PDFs (TMDPDFs) [18]. By properly restoring gauge-
invariance through LF gauge links expðig R AþdλÞ and
imposing regularizations, the above amplitudes can be
calculated not only in LF theory but can also be accessed
through the large momentum effective theory (LaMET)
approach [19–22]. Therefore, one can actually obtain a LF
picture of the proton without going through the explicit
LFQ, or one can effectively obtain the results of LFQ
through instant quantization at a large momentum frame.
In this paper, we will show how the generic rapidity-

renormalized LFWFs can be obtained from LaMET in a
way similar to the TMDPDFs [23]. The organization of the
paper is as follows. In Sec. II, we review the LF quantiza-
tion and its conceptual difficulties, especially the rapidity
divergences. We emphasize that there is an implicit infinite
rapidity limit behind the LF quantization which adds
additional transcendentality to LF formulation of QFT in
comparison to the equal time formulation. Due to the
effective theory nature of LFQ, the rapidity divergences
appear in a way similar to the emergence of uv divergences
in the continuum limit and require a proper treatment. In the
LF formulation, however, it is very difficult to regulate the
rapidity divergence consistently due to breaking of Lorentz
invariance. We argue that it is simpler to stay in the instant-
quantized theory and treat the LF quantities as gauge-
invariant correlation functions with rapidity regulators. In
the spirit of LaMET, using rapidities of external states as
physical off-light-cone regulator, one can obtain the LF
quantities without LF quantization.
In Sec. III, we formulate LFWF amplitudes as gauge-

invariant correlation functions with lightlike gauge-links
attached to maintain gauge invariance. These gauge-links
lead to rapidity divergences which must be regularized
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using rapidity regulators. The naive LFWF amplitudes
depend on these regulators and contain additional soft
contributions. We introduce the generalized soft functions
to remove these additional soft contributions and define the
physical LFWF amplitudes that can be used in factorization
theorems.
In Sec. IV, we present the LaMET formulation of LFWF

amplitudes. We first introduce the quasi-LFWF amplitudes
defined similar to the quasi parton distribution functions
(PDF) and quasi-TMDPDF. The large hadron momentum
Pz plays the role of a physical off-light-cone regulator. At
large Pz, the quasi-LFWF amplitudes can be matched to the
physical LFWF amplitudes with the help of reduced soft
functions. We introduce the generalized off-light-cone soft
function and present the factorization theorem of quasi-WF
amplitudes. A sketch of its proof is included. As an
application of the factorization formula, we show that
the Collins-Soper (CS) rapidity evolution kernels can be
extracted from ratio of quasi-WF amplitudes in which the
soft function contribution cancels.
In Sec. V, we use the leading LFWF amplitude of a

pseudoscalar meson as an example to demonstrate to
illustrate the large momentum expansion formalism. And
we conclude the paper in Sec. VI.

II. PARTONS AND LIGHT-FRONT
QUANTIZATION AS EFFECTIVE THEORY

Partons are an idealized concept which has been moti-
vated from high-energy scattering, in which the constitu-
ents of hadrons all travel collinearly at large momenta,
which can be taken to the limit of infinity on the scale of the
strong interaction scale ΛQCD. These are specialized modes
of QCD whose dynamics can be described by an effective
theory of soft and collinear degrees of freedom from which
the individual hadrons can be constructed. By choosing a
particular direction of collinear modes, one can construct a
Hamiltonian formulation of the theory, which has been
called light-front quantization. In this view, LFQ of a theory
is actually an effective theory, just like the heavy quark
effective theory in which a particular set of modes is
selected to describe the quark of infinite mass. As such, the
LFQ cannot describe well the soft-gluon physics at very
small kþ which are part of the hadrons.
In this section, we will review the standard formalism of

the light-front quantization and explain why one shall take
the view that it is an effective theory of QCD and hadron
structure.

A. Basics of light-front quantization

As early as 1949, Dirac had advocated three forms of
dynamics, with light-front being one of them [24]. In light-
front theory, one defines two coordinates,

ξ� ¼ ðξ0 � ξ3Þ=
ffiffiffi
2

p
; ð5Þ

where ξþ is the light-front “time,” and ξ− is the light-front
“spatial coordinate.” And any four-vector Aμ will be now
written as ðAþ; A−; A⃗⊥Þ. Dynamical degrees of freedom are
defined on the ξþ ¼ 0 plane with arbitrary ξ− and ξ⃗⊥, with
conjugate momentum kþ and k⃗⊥. Dynamics is generated by
light-cone Hamiltonian HLC ¼ P−. For a free particle,
with 3-momentum ðkþ; k⃗⊥Þ, the on-shell LF energy is
k− ¼ ðk⃗2⊥ þm2Þ=2kþ.
For theories like QCD, the dynamical degrees of free-

doms are defined as ψþ and A⊥. Defining Dirac matrices
γ� ¼ 1=

ffiffiffi
2

p ðγ0 � γ3Þ, the projection operators for Dirac
fields are defined as P� ¼ ð1=2Þγ∓γ�. Any Dirac field ψ
can be decomposed into ψ ¼ ψþ þ ψ− with ψ� ¼ P�ψ ,
and ψþ is considered as a dynamical degree of freedom.
For the gauge field, Aþ is fixed by choosing the LF gauge
Aþ ¼ 0 and A⃗⊥ are dynamical degrees of freedom. The
physics of the LF correlation becomes manifest if one
introduces the LF quantization conditions for dynamical
fields

fψ†
þðξ⃗Þ;ψþð0Þg ¼ Pþδ3ðξ⃗Þ; ð6Þ

½Aiðξ⃗Þ; ∂þAjð0Þ� ¼ i
2
δijδ3ðξ⃗Þ; ð7Þ

where three-vectors and delta-functions are all in the sense
of LF coordinates. To solve the commutator relation, one
starts with the canonical expansion,

ψþðξþ ¼ 0; ξ−; ξ⊥Þ

¼
Z

d2k⊥
ð2πÞ3

dkþ

2kþ
X
σ

½bσðkÞuðkσÞ

× e−iðkþξ−−k⃗⊥·ξ⃗⊥Þ þ d†σðkÞvðkσÞeiðkþξ−−k⃗⊥·ξ⃗⊥Þ�; ð8Þ

where b†ðbÞ and d†ðdÞ are quark and antiquark creation
(annihilation) operators, respectively. We adopt covariant
normalization for the particle states and the creation and
annihilation operators, i.e.,

fbσðkÞ; b†σ0 ðk0Þg ¼ fdσðkÞ; d†σ0 ðk0Þg
¼ ð2πÞ3δσσ02kþδðkþ − k0þÞδð2Þðk⃗⊥ − k⃗0⊥Þ;

ð9Þ

where σ is the light-cone helicity of the quarks which can
take þ1=2 or −1=2. We ignore the masses of the light up
and down quarks.
Likewise, for the gluon fields in the light-cone gauge

Aþ ¼ 0, A⃗⊥ is dynamical and has the expansion,
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A⃗⊥ðξþ¼0;ξ−;ξ⊥Þ

¼
Z

d2k⊥
ð2πÞ3

dkþ

2kþ
X
λ

½aλðkÞϵ⃗λðkÞe−iðkþξ−−k⃗⊥·ξ⃗⊥Þ þH:c:�: ð10Þ

And we have the following covariant normalization for the
creation and annihilation operators for gluon,

½aλðkÞ; a†λ0 ðk0Þ� ¼ ð2πÞ3δλλ02kþδðkþ − k0þÞδð2Þðk⃗⊥ − k⃗0⊥Þ:
ð11Þ

Implicitly, the gauge fields Aμ is a traceless 3 × 3 matrix
with Aμ ¼ P

a A
aμTa, where Ta are the SUð3Þ Gell-Mann

matrices satisfying ½Ta; Tb� ¼ ifabcTc and fTa; Tbg ¼
1
3
δab þ dabcTc, where fabc and dabc are the group

constants.
Given ψþ and A⃗⊥, using equation of motions ψ− and A−

can be expressed in terms of ψþ and A⊥ [25]. In terms of
these light-cone free fields, the LF Hamiltonian can be
decomposed into a free part Hfree

LC and an interaction part
V þ V inst

HLC ¼
Z

dξ−d2ξ⃗⊥T−þðξþ ¼ 0; ξ−; ξ⃗⊥Þ;

¼ Hfree
LC þ V þ V inst; ð12Þ

where Hfree
LC is the free kinematic energy on the light-cone,

and the interaction V contains the standard quark-gluon
vertex and the 3-gluon, 4-gluon interactions. The new
feature of the light-cone quantization lies in the instanta-
neous interactions V inst [1] similar to the static Coulomb
interactions in Coulomb gauge quantum electrodynamics.
Given the LF Hamiltonian, bound states in QCD can be

formulated in a way similar to standard eigenvalue problem
in quantum mechanics. The expansion coefficients of the
hadronic functions in the above free Fock states are called
LFWF amplitudes. Perturbatively, one can apply the old-
fashioned perturbation theory to HLC to calculated the
LFWFs. The resulting perturbative series is called light-
front perturbation theory (LFPT) and can be formally
obtained from Feynman perturbation theory in light-cone
gauge by integrating out k− first [26]. A major feature of
LFPT is that naively looking, due to the kþ ≥ 0 constraints,
no particle can be created out of or annihilated into the
vacuum, therefore there is a clear separation between
particles with kþ > 0 and the vacuum. This is in sharp
contrast with the equal-time quantization where particles
can be created from vacuum and there is no clear separation
between particles and the vacuum.
The hope of LFQ for QCD is not about perturbation

theory, but to solve the hadron states on the light-front [1].
The discretized light-cone quantization was proposed in
[27] to solve the bound state problem. This nonperturbative
framework allows one to treat the zero-mode problem

explicitly in [16,17,28] and turns out to be successful for
models in 1þ 1 dimension, such as the Schwinger model
[16,29–31], the 1þ 1 QCD [32–34], the 1þ 1 ϕ4 theory
[35] and the sine-Gordon model [28].

B. Zero modes, rapidity divergences and LFQ as
effective field theory

However, as one realized later, the simplification due to
LFQ is not as trivial as one might thought about at a first
glance. Even in 1þ 1 dimensions, the triviality of the
vacuum is invalid [14] due to the presence of non-
negligible light-cone zero modes (modes with kþ ¼ 0).
They corresponds to long-wave length fluctuations at large
light-cone separation and are sensitive to the vacuum
structure [17]. A proper treatment of such modes requires
an ir regulator such as a finite box in ξ− direction that was
adopted in the “discrete light-cone quantization” [27]. In
LFPT, naively neglecting light-cone zero modes will also
lead to inconsistent results for certain Feynman diagrams
where the þ components of certain external momenta
become zero. For example, as argued in Ref. [36], the
vacuum bubble diagram for the 1þ 1 ϕ4 theory is nonzero
at Pþ ¼ 0. This contribution is entirely due to light-cone
zero modes. Integrating out the k− at Pþ ¼ 0 in a way that
leads to LFPT will omit the zero modes contribution and
produce incorrect result.
The light-cone zero modes problem that serves as a

conceptual “back-door” against vacuum triviality of LFQ is
not the only severe problem of LFQ. It has been found [37]
that the standard power-counting method that works in
equal-time or Euclidean formalism failed to produce a
simple pattern of uv divergences in LFQ. In fact, in 4-D
gauge theory, a new type of divergence at small kþ called
“light-cone divergence” appears due to presence of 1

kþ in the
phase space measures and in the instantaneous vertices. In
LFPT, the individual diagrams can diverge even more than
logarithmically. One might think that the light-cone diver-
gence is simply an artifact of LFQ and should cancel at the
final step of calculation for physical quantities such as S
matrix elements. However, there are quantities for which
the cancellation of light-cone divergences are not complete.
Among them are LFWF amplitudes and the associated
eigenvalue Eq. (1). We will show in Sec. III that by
expressing the LFWF amplitudes as gauge-invariant cor-
relations functions in covariant gauge, one can identify the
noncanceling light-cone divergences as the famous rapidity
divergences known in the literature of transverse momen-
tum dependent (TMD) phenomenon [18,38,39]. In covar-
iant gauge, they are caused by lightlike gauge links
extending to infinities and can be regulated efficiently
by introducing rapidity regulators to the gauge-links, but in
LFQ and LFPT they appears in all diagrams. The appear-
ance of the light-cone or light-front divergences is a signal
that LFQ theory is an effective one in the sense that the
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theory serves to emphasizes the infinite-momentum col-
linear modes.
Due to the above reasons, LFPT has not been used for

any calculations beyond one-loop, except for two-loop
anomalous magnetic moment in QED [40]. In fact, the
common wisdom of using dimensional regularization (DR)
for the transverse-momentum integral, and cut-off for
longitudinal momentum has not been proven useful for
multiloop calculations. However, a successful use of the
LFPT has been the derivation of the Balitsky-Fadin-
Kuraev-Lipatov evolution [41–43] by Mueller for quarko-
nium wave functions, for which the rapidity divergence
structure is relatively simple [44].
Due to the complication caused by the LF divergences,

there appear infinite number of counterterms in the LF
Hamiltoinian [37], which describe the interactions of zero-
modes with nonzero modes. This is the price that one pays
for an effective theory to truncate away the zero modes
which contain infrared physics as well. Even without these
problems, one has to use a severe truncation in the number
of Fock states to solve Eq. (1). Such truncation usually
breaks simple rotational symmetry in the sense that the
states belonging the same angular momentum multiplets
will have different energies. Moreover, there has been no
demonstration so far that the Fock truncation converges
well in QCD [37].
Thus, the LFQ provides a great way to understand the

parton physics, but it is difficult to solve it directly due to
the complicated LF divergences and their renormalization.

C. An effective approach to light-front quantization

We have emphasized that LFQ is an effective theory of
high energy scattering in which the infinite-momentum
limit is taken before uv renormalization. This is also the
spirit of the soft-collinear effective theory (SCET) [45,46].
On the other hand, one can perform uv renormalization first
before taking the infinite-momentum limit. One can obtain
the former result from the latter by simple EFT matching.
This is the spirit of the large momentum expansion or
effective theory [19,47].
More specifically, there is a procedure to obtain the LF

correlators from Euclidean correlation functions in equal-
time quantization. Let us consider for simplicity the
following two-point function inside a fast-moving hadron
state jPi with large but finite hadron momentum Pμ

f̃O

�
λ; b⃗⊥; ζξ ¼

ξ · Pffiffiffiffiffi
ξ2

p ; μ
�

¼ hPjOðξÞOð0ÞjPi; ð13Þ

where λ ¼ ξ · P is the longitudinal invariant length and b⃗⊥
is the transverse component of ξ. The large rapidity gap
between the separation ξ and the hadron is characterized by
the variable ζξ ¼ ξ·Pffiffiffi

ξ2
p that plays the role of a hard scale as

well. In order to obtain the corresponding LF version

fOðλ; b⃗⊥; ζ; μÞ at rapidity scale ζ, two nontrivial operations
need to be performed to obtain the corresponding light-
cone version

(i) An operation in uv which removes the contributions
in f̃ that are due to fluctuations at the hard scale ζξ.
This process is usually called matching. After
performing the matching, the hard scale ζξ depend-
ency “transmutes” into the renormalization scale μ
dependence of the LF-correlator.

(ii) An operation in small kþ region, the rapidity
renormalization, that removes all the contributions
form the small kþ fluctuation. After rapidity re-
normalization, the physical rapidity dependence
“transmutes” into the rapidity renormalization scale
ζ dependence of the LF-correlator.

Schematically we have the relation:

fOðλ; b⃗⊥;ζ;μÞ

¼ lim
ζv→∞

ZRD

�
ζ

ζξ

�
⊗Cuv

�
ζξ
μ

�
⊗ f̃Oðλ; b⃗⊥;ζξ;μÞ: ð14Þ

The ZRD is the rapidity renormalization factor and the Cuv
is the matching kernel. The ζ is a rapidity renormalization
scale which emerges after performing the rapidity renorm-
alization. Therefore, in this sense the light-cone theory is
obtained from the full theory by “integrating out” uv
modes above ζv and the small kþ modes below ΛQCD, and
can be viewed as an effective theory to the full theory. As
expected, the LF quantum fields ϕ are not the original
quantum fields of the full theory.

III. WAVE FUNCTION AMPLITUDES
AND RAPIDITY DIVERGENCES

In this section, we first express the naive WF amplitudes
as LF correlation functions between hadron state and the
QCD vacuum, in which lightlike gauge-links extending to
infinities are required to maintain gauge-invariance. This
also allows the identification of LF divergences as the
rapidity divergences, known in the literature of TMD
physics, which we will review after introducing the LF
amplitudes. We then introduce the generalized soft func-
tions composed ofN þ 1Wilson-line cusps that remove the
regulator dependency in naive LF amplitudes (or defining a
universal regulator scheme consistent with DR). The
physical LFWF amplitudes and their evolution equations
will also be discussed.

A. WF amplitudes as LF correlation function

As we have pointed out before, the WF amplitudes can
be expressed in the form of Eq. (4). By inverting the LF
creation-annihilation operators in term of LF fields in
Eqs. (8) and (10), one can express the WF amplitudes as
LF correlation functions with quark and gluon fields
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separated in ξ⃗⊥ and ξ− directions. Here we present a precise
definition of the LFWF amplitudes in terms of the matrix
elements of nonlocal LF operators between the hadron
states and the QCD vacuum.
We first introduce the dimensionful light-cone vectors

p ¼ 1ffiffi
2

p
Pþ ð1; 0; 0; 1Þ and n ¼ Pþffiffi

2
p ð1; 0; 0;−1Þ in convention

Aμ ¼ ðA0; A1; A2; A3Þ. They satisfy p · n ¼ 1. Pþ is a mass
dimension-1 parameter which will be chosen appropriately
in specific applications. We use a generic notation ϕi to
denote dynamical parts of the quark and gluon fields ψ and
Aμ, with indices i to label field types, and any other features
such as color representation, flavor, etc. We introduce
gauge-invariant version of the field Φi which contains
gauge-link along the light-cone direction n, pointing to
positive or negative infinity:

Φ�
i ðξÞ ¼ W�

n ðξÞϕðξÞ; ð15Þ

with lightlike gauge-link W�
n ðξÞ defined as

W�
n ðξÞ ¼ P exp

�
−ig

Z �∞

0

dλn · Aðξþ λnÞ
�
; ð16Þ

where P is a path order. In the LF gauge n · A ¼ 0, the
gauge-links formally disappears and the Φi simply reduces
to local LF fields ϕi in Eqs. (8) and (10). From these fields,
one can construct the generic naive LFWF amplitudes,

ψ�0
N ðxi; b⃗i⊥;μÞ

¼
Z YN

i¼1

dλieiλixi ×eþiλ0x0

× h0jPN

YN
i¼1

Φ�
i ðλinþ b⃗i⊥ÞΦ�

0 ðλ0nþ b⃗0⊥ÞjPi: ð17Þ

where x0 ¼ 1 −
P

i xi, λ0 ¼ −
P

i λi, and all longitudinal
momentum fractions carried by partons satisfy 0 < xi < 1.
We single out a field labelled with 0 with a fixed
longitudinal coordinate λ0 and conjugation momentum
x0. We choose the sum of the all longitudinal coordinate
λi as 0 due to translational symmetry. Likewise, when P⃗ has
no transverse momentum P⃗⊥ ¼ 0, the transverse coordi-
nate b⃗⊥ can be shifted by an overall constant without any
effect. The 0 superscript on the amplitude indicates that
rapidity divergences have not been regularized. However,
regular uv divergences are regularized in dimensional
regularization (DR) with renormalization scale μ and in
the modified minimal subtraction (MS)-scheme.
All fields are properly coupled to the quantum numbers

of the hadron under consideration. The projection operator
PN is to project all the color indices onto the singlet
channel. For example, forN ¼ Nc − 1 and all theΦis are in
the fundamental representation, the projection is the total

anti-symmetrization while for N ¼ 1 and one fundamental,
one conjugate fundamental, the projection is the trace. It
must be distinguished from the path-ordering operator P.
There may be different ways to couple the same set of fields
into the required quantum numbers and they are treated as
independent. We have also omitted the helicity and angular
momentum coupling to generate a specific helicity combi-
nation [48]. See Fig. 1 for a depiction of these LFWF
amplitudes.
The above amplitude is gauge-invariant without the

transverse gauge-link at light-cone infinity if calculated
in nonsingular such as the covariant gauge. However, in
light-cone gauge Aþ ¼ 0, the gauge potential does not
vanish at infinity, one must specify connections of the
gauge-links at λ ¼ �∞ [49]. A similar observation is true
for calculation in a finite spacetime volume with a fixed
boundary. The choice of connection method does not affect
the relative amplitude between partons with kþ ≠ 0, but
will affect the overall normalization of the amplitudes
through the effects of the zero modes as boundary con-
ditions at infinity can only affect zero modes.
One can further Fourier-transform the above amplitudes

to the transverse momentum space. Since the matching
formula to lattice is much simpler in the coordinate space, it
is usually done at the end of a calculation.

B. Rapidity divergence and rapidity regulators

Neglecting all the divergences, one can formally show
that the naive LF amplitudes in Eq. (17) reduces to the ones
in the hadron wave function defined in light-cone gauge.
The naive amplitudes in Eq. (17), however, suffers from a
new type of divergence associated with the infinitely long
lightlike gauge-links. These divergences are due to radia-
tion of gluons collinear to the lightlike gauge-link and
cannot be regularized by the standard uv regulators. An
example is the following integral in dimensional regulari-
zation (DR) [50],

FIG. 1. The LFWF amplitudes ψþ0
N (blue) and ψ−0

N (red). The
crossed circles denotes the operator insertion Φi or junctions of
gauge-links. The explicit form of the junctions of the gauge-links
are light-cone infinities is irrelevant as far as gauge-invariance is
preserved.
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I ¼
Z

dkþdk−
fðkþk−Þ
ðkþk−Þ1þϵ ¼

1

2

Z
dy
y

Z
dm2

fðm2Þ
m2þ2ϵ ; ð18Þ

where m2 ¼ kþk− and y ¼ kþ=k− is the rapidity-related
variable. The divergences in y arise from large and small y
where the integral is unregulated. It is clear that this
divergence is precisely the noncanceling part of the
light-cone divergence at small kþ when Eq. (17) was
evaluated in LFPT. However, in LFPT such divergences
scatter across all the diagrams and cannot be regulated
consistently. In the manifestly Lorentz-covariant formal-
ism, it is purely caused by the gauge-link and is much easier
to keep track with. This rapidity divergence is the signature
that partons are objects in effective field theories.
To regulate the light-cone or rapidity divergences, a

number of methods have been introduced in literature (for a
review see [50]). They can be put into two classes: on-light-
cone regulators and off-light-cone regulators. In the former
case, the gauge-links are kept along the light-cone direction
nμ after regularization. For example, the so-called δ
regulator [51,52] regularizes the gauge-link as:

W�
n ðξÞ → W�

n ðξÞjδ−

¼ P exp

�
−ig

Z �∞

0

dλn · Aðξþ λnÞe−δ−
2
jλj
�
; ð19Þ

and similarly for the conjugate direction, where δ− is a
positive dimensionless quantity that regulates the light-
cone divergence. The δ regulator breaks gauge-invariance
nominally, but the breaking effects might go to zero
smoothly as δ− → 0. The regulator preserves the boost
invariance δ� → e�Yδ� where Y is the rapidity of the
(residual) Lorentz boost. The LF-distance regulator [53],
on the other hand, regulates the LF divergence through
finite LF distance L−

W�
n ðξÞ → W�

n ðξÞjL−

¼ P exp

�
−ig

Z �L−

0

dλn · Aðξþ λnÞ
�
; ð20Þ

which preserves the gauge-invariance at large L−, but is
difficult for analytic calculations, in additional to adding
transverse gauge links. Other on-light-cone regulators
include the exponential regulator [54], η regulator [55],
analytical regulator [56], etc. Not all of them work in the
case of LFWF amplitudes, since some of them are defined
with the presence of intermediate state cuts. Nevertheless, the
δ regulator and the LF-distance regulator can still be
implemented in the context of LFWF amplitudes. In the
remainder of this section, we will use the δ regulator as a
representative whenever we need an on-light-cone regulator.
The off-light-cone regulator was introduced in [18,57–59],

and also used in [58]. This type of regulator chooses
off-light-cone directions to avoid the rapidity divergence.

One can choose, for instance, to deform the gauge-links
into the spacelike region:

n → nY ¼ n − e−2Y
p

ðPþÞ2 : ð21Þ

Here Y plays the role of a rapidity regulator, as when
Y → ∞, nY → n. In certain cases one can also deform nY
into timelike region [60].
The on-light-cone regulators are consistent with the spirit

of parton physics, and therefore are useful to define
residual-momentum-independent parton densities. The
off-light-cone regulators, on the other hand, are in a similar
spirit as LaMET, and therefore can be exploited for
practical lattice QCD calculations, as we shall see in the
next subsection.
To avoid light-cone divergences, from now on we

include the rapidity regulator in the definition of the
LFWF amplitudes. The gauge-invariant fields Φi are
regularized as

Φ�
i ðξ; δ−Þ ¼ W�

n ðξÞjδ−ϕðξÞ; ð22Þ

in terms of which the unsubtracted LFWF amplitudes
becomes

ψ�0
N ðxi; b⃗i⊥;μ; δ−Þ

¼
Z YN

i¼1

dλieiλixi × eiλ0x0

× h0jPN

YN
i¼1

Φ�
i ðλinþ b⃗i⊥; δ−ÞΦ�

0 ðλ0nþ b⃗0⊥; δ−ÞjPi:

ð23Þ

The subscript δ− denotes that the gauge-links in Φi are
regulated by the δ regulator in the light-cone minus
direction. Similar to the case of TMDPDFs, as δ− → 0,
ψ diverges logarithmically, and the finite part also depends
on the rapidity regulator. Therefore, the naive amplitudes in
Eq. (23) cannot appear in factorization formulas for
physical observable by themselves. One must remove all
divergences and rapidity regularization scheme dependen-
cies in ψ , in a way similar to removing uv divergences in
physical quantities. These can be accomplished with
the help of soft functions to be introduced in the next
subsection.
We should mention that the rapidity divergence in gauge

theory is not simply an artifact, it reflects the deep fact that
as one boost a hadron to faster and faster speed, soft gluons
at long-wave length are continually generated with larger
and larger population. Therefore, the rapidity divergence is
closely related to the small-x physics. Here we simply
mention a famous example of Mueller for the onium wave
function. Assuming the initial wave function is given by
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ψ0ðx; bTÞ, let us consider the radioactive correction to the
wave function at order α2s. This calculation has been
performed by Mueller in [44], see also [61]. For the valence
component consists of one quark and one antiquark we
simply need the virtual part of his result. The divergent
piece is given by:

ψ q̄qðx; xmin; b⊥; μÞjdiv
≈ −

αsCF

π
ln μ2b2⊥

Z
1−x

xmin

dxg
xg

ψ0ðx; bTÞ: ð24Þ

The coefficient of the divergence is nothing but the one-
loop Collins-Soper evolution kernel for TMDPDF. If we
probe reals emissions with Glauber exchanges as normally
happens in the real collision, then the rapidity divergence
simply cannot be captured by a linear evolution equation.
Instead, at large Nc the rapidity evolution for the generating
functional for the soft-gluon wave functions is controlled
by the nonlinear Balistky-Kovchegov (BK) equation
[62,63], which can be mapped to the Banfi-Marchesini-
Smye (BMS) equation [64] associated to those “nonglobal”
infrared logarithms. A throughout discussion on the small-x
evolution equation and the BMS equation is beyond the
scope of this paper.

C. Generalized soft functions for LFWF amplitudes

Similar to the case of TMDPDFs, the rapidity divergen-
ces as well as scheme dependencies in Eq. (23) can be
renormalized with the help of generalized soft functions,
introducing a new rapidity scale ζ. Specifically, the
generalized soft function for the ψN in Eq. (23) is
composed of N þ 1 Wilson-line cusp operators in the
representation set R ¼ fRi; i ∈ ð0; NÞg where Ri denote
the color representation of the ith cusped Wilson-line. The
Wilson-line cusp operator is defined as

C�ðb⃗⊥; δþ; δ−Þ ¼ W�
n ðb⃗⊥Þjδ−W†

pðb⃗⊥Þjδþ ; ð25Þ

where Wp is defined as

Wpðb⃗⊥Þ ¼ P exp

�
−ig

Z
−∞

0

dλ0p · Aðλ0pþ b⃗⊥Þ
�
: ð26Þ

Here the λ0 has mass dimension −2. And the � choice for
the LF minus direction n inW�

n should be chosen the same
as that of the WF amplitudes in Eqs. (22) and (23).
With the above, we define the generalized soft

function as

S�N;Rðb⃗i⊥;μ;δþ;δ−Þ¼h0jT PN

YN
i¼0

C�ðb⃗i⊥;δþ;δ−Þj0i; ð27Þ

where T is a time-ordered product for quantum fields.
Notice that the time and path orderings are operating on

different spaces of operators. For N ¼ 1 and R ¼ ff; f̄g
where f,f̄ denote fundamental and conjugate fundamental
representations, the definition reduces to the standard
TMD soft function for quark-TMDPDF [18]. See
Fig. 2 for a depiction of the above generalized soft
function. In the following discussion, we will always
omit the label R for the color-representation of the
generalized soft functions unless otherwise mentioned.
We will also omit the “generalized” from their names and
call the case with N ¼ 1 and N > 1 generically as soft
functions.
Intuitively, the soft functions are obtained from the

WF amplitudes by performing eikonal approximations to
the incoming parton lines. They re-sum all the soft-gluon
radiations from the bare WF amplitudes and suffer from
rapidity divergences. Therefore, the generic rapidity
regulator is also imposed on the soft function. Since
the soft function contains two lightlike directions, the
scheme dependencies of the soft function are expected
to “double” that of the WF amplitudes, therefore a
square root is introduced in the next subsection to
ensure the renormalized WF amplitude is scheme
independent.
Indeed, it has been argued in [39] based on conformal

transformation that the rapidity divergences in the un-
subtracted WF amplitude and the soft functions are indeed
multiplicative and is controlled by the generalization of the
Collins-Soper kernel, labelled here by KNðb⃗i⊥; μÞ [57]. As
δ� → 0, one has

FIG. 2. The soft function SþN (upper) and S−N (lower) which can
be used to renormalize the light-cone rapidity divergences in
LFWF amplitudes.
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S�Nðb⃗i⊥;; μ; δþ; δ−Þ

¼ exp

�
KNðb⃗i⊥; μÞ ln

μ2=ðPþÞ2
∓2δþδ− − i0

þD2;Nðb⃗i⊥; μÞ
�
;

ð28Þ

where only the product δþδ− appears due to boost
invariance and ðPþÞ2 comes from the definition of dimen-
sionful light-cone vectors. In principle, the mass parameters
in the light-cone vectors can be chosen differently from that
of the hadron, but here we chose them to be the same for
simplicity. As a result of this choice, the hadron momentum
dependency is entirely transmuted to the soft functions. The
generalized rapidity evolution kernel depends on the color
representations R and reduces to the standard Collins-
Soper kernel for N ¼ 1 and R ¼ ff; f̄g. KNðb⃗i⊥; μÞ is
independent of rapidity regularization scheme. On the other
hand, the finite part D2;Nðb⃗i⊥; μÞ (where subscript 2
indicates the definition depending on the two on-light-
cone vectors) is scheme-dependent.
Similar to the N ¼ 1 case, the soft-function in δ

regularization satisfies the renormalization group equation

μ2
d
dμ2

ln S�Nðb⃗i⊥;; μ; δþ; δ−Þ

¼ −
N þ 1

2
ΓcuspðαsÞ ln

μ2=ðPþÞ2
∓2δþδ− − i0

þ N þ 1

2
γsðαsÞ; ð29Þ

where ΓcuspðαsÞ is the lightlike cusp anomalous dimension
[65,66] and the γsðαsÞ is the soft anomalous dimension
independent of N [67]. But they all depends on the color
representation R. The generalized Collins-Soper kernel
satisfy the renormalization group equation (RGEs):

μ2
d
dμ2

KNðb⃗i⊥; μÞ ¼ −
N þ 1

2
ΓcuspðαsÞ: ð30Þ

It is worth pointing out that S−N and KN in some special
cases have been calculated to two loops in [38].
One should notice that the � sign in the logarithms in

Eq. (28) is related to the analyticity structure of the soft
functions. Notice that the e−λδ

�
in the definition of the

delta-regulator can be viewed as residual imaginary exter-
nal momenta δkp ¼ iδ−p and δkn ¼ iδþðPþÞ2n carried by
the corresponding gauge-links in p and n direction,
respectively. For the S−N space-time picture, both of them
are incoming and the residual momentum transfer equals to
Q2 ¼ ðδkp þ δknÞ2 ¼ −ðPþÞ2δþδ−, which is spacelike.
Therefore the corresponding soft functions S−N are purely
real. On the other hand, for the SþN picture one residual
momentum is incoming while another is out-going and the

residual momentum transfer ðδkp − δknÞ2 becomes time-
like, which will generate an imaginary part. In fact, one can
show that the two versions of the soft functions are related
through analytic continuation

SþNðb⃗i⊥; μ; δþδ−Þ ¼ S−†N ðb⃗i⊥; μ;−δþδ− þ i0Þ: ð31Þ

This is similar to the relation between spacelike and
timelike form-factors [68] where the momentum transfer
Q2 equals to −ðPþÞ2δþδ−.

D. Rapidity-renormalized LFWF amplitudes
and rapidity-scale evolutions

With the above soft functions, we take its square root to
perform the rapidity renormalization of ψ0

N in Eq. (23) and
define the “physical” LFWF amplitudes as

ψ�
Nðxi; b⃗i⊥; μ; ζÞ ¼ lim

δ−→0

ψ�0
N ðxi; b⃗i⊥; μ; δ−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S�N;Rðb⃗i⊥; μ; δ−e2yn ; δ−Þ
q : ð32Þ

where S�N;R is the generalized TMD soft function defined
in Eq. (27).
Similar to the case of TMDPDF [18], We also introduced

a dimensionless rapidity parameter yn for the renormalized
WF amplitude. The rapidity divergences cancel between
the bare or unsubtracted WF amplitudes and the soft
function, leading to the explicit dependence of WF ampli-
tudes on a set of rapidity scales ζ defined as

ζ ¼ 2ðPþÞ2e2yn : ð33Þ

Sometimes it is also useful to introduce N þ 1 rapidity
scales related to ζ and xi through

ζi ≡ ζx2i : ð34Þ

Given xi and ζ, they are not independent variables, but they
are the most natural hard scales around the N þ 1 link-field
vertices. The rapidity evolution equation for the rapidity-
renormalized WF amplitudes reads

2ζ
d
dζ

lnψ�
Nðxi; b⃗i⊥; μ; ζÞ ¼ KNðb⃗i⊥; μÞ: ð35Þ

where the generalized Collins-Soper kernel is nonpertur-
bative for large b⃗i⊥. The proof of the above equation is
similar to TMDPDF and will not be discussed here. See
Refs. [47,57] for further details.
The RGE for the uv-renormalized WF amplitude can be

derived easily,
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μ2
d
dμ2

lnψ�
Nðxi; b⃗i⊥; μ; ζÞ

¼ 1

4

XN
i¼0

Γcusp ln
μ2

�ζx2i − i0
−
N þ 1

2
γHðαsÞ; ð36Þ

where γH is the hard-anomalous dimension that depends on
the specific field operators Φi. We will give an example for
meson amplitude later.
One should notice that for unpolarized TMDPDFs, the

imaginary parts cancel between different diagrams as they
are real quantities, but for WF amplitudes there are no such
cancellations. The imaginary parts are caused by rapidity
logarithms of Pþ and various rapidity regulators. The
proper � in the �ζi − i0 term is determined by the i0
prescriptions in the gauge-link propagators for the unsub-
tracted or bare WF amplitudes and the soft functions. A
correct prescription must guarantee its exponential decay at
light-front infinities. The standard set of the LFWF ampli-
tudes defined above can serve in factorization of exper-
imental processes or comparing with various theoretical
calculations.

IV. QUASI LFWF AMPLITUDES AND
FACTORIZATION IN LAMET

The standard LFWF amplitudes are natural quantities to
solve in LFQ if a viable approach can be found to
implement a nonperturbative solution of Eq. (1). The
rapidity dependence will appear naturally when the LF
Hamiltonian is implemented with a rapidity regulator, such
as finite length in the LF coordinate, without breaking the
manifest Lorentz symmetry. Alternatively, they can be
calculated using the effective large-momentum expansion
approach once the instant-form solutions of some
Euclidean matrix elements in a large momentum state
are found [22]. The goal of this section is to show how
to implement this.
We first need to find a Euclidean version of the WF

amplitudes which contain the same collinear and soft
physics as that of the LFWF amplitudes. Similar to the
case of TMDPDFs, the collinear part can be taken into
account by boosting the gauge links in the standard
amplitudes without time dependence, and the light-front
time dependence can be taken into account by the large
rapidity external hadron states. Thus all the ingredients
required to reproduce the correct collinear and soft physics
for WF amplitudes are available on a Euclidean lattice.
In this section, we first define the quasi-WF amplitudes

in general. We then introduce the reduced soft functions as
the rapidity independent part of the generalized off-light-
cone soft functions. They are required to cancel the
off-light-cone scheme dependencies from the quasi-WF
amplitudes and match to the standard LFWF amplitudes.
We then discuss the factorization of quasi-WF amplitudes
and present the matching formula.

A. Quasi-WF amplitudes

Let us denote the unit four-vector in z direction as
nz ¼ ð0; 0; 0; 1Þ. We consider the ordinary equal-time (also
named as Euclidean) quasi-LFWF amplitudes or simply
quasi-WF amplitudes in a large momentum hadron,

ψ̃�
Nðxi; b⃗i⊥;μ;ζzÞ

¼ lim
L→∞

Z Y
i

dλie−iλixi−iλ0x0

×
h0jPN

Q
N
i¼1Φ�

i ðλinzþ b⃗i⊥;LÞΦ�
0 ðλ0nz;LÞjPiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZEð2L;b⃗i⊥;μÞ
q ð37Þ

where λ0 ¼ −
P

N
i¼1 λi and x0 ¼ 1 −

P
N
i¼1 xi. The

Φ�
i ðλinz þ b⃗i⊥;LÞ is the gauge-invariant field with

gauge-links along z directions (extended to length L) being
attached

Φ�
i ðξ;LÞ ¼ P exp

�
ig
Z ∓L−ξz

0

dλAzðξþ λnzÞ
�
ϕðξÞ; ð38Þ

with ξz ¼ −ξ · nz and the �L corresponds to the∓ choices
for the WF amplitude. The ζz ¼ ð2P · nzÞ2 are the Collins-
Soper rapidity scale similar to that of the quasi-TMDPDFs.
One also needs the N þ 1 rapidity scales ζz;i ≡ ζzx2i similar
to the ζi. Clearly the above quantity is the external
momentum Pμ ¼ ðP0; 0; 0; PzÞ-dependent. The choices
of the fields and couplings in the quasi WF are not unique,
for a given LFWF amplitude to be reproduced. This is the
universality principle of LaMET discussed in Ref. [22].
ZEðL; bi⊥; μÞ is the vacuum expectation of a set of space-
like Wilson-lines along z direction and separated in the
transverse plane:

ZEðL;b⃗i⊥;μÞ

¼ h0jPNT
YN
i¼0

P exp

�
ig
Z

L

0

dλAzðb⃗i⊥þλnzÞ
�
j0i: ð39Þ

The connection in the transverse plane is needed for gauge
invariance and might not be unique and shall be in
accordance with that in the standard LFWF amplitudes
to be reproduced. The purpose of the factor ZE in the quasi-
LFWF amplitudes is the same as for quasi-TMDPDFs, in
additional to cancel the Wilson line self-energy. See Fig. 3
for a depiction of the quasi-LFWF amplitudes and the ZE.
The external momentum-dependence of the quasi-WF

amplitudes can be calculated when the hadron momentum
is large. The momentum RG equation can be shown in a
way similar to [57] as
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Pz d
dPz ln ψ̃

�
Nðxi; b⃗i⊥; μ; ζzÞ

¼ KNðb⃗i⊥; μÞ þ
XN
i¼0

1

2
G�ðζzx2i ; μÞ; ð40Þ

where we have omitted terms of higher powers in ð1=PzÞ2,
and theKNðb⃗i⊥; μÞ is the nonperturbative rapidity evolution
factor same in Eq. (35) and G�ðζzx2i ; μÞ are perturbative
kernels. From the rapidity evolution equation, one clearly
see that as Pz → ∞, there are large logarithms in Pz, part of
it being nonperturbative and part of it being perturbative.
Therefore, to match to the WF amplitude one needs a hard
kernel H to take into account the perturbative logarithms,
and an exponential of KN to take into account the non-
perturbative rapidity logarithms.

B. Generalized off-light-cone soft functions

In the previous subsection, we have introduced the
gauge-invariant quasi-WF amplitude. However, it still
suffers from implicit scheme dependency since they are
defined with an off-light-cone regulator along the z
direction. To match them to the physical WF amplitudes
introduced in Sec. III, one needs the (generalized) off-light-
cone soft functions S�Nðb⃗i;⊥; μ; Y; Y 0Þ composed of N þ 1

Wilson-line cusps which we now introduce.
We first define the off-light-cone spacelike vectors as

p → pY ¼ p − e−2YðPþÞ2n, n → nY 0 ¼ n − e−2Y
0 p
ðPþÞ2 and

the off-light-cone Wilson-line cusps C�ðb; Y; Y 0Þ:

C�ðb⃗⊥; Y; Y 0Þ ¼ W�
nY0 ðb⃗⊥ÞW†

pY ðb⃗⊥Þ; ð41Þ

where the off-light-cone gauge-links WpY
and Wn0Y

are
defined as

WpY
ðb⃗⊥Þ¼P exp

�
−ig

Z
−∞

0

dλ0pY ·Aðλ0pY þ b⃗⊥Þ
�
; ð42Þ

and

W�
nY0 ðb⃗⊥Þ¼P exp

�
−ig

Z �∞

0

dλnY 0 ·AðλnY 0 þ b⃗⊥Þ
�
; ð43Þ

respectively. With the off-light-cone Wilson-line cusps, the
soft functions are defined in a way similar to Eq. (27):

S�Nðb⃗i⊥; μ; Y; Y 0Þ

¼ h0jPNT
Q

N
i¼0 C

�ðb⃗i⊥; Y; Y 0Þj0iffiffiffiffiffiffiffiffiffiffiffiffiffi
ZEðYÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZEðY 0Þp ; ð44Þ

where
ffiffiffiffiffiffi
ZE

p
is introduced similar as in Eq. (39) to subtract

the pinch-pole singularities and power divergences of the
off-light-cone gauge-links. In terms of ln ρ2 ¼ 2ðY þ Y 0Þ,
we can also write the off-light-cone soft functions as
S�Nðb⃗i⊥; μ; ρÞ.
In the light-cone limit Y þ Y 0 → ∞, we have:

S�Nðb⃗i⊥;μ;Y;Y 0Þ
¼ exp ½KNðb⃗i⊥;μÞ lnð∓ eYþY 0 − i0ÞþDNðb⃗i⊥;μÞ�; ð45Þ

where KN is the same Collins-Soper kernel as in Eq. (28),
but DN is different from the on-light-cone version D2;N .
Similar to the case of δ regulator, imaginary part appears in
the SþN case due to analyticity property. In fact, one can
show that the off-light-cone soft function depends only on
the (complex) hyperbolic angle for the directions vectors
from which the imaginary part can be generated. The
rapidity-independent part is defined as the generalized
reduced soft function:

SrNðbi⊥; μÞ ¼ e−DNðb⃗i⊥;μÞ; ð46Þ

which is independent of the �∞ choice. Based on the
renormalization property of nonlightlike Wilson-loops, the
reduced soft function satisfies the RG equation

μ2
d
dμ2

ln SrNðb⃗i⊥; μÞ ¼ −
N þ 1

2
ΓSðαsÞ; ð47Þ

where ΓS is the constant part of the cusp-anomalous
dimension at large hyperbolic cusp angle Y þ Y 0 for the
off-light-cone soft function:

FIG. 3. The quasi-LFWF amplitudes ψ̃−
N (upper) and ZE

(lower). The crossed circles denotes the operator insertion Φi
or junctions of gauge-links. Notice that the connection of the
gauge-links at z ¼ L is not unique, however, the contribution at
z ¼ L should cancel after taking the ratio with

ffiffiffiffiffiffi
ZE

p
.
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μ2
d
dμ2

ln S−Nðb⃗i⊥; μ; Y; Y 0Þ

¼ −ðY þ Y 0ÞN þ 1

2
ΓcuspðαsÞ þ

N þ 1

2
ΓSðαsÞ: ð48Þ

Notice that ΓS depends on the color representation R.
Similar to the N ¼ 1 case [23], the off-light-cone soft

function S−Nðb⃗i⊥; μ; Y; Y 0Þ equals to a time-independent
form factor of fast-moving color-charged state. Thus it
can be simulated using the Euclidean formalism of heavy-
quark effective theory (HQET). The explicit form of the
HQET implementation depends on the color-representa-
tions of the Wilson-line cusps. We will not go into the
details here for the general case.
In the next subsection, we will show that similar to the

case of quasi-TMDPDFs [69], the corresponding non-
perturbative rapidity independent part that cancels the
off-light-cone scheme dependencies in quasi-WF ampli-
tudes is exactly the reduced soft function.

C. Factorization of quasi-WF amplitudes

Given the reduced soft function, we can state the
matching formula between the quasi-WF amplitudes at
finite momentum and that in LF theory1

ψ̃�
Nðxi;b⃗i⊥;μ;ζzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SrNðb⃗i⊥;μÞ

q

¼e
1
2
ln∓ζz−i0

ζ KNðb⃗i⊥;μÞH�
Nðζz;i=μ2Þψ�

Nðxi;b⃗i⊥;μ;ζÞþ���; ð49Þ

where H�
Nðζz;i=μ2Þ is the perturbative matching kernel

which is responsible for the large logarithms of Pz

generated by the perturbative G� part of the momentum
evolution equation. TheHþ

N and H−
N relates with each other

through analytic continuation in ζz Similar to the quasi-
TMDPDFs, the momentum fractions of the quasi-WF
amplitudes and the LFWF amplitudes are the same since
the momentum fractions can only be modified by collinear

modes when jk⃗⊥j ≪ Pz. And e
1
2
ln∓ζz−i0

ζ KNðb⃗i⊥;μÞ is the part
involving the nonperturbative rapidity evolution kernel.
The imaginary part is required again in the SþN case due to
our definition of SrN . As in the case of quasi-TMDPDFs,
this factor is required to cancel the nonperturbative loga-
rithms in Pz. The omitted terms are the power-corrections
which are of order OðΛ2

QCD=ζz;i;M
2=ζz;i; 1=ðδb⃗2ij;⊥ζz;iÞÞ

with M being the hadron mass and δb⃗ij;⊥ ¼ b⃗i⊥ − b⃗j⊥.
Similar to the case of quasi-TMDPDF [69], a sketch of

mathematical proof for the factorization formula Eq. (49)
can be provided with the help of the leading regions for
quasi-LFWF amplitudes, shown in Fig. 4. There are

collinear, soft and hard contributions captured by the
corresponding collinear (C), soft (S) and hard (H) subdia-
grams. The collinear contributions are the same as the WF
amplitudes defined with LF correlators, while the soft
contribution can be factorized using off-light-cone soft
functions. At large Pz and large jb⃗i⊥ − b⃗j⊥j, hard
exchanges between vertices at different b⃗i⊥ are power-
suppressed, therefore the hard contributions are confined
near the N þ 1 vertices. The hard natural scales for the hard
subdiagrams are given by ζz;i ¼ ζzx2i , which are Lorentz-
invariant combinations of the gauge-link direction nz and
the parton’s momenta ki ¼ xiP. As a result, the momentum
fractions xi only receive collinear contributions and remain
the same between the quasi-WF amplitude and the physical
LFWF amplitudes.
Given the leading region, a standard application of Ward-

identity argument [18] will lead to the factorization formula
Eq. (49). We use off-light-cone regulator in all the soft
functions as in [18]. The reduced soft function SrN emerges
at the final step as the noncanceling soft function combi-
nation that appears when the factorization formula is
expressed in terms of the physical LFWF amplitudes
through the combination in Eq. (32). Similar to the case
of quasi-TMDPDFs, SrN serves to compensate the rapidity
independent part between ψN and ψ̃N . The Collins-Soper
kernel appears to compensate the rapidity mismatch
between ψN at ζ and ψ̃N at ζz.
Here we should mention that when performing the

factorization of quasi-WF amplitude using off-light-cone
regulators, the emergence of SrN is expected since it is
defined exactly through the off-light-cone soft functions.
However, in the SCET style approach one can use on-light-
cone regulators to do the factorization as well. As shown in
Ref. [22], if one perform factorization of ψ̃ using on-light-
cone regulators, the SrN can also be defined through the
following type of combination

FIG. 4. The leading region for quasi-WF amplitude ψ̃−
N , where

C is the collinear subdiagram, S is the soft subdiagram and H are
the hard subdiagrams. The N þ 1 hard-cores are disconnected
with each-other, therefore the momentum fractions of the quasi-
WF amplitudes and physical WF amplitudes are the same.

1In front of the Collins Soper Kernel KN there is a factor 1
2
,

which is missing in Refs. [22,23].
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SrNðb⃗i⊥; μÞ ¼ lim
δþ;δ−→0

S−Nðb⃗i⊥; μ; δþδ−Þ
S−Nðb⃗i⊥; μ; δþÞS−Nðb⃗i⊥; μ; δ−Þ

; ð50Þ

where the S−Nðb⃗i⊥; μ; δþδ−Þ in the numerator is the on-light-

cone soft function defined in Eq. (28). The S−Nðb⃗i⊥; μ; δ�Þ
in the denominator is defined similarly, but with one on-
light-cone gauge-link direction along p or n, and another
off-light-cone one along nz. The light-cone regulator for the
on-light-cone gauge-link directions are denoted by δ�.
Notice that the combination in Eq. (50) also appears in
Ref. [70] in the special caseN ¼ 1 and is equivalent to their
“instant-jet TMD distribution” Ψðξ̄Þ at special ξ̄.

D. Collins-Soper kernel from
quasi-LFWF amplitudes

As an application of the factorization formula Eq. (49),
we show that the Collins-Soper rapidity evolution kernel
can be calculated from the large-momentum dependence
of the quasi-WF amplitude, just like the case of quasi-
TMDPDF [47].
Notice that by taking the ratio of two quasi-LFWFs, the

reduced soft function SrN cancels. Furthermore, if we chose
the quasi-LFWFs to have different sets of Collins-Soper
scale, ζz and ζ0z but with the same xi, the LFWF amplitudes
will also cancel. This allows the Collins Soper kernel to be
extracted in the following way

KNðb⃗i⊥; μÞ

¼ 1
1
2
ln ζz

ζ0z

ln
H�

Nðζ0z=μ2Þψ̃�
Nðxi; b⃗i⊥; μ; ζzÞ

H�
Nðζz=μ2Þψ̃�

Nðxi; b⃗i⊥; μ; ζ0zÞ
: ð51Þ

It is clear that this is a result of the rapidity evolution
equation for quasi-LFWFs. The same method was first
obtained in the context of quasi-TMDPDF in [71] by taking
ratio of quasi-TMDPDFs at different Pz. Notice that the
matching kernel and the quasi-LFWF amplitudes all have
imaginary parts in general, but after taking the ratio, the
imaginary parts cancels, left with a purely real KN .

V. LEADING WAVE FUNCTION AMPLITUDE
FOR PSEUDOSCALAR MESON

In previous sections, we have presented the general
theoretical framework to calculate LFWF amplitudes using
LaMET formulations. As an application of the general
principles, we present in this section the example for the
leading q̄q component wave function for a pseudo-scalar
meson. As usual, we first present the standard definition in
terms of the light-front formulation, then introduce the
corresponding Euclidean formulation in large momentum
expansion.

A. The light-front formulation

According to the general rules, the leading unsubtracted
wave function amplitude for a pseudoscalar meson is
defined by

ψ�0
q̄q ðx; b⊥; μ; δ−Þ

¼ 1

2

Z
dλ
2π

e−ixrλ

× h0jΨ̄�
n ðλn=2þ b⃗⊥Þγþγ5Ψ�

n ð−λn=2ÞjPijδ− ; ð52Þ

where xr is related to the standard definition of x by
xr ¼ x − 1=2, and the “gauge-invariant” quark field is

Ψ�
n ðξÞ ¼ W�

n ðξÞjδ−ψðξÞ: ð53Þ

Due to rotational invariance, the amplitude defined above is
a function of b⊥ ¼ jb⃗⊥j, thus we have omitted the vector
arrow for b⃗⊥, and we will do so throughout the section for
the N ¼ 1 case. See Fig. 5 for a depiction of the meson
wave functions.
We now present the perturbative one-loop calculation for

the above amplitude. We consider a system where the
incoming quark and antiquark momenta are x0Pþ and
ð1 − x0ÞPþ, respectively. The spin projection operator for
the incoming state is proportional to γ5γ− and the tree-level
wave function amplitude is normalized to δðx − x0Þ.
Evaluated in the δ regularization scheme, the bare WF
amplitude reads

ψ�0
q̄q ðx;b⊥;μ;δ−Þ¼

αsCF

2π
½Fðx;x0;b⊥;μÞ�þþ

αsCF

2π
δðx−x0Þ

×
�
Lb

�
3

2
þ ln

−ðδ−Þ2∓ i0
x0x̄0

�
þ1

2

�
; ð54Þ

FIG. 5. The q̄qwave function for a pseudoscalar meson. Again,
the red case corresponds to ψ−

q̄q and the blue case corresponds
to ψþ

q̄q.
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where CF ¼ ðN2
c − 1Þ=2Nc and Lb ¼ ln μ2b2⊥

4e−2γE and

Fðx; x0; b⊥; μÞ

¼
�
−
�

1

ϵIR
þ Lb

��
x

x0ðx0 − xÞ þ
x
x0

�
þ x
x0

�

× θðxÞθðx0 − xÞ þ ðx → x̄; x0 → x̄0Þ; ð55Þ

where 1
ϵir

indicates that there is an ir divergence. The plus
prescriptions at x ¼ x0; 1 − x0 is defined for x ¼ x0 as

Z
fðxÞþgðxÞdx ¼

Z
dxfðxÞ½gðxÞ − gðx0Þ�; ð56Þ

and similarly for x ¼ 1 − x0. Notice that x and x̄ ¼ 1 − x
are the momentum fractions carried by the quark and the
antiquark.
The soft function with N ¼ 1 andR ¼ ff; f̄g is defined

with two Wilson-line cusps explicitly as

S�1 ðb⊥;μ;δþδ−Þ¼
1

Nc
trh0jT W−†

p ðbÞjδþ

×W�
n ðbÞjδ−W�†

n ð0Þjδ−W−
pð0Þjδþj0i: ð57Þ

At one-loop, the soft function S�1 ðb⊥; μ; δþ; δ−Þ is given
by [72]:

S−1 ðb⊥; μ; δþδ−Þ

¼ 1þ αsCF

2π

�
L2
b − 2Lb ln

μ2

2ðPþÞ2δþδ− þ π2

6

�
; ð58Þ

Sþ1 ðb⊥; μ; δþδ−Þ

¼ 1þ αsCF

2π

�
L2
b − 2Lb

�
ln

μ2

2ðPþÞ2δþδ− þ iπ

�
þ π2

6

�
:

ð59Þ

where Sþ contains an imaginary part. Therefore, we can
extract at the leading order the CS kernel and reduced soft
function,

K1ðb⊥; μÞ ¼ −
αsCF

π
Lb; ð60Þ

D2;1ðb⊥; μÞ ¼
αsCF

2π

�
L2
b þ

π2

6

�
: ð61Þ

They are consistent with the case for TMDPDFs. The
rapidity dependence coming from the initial-state quark
radiation is intrinsic and nonperturbative for large b⊥.
In term of these, the renormalized WF amplitude is

defined explicitly as

ψ �̄
qqðx; b⊥; μ; ζÞ ¼ lim

δ−→0

ψ�0
q̄q ðx; b⊥; μ; δ−Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S�1 ðb⊥; μ; δ−e2yn ; δ−Þ
p ; ð62Þ

where we have chosen δþ ¼ e2ynδ− with yn as a dimen-
sionless parameter. While both ψ0 and S1 depend on the
regulator δ�, the combination ψ is regularization indepen-
dent and gives rise to the dependencies on the universal
rapidity variables ζ ¼ 2ðxPþÞ2e2yn and ζ̄ ¼ 2ðx̄PþÞe2yn ,
with the dependence on the latter being omitted.
Combining the results above, the one-loop WF amplitude
reads

ψ �̄
qqðx;b⊥;μ; ζÞ

¼ αsCF

2π
½Fðx; x0; b⊥;μÞ�þ þ αsCF

2π
δðx− x0Þ

×

�
−
L2
b

2
þLb

�
3

2
þ ln

μ2

�
ffiffiffiffiffi
ζζ̄

p
− i0

�
þ 1

2
−
π2

12

�
; ð63Þ

which effectively replaces the rapidity regulator δ by the
rapidity scale ζ. It is important to note that the above result
is now independent of the light-cone regulator δ.
The renormalized WF amplitude satisfies the rapidity

(momentum) evolution equation

Pþ d
dPþ lnψ �̄

qqðx; b⊥; μ; ζÞ ¼ K1ðb⊥; μÞ; ð64Þ

and the RGE:

μ2
d
dμ2

lnψ �̄
qqðx; b⊥; μ; ζÞ

¼ 1

2
ΓcuspðαsÞ ln

μ2

�
ffiffiffiffiffi
ζζ̄

p
− i0

− γHðαsÞ: ð65Þ

In the above equations, the evolution kernel K1ðb⊥; μÞ and
the anomalous dimensions are the same as those of the
TMDDPFs. At one-loop, the above cusp and hard anoma-
lous dimensions read

ΓcuspðαsÞ ¼
αsCF

π
; γHðαsÞ ¼ −

3αsCF

4π
: ð66Þ

Recently the cusp anomalous dimension have been calcu-
lated to 4-loops [73,74].

B. LaMET expansion

To calculate the above qq̄ WF amplitude, we define the
unsubtracted quasi-WF amplitude as

ψ̃ �̄
qqðx;b⊥;μ;ζzÞ

¼ lim
L→∞

Z
dλ
4π

eixrλ
h0jΨ̄∓nzðλnz2 þ b⃗⊥ÞΓΨ∓nzð−λnz

2
ÞjPSiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZEð2L;b⊥;μÞ
p ; ð67Þ
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where xr ¼ x − 1
2
and Ψ∓nz now contains a gauge-link

along the ∓ z direction pointing to ∓Lnz, similar to
Eq. (38). The Wilson-line self-energy and interaction are
subtracted, which is also similar to the case for quasi-
TMDPDF. See Fig. 6 for a depiction of the quasi-LFWF
amplitudes ψ−

q̄q and ZE for pseudoscalar meson. Note that
ψ̃ depends on ζz ¼ ð2xP · nzÞ2, ζ̄z ¼ ð2x̄P · nzÞ2 and the
renormalization scale μ. More generally, the quasi-WF
amplitude satisfies the renormalization group equation

μ2
d
dμ2

ln ψ̃ �̄
qqðx; b⊥; μ; ζzÞ ¼ γFðαsÞ; ð68Þ

where γF is the anomalous dimension for a heavy-light
current. This is due to the fact that the quasi-WF amplitude,
after the self-energy and corner-divergence subtraction
contains only logarithmic uv divergences associated with
quark-link vertices. The one-loop quasi-WF amplitude
receives contribution from more diagrams compared to
the WF amplitude. Unlike the LFWF amplitude, all the
“virtual” diagrams and gauge-link self-interactions are
nonvanishing, see Fig. 7 for a depiction of Feynman
diagrams for quasi-LFWF. The total result reads

ψ̃ �̄
qqðx;b⊥;μ;ζzÞ

¼ αsCF

2π
½Fðx;x0;b⊥;μÞ�þ þαsCF

2π
δðx− x0Þ

×

�
−
L2
b

2
þLb

�
5

2
þ ln

μ2

−
ffiffiffiffiffiffiffiffi
ζzζ̄z

p
� i0

�
−
3

2
−
π2

2

þ
�
−
1

4
ln2

−ζz� i0
μ2

þ 1

2
ln
−ζz� i0

μ2
þðζz → ζ̄zÞ

��
: ð69Þ

The imaginary parts are all caused by the rapidity loga-

rithms in terms of ð2xP·nzÞ2
nz2

¼ −ð2xPzÞ2, and the proper i0

choices are again determined by the i0 prescriptions in the
gauge-link propagators that guarantee exponential decay at
infinities. The results here are consistent with the off-light-
cone WF amplitudes calculated in Ref. [75] through
analytic continuation where gauge-links are chosen to be
timelike.
The one-loop off-light-cone soft function reads [50],

S−ð1Þ1 ðb⊥; μ; Y; Y 0Þ ¼ αsCF

π
½1 − ðY þ Y 0Þ�Lb; ð70Þ

Sþð1Þ
1 ðb⊥; μ; Y; Y 0Þ ¼ αsCF

π
½1 − iπ − ðY þ Y 0Þ�Lb; ð71Þ

from which the reduced soft function can be extracted as

Sð1Þr1 ðb⊥; μÞ ¼ −
αsCF

π
Lb: ð72Þ

These results are the same as the case of TMDPDFs. From
these one can extract the one-loop value of ΓS as

Γð1Þ
S ¼ αsCF=π, while and at two-loop level one has

Γð2Þ
S ¼ α2s

π2

�
CFCA

�
−
49

36
þ π2

12
−
ζ3
2

�
þ CFNF

5

18

�
; ð73Þ

which can be extracted from the generic results in [76].
The matching formula between the quasi-LFWF ampli-

tude and the light-front one at large Pz is:

ψ̃ �̄
qqðx;b⊥;μ;ζzÞS

1
2

r1ðb⊥;μÞ
¼H�

1 ðζz=μ2; ζ̄z=μ2Þe
1
2
ln∓ζz−i0

ζ Kðb⊥;μÞψ �̄
qqðx;b⊥;μ;ζÞ; ð74Þ

where H1 is the perturbative matching kernel. The physics
reason for this factorization formula is similar to that for the
TMDPDF: Our unsubtracted quasi-WF amplitude is
defined in the off-light-cone scheme. By comparing the
TMD factorization in both off and on-the-light-cone

FIG. 6. The quasi-LFWF ψ̃−
q̄q (upper) and the ZE (lower).

In the figure, A ¼ λnz=2þ b⃗⊥=2, B ¼ −λnz=2 − b⃗⊥=2 and
C ¼ Lnz þ b⃗⊥. The crosses denote the quark-link vertices.

FIG. 7. One-loop diagrams for mesonic LFWF amplitudes and
quasi-LFWF amplitudes. The meson state is treated as a pair of
free quark and antiquark. The first line represents the “virtual”
diagram and the second line represents the “real” diagram.
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schemes, one obtains the matching formula above. See
Fig. 8 for a depiction of the corresponding leading region.
Combining the RGEs for the WF amplitude, the reduced

soft function, and the quasi-WF amplitude, the matching
kernel satisfies a simple renormalization group equation:

μ2
d
dμ2

lnH�
1 ðζz=μ2; ζ̄z=μ2Þ

¼ 1

2
ΓcuspðαsÞ ln

−
ffiffiffiffiffiffiffiffi
ζzζ̄z

p
� i0

μ2
þ 1

2
γCðαsÞ; ð75Þ

where γCðαsÞ ¼ 2γFðαsÞ − ΓSðαsÞ þ 2γHðαsÞ with γFðαsÞ
the anomalous dimension for heavy-light current and
ΓSðαsÞ the constant part for the cusp anomalous dimension
at large cusp angle, and γHðαsÞ the hard-anomalous
dimension.
It is convenient to write the matching kernel in the

exponential form, H ¼ eh. At one-loop level, h can be
extracted as:

h�ð1Þ
1 ðζz=μ2; ζ̄z=μ2Þ

¼ αs

�
c1 þ

CF

4π

�
l� þ l̄� −

1

2
ðl2

� þ l̄2
�Þ
��

: ð76Þ

At two-loop level, we anticipate

h�ð2Þ
1 ðζz=μ2; ζ̄z=μ2Þ

¼ α2sc2 −
1

4
½γð2ÞC − α2sβ0c1�ðl� þ l̄�Þ

−
1

8

�
Γð2Þ
cusp −

α2sβ0CF

2π

�
ðl2

� þ l̄2
�Þ

−
α2sβ0CF

48π
ðl3

� þ l̄3
�Þ; ð77Þ

where we have l� ¼ ln −ζz�i0
μ2

and l̄� ¼ ln −ζ̄z�i0
μ2

. β0 ¼
−ð11

3
CA − 4

3
NfTFÞ=ð2πÞ is the coefficient of one-loop

β-function, c1 ¼ CF
2π ð− 5π2

12
− 2Þ and c2 are constants.

The generalization to the lowest Fock component of the
nucleon state can be done similarly [48]. The WF ampli-
tudes depend on two transverse separations b⃗1⊥, b⃗2⊥ and
three momentum fractions x1 þ x2 þ x3 ¼ 1. And the soft
function S2 in each light-cone direction now consists of
three gauge-links in fundamental representation, piecing
together by the SU(3) invariant tensor ϵijk. Previous
discussions on the nucleon form factors and wave functions
can be found in [6–9,12]. The nucleon WF amplitude has
also been discussed and calculated in various LF phenom-
enology models [77,78]. The LaMET formalism allows a
first-principle determination of the amplitude following the
general procedures discussed above.

VI. CONCLUSION

In this paper, we present the LaMET formulation for
computing LFWF amplitudes in QCD. We first reviewed
the LFQ approach to QCD and its conceptual difficulties,
especially the LF divergence related to small kþ modes.
These difficulties signals that the QFT on the LF must be
viewed as an effective theory in which small kþ modes are
“integrated out.” The LaMET provides a “two-step”
approach to the LFQ physics and achieves the goal of
LFQ without performing the LFQ explicitly.
We then formulate the LFWF amplitudes as gauge-

invariant LF correlators. To maintain gauge-invariance,
lightlike gauge-links extending to infinities are required
in their definitions and leads to rapidity divergences which
must be regulated through rapidity regulators. The naive
LFWF amplitudes depends on the nonphysical rapidity
regulator, which must be removed with the help of
generalized soft functions composed of arbitrary numbers
of Wilson-line cusps. By combining the unsubtracted WF
amplitudes with square-root of generalized soft functions,
one can construct the scheme-independent WF amplitudes
that can be used in factorization formulas for physical
quantities. Similar to the TMDPDFs, the physical WF
amplitudes depends on additional rapidity scales the
evolution of which is controlled by the CS kernels.
Results for the qq̄ wave function for a pseudoscalar meson
are presented in detail as an application of the general
principles.
After introducing a standard version of LFWF ampli-

tudes, we start to present their LaMET formulation. We
carefully define the quasi-LF amplitudes in which operator
and gauge-links are all time-independent. The large hadron
momentum Pz plays the role of a physical off-light-cone
regulator. At large Pz, the quasi-LFWF amplitudes can be
matched to the physical LFWF amplitudes by subtracting
out the off-light-cone scheme dependency with the help
of reduced soft functions. We introduce the generalized

FIG. 8. The leading region for quasi-WF amplitude ψ̃−
q̄q for a

pseudo-scalar meson, where C is the collinear subdiagram, S is
the soft subdiagram and H are the hard subdiagrams. Similar to
the general cases, the two hard-cores are disconnected with each
other,therefore the momentum fractions of the quasi-WF ampli-
tudes and physical WF amplitudes are the same.
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off-light-cone soft function and their properties, and study
the factorization of quasi-WF amplitudes. The factorization
formula is presented and supported by a sketch of its proof.
As an application of the factorization formula, we show that
the Collins-Soper kernels can be extracted from ratio of
quasi-WF amplitudes in which the soft function contribu-
tion cancels. Again, results for the pseudo-scalar meson
wave functions are presented in details, including a
prediction of two-loop matching kernel.

ACKNOWLEDGMENTS

We thank M. Burkhardt, W. Wang, Feng Yuan, Jianhui
Zhang and Yong Zhao for valuable discussions. This work is
supported partially by the U.S. DOE, Office of Science,
Grant No. DE-SC0020682, and by the Priority Research
Area SciMat under the program Excellence Initiative
Research University at the Jagiellonian University in
Kraków.

APPENDIX A: CUTTING RULE FOR
THE IMAGINARY PART OF
QUASI-LFWF AMPLITUDES

Here we briefly discuss the imaginary part of the LFWF
amplitudes. Unlike the case of quasi-TMDPDFs which can
be represented as amplitude squares, the LFWF amplitudes
cannot be expressed as amplitude squares and there exists
imaginary part for LFWFs.
To see the imaginary part, one only needs to consider the

link-quark vertex diagrams that resembles a form factor
consists of an incoming quark and an outgoing gauge-link
along positive nz direction. It is in fact more convenient to
work in the Hamiltonian formalism or time-independent
perturbation theory. For the quasi-LFWF amplitudes, to
arbitrary order in perturbation theory, generically one has
the following form of the integrals

Z Y
n

dΓn
1

E −
P

i∈Pn
jk⃗ij − i0

Y
m

dΓm
1

0 −
P

j∈P̃m
jk⃗jj − i0

× Nðk⃗Þ ×
Y
p

1Pp
i¼1ðkzÞi þ i0

: ðA1Þ

In the equation, n labels the intermediate states before t ¼ 0
where the gauge-links are inserted, dΓn are the phase-space
measure for the nth intermediate state, and Pn denotes the
set of the quark and gluons in the nth intermediate state.
Similarly, m labels all the states after t ¼ 0 with phase
space measure dΓm and set of partons P̃m for the mth cut.
On the other hand, at t ¼ 0 one has the time-independent
gauge-link propagators labeled by p. Nðk⃗Þ is the numerator
comes from the polarization sums and spinors. For stable
particles in the initial state with energy E, it is clear that all
the energy denominators E −

P
i∈Pn

jk⃗ij are negative
(otherwise it will decay), therefore the imaginary part

can only come from Nðk⃗Þ and the gauge-link propagator.
However, it is not difficult to see that Nðk⃗Þ is also real for
the leading q̄q wave functions, thus the imaginary part can
only originate from the gauge-link propagators. More
precisely, from “cutting” the gauge links as 1

kzþi0 ¼
PV: 1

kz − iπδðkzÞ.
More generally, for a generic set of gauge link propa-

gators the imaginary part can be obtained through the
cutting rules

Yn
i¼1

1

kzi þ i0
−
Yn
i¼1

1

kzi − i0

¼ −2iπ
�Xn

i¼1

δðkzi Þ
Yi−1
j¼1

1

kzj þ i0

Yn
j¼iþ1

1

kzj − i0

�
; ðA2Þ

namely, by cutting the gauge-links in all possible ways.
After introducing the general principle, lets consider the

one-loop example. The relevant one-loop diagram is
proportional to

I¼ i
Z

d4−2ϵk
ð2πÞ4−2ϵ

Pþ−kþ

ðP−kÞ2þ i0
1

k2þ i0
1

kþ−k−þ i0
; ðA3Þ

where the numerator comes from the spin-trace
trγ−γzðP=−kÞγþ ∝ ðPþ − kþÞ. Let us calculate the imagi-
nary part using two methods. One first obtains it by cutting
the gauge-link propagator according to the general rule

Im
1

kþ − k− þ i0
¼ −iπδðkþ − k−Þ; ðA4Þ

then the imaginary part can be calculated in terms of
Feynman parameter x as

ImI ¼ π

4ð2πÞ2
Z

1

0

dx
1 − x

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 2m2

ðPþÞ2
q

¼ π

8ð2πÞ2
� ffiffiffi

2
p

y −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y2 þ 1

q

þ log

�
y2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y2 þ 1

p
þ 1

y2

��
; ðA5Þ

where we have included equal quark and gluon massesm ¼
mg ¼ mq as the infrared regulator. y ¼ m

Pþ can be viewed as
the “rapidity scale” of the incoming particle. At large Pþ or
small m, the above has the asymptotic expansion

ffiffiffi
2

p
y −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y2 þ 1

q
þ log

�
y2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y2 þ 1

p
þ 1

y2

�

¼ −2 ln yþ ln 2 − 1þOðyÞ; ðA6Þ
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which contains the hard scale ξ ¼ 2ðPþÞ2 and the infrared
scale m. On the other hand, the imaginary part is uv-finite
and independent of the renormalization scale μ, consistent
with the fact that the anomalous dimension γF is real.
To check the general principle above, one can also obtain

the imaginary part by integrating out the k− first. There are
three poles for k−:

k−ð1Þ ¼
k2⊥ − i0

2ðkþ − PþÞ ; ðA7Þ

k−ð2Þ ¼
k2⊥ − i0
2kþ

; ðA8Þ

k−ð3Þ ¼ kþ þ i0: ðA9Þ

Let us denote kþ ¼ xPþ, then it is easy to see that only the
regions 0 < x < 1 and x > 1 contribute to the integral,
corresponding exactly to the two possible time-orderings in
LFPT. By closing the contour in the lower-half plan, the k−

integrals are evaluated using residue-theorem as

I ¼ −
Z

d2−2ϵk⊥
2ð2πÞ3−2ϵ

Z
∞

0

dx
1 − x

k2⊥ þm2

1

x − k2⊥þm2

2xðPþÞ2 þ i0

þ
Z

d2−2ϵk⊥
2ð2πÞ3−2ϵ

Z
∞

1

dx
1 − x

k2⊥ þm2

1

x − k2⊥þm2

2ðx−1ÞðPþÞ2 þ i0
:

ðA10Þ
It is clear now that the imaginary parts can be obtained using

1

x − x0 þ i0
¼ PV:

1

x − x0
− iπδðx − x0Þ ðA11Þ

as

ImI ¼ π

4ð2πÞ2
Z

∞

0

k⊥dk⊥
k2⊥ þm2

×

� 1þ k2⊥þm2

ðPþÞ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðk2⊥þm2Þ

ðPþÞ2
q −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2⊥ þm2

p
ffiffiffi
2

p
Pþ

�
: ðA12Þ

Although it looks complicated, the k⊥ integral is convergent
and leads again to

ImI

¼ π

8ð2πÞ2
� ffiffiffi

2
p

y−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y2þ1

q
þ log

�
y2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2y2þ1

p
þ1

y2

��
;

ðA13Þ

where y ¼ m
Pþ. This confirms the general principles above

that it is the cut of the spacelike gauge-link that leads to the
imaginary part of the quasi-LFWF amplitudes.

APPENDIX B: THE VERTEX DIAGRAM
QUASI-LFWF IN PARAMETER SPACE

In this appendix we present the parameter-space repre-
sentation of ψ̃ �̄

qqðz ¼ 0; b⊥; μ; ζzÞ for an ir-safe pair of
vertex-diagrams in Fig. 9 and calculate the imaginary part
explicitly. The integral in momentum space reads

I�
n ¼−

g2CF

4
μ2ϵ

×
Z

d4−2ϵk
ð2πÞ4−2ϵ

trγþðP−=kÞ=nγ−
ðP−kÞ2þ i0

1

k2þ i0
1−eik⊥·b⊥

ik ·nþ0
ðB1Þ

where n ¼ �nz for I∓ and P is the momentum of the
incoming quark. The above can be evaluated in parameter
space by using the standard α-parametrization

1

k2 þ i0
¼ −i

Z
∞

0

dαeiαk
2−0α; ðB2Þ

1

ik · nþ 0
¼

Z
∞

0

dλeλð−ik·n−0Þ; ðB3Þ

and performing the subsequent Gaussian integral over k as

I�
n ¼∓ ig2

ffiffiffi
2

p
π

D
2μ4−D

ð2πÞD
Z

∞

0

Z
∞

0

Z
∞

0

dα1dα2dλ

ðα1 þ α2ÞD2

×

�
Pþ −

α1
α1 þ α2

Pþ −
iλnþ

2ðα1 þ α2Þ
�
e−

λ2

4ðα1þα2Þ−iλ
α1

α1þα2
P·n

×
	
1− e−

b2⊥
4ðα1þα2Þ



; ðB4Þ

where one has performed the Wick-rotation in α: α → −iα
thanks to the fact that the integral is essentially below
threshold. After making the following coordinate transform

FIG. 9. The pair of vertex diagram at the incoming quark leg.
The corresponding pair at the antiquark leg simply relates
through ζz → ζ̄z.
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α1 ¼ ρx, α2 ¼ ρð1 − xÞ and λ → λ
ffiffiffi
ρ

p
(x is the standard

Feynman parameter), the integral then simplifies to

I�
n ¼ ∓ ig2CF

ffiffiffi
2

p
π

D
2μ4−D

ð2πÞD
Z

∞

0

dρ

ρ
D−3
2

Z
∞

0

dλ
Z

1

0

dx

×

�
ð1 − xÞPþ −

iλnþ

2
ffiffiffi
ρ

p
�
e−

λ2

4
−ixλ ffiffi

ρ
p

P·n
h
1 − e−

b2⊥
4ρ

i
: ðB5Þ

From the above integral, it is clear that the ρ integral is
absolute convergent in the infrared region ρ → ∞. The only
divergence that appears at D ¼ 4 is the standard logarith-
mic uv divergence due to the iλnþ

2
ffiffi
ρ

p term and can be easily

renormalized.
As an application of Eq. (B5), we compute its imaginary

part. By using P · nz ¼ −Pz, ðnzÞþ ¼ 1ffiffi
2

p and ζz ¼ 4ðPzÞ2,
the imaginary part can be calculated by integrating over λ
first as

ImI�
n ¼∓ g2CF

2ð2πÞ4π
2

ffiffiffiffiffiffi
4π

p

×
Z

1

0

dx

�
1−

x
2

�Z
∞

0

dρffiffiffi
ρ

p e−
x2
4
ρð1−e−

b2⊥ζz
4ρ Þ; ðB6Þ

which after the integration over ρ, simply reads

ImI�
n ð

ffiffiffiffi
ζz

p
b⊥Þ ¼∓ αsCF

2π
π

Z
1

0

dx

�
1 −

x
2

�
1 − e−

x
2
b⊥

ffiffiffi
ζz

p

x
:

ðB7Þ

It is manifestly uv and ir convergent.
We now study the large ζz limit of the imaginary part and

show that it agrees with Eq. (69). Writing x0 ¼ 1ffiffiffi
ζz

p
b⊥
, the

integral can be written as

Z
1

0

1 − e−
x

2x0

x
dx ¼ − ln x0 þ

Z
1

0

1 − e−
t
2

t
dt −

Z 1
x0

1

e−
t
2

t
dt;

ðB8Þ

from which the leading x0 → 0 or ζz → ∞ contribution
reads

ImI�
n ð

ffiffiffiffi
ζz

p
b⊥Þjζz→∞

¼ ∓ αsCF

2π

π

2
ðln b2⊥ζz − ln 4þ 2γE − 1Þ; ðB9Þ

where we have used the identity

Z
1

0

1 − e−
t
2

t
dt −

Z
∞

1

e−
t
2

t
dt ¼ γE − ln 2: ðB10Þ

The above results agrees with Eq. (69) by adding the same
expression with ζz → ζ̄z.
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