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Received: 8 September 2020 / Revised: 12 April 2021 / Accepted: 19 April 2021 / Published online: 6 July 2021
© The Author(s) 2021

Abstract
The aim of this paper is to study the Wold-type decomposition in the class of m-
isometries. One of our main results establishes an equivalent condition for an analytic
m-isometry to admit the Wold-type decomposition for m ≥ 2. In particular, we
introduce the k-kernel condition which we use to characterize analytic m-isometric
operators which are unitarily equivalent to unilateral operator valued weighted shifts
for m ≥ 2. As a result, we also show that m-isometric composition operators on
directed graphs with one circuit containing only one element are not unitarily equiv-
alent to unilateral weighted shifts. We also provide a characterization of m-isometric
unilateral operator valued weighted shifts with positive and commuting weights.

Keywords Wold-type decomposition · m-isometry · Unitary equivalence ·
Composition operators · Spectral measure
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1 Introduction

In 1961 Halmos published a paper concerning shift operators on Hilbert spaces (see
[9]). The paper introduced the notion of the wandering subspace and its connections
with invariant subspaces of unilateral and bilateral shifts. This notion is closely related
to the famousWold decomposition of isometries which allows to represent an isometry
as orthogonal sum of a unitary operator and a unilateral weighted shift (cf. [22, Chap-
ter I, Theorem 1.1]). Later on, Shimorin introduced a more general property named
the Wold-type decomposition which generalizes the classical Wold decomposition
and proved in [19, Theorem 3.6] that it applies to a broader class of operators than
isometries. To prove some of the results, Shimorin utilized a concept from the paper of
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Richter from 1988, who showed that an analytic 2-concave operator has the wander-
ing subspace property. The idea was based on a specific operator series employing a
particular left-inverse of an operator (see [17, Theorem 1]). In 2019 Anand et al. char-
acterized non-unitary 2-isometries which admit the Wold-type decomposition having
their non-unitary parts unitarily equivalent to unilateral operator valuedweighted shifts
(see [4, Theorem 2.5]). Their description of these operators exhibits the form of the
weights and allows one to construct interesting non-unitary 2-isometries. This result
shows a greater resemblance of the classical Wold decomposition.

The aforementioned notions are closely related to each other as if an operator admits
the Wold-type decomposition, then its non-unitary part has the wandering subspace
property. In recent years authors published interesting results concerning the Wold-
type decomposition and the wandering subspace property in the m-isometric context.
Some of them focus on finding analyticm-isometries without the wandering subspace
property (see [3]), whereas others focus on more general results (see [4]).

The aim of this paper is to adopt the Wold-type decomposition in the class of m-
isometries for m ≥ 2. We focus on finding conditions under which these operators
admit the aforementioned decomposition. In order to do so we, in particular, introduce
the k-kernel condition in them-isometric context and demonstrate its connection with
the Wold-type decomposition.

The paper is organized as follows. Section 2 is a short introduction to the k-kernel
condition and aggregates facts concerning its properties for bounded operators. In the
beginning, we discuss the properties of m-isometric operators satisfying the (m − 1)-
kernel condition for m ≥ 2. As a result, in Proposition 2.3 we obtain an interesting
property regarding inclusions of certain images of the kernel of the adjoint under
powers of an operator, which is vital in the sequel. We also establish a characterization
of the k-kernel condition in the class of left-invertible composition operators (see
Theorem 2.6).

In Sect. 3 we introduce the completion problem form-isometric unilateral operator
valued weighted shifts with positive and commuting weights. Our approach based on
the spectral theory enables us to establish a handy characterization of m-isometric
unilateral operator valued weighted shifts (see Theorem 3.3). This characterization is
used later in the proof ofCorollary 3.5 to provide a solution them-isometric completion
problem in the case m − 1 initial weights are given.

Finally, Sect. 4 is devoted to theWold-type decomposition form-isometric operators
for m ≥ 2. Theorem 4.2 is the main result of this section and provides an equivalent
condition for analytic m-isometry to satisfy the (m − 1)-kernel condition. This fact
exhibits an interesting interplay between thewandering subspace property and (m−1)-
kernel condition in the class ofm-isometries. Thanks to this developmentwe obtain the
positive answer to [3, Question 1.2] in some subclass of operators (see Corollary 4.3).
Furthermore, we show in Theorem 4.4 that m-isometries satisfying (m − 1)-kernel
condition are unitarily equivalent to unilateral operator valued weighted shifts. We
conclude this section with Corollary 4.5 that proves that the class of analytic m-
isometric composition operators on a directed graph with one circuit having exactly
one element is disjoint from the class of unilateral operator valued weighted shifts.
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The Wold-Type Decomposition form-Isometries 4157

2 Properties of the k-Kernel Condition

In what follows, byN,Z+,R+,C,we denote the set of positive integers, non-negative
integers, and non-negative real numbers and complex numbers, respectively. Through-
out the paper H denotes a nonzero complex Hilbert space. If x , y ∈ H, then 〈x, y〉 is
their inner product. If M is a closed linear subspace ofH, then M⊥ is the orthogonal
complement of M inH. For a subset A ⊆ H by

∨
A we understand the closed linear

span of A, that is, the smallest closed subspace containing A. If {Mn}∞n=0 ⊆ H is a

sequence of subspaces, then we define
∨{Mn}∞n=0 = ∨ (⋃∞

n=0 Mn

)
.

As usual B(H) stands for the algebra of all bounded linear operators acting on H
and I ∈ B(H) is the identity operator. Suppose that T ∈ B(H). ByN (T ),R(T ), and
T ∗ we denote the kernel, the range and the adjoint of T , respectively. If there exists
S ∈ B(H) such that ST = I , then we say the T is left-invertible. It is surely folklore
that left-invertible operators have closed ranges and any power of a left-invertible
operator is again left-invertible. For k ∈ N we denote the operator T ∗kT k by T [k].
Recall that an operator T ∈ B(H) is said to be analytic, if R∞(T ) := ⋂∞

n=0 T
n(H)

is a null space.

Remark 2.1 Observe that, if T ∈ B(H) is left-invertible, then for any k ∈ N the
operator T [k] is invertible. This follows from the fact that for any left-invertible operator
S ∈ B(H) the operator S[1] is invertible and the following equality

T [k] = T ∗kT k = (T k)∗T k = (T k)[1], k ∈ N.

Assume m ∈ N. Operator T ∈ B(H) is said to be an m-isometry if

m∑

p=0

(−1)p
(
m

p

)

T [p] = 0. (2.1)

Observe that we can equivalently define T ∈ B(H) to be an m-isometry if and only
if for every k ≥ m it follows that

T [k] = (−1)m+1
m−1∑

p=0

(−1)p
(
m

p

)

T [k−m+p]. (2.2)

It is well known that m-isometries are left-invertible. If m ≥ 2, then an m-isometry is
said to be strict, if it is not an (m − 1)-isometry. For more introductory information
regarding m-isometric operators and their properties the reader is referred to [2].

We say that T ∈ B(H) satisfies the kernel condition ifN (T ∗) is invariant for T [1].
This notion was introduced in [4] and studied in the context of 2-isometries.We extend
it to the k-kernel condition, namely, T satisfies the k-kernel condition for some k ∈ N,
if N (T ∗) is invariant for T [n] for all n ∈ {1, . . . , k}. It is an easy observation that the
kernel condition coincides with the 1-kernel condition. Furthermore, if T ∈ B(H)

satisfies the k-kernel condition for some k ≥ 2, then it also satisfies the (k − 1)-kernel
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condition. Finally, observe that T ∈ B(H) satisfies the k-kernel condition if and only
if N (T ∗) is reducing for T [n] for all n ∈ {1, . . . , k}

It is a direct consequence of the kernel-range decomposition that in the class of
invertible operators all of the above conditions are trivially satisfied. Also it is easy
to prove that isometries and unilateral weighted shifts satisfy the k-kernel condition
for every k ∈ N. On the other hand, the situation is more interesting in the class of
analytic operators as the kernel of the adjoint of an analytic operator may not be a null
space. Hence, it is worth searching for examples there.

The first fact we prove shows that in the class m-isometries the (m − 1)-kernel
condition automatically implies the k-kernel condition for every k ∈ N.

Lemma 2.2 Suppose that T ∈ B(H) is an m-isometry for m ≥ 2. Then T satisfies
the (m − 1)-kernel condition if and only if T satisfies the k-kernel condition for every
k ∈ N.

Proof Assume that T satisfies the (m − 1)-kernel condition and let k ≥ m. We use an
induction argument. Suppose that T satisfies the (k − 1)-kernel condition. To finish
the proof it is enough to note that, if f ∈ N (T ∗), then

T [k] f (2.2)= (−1)m+1
m−1∑

p=0

(−1)p
(
m

p

)

T [k−m+p] f ∈ N (T ∗),

since k − m + p ≤ k − 1 for p ∈ {0, . . . ,m − 1}. ��
The following result is a consequence of the above lemma and provides an inter-

esting inclusion between certain subspaces for m-isometric operators satisfying the
(m − 1)-kernel condition.

Proposition 2.3 Suppose m ≥ 2 and T ∈ B(H) is an m-isometry satisfying the
(m − 1)-kernel condition. Then T n−1(N (T ∗)) ⊆ N (T ∗n) for every n ∈ N.

Proof Assume that n ∈ N and f ∈ T n−1(N (T ∗)). There exists h ∈ N (T ∗) such that
f = T n−1h. Consequently,

T ∗n f = T ∗nT n−1h = T ∗(T [n−1])h = 0,

as T [n−1]h ∈ N (T ∗) due to the fact that Lemma 2.2 implies that T satisfies the
(n − 1)-kernel condition. This completes the proof. ��

Let us recall that, if M ⊆ H is a closed subspace and T ∈ B(H), then by T|M
we denote the restriction of T to the subspace M . The technical result below shows
that the k-kernel condition behaves very well under taking restriction to a reducing
subspace. We shall use it in the sequel.

Lemma 2.4 Suppose that T ∈ B(H) satisfies the k-kernel condition for some k ∈ N

and M is a non-trivial reducing subspace for T . Then T|M satisfies the k-kernel
condition.
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The Wold-Type Decomposition form-Isometries 4159

Proof Let n ∈ {1, . . . , k}. Set S = T|M and let f ∈ N (S∗). It is surely folklore that
(T ∗)|M = (T|M )∗ and N (S∗) = M ∩ N (T ∗). Furthermore, using the above we can
show that

S[n] f = S∗n Sn f = (T|M )∗n(T|M )n f = T [n] f ∈ N (T ∗) ∩ M = N (S∗).

Hence the proof is completed. ��
It turns out the k-kernel condition is an invariant of unitary equivalence. The proof

relies on the fact that for T , S ∈ B(H) such that S = UTU∗ for some unitary
U ∈ B(H) it is true that S[n] = UT [n]U∗ for any n ∈ N and UN (T ∗) = N (S∗).
However, for the reader’s convenience we present a direct proof of this fact.

Proposition 2.5 Suppose T ∈ B(H) and S = UTU∗ for some unitary operator
U ∈ B(H). If T satisfies the k-kernel condition for some k ∈ N, then so does S.

Proof Assume that T satisfies the k-kernel condition for some k ∈ N and observe that
N (S∗) = R(S)⊥ = (UR(T ))⊥. Thus

0 = 〈Uh, f 〉, f ∈ N (S∗), h ∈ R(T ), (2.3)

as the inner product is continuous. To prove that S satisfies the k-kernel condition
assume that f ∈ N (S∗). It is easily seen that S[n] = UT [n]U∗ for n ∈ Z+. Observe
that, since T satisfies the k-kernel condition, the kernel-range decomposition implies
that T [n]g ∈ R(T ) for every g ∈ R(T ) and every n ∈ {1, . . . , k}. Hence

〈Ug, S[n] f 〉 = 〈g, T [n]U∗ f 〉 = 〈UT [n]g, f 〉 (2.3)= 0, g ∈ R(T ), n ∈ {1, . . . , k}.

This implies that S[n] f ∈ N (S∗) for n ∈ {1, . . . , k} and completes the proof. ��
Before presenting the next result we recall necessary definitions and notation related

to composition operators adopted from [13,14].
Let (X ,A , μ) be a measure space such that μ is non-negative and σ -finite. If X

is countably infinite, all singletons are measurable and μ({x}) ∈ (0,∞) for every
x ∈ X , then we say that (X ,A , μ) is a discrete measure space. If (X ,A , μ) is a
discrete measure space and x ∈ X , then we define μ(x) := μ({x}).

From now on denote by φ : X → X a measurable mapping that is also nonsingular,
i.e. μ ◦ φ−1 is absolutely continuous with respect to μ. Operator Cφ ∈ B(L2(μ)) is
called a composition operator, if Cφ f := f ◦φ for every f ∈ L2(μ), where L2(μ) =
L2(X ,A , μ). Due to nonsingularity ofφ, it follows from theRadon-Nikodym theorem
that there exists a unique measurable function h : X → [0,∞] such that

μ ◦ φ−1(�) =
∫

�

hdμ, � ∈ A .

It is well known that the function h plays a very important role in theory of composition
operators as it allows one to describe many properties of the associated composition
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4160 J. Kośmider

operator usingproperties ofh (see, e.g., [13,14,20]). Formore introductory information
regarding composition operators the reader is referred to [14].

We conclude this section with a generalization of [13, Proposition 4.8] that estab-
lishes a characterization of left-invertible bounded composition operators satisfying
the k-kernel condition for k ∈ N.

Theorem 2.6 Assume (X ,A , μ) is a discretemeasure space,φ : X → X is a function,
Cφ ∈ B(L2(μ)) is left-invertible and k ∈ N. Then Cφ satisfies the k-kernel condition
if and only if h is constant on preimages φ−i ({x}) for all i ∈ {1, . . . , k} and for every
x ∈ X.

Proof First, let us gather the following facts which are required in the proof. Observe
that it follows from the kernel-range decomposition and left-invertibility of Cφ that
N (C∗

φ)⊥ = R(Cφ). Moreover, it is a direct consequence of [13, Proposition 4.8(i)]

that f ∈ R(Cφ) if and only if f is constant on preimages φ−1({x}) for x ∈ X and
f ◦ φ−1 ∈ L2(μ). It is known that C [1]

φ f = h f for f ∈ L2(μ) (see [20]). Note that,
since Cφ is left-invertible, φ is an onto mapping. Indeed, suppose, to the contrary, that
y ∈ X is such that y /∈ φ(X). Then Cφ f = Cφ( f + χy) for any f ∈ L2(μ), where
χy ∈ L2(μ) is the characteristic function of {y}. This contradicts injectivity of Cφ .

If k = 1, then the result follows directly from [13, Proposition 4.8(ii)], so we limit
our consideration to the case when k ≥ 2. We prove the required equivalence using
an induction argument. Assume that n ∈ {2, . . . , k} and the conclusion of the theorem
holds for i ∈ {1, . . . , n − 1}. Suppose Cφ satisfies the n-kernel condition. Since φ

is surjective and h is constant on φ−i ({x}) for i ∈ {1, . . . , n − 1} for every x ∈ X ,
relation h ◦ φ−i is a function for i ∈ {1, . . . , n − 1}. This implies that

h ◦ φ−i ◦ φi = h, i ∈ {1, . . . , n − 1}. (2.4)

Observe that

C [n]
φ f = C∗(n−1)

φ

(
hCn−1

φ f
)

= C∗(n−1)
φ

(
h f ◦ φn−1

)

(2.4)= C∗(n−1)
φ Cn−1

φ (h ◦ φ−n+1 f )

(2.4)= h(h ◦ φ−1) . . . (h ◦ φ−n+1) f , f ∈ L2(μ).

Since Cφ satisfies the n-kernel condition, C [n]
φ f is constant on φ−1({x}) for all f ∈

R(Cφ) and for every x ∈ X . Hence h is constant on φ−n({x}) for every x ∈ X . To
prove the reverse implication it is enough to invert the argument used above. We leave
the details to the reader.

The rest of the proof follows directly from the induction argument. ��
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The Wold-Type Decomposition form-Isometries 4161

3 m-Isometric Unilateral Operator ValuedWeighted Shifts

In this sectionwe prove few results related to unilateral operator valuedweighted shifts
having positive and commuting weights, in particular, we characterize allm-isometric
operators in the aforementioned class.

We begin with recalling required notation and definitions related to operators given
by spectral integrals. Let X be a set and A be a σ -algebra of subsets of X . Suppose
that E : A → B(H) is a spectral measure. For a set A ⊆ X we say that a property
W of elements belonging to A holds for E-almost every x ∈ A (which is abbreviated
to a.e. [E] on A), if there exists � ∈ A such that E(�) = 0 and W holds for every
x ∈ A \ �. Define Ĉ = C ∪ {∞} and

L∞(X , E) = { f : X → Ĉ : | f is measurable and there exists c > 0

such that | f | ≤ c a.e. [E] on X}.

For f ∈ L∞(X , E) we set ‖ f ‖∞ = inf{c > 0 : | f | ≤ c a.e. [E] on X}.
The following lemma aggregates results that can be deduced from [18, Proposi-

tions 4.17-4.18]. We shall use it in the sequel.

Lemma 3.1 Suppose that X is a nonempty set, A is a σ -algebra of subsets of X,
E : A → B(H) is a spectral measure and f ∈ L∞(X , E). Then

(i)
∫
X f dE ∈ B(H) and ‖ f ‖∞ = ‖ ∫

X f dE‖,
(ii) if f ≥ 0 a.e. [E] on X, then

∫
X f dE is a positive operator,

(iii)
∫
X f dE = 0 if and only if f = 0 a.e. [E] on X.

Before moving to the next result we recall some notions from the measure theory.
Suppose that (X ,A ) and (Y,B) are measure spaces and φ : X → Y is a bijection.
We say that φ is ameasure isomorphism (sometimes called a bi-measurable mapping)
if both φ and φ−1 are measurable. IfX is a topological space, then byB(X )we denote
the σ -algebra of Borel sets of X . From now and on card(X) stands for the cardinality
of an arbitrary set X .

Although the following is well known to specialists, we provide its proof for the
reader’s convenience.

Proposition 3.2 Suppose {Sn}∞n=0 ⊆ B(H) is a sequence of positive and commuting
operators. Then there exist a spectral measure E : B([0, 1]) → B(H) and a sequence
{ξn}∞n=0 of B([0, 1])-measurable bounded functions ξn : [0, 1] → R+ such that Sn =∫
[0,1] ξndE for all n ∈ Z+.

Proof It is a direct consequence of the spectral theorem that for all n ∈ Z+ there exists
αn ∈ (0,∞), spectral measure En : B(In) → B(H) such that Sn = ∫

In
λndEn for

someB(In)-measurable bounded function λn : In → R+, where In = [0, αn] (see [18,
Theorem 5.1] for details). Moreover, in view of [18, Corollary 5.6], since the operators
{Sn}∞n=0 are commuting with each other, so do their spectral measures {En}∞n=0. As all
the above measures are compactly supported, it follows from [21, Proposition 4] that
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4162 J. Kośmider

there exists a product spectral measure F : B(X ) → B(H), where X = ∏∞
n=0 In ,

such that

F
( ∏

i∈I
�i ×

∏

i∈N\I
Ii

)
=

∏

i∈I
Ei (�i ), �i ∈ B(Ii ) for i ∈ I , card(I ) < ∞. (3.1)

We infer from (3.1) that En(�n) = F(�n × ∏
i∈N\{n} Ii ) for every n ∈ Z+ and

�n ∈ B(In). In view of this, [5, Theorem 5.4.10] implies that

Sn =
∫

In
λndEn =

∫

X
fn(λ)dF, n ∈ Z+, (3.2)

where λ = (λ1, λ2, . . . ) and fn : X → In are such that fn(λ) = λn for all n ∈ Z+
and λ ∈ X . It follows from [6, Proposition 8.1.3] that X with the product topol-
ogy, as a countable product of complete separable metric spaces, is also a complete
separable metric space. Thus, since card(X ) = card([0, 1]), it can be deduced from
[16, Theorem 2.12] that there exists a measure isomorphism φ : X → [0, 1]. Observe
that fn ◦ φ−1 is B([0, 1])-measurable for every n ∈ Z+. Then, in view of this, [5,
Theorem 5.4.10] and (3.2) we see that

Sn =
∫

X
( fn ◦ φ−1 ◦ φ)dF =

∫

[0,1]
( fn ◦ φ−1)dE, n ∈ Z+,

where E : B([0, 1]) → B(H) is a spectral measure given by E(�) = F(φ−1(�)) for
� ∈ B([0, 1]). This completes the proof. ��

In what follows, a sequence of operators {Sn}∞n=0 ⊆ B(H) is said to be uniformly
bounded (resp. uniformly bounded from below) if there exists M > 0 (resp. c > 0)
such that ‖Sn‖ ≤ M for all n ∈ Z+ (resp. ‖Snx‖ ≥ c‖x‖ for all x ∈ H and n ∈ Z+).

Denote by 	2(H) the Hilbert space ⊕∞
n=0H. Let us recall that by a unilateral oper-

ator valued weighted shift we understand an operator S ∈ B(	2(H)) associated with
a sequence of uniformly bounded invertible operators {Sn}∞n=0 ⊆ B(H) such that

Sen( f ) = en+1(Sn f ), f ∈ H, n ∈ Z+,

where en( f ) is the element of 	2(H) such that f is on n-th position and all other
positions contain the zero element ofH. For simplicity, we denote this by S ∼ {Sn}∞n=0.
It can be easily verified that

S∗en( f ) =
{
en−1(S∗

n f ) if n > 0,

0 if n = 0,
f ∈ H. (3.3)

Operator S ∈ B(	2(H)) is called a diagonal operator if there exists a uniformly
bounded sequence of invertible operators {Sn}∞n=0 ⊆ B(H) such that

Sen( f ) = en(Sn f ), f ∈ H, n ∈ Z+.
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The Wold-Type Decomposition form-Isometries 4163

If S ∈ B(	2(H)) is a diagonal operator associated with the sequence {Sn}∞n=0, then
we say that the elements from the sequence {Sn}∞n=0 are the elements located on the
diagonal of S.

Observe that, since m-isometric operators are bounded from below, it is easily
verified that the sequence of weights of an m-isometric unilateral operator valued
weighted shift is uniformly bounded from below (to prove this statement use the
inequality from the definition for boundedness from below to en( f ) for every n ∈ Z+
and f ∈ H). Furthermore, note that, in light of [11, Proposition 2.5(i)], S is an m-
isometry for m ∈ N if and only if

0 = ‖ f ‖2 +
m∑

p=1

(−1)p
(
m

p

)

‖S[p,s] f ‖2, s ∈ Z+, f ∈ H, (3.4)

where S[p,s] = Sp−1+s . . . Ss for p ∈ N.
Assume thatm ∈ Z+ and E : B([0, 1]) → B(H) is a spectral measure. A mapping

W : Z+ ×[0, 1] → (0,∞) is called an E-measurable family of polynomials of degree
at most m if the following assertions hold

(i) W (0, x) = 1 a.e. [E],
(ii) W (n, x) is a polynomial in n of degree at most m for E-almost every x ∈ [0, 1],
(iii) the functions W (n, x) and

√
W (n+1,x)
W (n,x) are B([0, 1])-measurable for every n ∈

Z+.

Observe that in the definition stated above the assumption that
√

W (n+1,x)
W (n,x) are

B([0, 1])-measurable for every n ∈ Z+ is superfluous. This particular assumption
follows directly from the others and basic properties of measurable functions. Hence,
we do not need to verify it while checking properties of an E-measurable family of
polynomials.

The following theorem is themain result of this section and yields a characterization
ofm-isometric unilateral operator valuedweighted shifts with positive and commuting
weights for m ∈ N.

Theorem 3.3 Suppose m ∈ N and {Sn}∞n=0 ⊆ B(H) is a uniformly bounded sequence
of invertible, positive and commuting operators. Then the following are equivalent:

(i) S ∼ {Sn}∞n=0 in an m-isometry,
(ii) there exist a spectral measure E : B([0, 1]) → B(H) and an E-measurable family

W of polynomials of degree at most m − 1 such that

Sn =
∫

[0,1]

√
W (n + 1, x)

W (n, x)
E(dx), n ∈ Z+.

Proof First, observe that Proposition 3.2 implies that there exist a spectral measure
E : B([0, 1]) → B(H) and a sequence of B([0, 1])-measurable functions {ξn}∞n=0
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4164 J. Kośmider

such that

Sn =
∫

[0,1]
ξndE, n ∈ Z+.

Moreover, since operators {Sn}∞n=0 are invertible, by [18, Proposition 4.19] we can
choose functions {ξn}∞n=0 so that their images are entirely contained within (0,∞).
Thus, in view of (3.4) and [18, Proposition 4.1] we see that S ∼ {Sn}∞n=0 is an m-
isometry if and only if

0 = ‖ f ‖2 +
m∑

p=1

(−1)p
(
m

p

)

‖S[p,s] f ‖2

= ‖ f ‖2 +
m∑

p=1

(−1)p
(
m

p

)∫

[0,1]
|ξ2p−1+s(x) . . . ξ2s (x)|〈E(dx) f , f 〉

= ‖ f ‖2 +
∫

[0,1]

m∑

p=1

(−1)p
(
m

p

)

ξ2p−1+s(x) . . . ξ2s (x)〈E(dx) f , f 〉, s ∈ Z+, f ∈ H

which, by Lemma 3.1(iii), is equivalent to

0 = 1 +
m∑

p=1

(−1)p
(
m

p

)

ξ2p−1+s . . . ξ2s , s ∈ Z+, a.e. [E]. (3.5)

(i)⇒(ii). Since S ∼ {Sn}∞n=0 is an m-isometry, (3.5) holds. We define an E-
measurable family W in the following way

W (n, x) =
{
1 if n = 0,

ξ2n−1(x) . . . ξ20 (x) if n ∈ N,
x ∈ [0, 1].

Observe that (3.5) is equivalent to

0 =
m∑

p=0

(−1)p
(
m

p

)
W (p + s, x)

W (s, x)
, s ∈ Z+, a.e. [E].

and, by [12, Proposition 2.1], the latter implies that W (n, x) is a polynomial in n of
degree at most m − 1 for E-almost every x ∈ [0, 1].

(ii)⇒(i). For the proof of this part it is enough to note that (3.5) holds using again
[12, Proposition 2.1]. Hence S ∼ {Sn}∞n=0 is an m-isometry. ��
Remark 3.4 (i) Observe that in Proposition 3.2 instead of [0, 1] one can choose

an arbitrary compact interval in R+ and modify the statement of Theorem 3.3
accordingly.
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(ii) It is easy to see that Theorem 3.3 generalizes [1, Theorem 2.1] which character-
izes m-isometric classical unilateral weighted shifts.

Let us recall some notation from [12]. Define an operator �: RZ+ → R
Z+ so that

�γ = γ ′ for γ = {γn}∞n=0 ∈ R
Z+ where γ ′

n = γn+1 − γn for n ∈ Z+. It is easily seen
that � is linear on R

Z+ . For n ∈ N and k ∈ Z+ set

(n)k =
{
1 if k = 0,
∏k−1

i=0 (n − i) otherwise.

Note that (n)k is a polynomial in n of degree k for any k ∈ Z+.
Suppose γ = (γ0, γ1, . . . ) is a sequence of functions such that γn : [0, 1] → R+

for every n ∈ Z+. We define

γ (x) = (γ0(x), γ1(x), . . . ), x ∈ [0, 1].

Let C be a class of operators. Following the definition from [13, Section 3] we say
that the problem of determining whether or not there exists an extension of a given
initial finite sequence of positive values to a sequence of weights for some unilateral
weighted shift so that the shift is in class C is called the completion problem for
operators in class C. We generalize this problem to unilateral weighted shifts with
operator weights.

The following result is a consequence of Theorem 3.3 and provides a solution to the
completion problem for m-isometric unilateral operator valued weighted shifts with
m − 1 initial weights which are positive and commuting (cf. [11, Theorem 3.3]).

Corollary 3.5 Suppose {Sn}m−2
n=0 ⊆ B(H)are positive, invertible, commuting operators

for some m ≥ 2 and E : B([0, 1]) → B(H) is a spectral measure such that Sn =∫
[0,1] ξndE for n ∈ {0, . . . ,m − 2}. Assume that there exist C, c ∈ (0,∞) such that

C >

∑m−1
k=0

(�kγ )0
k! (n + 1)k

∑m−1
k=0

(�kγ )0
k! (n)k

≥ c, n ≥ m, a.e. [E], (3.6)

and

C >

∑m−1
k=0

(�kγ )0
k! (m)k

γm−1
≥ c, a.e. [E], (3.7)

where γ = (1, ξ20 , . . . ,
∏m−2

k=0 ξ2k , 0, . . . ) is a sequence of functions. Then there exists
a sequence {Sn}∞n=m−1 ⊆ B(H) of operators such that S ∼ {Sn}∞n=0 is an m-isometric
unilateral operator valued weighted shift with positive and commuting weights.
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Proof Observe that γ is a sequence such that γn : [0, 1] → (0,∞) is a measurable
function for all n ∈ {0, . . . ,m−1}. Let us defineW : Z+ ×[0, 1] → (0,∞) such that

W (n, x) =
{

γn(x) for n ∈ {0, . . . ,m − 1},
∑m−1

k=0
(�kγ (x))0

k! (n)k for n ≥ m,
x ∈ [0, 1]. (3.8)

Now observe that W is an E-measurable family of polynomials of degree at most
m − 1 due to [12, formula (2.2)] and [12, Proposition 2.1]. Using the definition of γ

and (3.8) we can easily verify that

Sn =
∫

[0,1]
ξndE =

∫

[0,1]

√
γn+1(x)

γn(x)
E(dx)

(3.8)=
∫

[0,1]

√
W (n + 1, x)

W (n, x)
E(dx), n ∈ {0, . . . ,m − 2}.

Define Sn = ∫
[0,1]

√
W (n+1,x)
W (n,x) E(dx) for n ≥ m−1. In view of (3.6), (3.7), Lemma 3.1

and [18, Proposition 4.19], sequence {Sn}∞n=0 is a uniformly bounded sequence of
positive, invertible operators. Theorem 3.3 completes the proof. ��

The next example shows a useful application Corollary 3.5 and establishes a very
simple sufficient condition for existence of a solution to the completion problem
in class of 3-isometric unilateral operator valued weighted shifts with positive and
commuting weights for two initial weights.

Example 3.6 Suppose that S0, S1 ∈ B(H) are positive, invertible and commut-
ing operators. It follows from Proposition 3.2 that there exist a spectral measure
E : B([0, 1]) → B(H) and B([0, 1])-measurable functions ξ0, ξ1 : [0, 1] → (0,∞)

such that Sn = ∫
[0,1] ξndE for n ∈ {0, 1}. Suppose that there exist C , c ∈ (0,∞) such

that

C > 1 + ξ20 − 1 + n(ξ20 ξ21 − 2ξ20 + 1)

1 + n(ξ20 − 1) + n(n−1)
2 (ξ20 ξ21 − 2ξ20 + 1)

≥ c, n ≥ m, a.e. [E]

and

C >
1 + 3ξ20 ξ21 − 3ξ20

ξ20 ξ21
≥ c, a.e. [E]

This implies that (3.6) and (3.7) hold with γ given as in Corollary 3.5 . Thus,
it follows from Corollary 3.5 that there exists a sequence of positive, invertible and
commuting operators {Sn}∞n=2 such that S ∼ {Sn}∞n=0 is a 3-isometry and {Sn}∞n=0 is a
commuting family.
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Finally, let us observe that the solution to the 3-isometric completion problem
established in the above example is actually unique. This is a direct consequence of an
analogical uniqueness argument to the one used in [11, Theorem 3.3] for 2-isometries.
We generalize this remark in the result below.

Proposition 3.7 If m ≥ 2 and {Sn}m−2
n=0 ⊆ B(H) consists of positive, invertible and

commuting operators, then, if exists, the solution to the completion problem for m-
isometric unilateral operator valued weighted shifts for {Sn}m−2

n=0 is unique in the class
of unilateral shifts with positive and commuting weights.

Proof Suppose {Sn}∞n=m−1 and {S′
n}∞n=m−1 extend {Sn}m−2

n=0 to m-isometric unilateral
operator valued weighted shifts with positive and commuting weights. It follows
directly from (3.4) that

‖Sm−1 . . . S0 f ‖2 = (−1)m
(

− ‖ f ‖2 −
m−1∑

p=1

(−1)p
(
m

p

)

‖Sp−1 . . . S0 f ‖2
)

= ‖S′
m−1Sm−2 . . . S0 f ‖2, f ∈ H. (3.9)

Combined with the fact that the weights are invertible, positive and commuting this
implies that Sm−1 = S′

m−1. Using (3.9) with an analogical induction argument proves
that Sn = S′

n for every n ≥ m − 1. The verification of the last statement is left to the
reader. This concludes the proof. ��

4 TheWold-Type Decomposition form-Isometries

Following [19, Definition 1.1] we say that operator T ∈ B(H) admits the Wold-type
decomposition, if the following two hold

(i) R∞(T ) reduces T to a unitary operator,
(ii)

∨{T n(N (T ∗))}∞n=0 ⊕ R∞(T ) = H.

Observe that in the class of analytic operators condition (i) from the above definition
is trivially satisfied. Moreover, we say that T ∈ B(H) has the wandering subspace
property, if

∨{T n(N (T ∗))}∞n=0 = H. The last definition was introduced in [19,
Definition 2.4].

Before presenting the next example let us recall the definition of composition oper-
ators on directed graphs with one circuit from [13]. Let κ ∈ N, η ∈ N∪{∞}. Suppose

X = {x1, . . . , xκ } ∪
η⋃

i=1

{
xi, j : j ∈ N

}
,
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where {xi }κi=1 and {xi, j }ηi=1
∞
j=1 are disjoint sets of distinct elements of X . Assume

that (X ,A , μ) is a discrete measure space. Let φ be a self-map of X such that

φ(x) =

⎧
⎪⎨

⎪⎩

xi, j−1 if x = xi, j for some 1 ≤ i ≤ η and j ∈ N \ {1},
xκ if x = xi,1 for some 1 ≤ i ≤ η or x = x1,

xi−1 if x = xi for some i ∈ { j ∈ N : 2 ≤ j ≤ κ}.
(4.1)

AnoperatorCφ definedon L2(μ)withφ defined above is called a composition operator
on a directed graph with one circuit. For details and known results regarding this class
of operators the reader is referred to [13].

The following examplewhich shows that [4, Theorem2.5] does not hold for analytic
3-isometries (cf. [3, Example 3.1]).

Example 4.1 Suppose Cφ ∈ B(L2(μ)) is a composition operator on a directed graph
with one circuit with κ = η = 1. It follows from [13, Corollary 2.12] that Cφ is a
strict 3-isometry if and only if there exists a monomialw(x) = ax +b for some a > 0
and b ∈ R+ such that μ(x1,i ) = w(i) for i ∈ N. Assume that Cφ is a strict 3-isometry
such that b > 0 and Cφ satisfies the kernel condition. It follows from Theorem 2.6
and (4.1) that h is constant on x1 and x1,1, which combined with [13, (2.10)] implies
that

μ(x1) = (a + b)2

a
. (4.2)

Note that it is a direct consequence of the above that

N (C∗
φ) = { f ∈ L2(μ) : f (x1,1) = − f (x1)

(
1 + b

a

)
and f (x1,n) = 0 for n ≥ 2}.

For k ∈ Z+ set Mk = Ck
φ(N (C∗

φ)) and observe that

Mk ={ f ∈ L2(μ) : f (x1) = · · · = f (x1,k), f (x1,k+1) = − f (x1)
(
1 + b

a

)

and f (x1,n) = 0 for n > k + 1}. (4.3)

It can be now verified that M2 is not orthogonal to M3. Indeed, let f ∈ M2, g ∈ M3
be such that f (x1) = g(x1) = 1. Then

〈 f , g〉 (4.3)= f (x1)g(x1)μ(x1) +
∞∑

n=1

f (x1,n)g(x1,n)μ(x1,n)

= μ(x1) + μ(x1,1) + μ(x1,2) − μ(x1,3)
(
1 + b

a

)

(4.2)= (a + b)2

a
+ (a + b) + (2a + b) −

(
1 + b

a

)
(3a + b) = a �= 0.
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Hence condition (iii) from [4, Theorem 2.5] does not hold. Furthermore, it follows
from [13, Corollary 4.3] that Cφ is analytic.

Let us also note that in the above example Cφ is expansive (i.e. C∗
φCφ ≥ I ). This

can be inferred from [10, Lemma 2.3] and [13, (2.10)].
The following theorem establishes an equivalent condition for an analytic m-

isometry to admit the Wold-type decomposition with additional property regarding
orthogonality of images of the kernel of the adjoint of the operator under its powers
for m ≥ 2.

Theorem 4.2 Suppose T ∈ B(H) is an analytic m-isometry for some m ≥ 2. Then
the following are equivalent:

(i) T satisfies the (m − 1)-kernel condition,
(ii) spaces {T n(N (T ∗))}∞n=0 are orthogonal to each other and T admits theWold-type

decomposition.

Proof If m = 2, then the theorem follows directly from [4, Theorem 2.5]. Therefore,
assume that m ≥ 3 and define Mn = T n(N (T ∗)) for n ∈ Z+.

(i)⇒(ii). We begin with showing that spaces {Mn}∞n=0 are orthogonal to each other.
Observe that, thanks to Lemma 2.2 and (i), T satisfies the k-kernel condition for every
k ∈ N. Suppose that p ∈ Z+ and k ≥ p + 1. Then

〈T p f , T kg〉 = 〈T ∗T [p] f , T k−p−1g〉 = 0, f , g ∈ N (T ∗),

as T [p] f ∈ N (T ∗) due to the p-kernel condition. Hence {Mn}∞n=0 are orthogonal to
each other.

Due to the fact that T is analytic, in order to finish the proof it is sufficient to show
that closed linear span of {Mn}∞n=0 coincides withH. Before showing this let us prove
that

N (T ∗n) =
n−1⊕

k=0

Mk, n ∈ N. (4.4)

Indeed, suppose that (4.4) holds for some n ≥ 2. Let f ∈ N (T ∗(n+1)). Since, the range
of T n is closed, it follows from the kernel-range decomposition that f = T nh + g for
some h ∈ H and g ∈ N (T ∗n). Thus

0 = T ∗(n+1) f = T ∗T [n]h + T ∗(n+1)g = T ∗T [n]h,

and, hence, by the n-kernel condition and due to the fact that T [n] is invertible (see
Remark 2.1) we see that h ∈ N (T ∗). Moreover, if x ∈ Mn and z ∈ N (T ∗n), then
there exists y ∈ N (T ∗) such that

〈x, z〉 = 〈T n y, z〉 = 〈y, T ∗nz〉 = 0.
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HenceN (T ∗(n+1)) ⊆ Mn ⊕ N (T ∗n). In view of this and Proposition 2.3 we see that
(4.4) holds for n + 1. To complete the induction argument it is enough to repeat a
similar argument as above to prove (4.4) holds for n = 2.

Now, define A = ⋃∞
n=1N (T ∗n) and observe that due to the left-invertibility of T

we obtain

A⊥ =
{
f ∈ H : 0 = 〈 f , h〉 for all h ∈

∞⋃

n=1

N (T ∗n)
}

= { f ∈ H : f ∈ R(T n) = R(T n) for all n ∈ N}
= R∞(T ).

This combined with (4.4), [7, Corollary 2.10] and T being analytic implies that closed
linear span of {Mn}∞n=0 coincideswithH. Thus T admits theWold-type decomposition.

(ii)⇒(i). Let k ∈ N. Since T is analytic and admits the Wold-type decomposition,
the closed linear span of {Mn}∞n=0 coincides with H. This and the orthogonality of
subspaces {Mn}∞n=0 imply that for every h ∈ H there exists a sequence { fn}∞n=0 ⊆
N (T ∗) such that

Th =
∞∑

n=0

T n fn =
∞∑

n=1

T n fn, (4.5)

where the last equality can be deduced from the fact that f0 = 0 as Th is orthogonal
to N (T ∗) due to the kernel-range decomposition.

Observe that for h ∈ H and f ∈ N (T ∗) we have

〈T [k] f , Th〉 (4.5)= 〈T [k] f ,
∞∑

n=1

T n fn〉

=
∞∑

n=1

〈T [k] f , T n fn〉 =
∞∑

n=1

〈T k f , T n+k fn〉 = 0,

where the last equality follows from the fact that {Mn}∞n=0 are orthogonal to each other.��
The following corollary provides an affirmative answer to [3, Question 1.2] in

some subclass of operators by establishing a sufficient condition for an expansive
m-isometric operator to admit the Wold-type decomposition.

Corollary 4.3 An expansive m-isometric operator which satisfies the (m − 1)-kernel
condition for m ≥ 2 admits the Wold-type decomposition.

Proof Since for m = 2 this result is well known (see [19] and [4, Theorem 2.5]), we
limit our proof to the casem ≥ 3. Suppose that T ∈ B(H) is an expansivem-isometry.
Recall that it follows from [19, Proposition 3.4] that R∞(T ) is reducing for T and
T|R∞(T ) is unitary.
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Assume that T satisfies the (m−1)-kernel condition.Observe that the (m−1)-kernel
condition and m-isometricity are invariant under taking a restriction to a reducing
subspace (by Lemma 2.4 and [2, page 388], respectively). Hence the analytic part of
T has the wandering subspace property by Theorem 4.2 and therefore T admits the
Wold-type decomposition. ��

The following result is a generalization of [4, Theorem 2.5] (cf. [15, Theorem 4.1])
for m-isometries for m ≥ 2 and it is proved using similar techniques.

Theorem 4.4 Suppose that T ∈ B(H) is an analytic m-isometry for some m ≥ 2.
Then the following are equivalent:

(i) T satisfies the (m − 1)-kernel condition,
(ii) there exists a sequence of unitary isomorphisms {Vn}∞n=0 such that

(a) Vn : T nN (T ∗) → N (T ∗) for every n ∈ Z+,
(b) T is unitarily equivalent to a unilateral operator valued weighted shift S ∼

{Sn}∞n=0, where Sn = Vn+1T|T nN (T ∗)V−1
n for every n ∈ Z+.

Proof Note that for m = 2 this result is already proved (see [4, Theorem 2.5]). There-
fore, we limit our considerations to the case m ≥ 3. For the rest of the proof define
Mn = T n(N (T ∗)) for all n ∈ Z+.

(i)⇒(ii). It follows from Theorem 4.2 that T admits the Wold-type decomposition
and the subspaces {Mn}∞n=0 are orthogonal to each other. Since for every n ∈ Z+
the operator T|Mn : Mn → Mn+1 is a linear bijection, then the spaces {Mn}∞n=0 are
unitarily equivalent to each other (see [8, Problem 42]). Let Vn : Mn → M0 be the
above unitary isomorphism for all n ∈ Z+. It is now a matter of repeating the same
argument as in [4, Theorem 2.5] to show that VT = SV , where V : H → 	2(M0) is a
unitary diagonal operator with operators {Vn}∞n=0 located on its diagonal and S is the
unilateral operator valued weighted shift with weights {Vn+1T|MnV

−1
n }∞n=0 ⊆ B(M0).

This completes the proof of this implication.
(ii)⇒(i). Let k ∈ {1, . . . ,m − 1}. It is a matter of performing an easy computation

to verify that for f ∈ N (T ∗) we have

S[k]e0( f )
(3.3)= e0(S

∗
0 . . . S∗

k−1Sk−1 . . . S0 f ) = e0(T
[k] f ),

which implies that T satisfies the k-kernel condition. Hence, the proof is completed.
��

Observe that in the class of isometries condition (ii) fromTheorem4.2 and condition
(ii) from Theorem 4.4 are trivially satisfied. Those are well known facts and follow
directly from the proof of theWold decomposition (see [22, Chapter I, Theorem 1.1]).

The characterization from Theorem 4.4 can be used as a tool to determine whether
an analyticm-isometry is unitarily equivalent to a unilateral operator valued weighted
shift. For example Theorem4.4 combinedwith [13, Theorem4.9] implies that the class
of analytic m-isometric composition operators on a directed graph with one circuit is
essentially different than the class of m-isometric unilateral operator valued weighted
shifts as there are no 2-isometric composition operators on a directed graph with one
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circuit that satisfies the kernel condition. The following result generalizes this remark
to the class of m-isometric composition operators on a directed graph with one circuit
having one element.

Corollary 4.5 Suppose that Cφ ∈ B(L2(μ)) is a composition operator on a directed
graph with one circuit with κ = 1, η ∈ N ∪ {∞} and Cφ is an m-isometry for m ≥ 2.
Then Cφ is not unitarily equivalent to any unilateral operator valued weighted shift.

Proof Since Cφ is an m-isometry, it can be deduced from [13, Corollary 2.12] that for
all i ≤ η there exists a real polynomial wi of degree at most m − 2 such that

μ(xi, j ) = wi ( j), j ∈ N. (4.6)

Assume that Cφ is unitarily equivalent to unilateral operator valued weighted shift.
Since, by [13, Corollary 4.3], operator Cφ is analytic, it follows from Theorem 4.4
that Cφ satisfies the (m − 1)-kernel condition. Hence, by Lemma 2.2, Cφ satisfies the
k-kernel condition for every k ∈ N. This combined with (4.6), Theorem 2.6 and [13,
(2.10)] implies that

1 + 1

μ(x1)

η∑

k=1

wk(1) = wi ( j + 1)

wi ( j)
, i ≤ η, j ∈ N. (4.7)

Set a = 1 + 1
μ(x1)

∑η
k=1 wk(1) and observe that a > 1. It follows from (4.6) and

(4.7) that wn( j + 1) = a jwn(1) for j ∈ N. This contradicts the fact that wi is a
polynomial for every i ≤ η and completes the proof. ��

Finally, we give two simple examples of applications of Theorem 4.4 to show that
certain analytic m-isometric operators are unitarily equivalent to unilateral operator
valued weighted shifts.

Example 4.6 Assume H = C. Let m ≥ 2 and s, t be polynomials in real variable of
degree exactlym−1 having positive values onZ+. Set S ∼ {Sn}∞n=0 and T ∼ {Tn}∞n=0,

where Sn =
√

s(n+1)
s(n)

I and Tn =
√

t(n+1)
t(n)

I for n ∈ Z+. It is a direct consequence
of Theorem 3.3 that both S and T are m-isometries. Moreover, each one of them
satisfies the k-kernel condition for every k ∈ N and, hence, due to Lemma 2.4 so does
A := S ⊕ T . Now, observe that Theorem 4.4 implies that A is unitarily equivalent to
operator valued weighted shift.

Example 4.7 Let T ∈ B(	2) be given in the following way

T (x0, x1, . . . ) =
( s0
2

(x0 + i x1),
s0
2

(i x0 − x1),
s1√
2
(x0 − i x1), s2x2, s3x3, . . .

)
,

where (x0, x1, . . . ) ∈ 	2 and sn =
√

s(n+1)
s(n)

for some real polynomial s of degree at
most 2 having positive values on Z+. It is a matter of performing routine calculations
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to verify that

T ∗(x0, x1, . . . ) =
( s0
2

(x0 − i x1) + s1√
2
x2,

s0
2

(−i x0 − x1) + s1√
2
i x2, s2x3, . . .

)

where (x0, x1, . . . ) ∈ 	2 and

N (T ∗) = {(x0, x1, . . . ) ∈ 	2 : x0 = i x1 and xn = 0 for n ≥ 2}.

One can check that T is an analytic 3-isometry by checking (2.1) holds on the orthonor-
mal basis and by computingR∞(T ). Since T satisfies the 2-kernel condition, it follows
fromTheorem4.4 that T is unitarily equivalent to a unilateral operator valuedweighted
shift. Moreover, it can be easily verified that weights of the shift can be defined on C

since N (T ∗) is a one dimensional Hilbert space.

Acknowledgements The authorwould like to thankZenon Jan Jabłoński for helpful discussions concerning
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