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Abstract. The problem of identifying maximally entangled quantum states of a composite
quantum systems is analyzed. We review some states of multipartite systems distinguished with
respect to certain measures of quantum entanglement. Numerical results obtained for 4-qubit
pure states illustrate the fact that the notion of maximally entangled state depends on the
measure used.

1. Introduction

Multipartite entangled states represent a potential tool in several tasks of quantum information,
quantum teleportation, error correction codes, among others [1, 2]. Therefore, the study of
entanglement properties of such states is essential and recently has been a field of intense
research [1,3–7]. In the case of a two qubit systems the famous Bell state |Ψ+

2 〉 = 1√
2
(|00〉+ |11〉)

is maximally entangled, as the reduced state is maximally mixed, TrA|Ψ+
2 〉〈Ψ+

2 | = �2/2. The
same property is typical to the entire orbit of locally equivalent states, (UA ⊗ UB)|Ψ+

2 〉, with
UA, UB ∈ U(2). In a similar way, for any bipartite quantum system consisting of two subsystems
with N levels each there exists a generalized Bell state,

|Ψ+
N 〉 = 1√

N

N∑
i=1

|i〉A ⊗ |i〉B, (1)

such that the reduced density matrix is maximally mixed, so its entanglement entropy is
maximal, E(|Ψ+

N 〉) = logN . It is also well justified to call it the maximally entangled state, as
also other measures of bipartite entanglement achieve its maximum for this very state.

The situation changes for systems consisting of three or more subsystems. There exist
several measures of multipartite entanglement and it happens that a given state is most
entangled with respect to one measure, but other entanglement measure achieves its maximum
for some other state. For instance, among all three-qubit pure states the genuine three-party
entanglement measured by three tangle [8] is largest for the state |GHZ〉 = 1√

2
(|000〉 + |111〉)
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while the two-tangle τ2 and the persistence of entanglement [9] is has its maximum for the state
|W 〉 = 1√

3
(|001〉+ |010〉+ |100〉).

The aim of this work is to present a brief review of multipartite entanglement and to discuss
possible options of selecting distinguished states which maximize some entanglement measures.
The problem of identifying multipartite maximally entangled states can be approached from
different perspectives. For instance, we can analyze the entanglement entropy of a multipartite
state decomposition in a product basis minimized over all local unitary transformations. Another
way to describe entanglement in a composite systems is considering some of its bipartitions and
then take the average of certain entanglement measure. This last notion is related to concepts
like maximally multipartite-entangled state (MMES) [10], k-uniform states [2] and absolutely
maximally entangled (AME) states [6, 7].

This contribution is organized as follows, in Section 2 the minimal decomposition entropy is
introduced as a multipartite entanglement measure. Besides, a numerical search for three-qubit
maximally entangled states with respect this measure is accomplished. Section 3 is devoted to
describe entanglement properties by analyzing some bipartite reductions of a composite system.
The notion of absolutely maximally entangled states is given in Section 4. Its connection
with orthogonal arrays, multiunitary matrices, mutually orthogonal Latin squares is briefly
discussed as well. In Section 5 a list of some maximally entangled states and their minimal
decomposition entropy is presented. Besides, we discuss some numerical results obtained for
four-qubit random pure states and compare several entropy-based measures of entanglement.
Finally, some conclusions are given in Section 6.

2. Multipartite quantum states and its decomposition entropy

Consider the general case of a pure state |ψ〉 of a quantum system composed of K subsystems
with N levels each. Let us write it in a product basis

|ψ〉 =
N∑

i1=1

· · ·
N∑

iK=1

Ci1,i2,...,iK |i1〉 ⊗ |i2〉 ⊗ · · · ⊗ |iK〉 (2)

and discuss, how to quantify its entanglement? The tensor C is described by NK complex
entries normalized as usual,

∑N
i1=1 · · ·

∑N
in=1 |Ci1,i2,...,iK |2 = 1. If all of them but one are equal

to zero, the state is separable. Of course the converse does not hold, since any separable state
written in a generic product basis has several non-zero components. Thus it is natural to use
local unitary transformations, Uloc = V1 ⊗ · · · ⊗ VK ∈ U(N)⊗K , and to look for a distinguished
product basis [11].

It will be convenient to use a multi-index μ = (i1, i2, . . . , iK), with μ ∈ {1, . . . , NK}, and to
introduce a normalized probability vector, pμ = |Cμ|2 = |Ci1,i2,...,iK |2 of length NK . As usual it
can be characterized by the Rényi entropy

Sq(�p) =
1

1− q
log

⎛
⎝ N∑

μ=1

pqμ

⎞
⎠ . (3)

For q → 1 this quantity reduces to the standard Shannon entropy

S1(p) = −
N∑

μ=1

pμ log pμ, (4)

which in the context of the decomposition of a state |ψ〉, is called the Ingarden–Urbanik
entropy [12,13] and written SIU(|ψ〉) = S

(
p(|ψ〉)). From this point on log stands for the natural

logarithm.
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Making use of the generalized entropies Sq for any multipartite state |ψ〉 ∈ H⊗K
N we define

the minimal Rényi–Ingarden–Urbanik entropy [5],

SRIU
q (ψ) = min

Uloc

Sq [p(Uloc|ψ〉)] , (5)

where the minimum is taken over all local unitaries Uloc. Such an approach with q = 1
was applied by Bravyi [14], who showed that the minimal decomposition entropy SRIU

1 (ψ)
characterizes entanglement of any pure state |ψ〉 and determines the minimal information gained
by performing projective measurements in each local basis. For any separable state one can find
a product basis such that the probability vector pμ is pure, so one has SRIU

q (ψsep) = 0 for
any q ≥ 0. In the case of a bipartite state the optimal basis is given by the singular value
decomposition of the matrix C, so the familiar Schmidt vector λ determines the Rényi entropy
of entanglement, SRIU

q (ψ) = Sq(λ). However, for K ≥ 3 subsystems one works with a K-index
tensor (2) and in general there are no analytic techniques to find the minimum (5), so one has
to rely on numerical methods [5].

The minimal decomposition entropy SRIU
q is by construction constant along the orbit of

locally unitary states,
|ψ〉 ←→

LU
|φ〉 ⇒ SRIU

q (|ψ〉) = SRIU
q (|φ〉) (6)

for any q ≥ 0. The problem of determining whether two multipartite pure states belong
to the same LU orbit was solved for qubits by Kraus [15] and later generalized for higher
dimensions [16].

Discussing the generalized decomposition entropy SRIU
q let us distinguish some other values

of the Rényi parameter, apart of the Shannon value, q = 1. The case q = 0, corresponding
to the Hartley entropy, is related to the rank R of the tensor C –the minimal number of the
components in the product decomposition [17],

Ci1,i2,...,iK =

R∑
ν=1

γν aνi1 ⊗ bνi2 ⊗ . . . kνiK , (7)

involving R products of K vectors combined with arbitrary coefficients γν . The minimal Hartley

entropy, SRIU
0 (ψ) = logR, was introduced in [18] to characterize multipartite entanglement and

called Schmidt measure. The name refers to the bi-partite case, as then R is equal to the Schmidt
rank – the number of positive components of the Schmidt vector.

It is known that for any three-qubit state a five term representation exists [19,20], so in this
case R ≤ 5. In the general case of |ψ〉 ∈ H⊗K

N Carteret, Higuchi and Sudbery have shown [11],
that a suitable choice of each of K local unitary matrices Vj ∈ U(N) allows one to bring
N(N − 1)/2 entries of the tensor C to zero. This implies a simple upper bound for the rank of
the tensor,

R ≤ Rmax = NK −KN(N − 1)/2, (8)

and for the minimal Rényi decomposition entropy,

SRIU
q (ψ) ≤ SRIU

0 (ψ) ≤ logRmax. (9)

The first inequality is a consequence of monotonicity of the Rényi entropy with respect to the
Rényi parameter q [21].

Minimal decomposition entropy SRIU
2 , characterizing the maximal purity of the vector pμ,

was studied in [22] in the context of the coding theory. However, even more important is the

Quantum Fest 2015 IOP Publishing
Journal of Physics: Conference Series 698 (2016) 012003 doi:10.1088/1742-6596/698/1/012003

3



�������������������������������������������������������������������
���
��
�
�
�
�
�

�

�
�

�
�

�
���
�

�

�

�

�

�

�
�����������������������������������������������

����
��
�
�
��
�
�
�
�
�
�
�

������
�
�

�
�

�
�
�
�
�����������������������

0.5 1.0 1.5 2.0
Sq

RIU

0.5

1.0

1.5

2.0

2.5

3.0

P�Sq
RIU�

(a)

� � � � � �

�

� � � � � � �
� � � � � � �

� � � � � � �

�

�

� � � �
�

�

� � � � � �

0 1 2 3 4 5 ... 200

q

log�3�

log�6�

log�22�

Sq
RIU

� ��2�

� ��1�

� �GHZ�

� �D�3,�1,1,1��

� �Det3�

� �W�

(b)

Figure 1: (a) Distributions of the minimal decompositon entropy for random states with q = 1 (�) and q = 2
(�) (b) The minimal RIU entropy computed for representative three-qutrit states.

limiting case q → ∞ of the Chebyshev entropy, S∞ = − log pmax. This entropy characterizes
the size of the largest product component, SRIU∞ (|ψ〉) = − logFmax, where

Fmax (ψ) = max
Uloc

|〈ψ|Uloc|0〉⊗K〉|2 (10)

denotes the maximal fidelity of |ψ〉 with respect to any separable state. Thus its function
DFS = arccos(

√
Fmax) represents the Fubini–Study distance to the closest separable state

|ψsep〉, often used to quantify entanglement [23, 24]. For this purpose one uses also related
quantities [25–29], including infidelity, EG = 1−Fsep, and EL = − log(Fsep) = SRIU∞ , respectively
called linear and logarithmic geometric measures of quantum entanglement.

Note also that the closest separable state |ψsep〉, provides the principal component [17,30] of
the analyzed tensor (7) distinguished by the coefficient γν with the largest modulus.

For any bipartite case the maximal fidelity (10) is explicitly given by the largest coefficient
λmax of the Schmidt vector [26, 31], and can be also calculated for a large class of three-
qubit states [32–34]. In other cases one has to rely on numerical optimization, which becomes
cumbersome if the number K of subsystems becomes large. Hence it is not easy to to identify
the K-party state for which the minimal decomposition entropy SRIU

q is maximal for q = 1 or
any other value of the Rényi parameter q.

2.1. Searching for three-qutrit maximally entangled states

We are interested in identifying three-qutrit states for which the minimal decomposition entropy
(5) is the largest. Some results in the case of three and four-qubit states were obtained by
analyzing the distributions of SRIU

q for an ensemble of random states [5]. For three-qutrits the
corresponding distributions are shown in Figure 1 a) with q = 1, 2. Moreover, we take q = 200
as a bound for the case q = ∞. To optimize the quantity (5) we perform a random walk over the
space of unitary matrices. We found two candidate random states to be maximally entangled
with respect the minimal RIU entropy, which in the canonical basis read

|Ψ1〉 =
26∑
j=0

c1j |j〉, |Ψ2〉 =
26∑
j=0

c2j |j〉, (11)
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where the index j is written in base 3 and the coefficients are give by

c1 = (0.193e1.7i, 0.323e−2.01i, 0.16e−2.16i, 0.229e−2.22i, 0.232e−3.12i, 0.186e−2.5i,

0.239e−2.34i, 0.141e−0.411i, 0.159e−0.512i, 0.099e1.54i, 0.144e−2.43i, 0.148e2.13i,

0.263e−1.62i, 0.322e0.475i, 0.216e−1.95i, 0.068e−1.39i, 0.030e−2.89i, 0.171e1.91i,

0.253e−2.82i, 0.022e−0.225i, 0.06e−1.2i, 0.003e2.64i, 0.133e−1.52i, 0.202e2.2i,

0.194e1.08i, 0.207e1.13i, 0.274e−2.29i)

c2 = (0.245e0.074i, 0.024e2.49i, 0.248e1.66i, 0.069e1.55i, 0.256e0.114i, 0.118e−2.88i,

0.313e−1.24i, 0.076e2.77i, 0.149e0.208i, 0.208e2.56i, 0.227e−2.88i, 0.157e2.27i,

0.072e3.08i, 0.2e−1.07i, 0.199e−1.87i, 0.13e−1.95i, 0.133e1.5i, 0.218e−1.68i,

0.244e−1.84i, 0.191e−3.05i, 0.049e2.61i, 0.144e1.22i, 0.226e2.14i, 0.278e−2.46i,

0.227e0.773i, 0.186e−2.11i, 0.218e−1.52i)

One can compare the minimal decomposition entropy of the former states with some
representative three-qutrit states. For instance, the K-qudit Dicke state, invariant with respect
to permutations, reads

|D[K,�k]〉 =

√∏
i ki!

K!

∑
π∈SK

| 0 · · · 0︸ ︷︷ ︸
k0

1 · · · 1︸ ︷︷ ︸
k2

. . . (d− 1) · · · (d− 1)︸ ︷︷ ︸
kd−1

〉. (12)

The well-known K-qudit W -state and GHZ-state can be represented as linear combinations of
some particular cases of the Dicke states (12)

|WK〉 = |D[K, (1,K − 1, 0, . . . , 0)]〉,√
K|GHZd

K〉 = |D[K, (K, . . . , 0)]〉+ |D[K, (0,K, . . . , 0)]〉+ . . .+ |D[K, (0, . . . ,K)]〉. (13)

For the states (12) the maximal fidelity with respect the closest separable state (10) is known [29],
hence their decomposition entropy with q = ∞ can be computed straightforward

SRIU
∞ (D[K,�k]) = − log

[
K!∏
i ki!

d−1∏
i=0

(
ki
K

)ki
]
. (14)

On the other hand, for the determinant state of N subsystems with N levels each,

|detN 〉 = 1√
N !

N∑
i1···iN=1

εi1,...,iN |i1 · · · iN 〉, (15)

Bravyi [35] has reported that SRIU
1 (detN ) = logN !. On the other hand, it is not so difficult to

show that the states |det3〉 and |D[3, (1, 1, 1)]〉 are LU-equivalent by making the transformations
|2〉3 → −|2〉3, |0〉1 → −|0〉1, |2〉1 → −|2〉1 and |1〉3 → −|1〉3, and hence SRIU

1 (D[3, (1, 1, 1)]) =
log 6. Fig. 1 b) depicts a comparison between the states (11) with some other three-qutrit states.

3. Partition into two subsystems

Is there any way to describe entanglement of a multipartite state an an explicit way, without
performing any awkward optimizations? One simple option is to analyze, under what possible
transformations a given state remains entangled. The persistence p of entanglement of a K-
party pure state |φ〉 is defined [9] as the minimal number of local measurements which have
to be performed to destroy the entanglement completely. As any measurements of a single
qubit transforms the K qubit GHZ state to a product state we have p(|GHZK〉) = 1. On the
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other hand after a measurement of single qubit the W state reamins entangled, so p(|W3〉) = 2
and p(|WK〉) = K − 1. Hence from the persistence perspective, the W-state is more entangled
than GHZ.

Another manageable way to handle multipartite entanglement is to restrict our attention to
the much simpler case of bipartite entanglement. For instance, one can split the K-partite
system into M and K − M parties, and use standard techniques to characterize bipartite
entanglement, and possibly average over different splittings. This approach enables us to write
down a reasonable definition of multipartite entanglement,

Ex(|ψK〉) = 1

LK

∑
A

Sx(ρA), (16)

where σA = TrĀ|ψ〉〈ψ| and the summation goes over all LK selected partitions of the system
into two parties {A, Ā}. The measure Sx of the bipartite entanglement can be arbitrary, and one
often takes the standard von Neumann entropy of the reduced state S1(σ), the Rényi entropy
of order two, S2 = − log Trσ2, its function called linear entropy, SHC

2 = 1− Trσ2, equivalent to
the Tsallis entropy of order two, or the Chebyshev (minimal) entropy S∞.

The simplest choice is to fix the number M of subsystems in the distinguished set A to
unity, so then the number of possible bipartite splittings taken into account scales linearly,
LK = K. Such a quantity, characterizing the average entanglement of a single subsystem with
the remaining part of the system, is called the Mayer–Wallach measure, as these authors [36]
applied (16) for anyK-qubit state. The measure Sx they used to quantity entanglement occurred
to be equivalent [14] to the linear entropy SHC

2 . This observation allows us to use this measure
also for N -level subsystems and write Q1(φ) =

N
N−1〈SHC

2 〉, where the average is taken over all K
different splittings, for which K−1 subsystems are traced out and the reduced state describes a
single subsystem. A suitable prefactor assures that this quantity is bounded by unity, Qmax

1 = 1,
and the maximum is achieved e.g. for the generalized GHZ state,

|GHZN
K 〉 = 1√

N

(
|1〉⊗K + |2〉⊗K + · · ·+ |N〉⊗K

)
. (17)

To take into account also entanglement between larger subsystems it is convenient to fix the size
of the smaller subsystem, writting M = |A| ≤ K −M , and to average a suitable entanglement

measure Ex over all LK,M =
(
K
M

)
splittings into bipartitions of this size. This approach leads,

for instance, to a natural generalization of the Mayer–Wallach measure,

QM

(|φ〉) :=
NM

NM − 1

〈
1− (

TrĀ|φ〉〈φ|
)2〉

M
, (18)

where the average is taken over all
(
K
M

)
partial traces with respect to environments Ā consisting

of K −M parties. By definition this quantity achieves the upper bound QM ≤ 1 if there exists
a pure state |ψK〉 such that its M -party reduced density matrix TrĀ|ψK〉〈ψK | with respect to
any such partition Ā is maximally mixed. Such states are called M -uniform [2] or maximally
multipartite entangled [10].

An alternative way to characterize the degree of mixing of reduced density matrices can be
based on quantum analogue of the classical Rényi entropy (3),

Sq(σ) :=
1

1− q
log Tr(σq), (19)

defined for q ≥ 0 and q 
= 1. It can be considered as a natural generalization of the von Neumann
entropy, −Trσ log σ, obtained for q → 1. We are going to distinguish three cases, q = 1, q = 2
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and q −→ ∞, and rewrite the corresponding expressions in terms of the eigenvalues of λi of the
reduced state σ,

S1(σ) = −
∑
i

λi log λi the von Neumann entropy, (20a)

S2(σ) = − log Tr(σ2) the Rényi entropy with q=2, (20b)

S∞(σ) = − log λmax the Chebyshev entropy. (20c)

Here λmax denotes the largest eigenvalue.
In particular, to characterize the degree of mixing of reductions of states consisting of four

subsystems we will use a quantity which depends on the Rényi parameter q and characterizes
reductions to one and two-party systems

S̃q(ρ) :=

4∑
j=1

Sq(ρj)

log 2
+

4∑
k=2

Sq(ρ1k)

2 log 2
. (21)

Here ρj and ρ1k denote reduced density matrices containing one and two particles respectively.
Thus the above quantity represents a weighted average over all relevant splittings of the four-
party system, and the prefactors log 2 and 2 log 2 are added to assure that both terms have
the same weight, so the value of S̃q(ρ) for any 4-qubit state belongs to the interval [0, 7]. For

any separable pure state one has S̃q(|ψsep〉〈ψsep|) = 0, while the extremal value S̃q = 7 would
correspond to a (non-existing) absolutely maximally entangled state of four qubits. Note that
for q = 2 the quantity (21) is related to (16) as it corresponds to the sum Q1 +Q2 of quantities
describing one- and two-party reductions defined in (18).

Let us return back to the general case of system composed of an arbitrary number of K
systems. Any M -uniform state with M ≥ 2 is by construction (M − 1)-uniform, since partial
trace of a maximally mixed state is maximally mixed, but the converse does not hold. We
already know that the generalized GHZ state (17) is 1-uniform as it maximizes Q1, but it is
not two-uniform. Thus families of M -uniform states form a hierarchy of entanglement. Note
that an M -uniform state of a system with K parties may exist if M ≤ K/2, since any partial
trace on a larger subsystem cannot be maximally mixed [2]. It is thus justified to distinguish
M -uniform states of a system with K = 2M subsystems, which are called absolutely maximally
entangled (AME) [37].

To understand implications of these conditions on the general tensor form (2), let us first
consider a bipartite state |ψ〉 =

∑
μ,ν Cμ,ν |μ, ν〉 of N × N system. This state is maximally

entangled, and thus 1-uniform, if the partial trace of the projector is equal to the maximally
mixed state, ρ∗ = 1

N �,

TrB|ψ〉〈ψ| =
∑
ν

Cμ,νC
†
ν,μ′ |μ〉〈μ′| = ρ∗ ⇔ CC† =

1

N
�. (22)

This condition is satisfied if the matrix U =
√
NC is unitary.

4. Arbitrary number of partitions

Consider now a general state (2) of K = 2M subsystems and use composite indices, μ =
(i1, . . . , iM ) and ν = (iM+1, . . . , i2M ). Repeating the above argument for the splitting A
versus Ā we see that the partial trace with respect to the partition Ā consisting of subsystems
iM+1, . . . , i2M is maximally mixed, if the matrix Cμ,ν obtained by a suitable reshaping of the
rescaled tensor C is unitary. The same argument works for any other choice of M indices
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defining the composite index μ and the corresponding partition A, so we arrive at the following
conclusion [6].

Proposition. A state (2) of K = 2M subsystems with N levels each is M -uniform, and
thus absolutely maximally entangled, if matrices Cμ,ν obtained by reshaping the tensor NM/2C

into a square matrix of size NM are unitary for all
(
2M
M

)
choices of M indices out of 2M , which

determine the composite indices μ and ν.
This is the case if the unitary matrix U obtained by reshaping the analyzed tensor

remains unitary after performing suitable reorderings of their elements. Such matrices are
called multiunitary. The corresponding tensors, called perfect tensors, are used to construct
holographic codes and propose toy models for the bulk/boundary correspondence (anti de Sitter
space and conformal field theory) [38].

In the case of a four-party system one has to check condition (22) for three splittings, 12,
13 and 14, which is equivalent to verifying if three matrices, C(1,2)(3,4), C(1,3)(2,4) and C(1,4)(2,3)

multiplied by a constant are unitary. Denoting the first matrix U we need to check that its
partial transpose UT2 and the reshuffled matrix UR – see [21] – are unitary. Although there are(
4
2

)
= 6 choices of two subsystems out of four, three other cases will also be covered since as U

is unitary so is UT .
Any familiar Bell state |ψ+

2 〉 is one-uniform, so it forms the simplest AME state of two qubits.
Interestingly, there are no two-uniform, AME states for four qubits – see [39, 40]. In short, the
assumption that partions AB, AC and AD of the system ABCD are maximally mixed implies
so many constaints that no 4-qubit state can satisfy all of them. In other words there are no
multiunitary matrices of order four: if U and UT2 ∈ U(4) then UR /∈ U(4). This effect can be
compared to the frustration in a spin system [41]. Larger systems offer more parameters to play
with and indeed, for system composed of 4 subsystems with N = 3 levels each there exists an
AME state.

3|Ψ4
3〉 = |0000〉+ |0112〉+ |0221〉+ |1011〉+ |1120〉+ |1202〉+ |2022〉+ |2101〉+ |2210〉. (23)

Such a state can be constructed with help of orthogonal arrays [7] or mutually orthogonal Latin
squares [6]. The corresponding multiunitary matrix U9 of order 32 is related to a sudoku design,
see [6]. There exist also 2-uniform state of 5 qubits [42] and 3-uniform AME state of six qubits [4]
and they can be used to design quantum error correction codes. It would be also interesting to
study such states for larger systems, as a general question, for what K-partite systems with N
levels M -uniform state exists remains open [1, 6, 41].

5. A list of selected highly entangled states

In Table 1 we present a list of some multipartite quantum states that are identified as maximally
entangled with respect certain entanglement measures. The catalog itemizes states related to
the entanglement criteria previously discussed. In addition, the states are organized with respect
their minimal decomposition entropy (5).

5.1. Two qubits

In the case of two qubits each one of the Bell states

|Ψ±
2 〉 =

1√
2
(|00〉 ± |11〉), |Φ±

2 〉 =
1√
2
(|01〉 ± |10〉), (24)

is 1-uniform as the reduced density matrix with respect any of the subsystems is maximally
mixed. Moreover, it is not difficult to show that these states are mutually LU-equivalent. On
the other hand, for two-qudits the maximally entangled state is given by (1) (including the
LU-equivalent states). The minimal RIU entropy (5) in both cases can be computed by means
the singular value decomposition of the corresponding coefficient matrices.
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State SRIU
1 SRIU

2 SRIU
∞

Two qubits

Bell states: |Ψ±〉, |Φ±〉 log 2 log 2 log 2

Two qudits

GHZ-state: |GHZd
2〉 log d log d log d

Three qubits

GHZ-state: |GHZ3
2〉 log 2 log 2 log 2

W-state: |W3〉 log 3 log 3 log(9/4)

Random “maximal” state: |Φmax
1 〉 1.277 1.020 0.610

Random “maximal” state: |Φmax
2 〉 1.141 1.108 0.727

Four qubits

Higuchi and Sudbery state: |HS〉 � log 6 � log 6 � log(9/2)

Cluster states: |Ck〉 � log 4 � log 4 � log 4

Random “maximal” state: |Ψmax
1 〉 1.934 1.573 0.934

Symmetric state: |D[4, (2, 0)]〉 log(8/
√

3) log(24/7) log(8/3)

BSSB4 state: |BSSB4〉 1.733 � log(16/3) 1.393

Ψ4 state: |Ψ4〉 1.733 � log(16/3) � log 4

Hyperdeterminant state: |HD〉 1.561 � log(9/2) 1.110

Yeo and Chua state: |Y C〉 1.602 1.410 1.002

L state: |L〉 1.561 � log(9/2) 1.110

GHZ state: GHZ4 log 2 log 2 log 2

Five qubits

1-uniform state |Ψ5〉 � log 8 1.716 1.199

AME state |Ω5,2〉 � log 8 � log 8 2.03

Symmetric state: |D[5, (2, 0)]〉 2.263 � log 5 log(216/625)

Three qutrits

Random “maximal” state: |Ψ1〉 2.205 1.707 1.1452

Random “maximal” state: |Ψ2〉 2.072 1.82 1.221

Symmetric state |D[3, (1, 1, 1)]〉 � log 6 � log 6 log(9/2)

Four qutrits

AME state: |Ω4,3〉 � log 9 � log 9 � log 9

Symmetric state: |D[4, (2, 1, 1, 0)]〉 � log 12 � log 12 log(16/3)

Table 1: Some multipartite maximally entangled states with respect different measures and their minimal RIU
entropy (5). The star indicates that the value has been conjectured from numeric calculations.

5.2. Three qubits

It is known that the 1-uniform 3-qubit GHZ-state is maximally entangled with respect the three-
tangle but it does not maximizes the minimal decomposition entropy (5) for none value of the
Rényi parameter q [5]. In fact, there exist two candidate random states to be maximal with
respect this measure with q = 1 and q = 2, which in the computational basis read

|Φmax
1 〉 = 0.27|000〉+ 0.377|100〉+ 0.326|010〉+ 0.363|001〉+ 0.740e−0.79πi|111〉, (25a)

|Φmax
2 〉 = 0.438|000〉+ 0.29|100〉+ 0.371|010〉+ 0.316|001〉+ 0.698e−0.826πi|111〉. (25b)

The minimal decomposition entropy SRIU∞ attains its largest value value for the W-state, however
such a state is not 1-uniform.

5.3. Four qubits

It has been conjectured that for the Rényi parameter q ≥ 2 the 1-uniform state

|HS〉 = 1√
6

[|0011〉+ |1100〉+w(|0101〉+ |1010〉)+w2(|0110〉+ |1001〉)], w = exp(2iπ/3), (26)

is maximally entangled with respect the minimal decomposition entropy [5]. This state also
gives the maximal average von Neumann entropy of partial traces averaged over all possible 3
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splittings of 4 qubit system into two bipartite systems [40]. For the special case of q = 1 the
following state obtained numerically with a random walk procedure,

|Ψmax
1 〉 = 0.630|0000〉+ 0.281|1100〉+ 0.202|1010〉+ 0.24|0110〉+ 0.232e0.494πi|1110〉

+0.059|1001〉+ 0.282|0101〉+ 0.346e−0.362πi|1101〉+ 0.218e0.626πi|1011〉
+0.304|0011〉+ 0.054e−0.725πi|0111〉+ 0.164e0.372πi|1111〉,

(27)

is a candidate to be maximally entangled with respect the minimal RIU entropy [5]. On the
other hand, the three cluster states [43]

|C1〉 = 1

2
(|0000〉+ |0011〉+ |1100〉 − |1111〉) , (28a)

|C2〉 = 1

2
(|0000〉+ |0110〉+ |1001〉 − |1111〉) , (28b)

|C3〉 = 1

2
(|0000〉+ |0101〉+ |1010〉 − |1111〉) , (28c)

maximize the Rényi entropy of partial trace for q ≥ 2 [44]. Numerical computations support
the conjecture that for these states the RIU entropy does not depend on the Rényi parameter
q [5]. As another example we consider the ground state of the 4-qubit XXX Heisenberg model.
This state is locally equivalent to the symmetric Dicke state D[4, (2, 0)] and yields Q1 = 1 [36].
Finally, we emphasize the fact that there exist no 4-qubit AME states [6, 39, 40].

The state introduced by Gour and Wallach [44]

|L〉 = 1

2
√
3
((1 + ω)(|0000〉+ |1111〉) + (1− ω)(|0011〉+ |1100〉)+ (29)

ω2(|0101〉+ |0110〉+ |1001〉+ |1010〉)), ω = exp(2iπ/3),

maximizes the measure Q2 defined in (18), i.e. the linear entropy 〈SHC
2 〉 of the reduced

state averaged over three different splittings into two pairs of bi-partite states. Another state
introduced in [44] and called |M〉 there, which is conjectured to yield the maximal value of the
average von Neumann entropy of partial traces, is shown [45] to be locally equivalent to the HS
state (26).

Another distinguished state

|HD〉 = 1√
6
(|1000〉+ |0100〉+ |0010〉+ |0001〉+

√
2|1111〉), (30)

was called the ’hyperdeterminant state’, as it maximizes the four-qubit hyperdeterminant
Det4(|ϕ〉) [45]. This important invariant with respect to local transformations is maximized
for the above two states, Det4(|L〉) = Det4(|HD〉) = 1. However, there exist highly entangled
states, |D4,1〉, |D4,2〉, |Ck〉, |HS〉, |GHZ4〉, for which Det4(|ϕ〉) = 0.

The state |BSSB4〉 found by Brown et.al [46] by a numerical search,

|BSSB4〉 = 1

2
√
2
(|0110〉+ |1011〉+ i(|0010〉+ |1111〉) + (1 + i)(|0101〉+ |1000〉)), (31)

is highly entangled with respect to measure based on the average linear entropy of bi-partite
reductions. The following state introduced by Yeo and Chua [47] |Y C〉 can be used to perform
a faithful teleportation of an arbitrary two-qubit entangled state,

|Y C〉 = 1

2
√
2
(|0000〉 − |0011〉 − |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉+ |1111〉). (32)

Quantum Fest 2015 IOP Publishing
Journal of Physics: Conference Series 698 (2016) 012003 doi:10.1088/1742-6596/698/1/012003

10



It is conjectured to maximize entanglement measures based on Rényi entropy of partial traces
for q ≥ 2. Let us also distinguish the tensor product of the Bell states,

|ψ4〉 = |Ψ+〉 ⊗ |Ψ+〉 = 1

2
(|0000〉+ |0011〉+ |1100〉+ |1111〉). (33)

It is worth mentioning that Verstraete et al. [48] divide all 4-qubit pure states in nine different
classes, to which any state can be transformed by SLOCC operations. One of these classes called
generic contains states of the form [44],

|ϕ〉 = z0|Φ+〉|Φ+〉+ z1|Φ−〉|Φ−〉+ z2|Ψ+〉|Ψ+〉+ z3|Ψ−〉|Ψ−〉, (34)

where |Φ±〉 and |Ψ±〉 denote the standard Bell states (24), while z0, z1, z2, z3 ∈ C represent
complex coefficients normalized as

∑3
i=0 |zi|2 = 1. A state belonging to this class represented in

the computational basis reads

|ψ〉 =z0 + z1
2

|0000〉+ z0 − z1
2

|0011〉+ z2 + z3
2

|0101〉+ z2 − z3
2

|0110〉+
z2 − z3

2
|1001〉+ z2 + z3

2
|1010〉+ z0 − z1

2
|1100〉+ z0 + z1

2
|1111〉. (35)

It is easy to see that several of the states mentioned above belong to this class. For instance,
the states |ψ4〉, |GHZ4〉 and |L〉 correspond to real vectors of coefficients, equal to (1, 0, 0, 0);
(1, 1, 0, 0)/

√
2 and (1, ω, ω2, 0)/

√
3 respectively.

To illustrate how the above states are distinguished with respect to the measures of
entanglement based on degree of mixing of reduced density matrices we use the weighted sum
(21) of Renyi entropies, which takes into account all possible one and two-party reductions. Fig.
2 presents numerical data of average Rényi entropies of reduced density matrices for random
pure states of four-qubit systems. The data are shown in the planes spanned by two Rényi
entropies chosen from the triple S̃1, S̃2, S̃∞. In other words we see three projections of the
3D body formed in the space spanned by these three quantities. The data obtained for the
ensemble of states belonging to the generic class (34) presented in the right panels show that
these 1-uniform states are characterized by a high degree of entanglement.

Our numerical results confirm that the states listed above are distinguished indeed: the state
HS (26) gives the maximal average entropy S̃1, while the entropies S̃2 and S̃∞ are maximized by
the YC state (32) and the cluster states (28a). It is worth to note that the state |Ψmax

1 〉, defined
in (11) and distinguised by the minimal decomposition entropy, is not characterized by a high

value of the entropies S̃q of reductions, as it falls outside the area covered by the states from the
generic class. Let us emphasize once more that there are no 2-uniform states for 4-qubit systems:
the dots corresponding to states analyzed are located far away from the bounds represented in
the plots by red dotted lines.

5.4. Five qubits

We first consider the 1-uniform state

2
√
2|Ψ5〉 = |00000〉+ |10011〉+ |00101〉+ |11001〉+ |10110〉+ |01111〉+ |11100〉, (36)

that was introduced by Brown et al. as a highly entangled state with respect the negative partial
transpose criterion [46]. This can be also obtained by means orthogonal arrays [7]. On the other
hand, the 5-qubit AME state

2
√
2|Ω5,2〉 = |00000〉+ |00011〉+ |01100〉− |01111〉+ |11010〉+ |11001〉+ |10110〉− |10101〉, (37)

fulfils Q1 = 1 and has applications in quantum teleportation, quantum-state sharing, superdense
coding and orthogonal arrays, as well [7, 49]. Interestingly, numerical computations show that
the symmetric state |D(5, (2, 0))〉 has larger SRIU

1 than these two.
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Figure 2: Average Rényi entropies S̃1, S̃2, S̃∞ of the reduced density matrices for random four-qubit states for
three choices of the axes. Left plots show values for 106 random states, while right plots present data for random
states of the class (34). Red dotted lines indicate upper bounds for the entanglement measures, while yellow line
represents the maximal values obtained numerically. Distinguished states are labeled by their names, while D4,2

denotes the state |D[4, (2, 0)]〉 defined in (12).

5.5. Three qutrits

We focus on the random states (11) as well as the symmetric state |D(3, (1, 1, 1))〉. Among
several three-qutrit states this last attains the highest value for SRIU∞ while the former states
have the largest value of SRIU

1 and SRIU
2 , respectively.

5.6. Four qutrits

As an example of maximally entangled state we consider the state (23) for which our numeric
calculations allow us to conjecture that the minimal decomposition entropy is the same regardless
the value of the Rényi parameter. However, the symmetric state |D(4, (2, 1, 1, 0))〉 attains a larger
value of (5) with q = 1, 2.
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6. Conclusions

We have reviewed some entanglement properties of various multipartite states. In general,
characterization of multipartite entanglement can be approached from different perspectives as
one can study various measures of entanglement related to different aspects of non-locality. In
the case of bipartite systems one identifies the class of states locally equivalent to the generalized
Bell state, for which several measures of entanglement achieve their maximal values. However, for
systems with more components the situation changes: in general, a highly entangled state with
respect to a single measure of entanglement can display average, low or even vanishing degree of
entanglement, if another measure is used. This can be seen in Fig. 2, where several four-qubit
states are plotted according to the average Rényi entropy. The problem of distinguishing states
for which the different entanglement measures attain their maximum value remains open even
for some measures of three and four-parties entanglement. This fact is evident from Table 1
where several multipartite states are listed with respect their minimal RIU entropy.
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[21] Bengtsson I and Życzkowski K 2006 Geometry of Quantum States (Cambridge University Press)
[22] Parker M G and Rijmen V 2001 The quantum entanglement of binary and bipolar sequences Ed T Helleseth

Sequences and Their Applications (Springer- London UK) (Discrete Mathematics and Theoretical
Computer Science Series)

[23] Shimony A 1995 Degree of entanglement Ann. NY. Acad. Sci. 755 675
[24] Vedral V and Plenio M B 1998 Entanglement measures and purification procedures Phys. Rev. A 57 1619
[25] Barnum H and Linden N 2001 Monotones and invariants for multi-particle quantum states J. Phys. A 34

6787
[26] Brody D C and Hughston L P 2001 Geometric quantum mechanics J. Geom. Phys. 38 19
[27] Cao Y and Wang A 2007 Revised geometric measure of entanglement J. Phys. A 40 3507
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