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Abstract
We construct a family of quasimetric spaces in generalized potential theory containing
m-subharmonic functions with finite (p,m)-energy. These quasimetric spaces will be
viewed both in C

n and in compact Kähler manifolds, and their convergence will be
used to improve known stability results for the complex Hessian equations.

Keywords Caffarelli–Nirenberg–Spruck model · Cegrell class · Complex Hessian
operator · m-subharmonic function · Quasimetric space · Stability

Mathematics Subject Classification Primary 32U05 · 31C45; Secondary 31E05 ·
46E36

1 Introduction

Although the abstract metric spaces introduced by Fréchet at the beginning of the last
century are of the utmost importance, in some applications, they are too restrictive and
need a more general model. To name a few examples: the Minkowski p-distance in
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psychology (p < 1) [27,36], the Zolotarev distance in spaces of randomvariables [40],
and the dε-distance in machine learning [13]. The terminology has not yet stabilized
within the many generalizations of metric spaces and therefore let us determine which
one we will work with here. Let X be a non-empty set, and let d : X × X → [0,∞)

be a function that satisfies:

(1) d(x, y) = 0 if, and only if, x = y;
(2) d(x, y) = d(y, x), for all x, y ∈ X ;
(3) there exists a constant C ≥ 1 such that

d(x, y) ≤ C(d(x, z) + d(z, y))

for all x, y, z ∈ X .

Following for example Heinonen [26], we shall call d for a quasimetric, and the pair
(X , d) for a quasimetric space. Some writers call this instead for a nearmetric or
inframetric. Next, let us define our specific X and then construct d.

Let n ≥ 2 and 1 ≤ m ≤ n. We say that a C2-function u defined in a bounded
domain in C

n is m-subharmonic if the elementary symmetric functions are positive
σl(λ(u)) ≥ 0 for l = 1, . . . ,m, where λ(u) = (λ1, . . . , λn) are eigenvalues of the
complex Hessian matrix D2

C
u = [ ∂2u

∂z j ∂ z̄k
]. The complex m-Hessian operator on a

C2-function u is then defined by

Hm(u) = c(n,m)σm(λ(D2
C
u)),

for some constant c(n,m) depending only on n and m.
This construction yields that the 1-Hessian operator is the Laplace operator defined

on 1-subharmonic functions that are just the subharmonic functions,while the complex
n-Hessian operator is the complexMonge–Ampère operator definedonn-subharmonic
functions that are the plurisubharmonic functions. Historically this model goes back
to Caffarelli et al. [14] in 1985, where they did a similar construction for the real
Hessian matrix. Vinacua, a student of Nirenberg, was one of those who adapted the
idea of the Hessian operator to the complex setting ( [38,39]) that we shall use here.
Later in 2005, Błocki [12] introduced pluripotential methods to the theory of complex
Hessian operators, and there he, among other things, generalized the complex Hessian
operator to non-smooth m-subharmonic functions. For p > 0, set

ep,m(u) =
∫

�

(−u)p Hm(u),

and we shall call ep,m(u) for the (p,m)-energy of the function u. Let Ep,m(�) be the
class ofm-subharmonic functions that, in a general sense, vanish on the boundary and
additionally they should have finite (p,m)-energy. The classes Ep,m(�) are sometime
known as the Cegrell’s generalized energy classes, after Cegrell’s influential work [15]
on Ep,n(�). For the early work on the theory of variation for the complex n-Hessian
operator, see, e.g., [9,10,18,23,24,28]. On the other hand, if m = 1, and p = 1, then
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e1,1 is the Dirichlet energy integral from potential theory connected to a long and
fruitful history.

Set X = Ep,m(�), and let Jp : X × X → [0,∞) be defined by

Jp(u, v) =
(∫

|u − v|p(Hm(u) + Hm(v))

) 1
p+m

.

In Theorem 3.6, we prove that (X , Jp) is a quasimetric space in the above sense,
and in Theorem 3.9, we prove that it is complete. Later in Sect. 7, we shall consider
the compact Kähler manifold case, and in Theorems 3.6, and 7.5, we shall prove
that the corresponding construction is a complete quasimetric space. Guedj et al. [25,
Theorem 1.6] proved the quasi-triangle inequality in the case m = n, in the compact
Kähler manifold setting (see also [11, Theorem 1.8], and [22]).

In Sect. 3, we will use the complete quasimetric space (X , Jp) in C
n to prove the

following stability results for the complex Hessian operators. First, let us define

Mp,m = {
μ : μ is a non-negative Radon measure on � such that

Hm(u) = μ for some u ∈ Ep,m(�)
}
.

Letμ ∈ Mp,m , then in Theorem6.3, we prove that if 0 ≤ f , f j ≤ 1 aremeasurable
functions such that f j → f in L1

loc(μ), as j → ∞, then Jp(U ( f jμ),U ( f μ)) → 0,
j → ∞. By Proposition 4.2we know that convergence in (X , Jp) implies convergence
in capacity, but by Example 4.3, we have that the converse statement is false. Hence,
Theorem 6.3 is a generalization of [34, Theorem 7.2]. Note that this also implies
improved results in the pluricomplex case, m = n, and therefore, Theorem 6.3 also
generalizes the stability result by Cegrell and Kołodziej [16]. For further information
about these types of stability results in the case m = n, we refer to [19, Section 7.2].

We would like to thank the referees for their helpful comments and suggestions.

2 Preliminaries

Here, we shall present some crucial and necessary facts about m-subharmonic func-
tions that shall be used in this paper. For further information, see, e.g., [1,2,29]. First,
let n ≥ 2, 1 ≤ m ≤ n, and let � be a bounded domain in Cn . Then define C(1,1) to be
the set of (1, 1)-forms with constant coefficients, and set

�m =
{
α ∈ C(1,1) : α ∧ βn−1 ≥ 0, . . . , αm ∧ βn−m ≥ 0

}
,

where β = ddc|z|2 is the canonical Kähler form inCn .We then say that a subharmonic
function u defined on � is m-subharmonic, if the following inequality holds

ddcu ∧ α1 ∧ · · · ∧ αm−1 ∧ βn−m ≥ 0 ,
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in the sense of currents for all α1, . . . , αm−1 ∈ �m . Furthermore, we call � for m-
hyperconvex if it admits an exhaustion function ϕ that is negative andm-subharmonic,
i.e., the closure of the set {z ∈ � : ϕ(z) < c} is compact in �, for every c ∈ (−∞, 0).
For further information about m-hyperconvex domains, we refer to [5].

Let p > 0.We say that anm-subharmonic function ϕ defined on anm-hyperconvex
domains � belongs to:

(i) E0,m(�) if, ϕ is bounded,

lim
z→ξ

ϕ(z) = 0 for every ξ ∈ ∂� ,

and
∫

�

Hm(ϕ) < ∞ ,

where Hm(u) = (ddcu)m ∧ βn−m is the complex Hessian operator.
(i i) Ep,m(�) if, there exists a decreasing sequence, {u j }, u j ∈ E0,m(�), that converges

pointwise to u on �, as j tends to ∞, and

sup
j
ep,m(u j ) = sup

j

∫
�

(−u j )
p Hm(u j ) < ∞ .

Theorem 2.1 Let n ≥ 2, 1 ≤ m ≤ n, and assume that � ⊂ C
n is an m-hyperconvex

domain. There exists a constant D(m, p) (depending only on p and m) such that for
any u0, u1, . . . , um ∈ Ep,m(�) it holds

∫
�

(−u0)
pddcu1 ∧ · · · ∧ ddcum ∧ βn−m

≤ D(m, p)ep,m(u0)
p

m+p ep,m(u1)
1

m+p · · · ep,m(um)
1

m+p .

Proof See, e.g., Lu [29,30], and Nguyễn [33]. For the case when m = n, see [3,15,17,
35]. 	

Theorem 2.2 Let n ≥ 2, 1 ≤ m ≤ n, and assume that � ⊂ C

n is an m-hyperconvex
domain. Furthermore, assume that u, v ∈ Ep,m(�), and T be a positive closed current.
Then it holds:

(1) ∫
{u<v}

Hm(v) ≤
∫

{u<v}
Hm(u).

(2) If Hm(v) ≤ Hm(u), then u ≤ v.
(3) If Hm(u)(u < v) = 0, then u ≥ v.
(4) χ{u<v}(ddc max(u, v)) ∧ T = χ{u<v}(ddcv) ∧ T .
(5) Hm(max(u, v)) ≥ χ{u≥v} Hm(u) + χ{u<v} Hm(v).
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Proof For (1), (2), (4), and (5), see, e.g., [30,34]. Point (2) was proved in [8] for p = 1.
The proof for p �= 1 is the same. 	


We shall need a comparison principle with weights. Proposition 2.3 will be used in
the proof of Proposition 3.4.

Proposition 2.3 Let n ≥ 2, 1 ≤ m ≤ n, and assume that� ⊂ C
n is an m-hyperconvex

domain. Assume that u, v, w ∈ Ep,m(�) are such that w ≥ u ≥ v, then

∫
�

(w − u)p Hm(u) ≤ (max(p, 1) + 1)m
∫

�

(w − v)p Hm(v).

Proof Let u1 = u − w, v1 = v − w and T = (ddcw + ddcu1)m−1 ∧ βn−m . Then we
have

∫
�

(−v1)
p(ddcw + ddcu1) ∧ T

=
∫

�

(−v1)
pddcw ∧ T +

∫
�

(−v1)
pddcu1 ∧ T = I1 + I2.

Note that for p ≥ 1

ddc(−(−v1)
p) = p(1 − p)(−v1)

p−2dv1 ∧ dcv1 + p(−v1)
p−1ddcv1

≤ p(−v1)
p−1(ddcv1 + ddcw),

and for p < 1

ddc(−(−v1)
p) = p(1 − p)(−v1)

p−2dv1 ∧ dcv1 + p(−v1)
p−1ddcv1

≤ p(1 − p)(−v1)
p−2dv1 ∧ dcv1 + p(−v1)

p−1(ddcv1 + ddcw).

Then we get

I1 =
∫

�

(−v1)
pddcw ∧ T ≤

∫
�

(−v1)
pddcw ∧ T

+p
∫

�

(−v1)
p−1dv1 ∧ dcv1 ∧ T =

∫
�

(−v1)
p(ddcw + ddcv1) ∧ T .

For p ≥ 1

I2 =
∫
�

(−v1)
pddcu1 ∧ T =

∫
�

(−u1)dd
c(−(−v1)

p) ∧ T

≤ p
∫
�

(−u1)(−v1)
p−1(ddcv1 + ddcw) ∧ T ≤ p

∫
�

(−v1)
p(ddcv1 + ddcw) ∧ T ,
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and for p < 1

I2 =
∫
�

(−v1)
pddcu1 ∧ T =

∫
�

(−u1)dd
c(−(−v1)

p) ∧ T

≤
∫
�

(−u1)
(
p(1 − p)(−v1)

p−2dv1 ∧ dcv1 + p(−v1)
p−1(ddcv1 + ddcw)

)
∧ T

≤
∫
�
p(1 − p)(−v1)

p−1dv1 ∧ dcv1 ∧ T + p(−v1)
p(ddcv1 + ddcw) ∧ T

≤ (1 − p)
∫
�

(−v1)
pddcv1 ∧ T + p

∫
�

(−v1)
p(ddcv1 + ddcw) ∧ T

≤
∫
�

(−v1)
p(ddcv1 + ddcw) ∧ T .

Finally, for any p > 0

∫
�

(−u1)
p(ddcw + ddcu1) ∧ T ≤

∫
�

(−v1)
p(ddcw + ddcu1) ∧ T

≤ (max(p, 1) + 1)
∫

�

(−v1)
p(ddcw + ddcv1) ∧ T ≤ . . .

≤ (max(p, 1) + 1)m
∫

�

(w − v)p(ddcv)m ∧ βn−m .

	

We end this section with a Xing tyle inequality, see [37], that shall be used in

Proposition 3.4. In Proposition 7.3, we shall as well prove the correspondent result in
the case of compact Kähler manifolds.

Proposition 2.4 Let n ≥ 2, 1 ≤ m ≤ n, and assume that� ⊂ C
n is an m-hyperconvex

domain, and u, v ∈ Ep,m(�).

(1) If u ≤ v, then

∫
�

(v − u)p Hm(v) ≤
∫

�

(v − u)p Hm(u).

(2) Without any additional assumption on u, and v, it holds

∫
{u<v}

(v − u)p Hm(v) ≤
∫

{u<v}
(v − u)p Hm(u).

Proof (1) Let ε > 1, then εu < u ≤ v. We obtain

∫
�

(v − εu)p(Hm(εu) − Hm(v))

=
∑

k+l=m−1

∫
�

(v − εu)pddc(εu − v) ∧ (ddcεu)k ∧ (ddcv)l ∧ βn−m
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= p
∑

k+l=m−1

∫
�

(v − εu)p−1d(v − εu) ∧ dc(v − εu) ∧ (ddcεu)k ∧ (ddcv)l ∧ βn−m

≥ 0.

From this, it follows

∫
�

(v − εu)p Hm(v) ≤ εm
∫

�

(v − εu)p Hm(u),

and then by using the monotone convergence theorem, and finally passing to the limit,
ε → 1+, we arrive at the desired conclusion.
(2) From (1), and Theorem 2.2, we obtain

∫
{u<v}

(v − u)p Hm(v) =
∫

{u<v}
(max(u, v) − u)p Hm(max(u, v))

=
∫

�

(max(u, v) − u)p Hm(max(u, v)) ≤
∫

�

(max(u, v) − u)p Hm(u)

=
∫

{u<v}
(v − u)p Hm(u).

	


3 Quasimetric Spaces

Let (X , d) be a quasimetric space. Recall that every metric is a quasimetric. Further-
more, in every quasimetric space (X , d) there exists a metric ρ with the property that
there is an ε > 0, and a constant A > 0 such that

A−1dε ≤ ρ ≤ Adε,

see, e.g., [26].
In the next definition, we shall define a functional, Jp, in Ep,m(�)×Ep,m(�). After

proving some elementary properties of Jp in Proposition 3.4, and that Jp satisfies
the quasi-triangle inequality (Lemma 3.5), we can, in Theorem 3.6, conclude that we
have a family of quasimetric spaces. These spaces are complete as shall be shown in
Theorem 3.9.

Definition 3.1 Let n ≥ 2, 1 ≤ m ≤ n, and assume that � ⊂ C
n is an m-hyperconvex

domain. For u, v ∈ Ep,m(�) and p > 0 let us define

Jp(u, v) =
(∫

�

|u − v|p(Hm(u) + Hm(v))

) 1
p+m

.

In the next definition, let us recall the notion of rooftop envelope.
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Definition 3.2 Let n ≥ 2, 1 ≤ m ≤ n, and assume that � ⊂ C
n is an m-hyperconvex

domain. For u1, . . . , uk ∈ Ep,m(�) define

P(u1, . . . , uk) =
(
sup{ϕ ∈ Ep,m(�) : ϕ ≤ min(u1, . . . , uk)}

)∗
,

where ( )∗ is the upper semicontinuous regularization.

Remark If u, v ∈ Ep,m(�), then u + v ≤ P(u, v), and therefore we have P(u, v) ∈
Ep,m(�).

We shall need the following minimum principle. In [8, Theorem 4.3], Theorem 3.3
was proved for the class E1,m(�), but the proof without any change goes over to
Ep,m(�). Therefore, we omit the proof here.

Theorem 3.3 Let n ≥ 2, 1 ≤ m ≤ n, and assume that � ⊂ C
n is an m-hyperconvex

domain. Let u, v ∈ Ep,m(�). Then the following holds

Hm(P(u, v)) ≤ χ{P(u,v)=u} Hm(u) + χ{P(u,v)=v} Hm(v). (3.1)

Proposition 3.4 Let n ≥ 2, 1 ≤ m ≤ n, and assume that� ⊂ C
n is an m-hyperconvex

domain. Furthermore assume that u, v, w ∈ Ep,m(�). Then

(1) Jp(u, v) < ∞;
(2) Jp(u, v) = 0 if, and only if, u = v;
(3) Jp(u, v) = Jp(v, u);
(4) Jp(u, v)p+m = Jp(u,max(u, v))p+m + Jp(v,max(u, v))p+m;
(5)

max(Jp(u,max(u, v)), Jp(v,max(u, v))) ≤ Jp(u, v)

≤ Jp(u,max(u, v)) + Jp(v,max(u, v));

(6) If u ≤ v, then

2
∫

�

(v − u)p Hm(v) ≤ Jp(u, v)p+m ≤ 2
∫

�

(v − u)p Hm(u);

(7) If u ≤ v ≤ w, then Jp(u, v) ≤ 2
p+2
p+m Jp(u, w);

(8) If u ≤ v ≤ w, then Jp(v,w)p+m ≤ (max(p, 1) + 1)m Jp(u, w)p+m;
(9) Jp(v,P(u, v)) ≤ Jp(u,max(u, v)) ≤ Jp(u, v);

(10) Jp(v,P(u, v))p+m + Jp(u,P(u, v))p+m ≤ Jp(v, u)p+m;

(11) If u ≤ v, then Jp(P(u, w),P(v,w)) ≤ 2
p+2
p+m Jp(u, v).

Proof (1). By Theorem 2.1 we have

Jp(u, v)p+m ≤
∫

�

(−u − v)p(Hm(u) + Hm(v))

≤ D(m, p)ep,m(u + v)
p

p+m (ep(u)
m

p+m + ep(v)
m

p+m ) < ∞.
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(2). It is obvious that Jp(u, u) = 0. Next, assume that Jp(u, v) = 0. Then Hm(u)({u <

v}) = 0, so byTheorem2.2we obtain u ≥ v. In a similarmanner,we haveHm(v)({v <

u}) = 0. Hence, v ≤ u, and therefore it follows u = v.
(3). This property is an immediate consequence of the definition of Jp.
(4). Thanks to Theorem 2.2, it follows that Hm(max(u, v)) = Hm(u) on the set
{u > v}, and similarly Hm(max(u, v))) = Hm(v) on the set {v > u}. Thus,

Jp(u, v)p+m =
∫

�

|u − v|p(Hm(u) + Hm(v))

=
∫

{u<v}
(max(u, v) − u)p(Hm(u) + Hm(max(u, v)))

+
∫

{v<u}
(max(u, v) − v)p(Hm(v) + Hm(max(u, v)))

= Jp(u,max(u, v))p+m + Jp(v,max(u, v))p+m .

(5). This is an immediate consequence of (4).
(6). Proposition 2.4 yields this result.
(7). Note that 0 ≤ w − v ≤ w − u. Then by using (6) we get

Jp(u, v)p+m ≤ 2

(∫
�

(v − u)p Hm(u)

)

≤ 21+p
(∫

�

(w − v)p Hm(u) +
∫

�

(w − u)p Hm(u)

)

≤ 22+p Jp(u, w)p+m .

(8). By Proposition 2.3 we get

Jp(v,w)p+m =
∫

�

(w − v)p(Hm(v) + Hm(w))

=
∫

�

(w − v)p Hm(v) +
∫

�

(w − v)p Hm(w)

≤ (max(p, 1) + 1)m
∫

�

(w − u)p Hm(u) +
∫

�

(w − u)p Hm(w)

= (max(p, 1) + 1)m Jp(u, w)p+m .

(9). By Theorem 2.2 we get

Jp(u,max(u, v))p+m =
∫

�

(max(u, v) − u)p(Hm(u) + Hm(max(u, v)))

=
∫

{u<v}
(v − u)p(Hm(u) + Hm(max(u, v))))

=
∫

{u<v}
(v − u)p(Hm(u) + Hm(v)).
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On the other hand, using Theorem 3.3 we arrive at

Jp(v,P(u, v))p+m =
∫

�

(v − P(u, v))p(Hm(v) + Hm(P(u, v)))

≤
∫

{P(u,v)<v}
(v − P(u, v))p

(
Hm(v) + χ{P(u,v)=v} Hm(v)

+χ{P(u,v)=u} Hm(u))
)

=
∫

{P(u,v)<v}∩{P(u,v)=u}
(v − P(u, v))p(Hm(u) + Hm(v))

≤
∫

{u<v}
(v − u)p(Hm(u) + Hm(v)) = Jp(u,max(u, v))p+m .

The last inequality follows from (5).
(10). This follows from (4) together with (9).
(11). Note that u ≤ max(u,P(v,w)) ≤ v, and then by (7) and (9), we have

Jp(P(v,w),P(u, w)) = Jp(P(v,w),P(u,P(v,w))) ≤ Jp(u,max(u,P(v,w)))

≤ 2
p+2
p+m Jp(u, v).

	

By letting us be inspired by [25], we can in the next lemma prove that Jp enjoys

the quasi-triangle inequality.

Lemma 3.5 Let n ≥ 2, 1 ≤ m ≤ n, and assume that � ⊂ C
n is an m-hyperconvex

domain. Then there exists C > 0 such that for any u, v, w ∈ Ep,m(�) it holds

Jp(u, v) ≤ C(Jp(u, w) + Jp(w, v)).

Furthermore, the constant C can be taken as C = (
22p+1(2p + 1)3m

) 1
p+m .

Proof By using the comparison principle (see, e.g., Theorem 2.2), it follows

Hm(u)({v < u − 2s}) ≤ Hm(v)({v < u − 2s})
Hm(v)({u < v − 2s}) ≤ Hm(u)({u < v − 2s}),

and therefore it holds

Jp(u, v)p+m =
∫

�

|u − v|p(Hm(u) + Hm(v))

= p
∫ ∞

0
s p−1(Hm(u) + Hm(v))({|u − v| > s})ds
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= p2p
∫ ∞

0
s p−1(Hm(u) + Hm(v))({|u − v| > 2s})ds

≤ p2p+1
∫ ∞

0
s p−1(Hm(u)({u < v − 2s}) + Hm(v)({v < u − 2s}))ds.

(3.2)

Next we shall estimate the measure Hm(u)({u < v − 2s}). Since

{u < v − 2s} ⊂ {u < w − s} ∪ {w − s ≤ u < v − 2s} ⊂ {u < w − s}
∪

{
w <

u + 2v

3
− s

3

}
,

we can use again the comparison principle (see, e.g., Theorem 2.2) and arrive at

Hm(u)({w − s ≤ u < v − 2s})
≤ Hm(u)

({
w <

u + 2v

3
− s

3

})

≤ 3m Hm

(
u + 2v

3

) ({
w <

u + 2v

3
− s

3

})

≤ 3m Hm(w)

({
w <

u + 2v

3
− s

3

})
.

Note that also holds

∣∣∣∣w − u + 2v

3

∣∣∣∣
p

= 1

3p
|3w − u − 2v|p ≤

(
2

3

)p

(|w − u|p + |2w − 2v|p)

≤
(
2

3

)p

|w − u|p +
(
4

3

)p

|w − v|p.

Finally, by using the above estimates

p
∫ ∞

0
s p−1 Hm(u)({u < v − 2s})ds

≤ p
∫ ∞

0
s p−1 Hm(u)({u < w − s})ds

+p3m
∫ ∞

0
s p−1 Hm(w)

({
w <

u + 2v

3
− s

3

})
ds

≤
∫

�

|w − u|p Hm(u) + 3m+p
∫

�

∣∣∣∣w − u + 2v

3

∣∣∣∣
p

Hm(w)

≤
∫

�

|w − u|p Hm(u) + 3m2p
∫

�

|w − u|p Hm(w) + 3m4p
∫

�

|w − v|p Hm(w).
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A similar estimate can be obtained for Hm(v)({v < u − 2s}), and therefore by (3.2)
we get

Jp(u, v)p+m ≤ p2p+1
∫ ∞

0
s p−1(Hm(u)({u < v − 2s}) + Hm(v)({v < u − 2s}))ds

≤ 2p+1
(∫

�

|w − u|p Hm(u) + 3m2p
∫

�

|w − u|p Hm(w)

+3m4p
∫

�

|w − v|p Hm(w)

)

+2p+1
(∫

�

|w − v|p Hm(v) + 3m2p
∫

�

|w − v|p Hm(w)

+3m4p
∫

�

|w − u|p Hm(w)

)

≤ 22p+1(2p + 1)3m(Jp(u, w)p+m + Jp(v,w)p+m).

To finish the proof, it is enough to observe that

Jp(u, v) ≤
(
22p+1(2p + 1)3m)

) 1
p+m

(Jp(u, w) + Jp(v,w)).

	


Thanks to Proposition 3.4 (1)–(3) and Lemma 3.5 we can now conclude that we
have a family of quasimetric spaces. The aim of the rest of this section is to prove that
they are complete, which we will do in Theorem 3.9.

Theorem 3.6 Let n ≥ 2, 1 ≤ m ≤ n, and assume that � ⊂ C
n is an m-hyperconvex

domain. Then the pair (Ep,m(�), Jp) is a quasimetric space.

To be able to prove that the quasimetric spaces are complete, we need information
on how Jp behaves under monotone sequences. In the case p = 1, J1 is continuous
both for increasing and decreasing sequences, but only for decreasing sequences when
p �= 1.

Proposition 3.7 Let n ≥ 2, 1 ≤ m ≤ n, and assume that� ⊂ C
n is an m-hyperconvex

domain. Let u j ∈ Ep,m(�) be a decreasing sequence that converging to u ∈ Ep,m(�).
Then Jp(u j , u) → 0, as j → ∞. If p = 1, then the same statement is true for
increasing sequences.

Proof First assume that the sequence u j is decreasing. Then by Proposition 3.4 (6),
and the monotone convergence theorem, we get

Jp(u j , u)p+m ≤ 2
∫

�

(u j − u)p Hm(u) → 0,
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as j → ∞. Now assume that p = 1, and the sequence u j is increasing. By Proposition
2.7 from [8] and Proposition 3.4 (6), we get

J1(u j , u)1+m ≤ 2
∫

�

(u − u j )Hm(u j ) → 0,

as j → ∞. 	

To prove that the space (Ep,m(�), Jp) is complete we shall need the following

elementary fact.

Proposition 3.8 If f j is an increasing sequence of continuous functions defined on X
such that f j ↗ f , and μ j → μ weakly, as j → ∞, then

lim inf
j→∞

∫
X
f j dμ j ≥

∫
X
f dμ.

Proof First we shall prove that if α is a lower continuous function then

∫
X

αdμ ≤ lim inf
j→∞

∫
X

αdμ j . (3.3)

Let C0(X) � gk ↗ α, then
∫
X gkdμ j ≤ ∫

X αdμ j . Now by the weak convergence we
get

∫
X
gkdμ = lim

j→∞

∫
X
gkdμ j ≤ lim inf

j→∞

∫
X

αdμ j

and by monotone convergence theorem we obtain (3.3).
Fix k, and let j ≥ k, then

∫
X f j dμ j ≥ ∫

X fkdμ j . Therefore by (3.3)

lim inf
j→∞

∫
X
f j dμ j ≥ lim inf

j→∞

∫
X
fkdμ j ≥

∫
X
fkdμ.

From the monotone convergence theorem, it now follows

lim inf
j→∞

∫
X
f j dμ j ≥ lim

k→∞

∫
X
fkdμ =

∫
X
f dμ.

	

The completeness of (Ep,m(�), Jp) is next on our agenda.

Theorem 3.9 Let n ≥ 2, 1 ≤ m ≤ n, and assume that � ⊂ C
n is an m-hyperconvex

domain. The quasimetric space (Ep,m(�), Jp) is complete.
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Proof Let {ϕ j } ⊂ Ep,m(�) be a Cauchy sequence. After choosing a subsequence, we
may assume that Jp(ϕ j , ϕ j+1) ≤ 1

3(2C) j+3 for j ∈ N, where C is the constant from
quasi-triangle inequality. From [5, Theorem 5.2], it follows that for each ϕ j there
exists a decreasing sequence of continuous functions E0,m(�) ∩ C(�) � ψk

j ↘ ϕ j ,

k → ∞. Then we can choose u j = ψ
k( j)
j such that

Jp(u j , ϕ j ) ≤ 1

3(2C) j+3 , (3.4)

see Proposition 3.7. Observe that {u j } ⊂ Ep,m(�) is also a Cauchy sequence. For
each j ∈ N, we have

Jp(u j , u j+1) ≤ C2(Jp(u j , ϕ j ) + Jp(ϕ j , ϕ j+1) + Jp(ϕ j+1, u j+1))

≤ 3C2

3(2C) j+3 ≤ 1

(2C) j+1 . (3.5)

From the quasi-triangle inequality together with (3.5), we get

Jp(0, u j ) ≤ C Jp(0, u1) + C2 Jp(u1, u2) + · · · + C j Jp(u j−1, u j )

≤ C Jp(0, u1) + C2

(2C)2
+ · · · + C j

(2C) j
≤ C Jp(0, u1) + 1. (3.6)

Set v j,k = max(u j , . . . , uk), for k ≥ j . Since v j,k ∈ Ep,m(�), we can use Proposi-
tion 3.4 (9) and (3.5) to arrive at

Jp(u j , v j,k) = Jp(u j ,max(u j , v j+1,k)) ≤ Jp(u j , v j+1,k)

≤ C(Jp(u j , u j+1) + Jp(u j+1, v j+1,k))

= C(Jp(u j , u j+1) + Jp(u j+1,max(u j+1, v j+2,k)))

≤ C Jp(u j , u j+1) + C Jp(u j+1, v j+2,k)

≤ C Jp(u j , u j+1) + C2 Jp(u j+1, u j+2) + C2 Jp(u j+2, v j+2,k) ≤ . . .

≤
k− j−1∑
l=0

Cl+1 Jp(u j+l , u j+l+1)

≤
k− j−1∑
l=0

Cl+1 1

(2C) j+l+1 ≤ 1

2 j
. (3.7)

From (3.6), and (3.7), it now follows

Jp(0, v j,k) ≤ C(Jp(0, u j ) + Jp(u j , uv j,k ))

≤ C

(
C Jp(0, u1) + 1 + 1

2 j

)
≤ C2(Jp(u1, 0) + 2). (3.8)
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The sequence v j,k is increasing in k, and therefore, it follows from (3.8) that
supk ep,m(v j,k) < ∞. Hence, v j = (

limk→∞ v j,k
)∗ ∈ Ep,m(�). Furthermore, v j

is a decreasing sequence, v j ↘ u = (lim sup j→∞ u j )
∗. Again using (3.8), we can

conclude sup j ep,m(v j ) < ∞. Thus, u ∈ Ep,m(�).
We do not know if the quasimetric Jp is continuous under increasing sequences,

but instead, we can obtain some estimates. The monotone convergence theorem and
Proposition 3.8 imply

lim inf
k→∞ Jp(u j , v j,k)

p+m = lim inf
k→∞

∫
�

(v j,k − u j )
p Hm(v j,k)

+ lim
k→∞

∫
�

(v j,k − u j )
p Hm(u j ) ≥

∫
�

(v j − u j )
p Hm(v j )

+
∫

�

(v j − u j )
p Hm(u j )

= Jp(u j , v j )
p+m . (3.9)

Hence, Jp(u j , v j ) → 0, as j → ∞, by using (3.7) and (3.9). Finally, ϕ j tends to u in
the quasimetric Jp, since Proposition 3.7, and (3.4) yields

Jp(ϕ j , u) ≤ C2(Jp(u j , v j ) + Jp(v j , u) + Jp(u j , ϕ j )) → 0,

as j → ∞. 	


4 Convergence in the Space (Ep,m(Ä), Jp)

In this section, we shall continue to study the convergence in (Ep,m(�), Jp).
From Proposition 3.7, we know that quasimetric Jp is continuous under decreasing
sequences, and if p = 1, then we also know continuity under increasing sequences.
A summary of this section is as follows:

(1) If Jp(u j , u) → 0, as j → ∞, then u j → u in L p+m(�) (Proposition 4.1).
(2) If Jp(u j , u) → 0, as j → ∞, then u j → u in capacity capm (Proposition 4.2).
(3) The inverse implications of the above results are not, in general valid (Example4.3).
(4) If Jp(u j , u) → 0, as j → ∞, then Hm(u j ) → Hm(u) weakly (Proposition 4.5).

Proposition 4.1 Let n ≥ 2, 1 ≤ m ≤ n, and assume that� ⊂ C
n is an m-hyperconvex

domain and u j , u ∈ Ep,m(�). If Jp(u j , u) → 0, j → ∞, then u j → u, j → ∞, in
L p+m(�).

Proof Recall that Ep,m(�) ⊂ L p+m(�) (see, e.g., [6]). Let ϕ ∈ E0,m(�) be such that
Hm(ϕ) = dV2n . Assume that Jp(u j , u) → 0, as j → ∞. By Proposition 3.4 (5), we
get

Jp(max(u j , u), u j ) ≤ Jp(u j , u), and Jp(max(u j , u), u) ≤ Jp(u j , u),
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which implies that

Jp(max(u j , u), u j ) → 0, Jp(max(u j , u), u) → 0, j → ∞. (4.1)

Thanks to Błocki’s inequality (see, e.g., Lemma 3.4 in [34]), together with (4.1), we
obtain

∫
�

|u j − u|p+mdV2n =
∫

�

|u j − u|p+m Hm(ϕ)

=
∫

{u j<u}
(u − u j )

p+m Hm(ϕ) +
∫

{u<u j }
(u j − u)p+m Hm(ϕ)

=
∫

{u j<u}
(max(u, u j ) − u j )

p+m Hm(ϕ)

+
∫

{u<u j }
(max(u j , u) − u)p+m Hm(ϕ)

≤
∫

�

(max(u, u j ) − u j )
p+m Hm(ϕ)

+
∫

�

(max(u j , u) − u)p+m Hm(ϕ)

≤ (p + m) . . . (p + 1)‖ϕ‖m∞
(∫

�

(max(u, u j ) − u j )
p Hm(u j )

+
∫

�

(max(u j , u) − u)p Hm(u)

)

≤ (p + m) . . . (p + 1)‖ϕ‖m∞
(
Jp(max(u j , u), u j )

p+m

+ Jp(max(u j , u), u)p+m) → 0,

as j → ∞. 	


With u j → u in capacity capm , we mean that for any K � �, and any ε > 0, it
holds

lim
j→∞ capm

(
K ∩ {z ∈ � : |u j (z) − u(z)| > ε}) = 0,

where the capacity of a Borel set B � � is defined by

capm(B) = sup

{∫
B
Hm(ϕ) : ϕ ∈ SHm(�); −1 ≤ ϕ ≤ 0

}
.

Proposition 4.2 Let n ≥ 2, 1 ≤ m ≤ n, and assume that� ⊂ C
n is an m-hyperconvex

domain, and u j , u ∈ Ep,m(�). If Jp(u j , u) → 0, as j → ∞, then u j → u in capacity
capm.
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Proof Set ϕ j = (supk≥ j u j )
∗. Then it follows ϕ j ↘ v, and ϕ j ≥ u j . Since ϕ j is

decreasing sequence, we get from [30] that ϕ j → v in capacity capm . Theorem 2.1
yields

ep,m(ϕ j )
1

p+m ≤ D(p,m)
1
p ep,m(u j )

1
p+m = D(p,m)

1
p Jp(u j , 0)

≤ D(p,m)
1
p C(Jp(u j , u) + Jp(u, 0)),

which means that

sup
j
ep,m(ϕ j )

1
p+m ≤ D(p,m)

1
p sup

j
ep,m(u j )

1
p+m < ∞.

Hence, v ∈ Ep,m(�). Moreover, by Proposition 4.1, we know that u j → u in
L p+m(�), j → ∞, and therefore also ϕ j → u in L p+m(�). This implies that
u = v. We have by Proposition 3.7

Jp(u j , ϕ j ) ≤ C(Jp(u j , u) + Jp(ϕ j , u)) → 0, (4.2)

Now observe that

{z ∈ � : |u j (z) − u(z)| > ε} ⊂{
z ∈ � : |ϕ j (z) − u j (z)| >

ε

2

}
∪

{
z ∈ � : |ϕ j (z) − u(z)| >

ε

2

}
.

Therefore, it is sufficient to prove

lim
j→∞ capm

(
K ∩

{
z ∈ � : |ϕ j (z) − u j (z)| >

ε

2

})
= 0.

Let ψ ∈ E0,m(�) be such that −1 ≤ ψ ≤ 0, and K � �. Then by Błocki’s inequality
(see, e.g., Lemma 3.4 in [34]) and by (4.2) we get

∫
K∩{z∈�:|ϕ j (z)−u j (z)|> ε

2 }
Hm(ψ)

≤ 2m+p

εm+p

∫
K∩{z∈�:|ϕ j (z)−u j (z)|> ε

2 }
(ϕ j − u j )

m+p Hm(ψ)

≤ 2m+p

εm+p

∫
�

(ϕ j − u j )
m+p Hm(ψ)

≤ 2m+p

εm+p
(p + m) . . . (p + 1)‖ψ‖m∞

∫
�

(ϕ j − u j )
p Hm(u j )

≤ 2m+p(p + m) . . . (p + 1)‖ψ‖m∞
εm+p

Jp(u j , ϕ j )
p+m → 0,

as j → ∞. 	
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Note that the reverse implications in Proposition 4.1 and Proposition 4.2 are not, in
general, true. The following example is taken from [20].

Example 4.3 Let

u j (z) = max

(
j
p
n ln |z|,−1

j

)
,

be a plurisubharmonic function defined in the unit ball B in C
n , n ≥ 2. Then u j ∈

E0,n(B),

Jp(u j , 0)
p+n = ep,n(u j ) = (2π)n,

but u j → 0 in capacity, and u j → 0 in L p+n(B). �

At the end of this section, we shall prove that convergence in Jp implies weak
convergence of the complex Hessian measures. We shall need the following lemma.

Lemma 4.4 Let n ≥ 2, 1 ≤ m ≤ n, and assume that � ⊂ C
n is an m-hyperconvex

domain and u j , u ∈ Ep,m(�) be such that sup j ep,m(u j ) < ∞. Then, if u j → u in
capacity capm, then Hm(u j ) → Hm(u) weakly, as j → ∞.

Proof Set

A = ep,m(u) + sup
j
ep,m(u j ) < ∞.

Then for all k, j , we have

ep,m(max(u j ,−k)) ≤ D(p,m)
m+p
p ep,m(u j ) ≤ D(m, p)

m+p
p A.

Consider the following decomposition

Hm(u j ) − Hm(u) = (
Hm(u j ) − Hm(max(u j ,−k))

)
+ (

Hm(max(u j ,−k)) − Hm(max(u,−k))
)

+ (Hm(max(u,−k)) − Hm(u))

= μ1
j,k + μ2

j,k + μ3
k .

Furthermore, since u j → u in capacity capm , then for all k we get max(u j ,−k) →
max(u,−k), in capacity capm . All functions are uniformly bounded, so by [30],
μ2

j,k → 0 weakly as j → ∞. Since max(u,−k) is decreasing to u, as k → ∞,

and therefore μ3
k → 0 weakly, as k → ∞.

To finish the proof, we have to show that μ1
j,k → 0, as k → ∞ and uni-

formly on j . Let α ∈ C∞
0 (�), and we shall use the temporary notation Ts =

(ddc max(u j ,−k))m−s−1 ∧ βn−m . Then
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∣∣∣∣
∫

�

αμ1
j,k

∣∣∣∣ =
∣∣∣∣∣
m−1∑
s=0

∫
�

α(ddcu j )
s ∧ (ddcu j − ddc max(u j , −k)) ∧ Ts

∣∣∣∣∣

≤ ‖α‖∞k−p
m−1∑
s=0

∫
{u j≤−k}

(−u j )
p(ddcu j )

s+1 ∧ Ts

+‖α‖∞k−p
m−1∑
s=0

∫
{u j≤−k}

(−u j )
p(ddcu j )

s ∧ (ddc max(u j , −k))m−s ∧ βn−m

≤ ‖α‖∞k−p
m−1∑
s=0

D(m, p)ep,m(u j )
p+s+1
p+m ep,m(max(u j , −k))

m−s−1
p+m

+‖α‖∞k−p
m−1∑
s=0

D(m, p)ep,m(u j )
p+s
p+m ep,m(max(u j , −k))

m−s
p+m

≤ ‖α‖∞k−p2mD(m, p)
m+p
p A → 0,

as k → ∞. The convergence above is uniform in j . 	

Proposition 4.5 Let n ≥ 2, 1 ≤ m ≤ n, and assume that� ⊂ C

n is an m-hyperconvex
domain. If Jp(u j , u) → 0, as j → ∞, then Hm(u j ) → Hm(u) weakly.

Proof Since

ep,m(u j )
1

p+m = Jp(u j , 0) ≤ C(Jp(u j , u) + Jp(u, 0)),

it follows

ep,m(u) + sup
j
ep,m(u j ) < ∞.

This proof is then concluded by Proposition 4.2, and Lemma 4.4. 	


5 A Comparison of Different Topologies

In this section, we begin by comparing the quasimetric space (E1,m(�), J1) with the
metric space (E1,m(�),d) studied in [8]. In the second part of this section, we show
that the topology generated by Jp is not comparable with the topology generated by
the subspace Ep,m(�) of quasi-normed space (δEp,m(�), ‖ · ‖p) studied in [33]. The
presentation of the latter part follows closely Sect. 7 of [8].

Let us first introduce the necessary definitions and notations and formulate the
results that are relevant here. For further information, see [8].

Definition 5.1 Let 1 ≤ m ≤ n, and let � be a bounded m-hyperconvex domain in
C
n , n > 1. Fix w ∈ E1,m(�), known as the weight, and define the weighted energy

functional Ew by
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E1,m(�)�u �→ Ew(u)= 1

m+1

m∑
j=0

∫
�

(u−w)(ddcu) j ∧ (ddcw)m− j ∧βn−m ∈ R.

(5.1)

Definition 5.2 Let n ≥ 2, 1 ≤ m ≤ n, and assume that � ⊂ C
n is an m-hyperconvex

domain. Fix w, u, v ∈ E1,m(�). Let us define

d(u, v) = Ew(u) + Ew(v) − 2 Ew(P(u, v)).

Theorem 5.3 Let n ≥ 2, 1 ≤ m ≤ n, and let � be a bounded m-hyperconvex domain
in Cn. Then the tuple (E1,m(�),d) is a complete metric space.

Proof See Theorem 5.3 in [8]. 	

Now we are in position to compare the metric d with the quasimetric J1.

Theorem 5.4 Let n ≥ 2, 1 ≤ m ≤ n, and assume that � ⊂ C
n is an m-hyperconvex

domain. Then for u, v ∈ E1,m(�) it holds

1

2m+2Cm+1(m + 1)
J1(u, v)m+1 ≤ d(u, v) ≤ J1(u, v)m+1,

where C is a constant from quasi-triangle inequality.

Proof Let u, v ∈ E1,m(�). Note that {P(u, v) = u} ⊂ {u ≤ v} and {P(u, v) = v} ⊂
{v ≤ u}. Then we obtain by Theorem 3.3 and [8, Proposition 3.3]

d(u, v) = Ew(u) − Ew(P(u, v)) + Ew(v) − Ew(P(u, v))

≤
∫

�

(u − P(u, v))Hm(P(u, v)) +
∫

�

(v − P(u, v))Hm(P(u, v))

=
∫

{P(u,v)<u}
(u − P(u, v))(χ{P(u,v)=v} Hm(v) + χ{P(u,v)=u} Hm(u))

+
∫

{P(u,v)<v}
(v − P(u, v))(χ{P(u,v)=v} Hm(v) + χ{P(u,v)=u} Hm(u))

≤
∫

{P(u,v)<u}∩{P(u,v)=v}
(u − P(u, v))Hm(v)

+
∫

{P(u,v)<v}∩{P(u,v)=u}
(v − P(u, v))Hm(u)

≤
∫

{v<u}
(u − v)Hm(v) +

∫
{u<v}

(v − u)Hm(u)

≤
∫

{v<u}
(u − v)(Hm(v) + Hm(u)) +

∫
{u<v}

(v − u)(Hm(u) + Hm(v))

= J1(u, v)m+1.
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Thanks to Proposition 3.4 (6), the quasi-triangle inequality, and [8, Proposition 3.3]
we get

d(u, v) = Ew(u) − Ew(P(u, v)) + Ew(v) − Ew(P(u, v))

≥ 1

m + 1

∫
�

(u − P(u, v))Hm(P(u, v)) + 1

m + 1

∫
�

(v − P(u, v))Hm(P(u, v))

≥ 1

2(m + 1)
J1(u, P(u, v))m+1 + 1

2(m + 1)
J1(v,P(u, v))m+1

≥ 1

2m+2(m + 1)
(J1(u, P(u, v)) + J1(v,P(u, v)))m+1

≥ 1

2m+2Cm+1(m + 1)
J1(u, v)m+1.

	


Now to the second part of this section. Let us start here with a brief introduction.
We start by defining

δEp,m(�) = Ep,m(�) − Ep,m(�),

since Ep,m(�) is only a convex cone. Then for any u ∈ δEp,m(�) we define

‖u‖p = inf
u1−u2=u

u1,u2∈Ep,m (�)

(∫
�

(−(u1 + u2))
p Hm(u1 + u2)

) 1
m+p

.

It was proved in [33] that (δEp,m(�), ‖·‖p) is a quasi-Banach space, i.e., it is complete
quasi-normed vector space (for the casem = n see [4]). Recall that ‖·‖p is a quasinorm
if the following holds:

(1) ‖u‖p = 0 if, and only if, u = 0;
(2) ‖tu‖p = |t |‖u‖p;
(3) it satisfies quasi-triangle inequality

‖u + v‖p ≤ C(‖u‖p + ‖v‖p),

for some constant C ≥ 1.

Furthermore, if u ∈ Ep,m(�), then ‖u‖p = ep,m(u)
1

p+m .

Example 5.5 There is no constantC > 0 such that Jp(u, v) ≤ C‖u−v‖p . SeeExample
7.1 in [8].

Example 5.6 There is no constant C > 0 such that ‖u − v‖p ≤ C Jp(u, v). See
Example 7.2 in [8].
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6 Stability of the Complex Hessian Operator

Let

Mp,m = {
μ : μ is a non-negative Radon measure on � such that

Hm(u) = μ for some u ∈ Ep,m
}
,

and recall the following characterization of Mp,m :

(1) μ ∈ Mp,m ;
(2) there exists a constant A ≥ 0 such that

∫
�

(−u)p dμ ≤ A ep,m(u)
p

p+m for all u ∈ Ep,m(�) ;

(3) Ep,m(�) ⊂ L p(μ);
(4) there exists unique functionU (μ) ∈ Ep,m(�) the solution to theDirichlet problem

for the complex Hessian equation Hm(U (μ)) = μ,

(see [15,30] for details).
In this section, we shall prove some new stability results for the complex Hessian

operator. For previous results concerning stability of the complex Monge–Ampère
equation or the complex Hessian equation, see, e.g., [16,19,34]. In those papers, the
authors proved that under some assumption ifμ j converges toμ, then the correspond-
ing solutions U (μ j ) converges to U (μ) in capacity. Our goal is to prove that the
convergence is stronger in the sense that Jp(U (μ j ),U (μ)) → 0.

Lemma 6.1 Let n ≥ 2, 1 ≤ m ≤ n, and assume that � ⊂ C
n is an m-hyperconvex

domain. Let μ ∈ Mp,m. Then for any ν ≤ μ it holds:

ep,m(U (ν)) ≤ D(p,m)
m+p
p ep,m(U (μ)).

Proof The desired inequality follows from the following estimation

ep,m(U (ν)) =
∫

�

(−U (ν))p Hm(U (ν)) =
∫

�

(−U (ν))pdν ≤
∫

�

(−U (ν))pdμ

=
∫

�

(−U (ν))p Hm(U (μ)) ≤ D(m, p)ep,m(U (ν))
p

p+m ep,m(U (μ))
m

m+p .

	

Definition 6.2 A fundamental sequence � j , j ∈ N, is an increasing sequence of m-
hyperconvex subsets of � ⊂ C

n , n ≥ 2, such that for every j ∈ N, we have that,
� j � � j+1, and

⋃∞
j=1 � j = �.

The main result in this section is the following stability theorem.

123



On a Family of Quasimetric Spaces in Generalized Potential Page 23 of 29 117

Theorem 6.3 Let n ≥ 2, 1 ≤ m ≤ n, and assume that � ⊂ C
n is an m-hyperconvex

domain and let μ ∈ Mp,m. If 0 ≤ f , f j ≤ 1 are measurable functions such that
f j → f in L1

loc(μ), as j → ∞, then Jp(U ( f jμ),U ( f μ)) → 0.

Proof Fix μ ∈ Mp,m . From the Cegrell–Lebesgue decomposition theorem (see [15,
30]), it follows that there exist ϕ ∈ E0,m(�), ‖ϕ‖∞ ≤ 1, and g ≥ 0 such that
gHm(ϕ) = μ. Fix a fundamental sequence � j . For j, k ∈ N, let us define the
following functions:

w = U (μ) ∈ Ep,m(�) : Hm(w) = μ;
u = U ( f μ) ∈ Ep,m(�) : Hm(u) = f μ;
u j = U ( f jμ) ∈ Ep,m(�) : Hm(u j ) = f jμ;
u j,k ∈ Ep,m(�) : Hm(u j,k) = χ�k f j min(g, k)Hm(ϕ);
v j,k ∈ Ep,m(�) : Hm(v j,k) = χ�k f jμ;
wk ∈ Ep,m(�) : Hm(wk) = χ�k f min(g, k)Hm(ϕ);
vk ∈ Ep,m(�) : Hm(vk) = (1 − χ�k )μ;
ψk ∈ Ep,m(�) : Hm(ψk) = (g − min(g, k))Hm(ϕ).

Since,

Jp(u, u j ) ≤ C3(Jp(u, wk) + Jp(wk, u j,k) + Jp(u j,k, v j,k) + Jp(v j,k, u j )),

(6.1)

it is enough to prove that each term in (6.1) tends to zero to complete the proof.
Claim 1. Jp(u, wk) → 0, as k → ∞. This follows because wk is a decreasing

sequence tending to u, as k → ∞.
Claim 2. For fixed k, we have that Jp(wk, u j,k) → 0, as j → ∞. To prove this,

first note that the functions wk and u j,k are uniformly bounded by k
1
m , and therefore,

it follows

Jp(wk , u j,k)
p+m =

∫
�

|wk − u j,k |p(Hm(wk) + Hm(u j,k))

=
∫

{wk<u j,k }
(u j,k − wk)

pχ�k ( f j + f )min(g, k)Hm(ϕ)

+
∫

{wk>u j,k }
(wk − u j,k)

pχ�k ( f j + f )min(g, k)Hm(ϕ)

≤ 2k
∫

{wk<u j,k }
(u j,k − wk)

p Hm(ϕ) + 2k
∫

{wk>u j,k }
(wk − u j,k)

p Hm(ϕ).

Now assume that p ≤ m. Then we can continue our estimate by using the Hölder
inequality. By [34], we get
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∫
{wk<u j,k }

(u j,k − wk)
p Hm(ϕ)

≤
(∫

{wk<u j,k }
(u j,k − wk)

m Hm(ϕ)

) p
m

(Hm(ϕ)(�))
m−p
m

≤ (Hm(ϕ)(�))
m−p
m

(
m!

∫
{wk<u j,k }

(−ϕ)(Hm(wk) − Hm(u j,k))

) p
m

≤ (Hm(ϕ)(�))
m−p
m

(
m!

∫
�k

| f j − f |dμ

) p
m → 0, as j → ∞.

In a similar way, one can prove

∫
{wk>u j,k }

(wk − u j,k)
p Hm(ϕ) ≤ (Hm(ϕ)(�))

m−p
m

(
m!

∫
�k

| f j − f |dμ

) p
m → 0,

as j → ∞. If p > m, then one can repeat the above argument using the fact

|u j,k − wk |p ≤ (2k
1
m )p−m |u j,k − wk |m .

Claim 3. Jp(v j,k, u j,k) → 0, as k → ∞, and the convergence is uniform on j .
Since

Hm(v j,k) = χ�k f j gHm(ϕ)

≤ χ�k f j min(g, k)Hm(ϕ) + (g − min(g, k))Hm(ϕ)

= Hm(u j,k) + Hm(ψk) ≤ Hm(u j,k + ψk),

we have that u j,k + ψk ≤ v j,k . Furthermore, u j,k ≥ v j,k , and ψk is a increasing
sequence such that

ep,m(ψk) =
∫

�

(−ψk)
p Hm(ψk) =

∫
�

(−ψk)
p(g − min(g, k))Hm(ϕ)

≤
∫

�

(−ψ1)
p(g − min(g, k))Hm(ϕ) → 0, k → ∞,

by dominated convergence theorem. Finally,

Jp(v j,k, u j,k)
p+m =

∫
�

|v j,k − u j,k |p(Hm(v j,k) + Hm(u j,k))

≤ 2
∫

�

(u j,k − v j,k)
p Hm(w) ≤ 2

∫
�

(−ψk)
p Hm(w)

≤ 2D(m, p)ep,m(ψk)
p

m+p ep,m(w)
m

m+p → 0,

as k → ∞. The convergence is as well uniform in j .
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Claim 4. Jp(v j,k, u j ) → 0, as k → ∞, and the convergence is uniform on j . The
proof of Claim 4 follows that of Claim 3. Observe that

Hm(u j ) = f jμ ≤ (1 − χ�k )μ + f jχ�kμ

= Hm(vk) + Hm(v j,k) ≤ Hm(vk + v j,k),

which implies that vk + v j,k ≤ u j . Furthermore, u j ≤ v j,k , and vk is increasing
sequence such that

ep,m(vk) =
∫

�

(−vk)
p Hm(vk) =

∫
�

(−vk)
p(1 − χ�k )μ

≤
∫

�

(−v1)
p(1 − χ�k )μ → 0, k → ∞,

by dominated convergence theorem. Finally,

Jp(v j,k, u j )
p+m =

∫
�

|v j,k − u j |p(Hm(v j,k) + Hm(u j ))

≤ 2
∫

�

(v j,k − u j )
p Hm(w) ≤ 2

∫
�

(−vk)
p Hm(w)

≤ 2D(m, p)ep,m(vk)
p

m+p ep,m(w)
m

m+p → 0, k → ∞,

the convergence is uniform in j . 	


7 The Compact Kähler Manifold Case

Let n ≥ 2, p > 0, and let 1 ≤ m ≤ n. Assume that (X , ω) is a connected and
compact Kähler manifold of complex dimension n, where ω is a Kähler form on X
such that

∫
X ωn = 1. In a similar way as in Sect. 3, we define a quasimetric, Ip, for

(ω,m)-subharmonic functions (for the case m = n, see [25]). For further information
concerning (ω,m)-subharmonic function (SHm(X , ω)) on compact Kähler manifold,
see, e.g., [7,21,25,31].

For any u ∈ SHm(X , ω), let

ωu = ddcu + ω.

The complex Hessian operator is defined on (ω,m)-subharmonic functions through
the following construction: First assume that u ∈ SHm(X , ω) ∩ L∞(X), then

Hm(u) := ωm
u ∧ ωn−m,

which is a non-negative (regular) Borel measure defined on X . For an arbitrary, not
necessarily bounded, (ω,m)-subharmonic function u let u j = max(u,− j) be the
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canonical approximation of u. Then define

Hm(u) := lim
j→∞ χ{u>− j} Hm(u j ).

We define the class of (ω,m)-subharmonic functions with bounded (p,m)-energy as

Ep,m(X , ω) :=
{
u ∈ Em(X , ω) : u ≤ 0,

∫
X
(−u)p Hm(u) < ∞

}
,

where

Em(X , ω) =
{
u ∈ SHm(X , ω) :

∫
X
Hm(u) = 1

}
.

For the counterparts of Theorems 2.1, 2.2, and the approximation theorem for (ω,m)-
subharmonic functions defined on compact Kähler manifolds, we refer to [7,21,25,31,
32].

The following definition is the counterpart of Jp in Definition 3.1.

Definition 7.1 Let n ≥ 2, p > 0, and let 1 ≤ m ≤ n. For u, v ∈ Ep,m(X , ω) and we
define

Ip(u, v) =
(∫

X
|u − v|p(Hm(u) + Hm(v))

) 1
p+m

.

Remark Note that it follows from [7, Lemma 3.5] that the functional Ip is well defined.

The aim of this section is to prove that (Ep,m(X , ω), Ip) is a complete quasimetric
space.

Theorem 7.2 The pair (Ep,m(X , ω), Ip) is a quasimetric space.

Proof First assume that u, v ∈ Ep,m(X , ω), and Ip(u, v) = 0. Then Hm(u)({u <

v}) = 0, and by [31, Theorem 3.15] we get u ≥ v. In a similar way, we can obtain
that v ≥ u. Hence, u = v. The quasi-triangle inequality follows in the same way as in
Lemma 3.5. 	


We shall need the counterpart of Proposition 2.4.

Proposition 7.3 Let u, v ∈ Ep,m(X , ω).

(1) If u ≤ v, then

∫
X
(v − u)p Hm(v) ≤

∫
X
(v − u)p Hm(u).

(2) Without any additional assumption on u, and v, it holds

∫
{u<v}

(v − u)p Hm(v) ≤
∫

{u<v}
(v − u)p Hm(u).

123



On a Family of Quasimetric Spaces in Generalized Potential Page 27 of 29 117

Proof (1) First assume that u < v. Then for any positive current T it holds

∫
X
(v − u)pωu ∧ T −

∫
X
(v − u)pωv ∧ T

= p
∫
X
(v − u)p−1d(v − u) ∧ dc(v − u) ∧ T ≥ 0.

Now, let ε < 1, then u ≤ v < εv. We obtain

ε

∫
X
(εv − u)pωv ∧ T ≤

∫
X
(εv − u)pωεv ∧ T ≤

∫
X
(εv − u)pωu ∧ T ,

so by the monotone convergence theorem, and letting ε → 1−, we arrive ay
∫
X
(v − u)pωv ∧ T ≤

∫
X
(v − u)pωv ∧ T .

Repeating the above argument m-times we get

∫
X
(v − u)p Hm(v) ≤

∫
X
(v − u)p Hm(u).

(2) This part follows now in a similar manner as in Proposition 2.4. 	

Corollary 7.4 Let u, u j , v ∈ Ep,m(X , ω).

(1) If u ≤ v, then

2
∫
X
(u − v)p Hm(v) ≤ Ip(u, v)p+m ≤ 2

∫
X
(u − v)p Hm(u).

(2) If u j ↘ u, j → ∞, then Ip(u j , u) → 0.

We end this paper with the main result of the compact Kähler case.

Theorem 7.5 The pair (Ep,m(X , ω), Ip) is a complete quasimetric space.

Proof Theorem 7.2 gives that (Ep,m(X , ω), Ip) is a quasimetric space, and the com-
pleteness can be proved in exactly the same way as in Theorem 3.9. 	
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5. Åhag, P., Czyż, R., Hed, L.: The geometry of m-hyperconvex domains. J. Geom. Anal. 28(4), 3196–
3222 (2018)
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