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Ultra‑fast kinematic vortices 
in mesoscopic superconductors: 
the effect of the self‑field
Leonardo Rodrigues Cadorim1, Alexssandre de Oliveira Junior2 & Edson Sardella1*

Within the framework of the generalized time‑dependent Ginzburg–Landau equations, we studied the 
influence of the magnetic self‑field induced by the currents inside a superconducting sample driven by 
an applied transport current. The numerical simulations of the resistive state of the system show that 
neither material inhomogeneity nor a normal contact smaller than the sample width are required to 
produce an inhomogeneous current distribution inside the sample, which leads to the emergence of 
a kinematic vortex–antivortex pair (vortex street) solution. Further, we discuss the behaviors of the 
kinematic vortex velocity, the annihilation rates of the supercurrent, and the superconducting order 
parameters alongside the vortex street solution. We prove that these two latter points explain the 
characteristics of the resistive state of the system. They are the fundamental basis to describe the 
peak of the current–resistance characteristic curve and the location where the vortex–antivortex pair 
is formed.

The Ginzburg–Landau theory of superconductivity states that, in the presence of an applied current, a super-
conducting sample can sustain homogeneous superconductivity until the current reaches a critical value. In 
specific, this refers to the Ginzburg–Landau pair-breaking current density, JGLc  , where the sample transitions 
to the normal state. Moreover, phase-slip phenomena enable superconductivity not to be destroyed at currents 
greater than JGLc  . These coexist with a voltage difference across the sample in a resistive state.

This mechanism occurs in both thin filaments and wide superconducting film samples. Thin filaments possess 
dimensions perpendicular to the current flow that are much smaller than the Ginzburg–Landau coherence length, 
ξ . The phase-slip occurs at the Phase-Slip Centre (PSC), where the superconducting order parameter, ψ , periodi-
cally reaches zero magnitude with a phase drop of 2π1. Wide films possess only one dimension that is less than 
the coherence length, ξ . The resistive state can be realized using two different processes: a Phase-Slip Line (PSL) 
and a vortex street. A PSL is analogous to the PSC for two dimensions, where the order parameter and the phase 
drop occur at a line perpendicular to the current flow in the sample. A vortex street, however, is a state where 
kinematic vortices move along a line perpendicular to the applied current of suppressed  superconductivity2. 
Although the order parameter is very small along this vortex street, its phase carries two singularities where ψ 
is consistently zero. They have been experimentally observed by Sivakov et al.3, who measured them using the 
Shapiro steps under microwave radiation produced by annihilating the kinematic vortex–antivortex (V–Av) pairs. 
In addition, kinematic vortices posses different characteristics from both Abrikosov and Josephson vortices. In 
particular, their velocities, as investigated theoretically and experimentally by Jelić et. al.4 and Embon et. al.5, can 
be greater than Abrikosov vortices and smaller than Josephson vortices.

A number of numerical works address resistive states in wide superconducting films. Andronov et al.6 simu-
lated homogeneous and inhomogeneous wide superconducting films and encountered both PSL and vortex 
street solutions. In addition, Weber and  Kramer2 investigated a similar configuration and provided solutions 
to a larger set of initial conditions and sample parameters. Berdiyorov et al.7 followed the changing states of a 
superconducting film while increasing the applied current. They studied the I–V characteristics of the sample, as 
well as the velocity and nucleation/annihilation position of the pair of kinematic vortices. They also investigated 
the influence of a perpendicular applied magnetic field on these physical quantities. He et. al.8,9 considered the 
effects of narrow slits inside the superconducting film and followed the behavioral changes of both kinematic 
vortices and PSLs on such systems. By varying the size and angle of the narrow slits, they encountered several 
different configurations when increasing the applied current. In a different system, Xue et al.10 studied the effects 
of radially injected currents on a square superconducting film containing a square slit at its center. They found 
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that the current caused the kinematic vortices to rotate around the square, inducing a voltage oscillation. The 
increased external current motion of the vortices depended on the magnitude of the applied field. When inves-
tigating a finite superconducting stripe, Berdiyorov et. al.11 found that an increase in the γ parameter, which 
is proportional to inelastic collision time, caused the phase slip process to occur in a larger current range. In 
addition, for large values of γ , a small applied magnetic field increased the critical current at which the system 
transits to the normal state. Moreover, heat dissipation on the resistive state contributed to quantitative changes 
in the size of voltage jumps and the value of the critical currents. However, it did not lead to any new qualita-
tive  features12,13. Lastly, Barba-Ortega et al.14 investigated the influence of a sample’s rugosity and found that it 
influenced both the critical currents and the kinematic vortex velocity.

To the best of our knowledge, none of the works in the present literature have considered the effects of the 
magnetic self-field induced by the internal currents in the superconducting sample to study the behavior of ultra-
fast kinematic vortices. The reader should note, though, that this have been done for slowly moving Abrikosov 
 vortices15. The aim of this paper is to show that, although small, the effects of the self-field are not negligible and 
produce important consequences to the resistive state, specifically the dynamic of the kinematic V–Av nucleation 
and annihilation, and the peaks present in the resistive characteristic curve.

Results and discussion
We investigated a system consisting of a stripe attached to two metallic contacts on both sides, through which an 
applied current density, Ja , was injected. The length and width of the stripe are denoted by L and w, respectively. 
The width of the normal contacts is represented by a. The thickness is represented by d ≪ ξ , � , while � represents 
the field penetration depth. Figure 1b illustrates the local magnetic self-field produced by the applied current. 
The local magnetic field was assumed to be perpendicular to the stripe. The validity of this approximation is 
discussed in more detail in “Methods” section and in the supplementary material.

We considered mesoscopic superconducting stripes of dimensions 12ξ × 8ξ . We assumed that the size, a, 
of the normal contact responsible for the injection of current in the superconducting stripe was equal to the 
sample width, a = 8ξ . The Ginzburg–Landau parameter, κ , and the constant, γ , were assumed to be 5.0 and 20, 
respectively. Note that, given the thin film geometry, this is an effective κ value, which depends on the thickness of 
the  stripe16. In most cases, the results were displayed as I = aJa (the total current injected per unit length) rather 
than Ja . In the numerical simulations, we adiabatically increased the transport current in steps of �I = 0.079I0 
until the whole sample reached the normal state. In all calculations, the external magnetic field was H = 0 ; here 
I0 = ξ J0 (see “Methods” section for the definition of J0 , just after Eq. (6)). The boundary conditions for the local 
magnetic field did not account for the external applied field since we are interested exclusively in the effect of 
the the self-field (see “Methods” section for details of the theoretical formalism used).

In Fig. 2a we show the current-voltage characteristics for the system. For currents where I < 3.792I0 , the 
superconducting sample was in the Meissner state, without any dissipation process: the finite voltage presented 
is caused solely by the normal contacts. At I = 3.792I0 , a voltage step occurred in the I–V characteristics and 
the system went into a resistive state. This resulted in the formation of a vortex street with suppressed supercon-
ductivity at the center of the sample and perpendicular to the applied current, where a pair of kinematic V–Avs 
moved from the edges towards the center of the sample. This is the first manifestation of the effects of the self-
field, since when a = w , simulations neglecting the self-field reported in the  literature2,7 showed that the vortex 
street did not occur. Instead, the resistive state found in these cases is characterized by a time periodic formation 
of PSLs at the center of the sample. This remarkable difference to the results of investigations which disregarded 
the self-field shows the importance of such effect to the resistive state.

The currents induced by the self-field are responsible for enhancing the inhomogeneity of the supercurrent 
distribution along the width of the sample, which are otherwise approximately  uniform7. This break of homo-
geneity was responsible for the formation of a PSL for the initial parameters. It favors a solution that is now 
dependent on the y coordinate: the vortex street solution. This does not prohibit the existence of the PSL solution 
for smaller samples where the current distribution is more homogeneous.

Figure 1.  (a) A schematic view of a mesoscopic superconducting stripe. The metallic contacts are attached 
to both sides of the film, through which an external applied transport current, I, is injected. The dimensions 
are indicated in the figure. (b) According to the Ampère law, the transport current yields a self-field with 
streamlines as illustrated. The current flows in the x direction along the film.



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18662  | https://doi.org/10.1038/s41598-020-75748-5

www.nature.com/scientificreports/

As previously mentioned, in the resistive state, kinematic V–Av pairs were created at the borders and moved 
towards the center of the sample. This is another effect of the self-field, since simulations without its consid-
eration, as was also reported in the  literature7, presented the same voltage step and transition to the resistive 
state with a vortex street solution; however, the kinematic V–Av pairs presented a behavior opposite to the one 
described above: the pairs were nucleated at the center of the sample and annihilated at its edges. This change 
is also linked to the current density modified by the self-field, more specifically, to the changes it produces in 
the supervelocity.

The supervelocity, which can be expressed as v = Js/|ψ |2 , has its highest value at the point where a vortex 
nucleates in the sample. For cases without a self-field, the supervelocity had its highest value, for current values 
right after the first step in voltage, at the center of the  sample7. On the other hand, when the self-field was properly 
considered in the simulations, the supervelocity had its highest value at the edges, as shown in Fig. 3. Here the 
supercurrent density distribution is approximately uniform, but the order parameter is much more suppressed 
near the borders of the sample, resulting in maximum values for supervelocity in those regions. The currents 
responsible for the self-field cause the supervelocity to reach maximum values at the edges rather than at its 
center. This will have an important consequence on the subsequent phenomena encountered.

When increasing the applied current, the system remained at this resistive vortex street solution without 
significant change until the current reached I = 6.794I0 , where the I–V characteristics curve’s slope changed. 
This caused a peak in the differential resistance, as shown in Fig. 2b. The same phenomenon was observed for 
numerical simulations that did not consider the self-field  effects7. However, in that work, this was linked to a 
change in the positions of the nucleation and annihilation of the kinematic V–Av pairs, which were created at 
the borders of the sample and annihilated at its center. In the self-field simulations, the creation and annihilation 
process always took place in the latter form. This raises the question of what is really responsible for the slope 
change in the I–V curve and the maximum values at the differential resistance.

The differential resistance peak found at I = IR = 6.794I0 was accompanied by other interesting phenomena. 
For instance, there was a decrease in the rate at which the superconducting current was converted to normal 
current inside the sample. Figure 4 shows the total superconducting ( Is ) and total normal ( In ) currents that 
passed through the whole width of the sample, at its center, as a function of the total applied current (I). For 

Figure 2.  (a) The I–V characteristics of the system with a normal contact of size a = 8ξ . (b) The differential 
resistance for the same system. The blue, yellow, and red regions represent the Meissner, resistive, and normal 
states, respectively.
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currents below I = 3.792I0 , the total superconducting current increased at a fairly constant rate. However, at the 
transition point, Is dropped abruptly while In increased substantially. For larger values of the applied current, the 
superconducting current was converted to normal current at an increasing rate until the applied current reached 
I = 6.715I0 , just one step �I smaller than IR , where the differential resistance was maximum. At this point, the 
rate of conversion dIn/dI reached its maximum value and, thereafter, decreased with increasing applied current. 
Figure 4 shows the rate of change of Is and In as functions of the applied current I. The superconducting current’s 
rate of destruction reached its maximum at I = 6.715I0 . For greater values, the superconducting current was still 
being destroyed but at a much lower rate.

Another interesting phenomenon that occurred at I = IR was the decreased annihilation rate for the super-
conducting order parameter in the sample. Figure 5 shows the modulus of the time-averaged superconducting 
order parameter at the center of the stripe as a function of the applied current. The order parameter monotoni-
cally dropped to zero as the current approached the value of the superconducting-normal transition, I = 7.268I0 , 
as is shown in Fig. 2. The inset of Fig. 5 presents the rate of change of the time-averaged superconducting order 
parameter calculated at the center of the vortex street as a function of the applied current. For currents lower than 
IR , the order parameter was annihilated at an increasing rate. However, for current values greater than IR , the rate 
of annihilation decreased until I = 6.952I0 . This was where the superconducting order parameter returned to 
being increasingly destroyed until the system reached the normal state. These two points are highlighted in Fig. 5.

In these two processes, the decrease in the rate of conversion of the superconducting current to normal cur-
rent and the decrease in the rate of annihilation of the superconducting order parameter in the sample can be 

Figure 3.  The superconducting density current across the width of the sample, at its center, for two 
different applied current values, I = 3.713I0 (blue curve) and I = 3.950I0 (red curve). The inset shows the 
superconducting order parameter across the width of the sample.

Figure 4.  Total superconducting current (blue curve) and total normal current (red curve) that cross through 
the width of the sample, at its center, as functions of the total applied current. The inset shows the rate of change 
of the superconducting and normal current as functions of of the applied current.
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explained by another phenomenon that took place at I = 6.873I0 , just one step �I above the I = IR . Near this 
point, the velocity of the kinematic V–Av pairs reached its maximum. Figure 6 shows the average velocity of the 
kinematic vortex as a function of applied current. The average vortex velocity presented, for currents lower than 
I = 6.873I0 , a monotonically increasing pattern for increasing applied current, with yet a larger rate of increase 
for currents near this value. However, this tendency to increase abruptly ceased when the applied current reaches 
I = 6.873I0 , where the kinematic vortex velocity was maximum. For higher values, the average velocity began 
to decrease with increasing applied current.

The quasiparticle spectrum changes from superconducting to normal current when a vortex travels across the 
sample. Thus, with a higher vortex velocity, the quasiparticles switch more rapidly, causing an increase in the rate 
that superconducting current is being conversed to normal current and an increase in the annihilation rate of the 
superconducting order parameter. On the order hand, for applied currents larger than I = 6.873I0 , the vortex 
velocity starts to decrease, consequently causing a reduction in both the conversion rate and annihilation rate.

Furthermore, we have also encountered that the self-field influences the magnitude of the kinematic vortex 
velocity in the numerical simulations. The average velocity of the kinematic vortex inside the sample remains 
finite for all values of the applied current, as seen in Fig. 6. This is unlike the average velocity obtained in simula-
tions with the absence of the self-field7, which diverge to infinity at I = IR.

To summarize, in this manuscript, we have numerically solved the generalized time-dependent Ginzbug–Lan-
dau equation equation and investigated the resistive state for a superconducting stripe driven by an applied 
transport current. Contrary to previous literature, the calculations have explicitly considered the magnetic self-
field induced by the internal currents. We found that the self-field influences the density of the superconducting 

Figure 5.  The modulus of the time-averaged superconducting order parameter as a function of the applied 
current. The inset presents the rate of destruction of the order parameter with increasing current. The point 
marked with a red circle corresponds to I = 6.794I0 and the one marked with blue circle to I = 6.952I0.

Figure 6.  Velocity of the kinematic vortex as a function of the total applied current. The velocity is in real units; 
we have used ξ = 10 n µ and tGL = 6.72 ps which are typical values for Nb thin  films17.
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current by changing the location of the creation and annihilation of the kinematic V–Av pair. The self-field can 
also alter the type of resistive state found for a given set of geometrical parameters. For instance, a system with 
a normal contact equivalent to the stripe width, with κ = 5.0 and γ = 20 , changes from a PSL resistive state to 
a vortex street solution when the self-field is included in the simulations. In addition, we also investigated the 
influence of the kinematic vortex velocity in the resistive state. The results maintained that, above certain applied 
current values, the vortex velocity ceases to increase and begins to decrease, subsequently decreasing the rate at 
which that the superconducting current is converted to normal current and decreasing the annihilation rate of 
the superconducting order parameter. Finally, our results show that the self-field has important consequences to 
the dynamics of the resistive state. Thus, it cannot be disregarded in similar numerical simulations.

Methods
We have used the generalized time-dependent Ginzburg–Landau equation (see Refs.18,19). In dimensionless 
form, this equation can be written as

The vector potential was determined using the Ampère-Maxwell equation

where the superconducting current density is

and the local magnetic field is related to the vector potential through the equation h = ∇ × A.
The equation for scalar potential can be derived from the continuity equation

where J = Js + Jn , and

is the normal current density. Supposing that there is no accumulation of charge, we can write ∂ρ
∂t = 0 , which 

yields ∇ · J = 0 . Then, by assuming the Coulomb gauge ∇ · A = 0 , from (2) we can easily obtain

Here, lengths are in units of the coherence length, ξ , temperature, T, is in units of Tc , and time is in units of the 
GL time characteristic τGL = π�/8kBTcǫu , where ǫ = (Tc − T)/Tc . In addition, the magnetic field is in units of 
the upper critical field, Hc2 , the electrostatic potential is in units of ϕ0 = �/2eτGL , the vector potential is in units 
of Hc2ξ , the current density is in units of J0 = cσ�/2eξτGL (where σ is the electrical conductivity in the normal 
state), and the order parameter is in units of ψ0 =

√
|α|/β  (the order parameter in the Meissner state). Lastly, α 

and β are the GL phenomenological constants, and κ = �/ξ is the Ginzburg–Landau parameter, and � is London 
penetration length. The constant u = 5.79 was derived from the first principles in Refs. 18,19.

We have solved Eqs. (1), (2), and (6) numerically for the geometry exhibited in Fig. 1a. Along all sides of the 
film, n ·∇ϕ = 0 except on the normal contacts where n ·∇ϕ = −Ja . In the limit of thickness d ≪ ξ inside the 
film, we may consider that the self-field was nearly perpendicular to the film along the z direction. The validity 
of this approximation has been rigorously proved in Ref. 20 to be good for large κ , typically κ � 521. Thus, within 
this approximation, the boundary conditions for the self-field are

which can be easily obtained from the Ampère’s law 
∮

h · dl = Id/κ2 in dimensionless units; here I =
∫

Jx(y) dy . 
Since the thickness of the film is very small and homogeneous, then hz does not depend on d. This same assump-
tion has been used in, for instance, Ref. 15. The order parameter is determined at the border of the sample using 
the Neumman boundary condition n · (−i∇ − A)ψ = 0 which assures that the perpendicular component of 
the superconducting current density vanishes at all sides of the sample.
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We solved the equations upon using the link-variable method as sketched in Ref.22. The equations were dis-
cretized in a mesh-grid of size �x = �y = 0.1ξ .

As a final remark on our method, we emphasize that our approximation depends on the smallness of the hy 
component of the magnetic field in our sample. In the supplementary material, we argue that, for the geometry 
under investigation, this indeed occurs.

Code availability
The code used to carry out the numerical simulations can be obtained freely by request to the corresponding 
author.
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