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We investigate the quantum entanglement in rapidity space of the soft gluon wave function of a
quarkonium in theories with nontrivial rapidity evolutions. We found that the rapidity evolution drastically
changes the behavior of the entanglement entropy, at any given order in perturbation theory. At large Nc,
the reduced density matrices that “resum” the leading rapidity logs can be explicitly constructed, and shown
to satisfy Balitsky-Kovchegov-like evolution equations. We study their entanglement entropy in a
simplified 1þ 1 toy model and in 3D QCD. The entanglement entropy in these cases, after resummation,
is shown to saturate the Kolmogorov-Sinai bound of 1. Remarkably, in 3D QCD the essential growth rate of
the entanglement entropy is found to vanish at large rapidities, a result of kinematical “quenching” in
transverse space. The one-body reduction of the entangled density matrix obeys a Balitsky-Fadin-Kuraev-
Lipatov evolution equation, which can be recast as an evolution in an emergent AdS space, at large impact
parameter and large rapidity. This observation allows the extension of the perturbative wee parton evolution
at low x, to a dual nonperturbative evolution of string bits in curved AdS5 space, with manifest
entanglement entropy in the confining regime.
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I. INTRODUCTION

Quantum entanglement permeates most of our quantum
description of physical laws. It follows from the fact that
quantum states are mostly superposition states, and two
noncausally related measurements can be correlated, as
captured by the famed Einstein–Podolsky–Rosen paradox.
A quantitative measure of this correlation is given by the
quantum entanglement entropy. The entanglement entropy
of a quantum many-body system and quantum field theory
has been extensively explored in the literature [1–5].

In hadron physics, quantum entanglement is inherent to
any hadron state, which is made more spectacular on the
light front with luminal wave functions. Unlike a generic
quantum many-body system, quantum field theory is
intrinsically multiscale in nature which leads to nontrivial
evolutions with respect to energy and rapidity scales. In
particular, in 4D gauge theories, under large boosts, the
wave functions pile more and more small-x partons or wee
partons [6] and results in nontrivial asymptotic behaviors in
physical cross sections.
A comprehensive understanding of the small-x asymp-

totics in 4D gauge theory, is still not available so far even in
perturbation theory, but there are progresses. In weak
coupling QCD, the rapidity evolution is extensively dis-
cussed in the literature, leading to various evolution
equations such as the Balitsky-Fadin-Kuraev-Lipatov
(BFKL) equation [7–9] or the Balitsky-Kovchegov (BK)
equations [10,11]. In strong coupling QCD, they are
identified with string bits [12–14], and well described by
a stringy evolution equation in the double limit of strong
gauge coupling and large Nc. The general idea is that the
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small-x partons behave very differently with respect to the
large-x spectators and likely to be described by an emergent
effective theory. A natural question is then, since they are
both quantum degrees of freedom in the original QFT, how
do the small-x and large-x partons entangle with each other
and how is the entanglement related to experiments.
The entanglement entropy in diffractive ep or pp

scattering was first noted in the strong coupling regime
using a holographic string analysis [15] (called quantum
entropy there) and in weak coupling using the evolution
equation based analysis [16]. In both cases, the entangle-
ment entropy was found to be extensive in the rapidity, an
observation made since by many others in perturbative
QCD [17,18]. The large entanglement entropy stored in
hadrons and nuclei, may explain the prompt entropies
released in current hadron colliders, in the form of large
particle multiplicities [19–22]. For completeness, we note
that an entropy composed of the multiplicities of the
produced gluons in the context of saturation models was
also discussed in [23].
Recently, we have used 2D QCD in the large Nc limit to

analyze quantum entanglement in confined meson states
[22]. The entanglement entropy in parton x was found to be
also extensive in the meson rapidity, but with a central-
charge played by the cumulative quark parton distribution
function (PDF), and hence dependent on the fraction of
parton x measured. Much like in 4D, the entanglement
entropy exhibits an asymptotic expansion that is similar to
the one observed for meson-meson scattering in the Regge
limit. Most notably, the entanglement entropy per unit
rapidity in a 2D nucleus (a sum of longitudinal mesons on
the light front) was found to be at the bound set for quantum
information flow [24,25].
The purpose of this work is to extend some of our recent

2D QCD observations [22], to 4D QCD where nontrivial
rapidity divergences are the lore at weak coupling, and
closely related to the Regge behavior of scattering ampli-
tudes. We will mostly focus on the entanglement entropy in
a quarkonium state at next-to-leading order in the weak
coupling αs, and show that the rapidity divergences are at
the origin of double logarithms in rapidity. This observation
is readily extended to higher orders, and resummed through
an evolution equation in the large Nc limit. An analysis of
the proton wave function with a similar motivation was
recently discussed in [26].
The outline of the paper is as follows: in Sec. II we

outline the construction of the reduced density matrix for a
quarkonium state in leading order in αs. In Sec. III, we
derive the reduced density matrix for the soft gluon, by
tracing over the quark sources. The ensuing entanglement
entropy receives contributions from both the real and
virtual parts of the wave function, but the latter generates
double logarithms in rapidity as naturally expected. In
Sec. IV, we show how to resum the leading rapidity
logarithms in the entanglement entropy. In the large Nc

limit and weak coupling, the density matrices with and
without overall longitudinal momentum conservation are
shown to obey BK-like evolution equations. The ensuing
entanglement entropy is found to saturate the Kolmogorov-
Sinai bound of 1, for the case with momentum conservation
after partial tracing, but otherwise linear in the rapidity. The
evolution equation can be solved explicitly for nonconfor-
mal QCD in 3D. The rate of growth of the entanglement
entropy is shown to vanish at large rapidities, a conse-
quence of the shrinking of the transverse phase space. In
Sec. V, we show that the evolution of the trace of the
density matrix obeys a standard BFKL evolution equation,
which can be mapped on an evolution in an emergent AdS3
space. In Sec. VI, we extend this observation to the strong
coupling regime, where the evolution is captured by the
tachyonic mode of a quantum string in AdS5, where the
string bits are dual to the wee partons. Our conclusions are
in Sec. VII.

II. QUARKONIUM WAVE FUNCTION

In this section we study the rapidity-space entanglement
of the light front wave function (LFWF) for a pair of a
heavy quark and an antiquark. The same system has
been investigated in the literature, to derive the nonlinear
rapidity evolution equation of the dipole generating
functional [27,28]. It has also been revisited recently to
provide a concrete example for the formulation of LFWF
amplitudes [29].
Unlike the 2D case where there is no rapidity divergen-

ces in the light front (LF) quantization, in 4D gauge theory
there are nontrivial rapidity divergences (RD). They are
closely related to the Regge limit of gauge theory. Still, they
are not totally understood from first principles, even in
perturbation theory (PT).
On the LF, the soft gluon wave function of a Q̄Q pair to

leading order is of the form [27,30]

jQ̄Qi ¼ jQ̄Qi0 þ jQ̄Qið1Þ þ jQ̄Qgi: ð1Þ
Here

jQ̄Qið0Þ ¼ 1ffiffiffiffiffiffi
Λ−

p ffiffiffiffiffiffiffi
V⊥

p
X
z;k⃗⊥

1ffiffiffiffiffiffiffiffiffiffiffi
ð2πÞ2

p Ψð0Þ
σ;σ0 ðz; k⃗⊥Þjz; σ; k⃗⊥iQ

⊗ jz̄; σ0;−k⃗⊥iQ̄ ð2Þ
is the leading order quarkonium wave function with initial

profile Ψð0Þ
σ;σ0 ðz; k⃗⊥Þ. The free-Fock basis is normalized as

hzjz0i ¼ δz;z0 , and the momentum fraction relates to the
discrete LF label n through the relation

z ¼ 2nþ 1

2Λ− : ð3Þ

Comparing with the standard notation in the literature, we
have absorbed a factor of 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1 − zÞp

into the definition
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of the LFWF, which will generate precisely the Lorentz
invariant LF phase space measure

Z
1

zmin

dz
z

ð4Þ

after squaring. Again, the natural rapidity cutoff zmin is
given by the inverse of Λ−. We assume that the leading WF
Ψð0Þ is supported well away from z ¼ 0, for instance it can
be a pair of free quarks with fixed momentum fractions
z ¼ z0 ∼ 1

2
and zero transverse momenta k⃗⊥ ¼ 0. More

specifically, Ψð0Þ ¼ δz;z0δk⃗⊥;0, which is the case considered
before when formulating the LFWF amplitudes.
The most interesting contribution in (1) is the soft-gluon

contribution. Using the standard rule in LFPT, one can
show that the leading soft gluon contribution to the
LFWF is

jQ̄Qgi ¼ 1

Λ−V⊥

X
z;x;k⊥;kg;ϵ;a

Ψaðx; z; k⃗⊥; k⃗g;⊥; ϵ⃗Þjz; k⃗⊥; σiQ

× jz̄ − x;−k⃗⊥ − k⃗g;⊥; σ0iQ̄jx; k⃗g;⊥; ϵ⃗; aig; ð5Þ

where one has

Ψaðx;z; k⃗⊥; k⃗g;⊥; ϵ⃗Þ

¼ 2gtaffiffiffi
x

p ϵ⃗⋆ · k⃗g;⊥
k2g;⊥

ðΨð0Þ
σ;σ0 ðz; k⃗⊥þ k⃗g;⊥Þ−Ψð0Þ

σ;σ0 ðz; k⃗⊥ÞÞ: ð6Þ

Notice that the above equation applies to any transverse
dimensions, in particular, for D⊥ ¼ 2 the wave function
can be written in coordinate space as

Ψaðx; z; b⃗1⊥; b⃗2⊥Þ

¼
Z

d2k⊥d2kg;⊥
ð2πÞ4 eik⃗⊥·b⃗10⊥þik⃗g;⊥·b⃗20⊥Ψaðx; z; k⃗⊥; k⃗g;⊥; ϵ⃗Þ

¼ igta

π
ffiffiffi
x

p Ψ0ðz; b⃗1⊥Þσ;σ0 ϵ⃗⋆ ·
�

b⃗21
jb21j2

−
b⃗20
jb20j2

�
; ð7Þ

with b⃗21¼ b⃗2⊥− b⃗1⊥, b⃗10¼ b⃗1⊥− b⃗0⊥, and b⃗20¼ b⃗2⊥− b⃗0⊥.
This is the real part of the wave function. The norm of this
state is given by

hQ̄QgjQ̄Qqi ¼ 2αsCF

π

Z
d2b⊥ ln b2⊥μ2 ×

Z
x0

xmin

dx
x

×
Z

dz
X
σ;σ0

jΨ0ðz; b⃗⊥Þσ;σ0 j2: ð8Þ

There is a UV divergence which is regularized by the cutoff
μ, and the rapidity divergence is cut off by xmin ¼ 1

2Λ−.

On the other hand, the virtual part jQ̄Qið1Þ can be written
with the following wave function:

Ψð1Þðz; b⃗⊥; σ; σ0Þ ¼ −
αsCF

π
ln b2⊥μ2 ×

Z
x0

xmin

dx
x

×Ψ0ðz; b⃗⊥; σ; σ0Þ: ð9Þ

With this in mind, it is clear that when squaring (1), the real
and virtual parts cancel, in agreement with perturbative
unitarity.

III. SOFT-GLUON ENTANGLEMENT ENTROPY
IN QUARKONIUM

In our previous work in 2D QCD [22], we found that for
a meson state quantized in the discrete LF quantization,
the entanglement entropy in rapidity space is finite in the
ultraviolet, but contains a logarithmic divergent term in the
effective box size Λ− ¼ PþL−, which is identified with
the meson rapidity. In this section, we investigate the
rapidity space entanglement for the quarkonium or Q̄Q
system in 4D pertubrative QCD. We show that the non-
trivial rapidity divergence (or rapidity transcendentality)
leads to an enhanced divergence in lnΛ−. At order αs the
leading contribution is enhanced by ln2 Λ−, and at order αks
it is enhanced by ðlnΛ−Þ1þk. We first consider the order αs
case, and then generalize to order αks.

A. Leading order in αs

With the one-loop soft gluon part of the wave function at
hand, we can now perform partial tracing, to obtain the
reduced density matrix. We trace over the quark longi-
tudinal and transverse contributions, leaving the gluon
longitudinal contribution in the final state untraced,

ρ̂ ¼ j0ih0j
�
1 −

2αsCF

π

Z
d2b⊥ ln b2⊥μ2 ×

Z
x0

xmin

dx
x

×
Z

dz
X
σ;σ0

jΨ0ðz; b⃗⊥Þσ;σ0 j2
�

þ 1

Λ−

X
x<x0

1

x
jxighxjg ×

�
2αsCF

π
×
Z

d2b⊥ ln b2⊥μ2

×
Z

dz
X
σ;σ0

jΨ0ðz; b⃗⊥Þσ;σ0 j2
�
: ð10Þ

Clearly, the off-diagonal term in the gluon longitudinal
momentum, vanishes in the trace to this order.
With the reduced density matrix, we now compute the

entanglement entropy. The virtual or vacuum part leads to
the result
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Svirtual ¼ −
�
1 −

2αsCF

π

Z
d2b⊥ ln b2⊥μ2 ×

Z
x0

xmin

dx
x
×
Z

dz
X
σ;σ0

jΨ0ðz; b⃗⊥Þσ;σ0 j2
�

× ln

�
1 −

2αsCF

π

Z
d2b⊥ ln b2⊥μ2 ×

Z
x0

xmin

dx
x
×
Z

dz
X
σ;σ0

jΨ0ðz; b⃗⊥Þσ;σ0 j2
�

¼ 2αsCF

π

Z
d2b⊥ ln b2⊥μ2jΨð0Þðb⊥Þj2 ×

Z
x0

xmin

dx
x
þOðα2sÞ; ð11Þ

where jΨð0Þðb⊥Þj2 ≡
R
dz

P
σ;σ0 jΨð0Þðz; b⊥Þσ;σ0 j2 is the ini-

tial dipole wave function integrated over z, and the rapidity
divergence (RD) contribution reads

Z
x0

xmin

dx
x

→
XΛ−−1=2

n¼n0

1

nþ 1
2

¼ lnΛ−x0 þ C: ð12Þ

On the other hand, what is more interesting is the
contribution from the real emission. In terms of

p0 ¼
2αsCF

π

Z
d2b⊥ ln b2⊥μ2jΨð0Þðb⊥Þj2; ð13Þ

the real contribution to the entanglement entropy is

Sreal ¼ lnΛ− × p0 ×
Z

x0

xmin

dx
x
−
Z

x0

xmin

dx
x
p0 ln

p0

x

→
1

2
ln2 Λ−p0 þ lnΛ−p0 ln

x0
p0

þ C: ð14Þ

The entanglement entropy is now dominated by the double-
logarithmic divergent term

Sreal þ Svirtual ¼
1

2
ln2 Λ−p0 þ lnΛ−p0 ln

x0
p0

þ p0 lnΛ−x0 þ C: ð15Þ

It is the RD that leads to the enhancement of the logarithmic
dependency on Λ−. It is also divergent in UV.

B. Higher order in αs

We now generalize the result to all orders, to extract the
leading αs lnΛ− contribution. The above suggests the
αks lnðΛ−Þkþ1 as the general pattern, which can be shown
as follows. First, to obtain the leading lnΛ− contribution, it
is much better if all the gluons are nontraced, namely, more
soft gluons in the final state, more logarithms in Λ.
Therefore we do not perform partial tracing in gluons.
However, the quarks should be traced out, which leads to
the structure of the entanglement density matrix in the
following form:

ρ ¼
X
n

pnρn; ð16Þ

where pn is the total probability of finding n-soft gluons,
and the ρn is an effective reduced density matrix with n-soft
gluons on the left and right. Notice that the off-diagonal
terms in particle numbers simply vanish, thanks to the total
trace in the transverse momentum or color. From (16) the
entanglement entropy for ρ can be found to be

S ¼ −
X
n

pn lnpn þ
X
n

pnSn; ð17Þ

where Sn ¼ −trρn ln ρn is the entanglement entropy of the
reduced density matrix in the n-particle sector. For purely
real soft emissions, the probability of the state is propor-
tional to

pn ∼ αns

Z
x0

xmin

dx1
x1

Z
x0

x1

dx2
x2

…::
Z

x0

xn−1

dxn
xn

∝ αns lnnΛ−; ð18Þ

and adding virtual corrections will correct it in powers of
αs lnΛ− to leading log accuracy. On the other hand, for the
purely real soft emissions one can show that

ρn;real ∝
X

x1≫x2…≫xn;x1≫x0
2
…:≫x0n

1

x1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2x02…xnx0n

p jx1i::jxni

× hx1j…:hx0nj; ð19Þ

which involvesΛ− pure states and consequently Sn ∝ lnΛ−.
When multiplied by αns in pn, this generates the desired
αns lnnþ1 Λ− contribution. With the inclusion of virtual
emissions, one expects that the modification will be in order
of lnΛ−αs as for the pn, and therefore will not change the
leading logarithmic pattern αks lnkþ1 Λ−. Moreover, the
leading αk lnk Λ− and the next-to-leading αk lnkþ1 Λ− con-
tributions to the entanglement entropy can be obtained from
the same set of soft gluon LFWFs that lead to the leading
norm square of the state pn. This will be exploited fur-
ther below.
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IV. BK-LIKE EVOLUTION OF THE
ENTANGLEMENT DENSITY

We now derive an evolution equation for the reduced
density matrix in Eq. (16) based on the evolution equation
for the dipole generating functional in the large Nc limit.
We first review the derivation of the evolution equation of
the dipole’s wave function. Since we trace out all the
transverse degrees of freedom, and leave only the momen-
tum fractions untraced, it is more convenient to consider the
square of the wave function.

A. Evolution of the quarkonium wave function

The perturbative process that leads to the leading RD in
the dipole’s wave function is by now standard [27,28,30].
We briefly recall it here for completeness. The soft gluons
are emitted consecutively with strong ordering in their
momentum fractions x1 ≫ x2 ≫ x3… ≫ xn. The emission
of the first soft gluon at transverse position b2 leads the
following factor for the wave function square:

jΨð1Þj2 ¼
Z

x0

xmin

dx1
x1

αsCF

π2

Z
d2b2

b210
b221b

2
20

jΨð0Þðb10Þj2: ð20Þ

Following the emission of the first soft gluon, the original
dipole with transverse size b10 splits into two dipoles with
size b12 and b20. The subsequent emissions of these two
dipoles is independent

jΨð2Þj2 ¼
�
αsCF

π2

�
2
Z

x0

xmin

dx1
x1

Z
x1

xmin

dx2
x2

Z
d2b3

×
Z

d2b2
b210

b221b
2
20

�
b212

b231b
2
21

þ b220
b223b

2
30

�
jΨð0Þðb10Þj2:

ð21Þ

The process clearly is repetitive, with more and more soft
gluons emitted. To generalize to all orders, we define the
generating functional Zðb10; x0; uðx; zÞÞ, such that

1

n!
δnZðb10; x0; uðb; zÞÞjΨð0Þðb10Þj2

δuðb2; z1Þδuðb4; z2Þ…:δuðbnþ1; xnÞ
¼ jΨðnÞðb10; x0; b2; x1; b3; z2;…bnþ1; xnÞj2: ð22Þ

Here

jΨðnÞðb10; x0; b2; z1; b3; z2;…bnþ1; znÞj2

refers to the square of the wave function with n soft gluons,
with transverse positions b2; ..bnþ1 and momentum frac-
tions x1 > x2 > …xn. This emission cascade process
satisfies the equation

Zðb10; x0; xmin; uÞ

¼ S

�
b10;

x0
xmin

�
þ αsCF

π2

Z
x0

xmin

dx1
x1

S

�
b10;

x0
x1

�

×
Z

db22
b210

b212b
2
20

uðx1; b2ÞZðb12; x1; xmin; uÞ

× Zðb20; x1; xmin; uÞ: ð23Þ

Here we have included the contribution from virtual
emissions that give rise to the Sudakov-like suppression
factor

S
�
b10;

x0
x1

�
¼ exp

�
−
2αsCF

π
ln b210μ

2 ln
x0
x1

�
: ð24Þ

It resums the virtual gluon emissions, prior to the emission
of the first real gluon inside the first dipole with size b10.
The constraint that the rapidity of the virtual emission
should be between x0 and the next soft gluon x1, leads to
the ln x0

x1
contribution. When u≡ 1, unitarity requires

Z ¼ 1, which is manifest in the above equation. The
evolution equation is depicted in Fig. 1.

B. Evolution of the density matrix

Given the above, let us consider the reduced density
matrix. Clearly, we need all soft gluons in the final states
being untraced in rapidity. Since they will be traced in color
and in transverse positions, the reduced density should have
the same spatial factor as for the squared wave function,
except that the momentum fractions on the left ket and right
bra are different. Namely, we can have x1 ≫ x2 ≫
x3…:: ≫ xn for the ket and x01 ≫ x02… ≫ x0n for the bra.
However, since the total momentum fraction has to be the
same, the largest momentum fractions are approximately
equal, namely, x1 ∼ x01. Also, since in the large Nc limit
there is no crossing, we still have the same diagrammatic
depiction as in the case of Z. Moreover, to get the dominant
contribution in α lnΛ− we expect that the orderings in the

FIG. 1. Depiction of the second term of the evolution equa-
tion (23). The first emitted soft gluon at rapidity x1 and transverse
position b2 splits the original dipole into two dipoles with
transverse separations b12 and b20, within which subsequent soft
emissions occur independently. Virtual emissions before the first
real gluon with rapidities between x0 and x1 contribute to the
“soft factor” Sðb10; x0x1Þ. When combined with the purely virtual
contribution or the first term in (23), unitarity is restored.
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bras and kets are one-to-one. Namely, if in the first dipole
b12, the k soft gluons in kets are labeled by xπð1Þ;…xπðkÞ
where π is a permutation of 1; 2.:n, then in the bras the soft
gluons must be x0πð1Þ;…x0πðkÞ. And similarly for the remain-

ing n − k soft gluons in the dipole b20. More precisely, if
the wave function reads

jQ̄Qðb10;x0;xminÞi
¼
X
n

X
x0≫x1≫x2≫x3::≫xn≫xmin

fnðb10;x1;b1;x2;b2;…:xn;bnÞ

× jx1;b1ijx2;b2ijx3;b3i…:jxn;bnijQ̄ijQi; ð25Þ

then with the following definitions of the reduced density
matrices

ρ1ðb10; x0; x00; xminÞ

¼
X
n

Z
d2b1::d2bnfnðb10; x1; b1; x2; b2; ::xn; bnÞ

× f†nðb10; x01; b1; x02; b2;…:x0n; bnÞjx1ijx2i::jxni
× hx01jhx02j…hx0nj; ð26Þ

and

ρðb10; x0; xminÞ

¼
X
n

Z
d2b1::d2bnfnðb10; x1; b1; x2; b2; ::xn; bnÞ

× f†nðb10; x1; b1; x02; b2;…:x0n; bnÞjx1ijx2i::jxni
× hx1jhx02j…hx0nj; ð27Þ

the locking of the orderings in the bra and ket is automatic
in the large Nc limit. Clearly, this indicates that the soft
gluon emissions in the two subsequent dipoles can be
separated from x1; x01 and form two density matrices
ρ1ðb12; x1; xminÞ ⊗ ρ1ðb20; x1; xminÞ, namely

ρ1ðb10;x0;x00;xmin;uÞ

¼S
1
2

�
b10;

x0x00
x2min

�
j0ih0jþαsCF

π2

Z
db22

b210
b212b

2
20

×
X

xmin≤x1;x01≤x0

S
1
2

�
b10;

x0x00
x1x01

� jx1ihx01jffiffiffiffiffiffiffiffiffi
x1x01

p ⊗ρ1ðb12;x1;x01;xminÞ

⊗ρ1ðb20;x1;x01;xminÞ: ð28Þ

And the ρ can be obtained from ρ1 by simply tracing the
hardest gluon

ρðb10; x0; xmin; uÞ

¼ S

�
b10;

x0
xmin

�
j0ih0j þ αsCF

π2

Z
db22

b210
b212b

2
20

×
X

xmin≤x1≤x0

S

�
b10;

x0
x1

� jx1ihx1j
x1

⊗ ρ1ðb12; x1; xminÞ

⊗ ρ1ðb20; x1; xminÞ ð29Þ

with ρ1ðb; x1; xminÞ≡ ρ1ðb; x1; x1; xminÞ. We note that to
order αs, the earlier perturbative result can be recovered by
expanding the above equations. See Fig. 2 for a depiction of
the evolution equations for the reduced density matrix ρ1.
Here we should note that both ρðb10; x0; xminÞ and

ρ1ðb10; x0; xminÞ are reduced density matrices. ρ1 can be
viewed as the reduced density matrix of the soft gluon wave
function, after tracing over all the degrees of freedom
except the rapidity, while ρ can be obtained from ρ1
by further tracing out the rapidity of the in-out Q̄Q pair,
which amounts to imposing momentum conservation.
Equations (29)–(28) are the first major results of this paper.
Unfortunately, due to the nature of the kernel in 4D, the

structure of the reduced density matrix is complicated for
large n. Below we investigate their entanglement entropies
by simplifying the transverse degrees of freedom. We will
also show that the partial tracing of (28) describes the
rapidity evolution of the one-body density matrix, whose
eigenvalues and von Neumann entropy are measurable in
deep inelastic scattering (DIS) and hadron-hadron scatter-
ing in the diffractive regime. In this spirit, the reduced two-
body density following from a pertinent partial tracing of
(28) may account for the multiplicities in pp scattering at
the LHC, with two fixed rapidity gaps.

C. Entanglement entropy in 1 + 1 reduction

To simplify the analysis of (29)–(28), we first consider
the case where soft emission is solely longitudinal. This

FIG. 2. Depiction of the second term of the evolution equa-
tion (28). The first emitted soft gluon at rapidity x1 and transverse
position b2 splits the original dipole into two dipoles, with
transverse separations b12 and b20, within which subsequent soft
emissions form the corresponding reduced density matrices
ρ1ðb12; x1; x01Þ and ρ1ðb20; x1; x01Þ. Virtual emissions before the
first real gluon at left, with rapidities between x0 and x1,
contribute to the “soft factor” S

1
2ðb10; x0x1Þ, and similarly for x00,

x01 at right. This process should be regarded as the off-diagonal
version of the evolution equation (23).
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amounts to freezing the transverse degrees of freedom, and
the resulting evolution equation becomes one dimensional.
Note that this is not 2D QCD which is superrenormalizable
and with no dynamical gluons. It is more similar to the

evolution equation in 4D QCD where the kernel b2
10

b2
12
b2
20

only exhibits moderate decay at large b2, but no serious
constraint. With this in mind, the 1þ 1 version of
(29)–(28), is best analyzed by following Mueller [28],
and by introducing the generating functional with a con-
stant soft gluon current u

Zðy;uÞ¼ e−ayþaue−ay
Z

y

0

eay1dy1Zðy1;uÞZðy1;uÞ: ð30Þ

We have identified the rapidity of the Q̄Q pair with y

y ¼ ln
x0
xmin

¼ ln x0Λ− ð31Þ

and reduced the Sudakhov factor (24) to e−ay, by assuming
b independence

2αsCF

π
ln b210μ

2 → a: ð32Þ

The above equation can be easily solved by iterating
Eq. (30)

Zðy; uÞ ¼
X∞
n¼0

e−ayunð1 − e−ayÞn; ð33Þ

with Zðy; 1Þ ¼ 1. From the above, we can read the
probability of finding n soft gluons as

pn ¼ e−ayð1 − e−ayÞn ¼ 1

n̄þ 1

�
1 −

1

n̄þ 1

�
n

ð34Þ

with n̄ ¼ P
n npn ¼ eay − 1 the mean number. As noted in

[28], we have n̄pn ≈ e−n=n̄ for large mean n̄, in agreement
with Koba-Nielsen-Olesen (KNO) scaling.

1. Density matrices

The reduced density matrix for the untraced soft gluons
without overall momentum conservation is

ρ̂1 ¼
X∞
n¼0

jΨnihΨnj; ð35Þ

with the effective state

jΨni ¼
X

x0≫x1≫x2…≫xn≫xmin

ffiffiffiffiffiffiffiffiffi
ann!

p e−
ayþa

P
n
i¼1

yi
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΛ−Þnx1::xn

p
× jx1ijx2i…::jxni; ð36Þ

where yi ¼ ln xi
xmin

. Notice that for each n, ρ1 is already in the
diagonal form; therefore, it is the full reduced density
matrix without assumptions in the ordering of x1; x2; ::x0n.
In contrast, the one with momentum conservation is

ρ ¼
X
n

X
x1

jΨx1 ; nihΨx1 ; nj; ð37Þ

with the state

jΨx1 ; ni ¼
e−

ay1
2ffiffiffiffiffiffiffiffiffiffiffi

Λ−x1
p jx1i

X
x1≫x2…≫xn≫xmin

ffiffiffiffiffiffiffiffiffi
ann!

p

×
e−

ayþa
P

n
i¼1

yi
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðΛ−Þn−1x2::xn
p jx2i…::jxni: ð38Þ

Both reduced density matrices satisfy the BK-like evolution
equations (29)–(28).

2. Entanglement entropy from ρ̂1
The entanglement entropy associated to ρ1 for the soft

gluon wave function without the overall momentum con-
straint (with the longitudinal momentum of the Q̄Q
untraced) is readily obtained using the von Neumann
entropy and the gluon probabilities (34)

Sðρ̂1Þ ¼ −
X∞
n¼0

pn lnpn

¼ ay − lnð1 − e−ayÞðeay − 1Þ → ayþ 1þOðe−ayÞ:
ð39Þ

It asymptotes ay for large rapidity y → ∞, with a ∼ αsCF.
This result was noted when analyzing DIS scattering at
weak coupling in the Regge limit [16], and hadron-hadron
scattering also in the Regge limit at strong coupling in [15]
(although in the latter it was initially identified as a
quantum entropy).
In the Regge limit, DIS and hadron-hadron scattering are

universally described by dipole-dipole scattering [28]. In
weak coupling, the scattering is dominated by exchange of
BFKL pomerons. At strong coupling, the scattering is
dominated by closed string exchanges. The entanglement
entropy controls the rise of the low-x gluons in DIS, and the
rise of the large-s elastic cross section in diffractive hadron-
hadron scattering.
The eigenvalues pn of the reduced density matrix ρ̂1

describe the wee parton multiplicities at low x or large
ffiffiffi
s

p
,

that may turn real in an inclusive DIS process or a
diffractive hadronic process with particle production and
KNO scaling. In this sense, the entanglement content of the
reduced density matrix ρ̂1, with untraced or fixed Q̄Q
longitudinal momenta, is directly accessible to DIS, or
hadron-hadron scattering in the Regge limit. In muclei, an
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even larger form of entanglement maybe at work, as we
suggested recently [22].

3. Entanglement entropy from ρ̂

The reduced density matrix ρ̂ after tracing the Q̄Q is
expected to be more entangled, with a larger entanglement
entropy. Indeed, the entanglement entropy is now of the
form

SðρÞ ¼ aye−ay −
X∞
n¼1

Z
y

0

dy1 ln½nae−aðyþy1Þ−y1

× ð1 − e−ay1Þn−1�nae−aðyþy1Þð1 − e−ay1Þn−1: ð40Þ
To evaluate (40) we split it into three contributions

SðρÞ− aye−ay ¼
X∞
n¼1

Z
y

0

dy1ðy1 þ aðyþ y1ÞÞ

× nae−aðyþy1Þð1− e−ay1Þn−1

−
X∞
n¼0

lnðnaÞpn −
X∞
n¼0

Z
y

0

dy1 lnð1− e−ay1Þ

× nðn− 1Þae−aðyþy1Þð1− e−ay1Þn−1: ð41Þ
The first contribution in (40) can be calculated by summing
over n

S1 ¼
X∞
n¼1

Z
y

0

dy1ðy1 þ aðyþ y1ÞÞnae−aðyþy1Þð1− e−ay1Þn−1

¼
Z

y

0

dy1a½y1 þ aðyþ y1Þ�e−aðy−y1Þ

¼ yð1þ 2aÞ− 1þ a
a

þOðe−ayÞ; ð42Þ

and then expanding for large rapidity y. Similarly, the third
contribution in (40) gives

S3 ¼ −
X∞
n¼1

Z
y

0

dy1 lnð1 − e−ay1Þ

× nðn − 1Þae−aðyþy1Þð1 − e−ay1Þn−1

¼ −2e−ay
Z

y

0

ady1 lnð1 − e−ay1Þð1 − e−ay1Þe2ay1 : ð43Þ

By using the inequality

− lnð1 − e−ay1Þð1 − e−ay1Þ ≤ e−ay1 ; ð44Þ

we have

S3 ≤ 2ð1 − e−ayÞ: ð45Þ

On the other hand, using the inequality − lnð1 − e−ay1Þ ≥
e−ay1 , we also have

S3 ≥ 2ð1 − e−ayÞ − 2aye−ay: ð46Þ

Thus, as y → ∞ we have

S3 → 2þOðye−ayÞ: ð47Þ

Finally, the second contribution in (40) can be calculated for
large y as

S2 ¼ −
X∞
n¼0

lnðnaÞpn → −ay − ln a −
Z

∞

0

dx ln xe−x

¼ −ay − lnaþ γE: ð48Þ

Given the above, we found that the nonvanishing part of the
entanglement entropy reads

SðρÞ ¼ yð1þ aÞ þ 1þ γE −
1

a
− lna

¼ lnðx0Λ−Þð1þ aÞ þ 1þ γE −
1

a
− ln a; ð49Þ

with γE being the Euler constant.
In sum, to any given order in a, each soft emission, either

real of virtual, is accompanied by a yn divergence in the
wave function, at order a ∼ αsCF and large rapidity y.
However, the resummed divergences to order ay are finite
and saturate the Kolmogorov-Sinai bound of 1. The bound
was noted in [22]. The entanglement entropy remains linear
in y, despite the growing rapidity divergences with increas-
ing order in αs.

D. Entanglement entropies and saturation
in 3D QCD

DIS or hadron-hadron scattering in 3D QCD which is
superrenormalizable, nonconformal, and confining, is still
dominated by soft gluon emissions at weak coupling in the
Regge limit. The BK-like equations for the corresponding
density matrices (29)–(28) still hold. Interestingly, this case
can be solved exactly with both longitudinal and transverse
evolution in place.
Indeed, in 3D the BK-like evolution equations can be

solved using the generating functional

Zðb; y; uÞ ¼ e−mby þ um
Z

y

0

dy1e−mbðy−y1Þ

×
Z

b

0

db0Zðb − b0; y1; uÞZðb0; y1; uÞ; ð50Þ

with m≡ g2
1þ2

CF

4π2
the mass scale in 3D. To derive this

equation, we start with (6), and write it in coordinate
space. Using the identity

Z
∞

−∞

dkz

ð2πÞ
eik

zb

kz
¼ i

π

Z
∞

0

dkz

kz
sinðkzbÞ ¼ i

2
signðbÞ; ð51Þ
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we now have the wave function in the coordinate space,
after the emission of a single soft gluon

Ψaðx; z; b1; b0; b2; ϵÞ

¼
Z

dk⊥dkg;⊥
ð2πÞ2 eikb10þkgb20Ψaðx; z; k; kg; ϵÞ

¼ igta

2π
ffiffiffi
x

p Ψ0ðz; b1Þσ;σ0ϵðsignðb21Þ − signðb20ÞÞ: ð52Þ

This means that the emitted gluon position b2 lies between
the mother dipole positions 0 and 1, in transverse space and
consequently the integral over b2 is IR safe. Given the
above, the derivation of the evolution equation is identical
to the 4D case which yields (50) with m ¼ αsCF

π .
It is not hard to show that the solution of the equation

above can be solved explicitly. First, the generating func-
tional can be shown to be

Zðb; y; uÞ ¼ e−mby
X∞
n¼0

un
ðmbyÞn

n!
¼ embyðu−1Þ: ð53Þ

Indeed, when plugged into (50), one can readily verify that
the above is indeed the solution with the condition
Zðb; y; 1Þ ¼ 1. From these, one identifies the probability
of finding nþ 1 dipoles with the Poisson gluon emissivities

pn ¼ e−mby ðmbyÞn
n!

: ð54Þ

The reduced density matrix without the momentum con-
straint can be shown to be

ρ̂1 ¼
X
n

ρ̂1;n

¼
X

x1≫x2…≫xn;x01≫x0
2
…≫x0n

e−mbyðmbÞn
ðΛ−Þn ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1x2…xnx01x
0
2…x0n

p
× jx1…xnihx01::x0nj; ð55Þ

from which one reads the most singular part of the
x-weighted gluon PDF as

xfgðxÞ ¼ mbxmb; ð56Þ

which as expected is independent of y or RD free.
Equation (56) is the gluonic structure function, which is
usually accessible to DIS kinematics in the Regge limit.
Given ρ1, the corresponding density matrix with the

momentum constraint ρ̂ follows from ρ̂1 by setting x1 ¼ x01.
The von Neumann entropy for ρ̂1 is

Sðρ1Þ ¼ −
X
n

pn lnpn; ð57Þ

while for ρ̂

SðρÞ ¼ −p0 lnp0 −
X∞
n¼1

Z
dy1

yn−11 ðmbÞne−mby

ðn − 1Þ!

× ln

�
yn−11 ðmbÞne−mby

ðn − 1Þ! e−y1
�
: ð58Þ

At large b, the latter is extensive in y. Indeed, using the
Stirling’s formula

ffiffiffiffiffiffiffiffi
2πn

p �
n
e

�
n
e

1
12nþ1 < n! <

ffiffiffiffiffiffiffiffi
2πn

p �
n
e

�
n
e

1
12n; ð59Þ

we can simplify the integrand in (58)

X∞
n¼1

ðmbyÞn
n!

e−mbyn ln n → mby lnðmbyÞ −mby

þ 1

2
ln mbyþ 1

2
ln 2π þ 1

2
: ð60Þ

The first term follows from the peak of the Poisson
distribution, but the next contributions require the full
formula. Inserting (60) in (57) we obtain for the entangle-
ment entropies

Sðρ1Þ →
1

2
lnð2π embyÞ;

SðρÞ → yþ 1

2
lnð2π embyÞ þ 1: ð61Þ

Unlike 4D QCD, the entanglement entropy for ρ̂1 in the
nonconformal 3D QCD is not extensive in the rapidity y.
The rate of growth of the entropy vanishes at large
rapidities, a result which is consistent with the lack of
growth of the gluonic structure function in (56). This
kinematical form of saturation is a consequence of the
specific form of the evolution kernel: in 3D QCD, the
transverse position b2 of the emitted dipole is forced to be
within the original dipole as in (50). Therefore, when there
are more and more dipoles in the wave function, the
average size for these dipoles will become smaller and
smaller, and the probability for emitting new dipoles will be
penalized. This is not the case in 4D where the emission of
new dipoles with large sizes is not penalized strongly.
Finally, we note that the entanglement entropy for ρ̂ is

similar to that for ρ̂1 plus an additional linear contribution
in y. This extensivity in y follows from the extra tracing
over the Q̄Q pair, and in-out longitudinal momentum
conservation.
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V. EMERGENT AdS SPACE FROM RAPIDITY
EVOLUTION IN QCD

The integral equations for the density matrices in
(29)–(28) reflect on the multibody content of the soft
emissions in the Q̄Q state. They are part of the contribu-
tions in onium-onium (dipole-dipole) scattering, as origi-
nally discussed by Mueller [27,28]. A more general
reduced matrix that is of -diagonal in both the rapidity
and the dipole size can be inferred from (26), by substitut-
ing b1 → b01 in the outgoing amplitude f† without tracing
over b1. After performing the partial traces of this entangled
density matrix, we obtain the BFKL evolution for the so-
called dipole-dipole Green’s function. In the process, we
will unravel an emergent AdS structure that will allow us to
bridge the perturbative or partonic contribution for soft
gluon emissivities, with the nonperturbative string contri-
bution using string bits.
With this in mind, we introduce the dipole-dipole

Green′s function nðb10; b010; b; yÞ, defined as the probabil-
ity of finding a daughter dipole with size b010 and at
impact parameter b, within the wave function of the mother
dipole b10,

nðb10; b010; b; yÞ ¼
δZ̃ðb10; b0; x0; xmin; JÞ

δJðbþ b0; b010Þ
����
J¼1

; ð62Þ

where

Z̃ðb10; b0; x0; xmin; JÞ

¼ S

�
b10; b0;

x0
xmin

�
Jðb0; b10Þ

þ αsCF

π2

Z
x0

xmin

dx1
x1

S

�
b10;

x0
x1

�

×
Z

db22
b210

b212b
2
20

Z̃

�
b0 −

b20
2

; b12; x1; xmin; J

�

× Z̃

�
b0 þ

b12
2

; b20; x1; xmin; J

�
ð63Þ

is the generating functional for the dipole wave function
squares. The dipole current Jðb; b12Þ refers to a dipole of
transverse size b12 centered at b as illustrated in Fig. 3. It
follows that n satisfies the evolution equation in rapidity

∂ynðb10; b010; b; yÞ

¼ αsNc

2π2

Z
d2b2

b210
b212b

2
20

×

�
n

�
b12; b010; b −

b20
2

; y

�
þ n

�
b20; b010; b −

b21
2

; y

�

− nðb10; b010; b; yÞ
�
: ð64Þ

This equation has an SLð2; CÞ symmetry [9,30], which is
more transparent in the holomorphic coordinates ρi ¼
xi þ iyi, where bi ¼ ðxi; yiÞ are the transverse positions
of the four boundaries b0, b1, b00; b

0
1 of the two dipoles, with

b10 ¼ b1 − b0 and b010 ¼ b01 − b00. In these coordinates, the
BFKL equation becomes

∂ynðρ1; ρ0; ρ01; ρ00; yÞ ¼
αsNc

2π2
ðHGG þ H̄GGÞn: ð65Þ

The BFKL Hamiltonian can be written in terms of the
generator of SLð2; CÞ [9,31,32]

Mz¼ ρ1∂1þρ2∂2; Mþ ¼−ρ21∂1−ρ22∂2; M− ¼ ∂1þ∂2;

ð66Þ

and its Casimir operator

M2 ¼ ðMzÞ2 − 1

2
ðMþM− þM−MþÞ ¼ −ρ212∂1∂2; ð67Þ

as

HGG ¼
X∞
l¼0

�
2lþ 1

lðlþ 1Þ −M2
−

2

lþ 1

�
: ð68Þ

The same applies to the antiholomorphic section. The
eigenvalues of the Casimir depend on n ∈ Z and ν ∈ R,

−M2En;ν¼hðh−1ÞEn;ν; −M̄2En;ν¼ h̄ðh̄−1ÞEn;ν; ð69Þ

with specifically

h ¼ 1þ n
2

þ iν; h̄ ¼ 1 − n
2

− iν: ð70Þ

and the eigenvalues

En;νðρ1a; ρ2aÞ ¼
�

ρ12
ρ1aρ2a

�
h
�

ρ̄12
ρ̄1aρ̄2a

�
h̄
: ð71Þ

In terms of these, it is easy to see that the eigenvalues of
H þ H̄ are real, equal, and given by the digamma function

FIG. 3. Illustration of the dipole-dipole correlation function
nðb10; b10; b; yÞ: b10 ¼ b1 − b0 is the size of the mother dipole,
and b010 ¼ b01 − b00 the size of the daughter dipole. The impact

parameter is given by b ¼ b0
0
þb0

1

2
− b1þb0

2
.
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χðn; νÞ ¼ 4Reψ

�
1þ jnj

2
þ iν

�
− 4ψð1Þ: ð72Þ

With this in mind, the solution for the reduced dipole
density n in (65) can be written in terms of the eigenfunc-
tions of the BFKL Hamiltonian and its holomorphic
section,

nðρ1; ρ0; ρ01; ρ00Þ ¼
X
n

Z
∞

−∞
dνCn;νeyᾱsχðn;νÞ

×
Z

d2ρaEn;νðρ1a; ρ0aÞEn;νðρ10a; ρ20aÞ:

ð73Þ

We now note that the integrand in (73) can be rewritten in
terms of hypergeometrical functions, using the conformal
variable [9,30]

w ¼ ρ10ρ1000

ρ110ρ000
ð74Þ

as

Gnνðρ1;ρ0;ρ01;ρ00Þ ¼ c1xhx̄h̄F½h;h;2h;x�F½h̄; h̄;2h̄; x̄�
þ c2x1−hx̄1−h̄F½1−h;1−h;2ð1−hÞ; x�
×F½1− h̄;1− h̄;2ð1− h̄Þ; x̄�: ð75Þ

Remarkably,

xhF½h; h; 2h; x� ð76Þ

is the scalar propagator in conformal AdS3 space (identified
as 1y þ 1b þ 1z), with the invariant AdS3 length

x ∼
zz0

ðz − z0Þ2 þ ðb − b0Þ2 :

In our case, the transverse b is large with x ∼ uu0
b2 . In this

limit, (73) is dominated by the ground state with n ¼ 0,

b10b010
b2

Z
dνC0;νc1ð0; νÞ

�
b10b010
b2

�
2iν
eyᾱsχð0;νÞ ð77Þ

with the lowest eigenvalue

χð0; νÞ ∼ 4 ln 2 − 14ζ3ν
2: ð78Þ

The result is a Gaussian integral, which always gives a
factor

exp

�
4 ln 2ᾱsy −

π

14αζ3Ncy
ln2

b2

b10b010

�
: ð79Þ

The prefactor depends on the initial condition. For large b,
one can identify ðMzÞ2 with the Laplacian in AdS3,

z2ð∂2z þ ∂
2
bÞf

�
zz0

b2

�
→

z2ðz0Þ2
b4

f00
�
zz0

b2

�
; ð80Þ

−ρ212∂1∂2f
�
ρ12ρ

0
12

b2

�
→

ρ212ðρ0Þ212
b4

f00
�
ρ12ρ

0
12

b2

�
: ð81Þ

This explains the match in the eigenfunctions. Note that in
AdS3, the eigenvalues for the scalar field are

iΔ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M2 þ E

p
; E ¼ M2 − Δ2; ð82Þ

which match those of the BFKL kernel. Therefore, at large
b there is an emergent AdS3 structure of the BFKL
solution. The propagator, the Laplacian, and the symmetry
match.
To explain the prefactor requires the initial condition.

Specifically, for the initial condition

nðb10; b1000 ; b; y ¼ 0Þ ¼ 2αsCF

Nc
ln2

b110b000

b100b010
; ð83Þ

we fix the expansion coefficient Cn;ν in (73) as

Cn;ν ¼
ν2 þ n2

4

ðν2 þ ðn−1Þ2
4

Þðν2 þ ðnþ1Þ2
4

Þ
Γ
�jnj

2
þ iν

�
× C̃: ð84Þ

For n ¼ 0, it behaves as iν for small ν, and is dominant in
the large b, or large y limits. This leads the additional
contribution

ln

�
b2

b10b010

�
1

y
: ð85Þ

When combined with the factor of 1=y
1
2 from the Gaussian

integral, this yields the expected rapidity dependent pre-
factor 1=y

3
2.

VI. STRING DUAL DESCRIPTION OF RAPIDITY
EVOLUTION IN AdS SPACE

The emergence of an AdS space structure that character-
izes Mueller dipole evolution [27,28] in rapidity in the
BFKL limit is purely in the perturbative realm of QCD.
This is not totally surprising, since the BFKL equation
exhibits conformal symmetry. Yet this relationship is
useful, as it points to the string dual description in AdS
space at strong coupling [33–38]. Indeed, Feynman wee-
parton description (weak coupling) [6] is dual to Susskind-
Thorn string-bit description [13,14] (strong coupling),
albeit in curved AdS space. This allows for the extension
of the entanglement entropy calculations at weak coupling
[16], to strong coupling and large Nc, as originally
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suggested in the form of a quantum entropy in the context
of holography [15].
In the AdS approach, the holographic direction z is dual

to the dipole sizes x10; x010, and the impact parameter space
can be of arbitrary d⊥ dimensions [35,36]. The relevant
quantity is the tachyon propagator [15]

GðΔðjÞ;WÞ

¼ WΔF

�
ΔðjÞ;ΔðjÞ þ 1 − d⊥

2
; 2ΔðjÞ þ 1 − d⊥;−4W

�
;

ð86Þ

which can be naturally expressed in the invariant AdS
length

W ¼ zz0

ðz − z0Þ2 þ b2
: ð87Þ

Here ΔðjÞ is related to the string tachyon mass M2
0 ¼

−ðd⊥ þ 1Þ=6α0 (α0 ∼ 1=
ffiffiffi
λ

p
is the squared string length in

units of the AdS radius) through the relation

ΔðjÞ ¼ d⊥
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M2

0 − j −
d2⊥
4

r
: ð88Þ

The Green’s function can be written in this case as

NðT⊥; zz0=b2Þ ∼
Z

djejT⊥GðΔðjÞ;WÞ: ð89Þ

If we identify ΔðjÞ with the weight in the BFKL kernel

h ¼ 1

2
þ iν; ð90Þ

we find that d⊥ ¼ 1, and the variable conjugate to y ¼ T⊥
D as

E ¼ Dj ¼ D
�
−M2

0 −
d2⊥
4

− ν2
�
; ð91Þ

with D ¼ α0=2, and therefore

αP ¼ D
�
−M2

0 −
d2⊥
4

�
¼ α0

2

�
d⊥ þ 1

6α0
−
d⊥2

4

�
ð92Þ

with αP the Pomeron intercept. Since M2
0 ∝ − 1

α0 and
D ∝ α0, the dominant contribution clearly comes from
the tachyon mass −M2

0. Similarly, in the BFKL case the
conjugate variable to y reads

E ¼ ᾱsð4 ln 2 − 14ζ3ν
2Þ; ð93Þ

from which one has the standard

αBFKL ¼ 4 ln 2ᾱs; DBFKL ¼ 14ζ3ᾱs; ð94Þ

with ᾱs ¼ αsNc
π .

Alternatively, we may identify the tachyon propagator
(89) with the BFKL integral

Z
dνν

�
b10b010
b2

�
1þ2iν

eᾱsð4 ln 2−14ζ3ν2Þ: ð95Þ

More specifically, the BFKL parameters are now

hþ h̄ ¼ 1þ 2iν ¼ d⊥
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−M2

0 − j −
d2⊥
4

r
; ð96Þ

with

αBFKL ¼ 4 ln 2ᾱs; DBFKL ¼ 7

2
ζ3ᾱs; ð97Þ

replacing the identification (94). This implies that the
emergent AdS transverse dimensionality is D⊥ ¼
d⊥ þ 1z ¼ 3, leading to AdS2þ3¼5. The ensuing BFKL
evolution is instead in an emergent AdS5, which is the
identification made in [39]. Namely, the relevant structure in
the BFKL side is a product of two hypergeometric functions,
with the doubling of the prefactors zz0

b2 .

A. Entanglement entropy and multiplicities
at strong coupling

The string dual reduced entanglement density matrix in
1þ 1þD⊥ dimensions can be derived explicitly for long
strings in the confining regime. Remarkably, its spectrum is
dominated by the collective eigenvalues [40]

pnðD⊥Þ ¼
ðnþD⊥ − 1Þ!

n!D⊥!
e−

D⊥
6
yð1 − e−

1
6
yÞn; ð98Þ

which generalize (34) to arbitrary D⊥, at strong coupling
and largev Nc. The remaining eigenvalues are small and
randomly (Poisson) distributed. The normalized qmoments
of (98) are captured by a polylog

CðqÞ¼ hnqi
hniq ¼

1

hniqðhni−1Þpolylog
�
−q;1−

1

hni
�
; ð99Þ

with the mean multiplicity

hni ¼ D⊥e
y
6 → D⊥

�
s
s0

�1
6

: ð100Þ

The rightmost relation follows from the identification
of the rapidity y ¼ ln s

s0
, for hadron-hadron scattering at

large
ffiffiffi
s

p
. In Fig. 4, we compare the multiplicity moments

extracted from pp scattering at LHC at
ffiffiffi
s

p ¼ 7 TeV in the
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pseudorapidity interval η ≤ 0.5 [41] as quoted in [16],
versus the moments CðqÞ in (99) shown through the
continuous q polylog. The entanglement entropy is satu-
rated by the collective eigenvalues of the string (98)

−
X
n

pnðD⊥Þ lnpnðD⊥Þ ≈
D⊥
6

y → 2αPy ð101Þ

with the rightmost result following from (92) [15]. (Note
the difference of 1 in the definition of the pomeron intercept
in [15].) A similar result was noted in [42], using a spin-
chain analysis [9]. In diffractive pp and DIS scattering, the
entanglement entropy is captured by twice the pomeron
intercept, and therefore measurable. As we noted earlier,
the additional partial tracing of (28), may account for
possible multiplicities with double rapidity gaps also in the
diffractive regime, and may be accessible in current pp
collisions at the LHC.
Finally, the correspondence with a string in AdS5,

allows the identification of an Unruh-like temperature
T ¼ ðy=bÞ=2π, on the string world sheet at large rapidity
y, and large b with a wall to account for confinement [37].
As a result, the effective thermal entropy associated to the
string using standard thermodynamics (derivative of the
string classical free energy) at large rapidity [15,40] is
found to match the quantum string entanglement entropy
(101). This extends the concept of entanglement induced by
small-x radiation in quarkonium at weak coupling αs and
largeNc, to strong ’t Hooft coupling λ ¼ g2sNc and largeNc
in walled AdS5 (a dual of confining QCD).

VII. CONCLUSIONS

Hadrons undergoing large boosts are surrounded by ever-
growingwee parton clouds. In perturbativeQCD, this growth
is dominated by soft gluon emission. This growth is captured
by the entanglement content of the hadronic wave function,

with the quarkonium wave function being the simplest
illustrative example of this phenomenon.
We have explicitly constructed the quarkonium wave

function on the light front at leading order in αs, by
including both the real and virtual contributions. The
entanglement entropy from the real emission is found to
be of order αsy2, in comparison to the virtual emission
which is of order αsy. This enhancement is shown to
propagate to higher orders, with a contribution of of αnsynþ1

to the entanglement entropy.
In the large Nc limit and weak gauge coupling, the

leading density matrix of quarkonium, obtained by tracing
over a single longitudinal cut ½xmin; x0�, can be resummed in
a closed form. The reduced density matrices with and
without overall longitudinal momentum conservation are
shown to obey nonlocal BK-like integral equations for
QCD in any space-time dimension larger than 2, as there is
no radiative gluons in 2D. (They may generalize to strong
gauge coupling, using the arguments in [43].)
We solve these equations for QCD in 4D with only

longitudinal evolution, and nonconformal QCD in 3D
including both transverse and longitudinal evolution. For
the former, the entanglement entropy is found to be at the
Kolmogorov-Sinai bound of 1, when the in-out longi-
tudinal momenta are fixed. For the latter, the rate of change
of the entanglement entropy is found to vanish at large
rapidities, since the soft gluon multiplication is limited by a
narrowing transverse space.
The rapidity evolution of the trace of the reduced density

matrix without longitudinal momentum conservation obeys
a diffusionlike equation with BFKL kernels as noted
originally by Mueller [27,28]. This evolution maps onto
an evolution in an emergent AdS5 space, spanned by the
1þ 1 longitudinal directions plus additional transverse
directions.
These observations extend to strong ’t Hooft coupling

and large Nc, where the evolution of the partial trace of the
reduced density matrix is captured by the evolution of
the tachyonic mode of a boosted string in AdS5 space. The
largest eigenvalues of the one-body reduced density matrix
gives a good account of the hadronic multiplicities cur-
rently reported in pp collisions at the largest

ffiffiffi
s

p
at the

LHC. The eigenvalues of the two-body reduced density
matrix may account for the multiplicities from pp proc-
esses with a double rapidity gap.
Finally, the boosted string is characterized by an Unruh-

like temperatureT ¼ ðy=bÞ=2π on theworld sheet (withb in
arbitrary D⊥ dimensions) [15,37]. The string effective
thermal entropy is the entanglement entropy induced by
small-x gluons in quarkonium-quarkonium scattering,
extended to strong coupling. Feynman wee and perturbative
partons at low x [6] are dual to Susskind-Thorn non-
perturbative string bits [12–14], in a long string undergoing
large boosts. For the latter, the entanglement is captured
geometrically by the hyperbolic string world sheet [40].

FIG. 4. Multiplicity moments extracted from pp scattering at
LHC at

ffiffiffi
s

p ¼ 7 TeV in the pseudorapidity interval η ≤ 0.5 [41]
as quoted in [16], versus the Polylog function following from the
dual string analysis in (99).
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