
ar
X

iv
:1

90
6.

04
09

4v
4

 [
m

at
h.

C
O

]
 3

 M
ar

 2
02

1

Discrete Mathematics and Theoretical Computer Science DMTCS vol. 23:1, 2021, #2

Efficient Enumeration of Non-isomorphic

Interval Graphs

Patryk Mikos∗

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University,

Kraków, Poland

received 27th Feb. 2020, revised 15th Sep. 2020, accepted 23rd Dec. 2020.

Recently, Yamazaki et al. provided an algorithm that enumerates all non-isomorphic interval graphs on n vertices

with an O
(

n4
)

time delay. In this paper, we improve their algorithm and achieve O
(

n3 log n
)

time delay. We also

extend the catalog of these graphs providing a list of all non-isomorphic interval graphs for all n up to 15.

Keywords: combinatorics, graph theory, enumeration, interval graphs

1 Introduction

Graph enumeration problems, besides their theoretical value, are of interest not only for computer scien-

tists, but also to other fields, such as physics, chemistry, or biology. Enumeration is helpful when we want

to verify some hypothesis on a quite big set of different instances, or find a small counterexample. For

graphs it is natural to say that two graphs are ”different” if they are non-isomorphic. Many papers dealing

with the problem of enumeration were published for certain graph classes, see Kiyomi et al. (2006); Saitoh

et al. (2010, 2012); Yamazaki et al. (2018). A series of potential applications in molecular biology, DNA

sequencing, network multiplexing, resource allocation, job scheduling, and many other problems, makes

the class of interval graphs, i.e. intersection graphs of intervals on the real line, a particularly interesting

class of graphs. In this paper, we focus on interval graphs, and our goal is to find an efficient algorithm

that for a given n lists all non-isomorphic interval graphs on n vertices. It is well-known that the number

of such graphs is roughly nnc for some constant c, see Acan (2018); Hanlon (1982); J.C. Yang (2017). For

that reason, we measure the efficiency of the enumeration algorithm by the worst-case time delay between

output of any two successive graphs.

1.1 Previous work

Yamazaki et al. (2018) presented an enumeration algorithm for non-isomorphic interval graphs that works

with the worst-case time delay O
(

n6
)

, and recently Yamazaki et al. (2019) improved it to O
(

n4
)

. Their

algorithm is based on the reverse search method, invented by Avis and Fukuda (1996), and in its general

∗Research was partially supported by the National Science Center of Poland under grant no. 2014/14/A/ST6/00138.

ISSN 1365–8050 © 2021 by the author(s) Distributed under a Creative Commons Attribution 4.0 International License

http://arxiv.org/abs/1906.04094v4

2 Patryk Mikos

form works in the following way. Let C be a family of graphs we want to enumerate, and let G1, . . . , Gk ∈
C be some special graphs called roots. We define a family forest F which spans C, and consists of k rooted

trees T1, . . . , Tk such that the root of Ti is Gi. For graphs that are not roots, let par : Cr{G1, . . . , Gk} →
C be the parent function. In order to enumerate all graphs in the family C, we enumerate all graphs that

belong to each tree independently, and to enumerate all graphs in the tree Ti we use any tree traversal

algorithm like BFS or DFS. The most time consuming operation in the tree traversal is computing the

children of a graph G. From the definition, children of G are those graphs G′ ∈ C whose parent is G.

Hence, if we want to design a fast enumeration algorithm that uses this technique, we need to carefully

define the parent function. Yamazaki et al. (2019) used the fact that for every interval graph G = (V,E)
that is not a complete graph, there is at least one edge e such that the graph Ge = (V,E ∪ {e}) is also an

interval graph. They defined the only root G1 to be a complete graph on n vertices, and par(G) = Ge,

where the edge e is uniquely defined - for more details see Yamazaki et al. (2019). The consequence

of this approach is the fact that for every graph G on n vertices there are at most O
(

n2
)

candidates

for the children of G in F , and so this number does not depend on the size of the enumerated family.

Moreover, the authors observed that in order to enumerate only non-isomorphic graphs, it is enough to

filter out isomorphic copies from the set of children. Isomorphism test in the class of interval graphs is

an easy problem thanks to MPQ-trees, see Section 2. Hence, to compute the set of children for a graph

G = (V,E), the authors consider all graphs Ge = (V,E r {e}). For each of them, they check whether

Ge is an interval graph using some linear time recognition algorithm. Then, if Ge is an interval graph, they

check whether G = par(Ge), and build a corresponding MPQ-tree. Finally, they store a set of children

trees, effectively removing all duplicates.

1.2 Our results

In this paper we revisit the work of Yamazaki et al. and show how to modify their enumeration algorithm

to significantly reduce the worst-case time delay between the output of two successive graphs. Our key

observation is the fact that having an MPQ-tree corresponding to a graph G = (V,E) we are able to list

all edges e such that a graph Ge = (V,E r {e}) is an interval graph. Moreover, for each such edge we

show how to build an MPQ-tree corresponding to the graph Ge without constructing it explicitly.

1.3 Organization of this paper

In the next section we introduce concepts and definitions that are widely used in this paper, and also

provide a detailed description of MPQ-trees along with their most important properties. In Section 3,

we present a total ordering over all MPQ-trees, define a canonical MPQ-tree using this ordering, and

also present a fast algorithm that for a given MPQ-tree T computes its canonical form T ′. In Section 4

we consider an MPQ-tree T corresponding to an interval graph G = (V,E), and characterize edges e
such that the graph Ge = (V,E r {e}) is also an interval graph. Moreover, for every edge e we either

show a linear time algorithm that produces a string representing Ge if it is an interval graph, or show

an induced chordless cycle on four vertices or an asteroidal triple in Ge that certifies that Ge is not an

interval graph. In Section 5 we develop data structures and algorithms that make use of combinatorial

characterization from Section 4 and present a fast algorithm which for a given MPQ-tree lists all edges

e such that Ge is an interval graph. Finally, in Section 6 we show how to combine all parts together

and build the graph enumeration algorithm. We also show the worst-case performance analysis of our

algorithm in this section. The last section contains a discussion of some implementation heuristics that do

not change the worst-case analysis, but significantly speedup the execution.

Efficient Enumeration of Non-isomorphic Interval Graphs 3

2 Preliminaries

In this paper we consider only simple graphs without loops and multiple edges. We use the standard

notations for graphs, so n = |V (G)| andm = |E(G)|. For a graphG = (V,E) and a pair of vertices i, j ∈
V , we denote G+ (i, j) a graph G′ = (V,E ∪ {(i, j)}), and G − (i, j) a graph G′ = (V,E r {(i, j)}).
A graph G = (V,E) with a vertex set V = {1, . . . , n} is an interval graph if there is a set of intervals

I = {I1, . . . , In} on the real line such that (i, j) ∈ E iff Ii ∩ Ij 6= ∅. The set I is called an interval

representation of the graph G. For an interval graph G, we say that an edge (i, j) ∈ E(G) is an interval

edge if G − (i, j) is also an interval graph. A sequence S of length 2n is called a string representation

if each element x ∈ {1, . . . , n} appears exactly two times in S. Note that a string representation S
encodes an interval graph in a natural way. For every x ∈ {1, . . . , n} let first(x) denote the index of

the first appearance of x in S, second(x) denote the second one, and x is represented by an interval

Ix = [first(x), second(x)].

2.1 PQ-trees

It is easy to notice that an interval graph can have many different interval representations. Lueker and

Booth (1979) introduced a data structure, called a PQ-tree, which encodes all normalized interval repre-

sentations of an interval graph. A PQ-tree is a rooted labeled plane tree composed of leaves and two kinds

of internal nodes called P-nodes, and Q-nodes respectively. The left to right ordering of the leaves of a

PQ-tree T is called the frontier of T . We say that T encodes an interval graph G, if each maximal clique

of the graph G is stored in exactly one leaf of T , and each vertex v ∈ V (G) belongs to a consecutive

sequence of cliques in the frontier of T . Having a PQ-tree T one can obtain another PQ-tree T ′ which

is equivalent to T using the following two operations: arbitrarily permute the children of a P-node, or

reverse the order of the children of a Q-node. The crucial property of a PQ-tree T is the fact that for every

permutation σ of maximal cliques of the graph G such that each vertex belongs to a consecutive sequence

of cliques, there is a PQ-tree T ′ that is equivalent to T , and frontier of T ′ represents σ. In other words,

each normalized interval representation of the graph G is represented by some tree equivalent to T .

2.2 MPQ-trees

PQ-trees are quite a simple and easy to understand data structure representing interval graphs, but un-

fortunately they may occupy up to O
(

n2
)

space. To reduce the space consumption, Korte and Möhring

(1989) presented modified PQ-trees called MPQ-trees. In an MPQ-tree, we do not store maximal cliques

in leaves, but we assign to each P-node and each child of a Q-node a set of vertices in such a way that

vertices laying on a path from the root of the tree to some leaf represent a maximal clique in G, see Figure

1C for an example. For a Q-node Q with children T1, . . . , Tk, we denote Si the set of vertices assigned to

Ti, and call it the i-th section of Q. Note that, each vertex belongs to the consecutive sequence of maximal

cliques, so it has to belong to consecutive sequence of sections of a Q-node. Hence, in order to limit the

used space, we can store the information about the vertex x only in the first and last section it belongs

to. Thanks to this modification, an MPQ-tree is an O(n) space representation of an interval graph. In

this paper we show several drawings of MPQ-trees. We represent P-nodes as circles, and Q-nodes as

rectangles divided into smaller rectangles representing sections of the Q-node. For instance, in the Figure

1C the root is an empty P-node, and the vertex 6 belongs to the sections S2 and S3 of the only Q-node.

4 Patryk Mikos

A)

1

3

2

4

5

6

8

7

13

11

9 12

10

B)

1 5
8

6
3
2
4 7

13
11 10

9 12

C)

∅

1

2, 4 7 13

11 10

9 12

5
3

6
8

D) 1, 1, 5, 3, 2, 4, 4, 2, 6, 3, 8, 7, 7, 6, 5, 13, 11, 9, 9, 12, 12, 11, 10, 10, 13, 8

E) 1, 1, 2, 3, 4, 5, 5, 4, 6, 3, 7, 8, 8, 6, 2, 9, 10, 10, 11, 12, 12, 13, 13, 11, 9, 7

Fig. 1: A) An interval graph G, B) Its interval representation I, C) Its MPQ-tree T , D) String representation S of

tree T , E) Canonical string representation

2.3 Known results

During past decades, many researchers published their results on constructing both PQ-trees and MPQ-

trees. Those trees were mostly used to determine whether a given graph G = (V,E) is an interval graph

or not. Lueker and Booth (1979) in their recognition algorithm used PQ-trees and proved that for a given

graph G the corresponding PQ-tree can be computed in O(n+m) time. Korte and Möhring (1989)

presented analogous result for MPQ-trees. In this paper we are most interested in work of T. Saitoh

(2007) who presented an algorithm that constructs an MPQ-tree for a given interval graph representation

and works in O(n logn) time, or O(n) if the endpoints of intervals are given in an ascending order.

Theorem 1 (T. Saitoh (2007) Thm.12) If the graph G is given as an interval representation such that

the endpoints are sorted by the coordinates, then there is an algorithm that produces an MPQ-tree corre-

sponding to G in O(n) time.

Clearly, having a string representation of the graph G, we can produce an interval representation satis-

fying the conditions of Theorem 1 in O(n) time. Hence, we have the following corollary.

Corollary 2 There is an algorithm that for a given string representation S of the graph G builds a cor-

responding MPQ-tree T in O(n) time.

Before we proceed to technical definitions and lemmas, we provide some naming conventions we are

going to use in the rest of this paper. To avoid a confusion when talking about elements of a graph and

elements of a tree, we always refer elements of a graph as vertices and elements of a tree as nodes. For a

vertex v of a graph G, we denote node(v) the node of a corresponding MPQ-tree T such that v belongs

to the set assigned to that node. For a node with k subtrees T1, . . . , Tk, we denote Vi the set of all vertices

that are assigned to the nodes of a subtree Ti. If Vi = ∅, then we say that a subtree Ti is empty. For a

Q-node we say that a vertex v has its left endpoint in a section Sl(v), if v belongs to Sl(v) and does not

belong to any other section Sb with b < l(v). Analogously, we say that v has its right endpoint in Sr(v),

if v belongs to Sr(v) and does not belong to any other section Sb with b > r(v). Vertex v is contained in

sections Sa, . . . , Sb, if a 6 l(v) < r(v) 6 b.

Efficient Enumeration of Non-isomorphic Interval Graphs 5

For an MPQ-tree T we define a 2n-element string S called string representation of T . This string is

built recursively over the structure of T . For a P-node we first output all vertices that belong to that node,

then recursively string representations of the children from left to right, and at the end yet again all vertices

that belong to that node, but now in the reversed order. Hence, the string representation for a P-node with

vertices {1, . . . , k} and no children is 123 . . . (k − 1)kk(k − 1) . . . 321. A string representation for a Q-

node is a concatenation of string representations for its sections. The string for a section Si starts with

vertices that have its left endpoint in Si, then there is a string for a subtree Ti, and finally vertices that

have its right endpoint in Si. It is easy to see that string representation of T is also a string representation

of the graph corresponding to T . We also define a normalized string representation of T . Consider a

permutation σ : {1, . . . , n} → {1, . . . , n}, and a string σ(S), which results from the application of σ to

each element of S. Normalized string representation is the lexicographically smallest string σ(S) among

all permutations σ. Finally, we recall some properties of MPQ-trees produced by the Algorithm from

Theorem 1.

Lemma 3 (Korte and Möhring (1989); Uehara (2005)) In the MPQ-tree constructed in Theorem 1 for

every Q-node with k children we have:

a) V1 6= ∅ and Vk 6= ∅,

b) S1 ⊂ S2 and Sk ⊂ Sk−1,

c) Si−1 ∩ Si 6= ∅ for 2 6 i 6 k,

d) Si−1 6= Si for 2 6 i 6 k,

e) (Si ∩ Si+1)r S1 6= ∅ and (Si−1 ∩ Si)r Sk 6= ∅ for 2 6 i 6 k − 1, and

f) (Si−1 ∪ Vi−1)r Si 6= ∅ and (Si ∪ Vi)r Si−1 6= ∅ for 2 6 i 6 k.

Moreover:

g) there are no two empty P-nodes such that one of them is a parent of the other,

h) there is no P-node that have only one child which root is also a P-node, and

i) P-nodes have no empty children

see Figure 2.

∅

∅

T1 T2

T3

∅

T1 T2 T3

→

P1

P2

T1
. . . Tk

→
P1 + P2

T1
. . . Tk

Fig. 2: MPQ-trees do not contain two consecutive empty P-nodes (left), or a P-node with only one child which root

is also a P-node (right).

6 Patryk Mikos

It is worth noting that MPQ-trees describe interval graph in a natural recursive way. If G consists of

at least 2 connected components, then the root node of MPQ-tree T corresponding with G is an empty

P-node, and each subtree corresponds to each connected component of G. If G is connected an vertices

vi1 , . . . , vik are universal in G (vertex is universal if it is connected to all other vertices), then the root of

T node is a P-node containing vi1 , . . . , vik . In the remaining cases the root of T is a Q-node.

3 Canonical MPQ-tree

In this section, we define a total ordering ≺ on MPQ-trees. One may notice that the lexicographical order

on string representations is a total ordering on MPQ-trees, but for complexity reasons we introduce a

different one. Denote |T | the number of vertices contained in the tree T , c(T) the number of children

of the root of T , and ex(T) the number of vertices that belong to the root of T . We assign a tuple

tT = 〈|T |, ex(T), c(T)〉 ∈ N
3 to every tree T , and say that if tT1

is lexicographically smaller than tT2
,

then T1 ≺ T2. For two trees T1 and T2 such that tT1
= tT2

, we say that T1 ≺ T2, if the normalized string

representation of T1 is lexicographically not greater than normalized string representation of T2. We say

that MPQ-tree T is in canonical form, if for every other tree T ′ representing the same graph G we have

T ≺ T ′. A string S is a canonical string, if it is a normalized string representation of a canonical tree.

Observe that if T is in a canonical form, then all subtrees of T are in a canonical form. Clearly, if some

subtree of T is not in a canonical form, then we may rotate it and obtain a lexicographically smaller string.

Theorem 4 Two interval graphs G1 and G2 are isomorphic if and only if their canonical strings S1 and

S2 are equal.

Theorem 5 There is an algorithm that for every MPQ-tree T computes its canonical form in O(n logn)
time.

Proof: At the very beginning, we shall compute a function g that for every vertex v will describe its rela-

tive position among all vertices from node(v). We compute this function for each P-node independently,

and for all Q-nodes collectively. For a P-node with j vertices z1, . . . , zj , we assign g(zi) = i. Thus,

we can compute the function g for all P-nodes in O(n) time. In order to compute this function for all

Q-nodes, at first we assign a tuple 〈l(v), r(v)〉 to each vertex v which belongs to some Q-node. Then we

sort all tuples using radix sort algorithm, and visit vertices in the order determined by their tuples. For

each Q-node we keep a local counter that starts with 1 and increases each time we visit a vertex from this

node. Thus, because all vertices are from the set {1, . . . , n}, and each Q-node has a linear in terms of n
number of sections, we compute this function for all vertices in O(n) time.

We shall construct a function f that assigns an integer f(T ′) > n to every subtree T ′ of a tree T in

such a way that T1 ≺ T2 ⇔ f(T1) 6 f(T2). Simultaneously we will rotate subtrees so that they are in

canonical form. At first, we compute tuples tT ′ for each subtree T ′ of a tree T . Clearly, it can be easily

done in O(n) time. Then, we sort the tuples lexicographically in O(n) using radix sort algorithm. In the

next phases, we inspect nodes of tree T that have the same tuple 〈|T ′|, ex(T ′), c(T ′)〉, and we do it from

the smallest tuples to the biggest ones. Observe that, when we define the value of the function f for T ′,

the values for all subtrees of T ′ are already computed.

All subtrees of T ′ are in a canonical form, so in order to compute a canonical form of T ′, we need to

determine the order of its children. If the root of T ′ is a P-node, then we use integers f(Ti) as keys for

children, and sort them in O(c log c) time, where c = c(T ′). If the root of T ′ is a Q-node Q, then we may

Efficient Enumeration of Non-isomorphic Interval Graphs 7

leave it in the form it is or reverse it. To decide what to do, we compute a special string representation S∗,

which is similar to the string representation, but for each vertex v that belongs to Q we put g(v) instead

of v, and instead of inserting the whole string for a subtree Ti, we put a single number f(Ti). Hence, the

produced string has length 2 ∗ ex(T ′) + c(T ′) and is produced in time proportional to its length. We also

produce similar string for a rotated node, and if that string is lexicographically smaller than the original

one, then we rotate Q. Otherwise, we do nothing.

We have just computed canonical forms for all subtrees with the same tuple. For each of them we

produce a special string, and sort those strings lexicographically. Finally, we assign values from the set

{F + 1, F + 2, . . .}, where F is the maximal number assigned to trees with lexicographically smaller

tuples (or F = n if there are no smaller). We assign those numbers according to the computed order

giving the same value to the subtrees with the same special string representation, and that finishes the

algorithm description.

Now, we prove the algorithm works in the declared time. As we mentioned before, the computation

of the function g is linear in time. The same applies to the computation and sorting for the node tuples.

Sorting children of a P-node with c children takes O(c log c). Hence, because all P-nodes cannot have

more than O(n) children in total, we conclude that sorting children for all P-nodes takes no more than

O(n logn) time. The length of a special string for a Q-node with j vertices and k sections is O(j + k).
Thus, the total processing time for all Q-nodes is linear in terms of n.

The only thing we have not counted yet is the time spent on sorting subtrees with the same tuple. Note

that for a tuple 〈s, e, c〉, each special string has length exactly 2e+ c. Let nsec be the number of subtrees

having a tuple 〈s, e, c〉. Sorting process for those subtrees takes no more than O((e+ c)nsec lognsec).
Thus, all sortings together take O(

∑

sec (e + c)nsec lognsec). Note that nsec 6 n, so we only need to

show that
∑

sec (e+ c)nsec is O(n). But, clearly
∑

sec ensec = n since this sum counts vertices in all

nodes. Similarly,
∑

sec cnsec equals the number of edges in T , and we are done. ✷

4 Interval edges

In this section we present a series of lemmas that characterize the interval edges for the interval graph G.

Moreover, for each interval edge (x, y), we also present a linear in terms of n algorithm that produces a

string representation for the interval graph G − (x, y). For an edge (x, y) that is not an interval edge, we

prove the existence of an induced chordless cycle on four vertices or an asteroidal triple in G − (x, y).
The characterization does not use the mere graph G, but the corresponding MPQ-tree T instead.

First, let us introduce an useful definition. We say that x is over y in T , if (x, y) ∈ E(G) and node(x)
is the lowest common ancestor of node(x) and node(y) in T . Notice that, if there is an edge (x, y) in the

graph G, then x is over y, or y is over x. Now, we make an easy observation on interval edges.

Observation 6 If there are at least two vertices z1 and z2 such that both x and y are over z1 and z2, and

there is no edge (z1, z2), then (x, y) is not an interval edge.

Proof: Vertices x, z1, y and z2 in that order form a cycle of length 4. We assumed that there is no edge

between z1 and z2, so if there is no edge between x and y, then this cycle is chordless in G − (x, y), see

Figure 3. Hence, G− (x, y) is not a chordal graph and so not an interval graph. ✷

8 Patryk Mikos

x y

z1 z2 x

y

z1

z2

Fig. 3: An induced C4 after removing edge (x, y).

The above observation is useful when we want to prove that the edge (x, y) is not an interval edge.

However, in cases when (x, y) is an interval edge, we want to show a linear time algorithm that produces

a string representation for a graph G− (x, y). The following lemma, we call the swapping lemma, comes

handy when we try to produce the mentioned string. It shows when we can swap two consecutive elements

in a string representation without adding or removing any edges to the represented graph.

Lemma 7 Let S1 and S2 be string representations, such that S2 is created from S1 by swapping elements

at positions i and i + 1 for some i. Denote a the element at the i-th position in S1, and b the element at

the (i+ 1)-th position (S1 =ab.. and S2 =ba..). S1 and S2 represent the same interval graph iff

both elements at swapped positions represent either left endpoints or right endpoints.

Proof: Clearly, at most one edge can be added or removed by swapping those two elements. If we swap

the left endpoint of a and the right endpoint of b, then we remove an edge (a, b). If we swap the right

endpoint of a and the left endpoint of b, then we add an edge (a, b) which is not present in S1. If both

elements represent left endpoints, then right endpoints for both a and b are to the right of i+ 1, hence no

edge is added or removed. Similar argument works when both elements represent right endpoints. ✷

Our aim is to characterize all interval edges encoded by an MPQ-tree T . Hence, as an input we are

given an MPQ-tree T and some edge (x, y) ∈ E(G). Without loss of generality, we assume that x is over

y in T , and we work under this assumption in the following subsections. We split our argument into cases

according to the relative position of node(x) and node(y) in T .

4.1 x and y belong to the same P-node

At first, we consider the case where both x and y belong to the same P-node P in T . We show that under

this assumption, the edge (x, y) is an interval edge if and only if P is a leaf in T .

Lemma 8 If node(x) = node(y) is a P-node that is not a leaf, then (x, y) is not an interval edge.

Proof: Let P be the considered common P-node, and assume it has j subtrees for some j > 1. If j > 2,

then by Lemma 3i let z1 ∈ V1 and z2 ∈ V2. Clearly, there is no edge between z1 and z2 and both x and y
are over z1 and z2. Hence, Observation 6 implies that (x, y) is not an interval edge. Thus, P has exactly

one subtree, and according to Lemma 3h, its root has to be a Q-node, see Figure 4. Moreover, Lemma

3a implies, that the first and last sections of a Q-node have nonempty subtrees. Let z1 belong to the first

subtree, and z2 belong to the last one. Yet again, conditions of the Observation 6 are satisfied, so (x, y) is

not an interval edge. ✷

Lemma 9 If node(x) = node(y) is a P-node that is a leaf, then (x, y) is an interval edge. Moreover,

there is a linear time algorithm that produces a string representation for the graph G− (x, y).

Efficient Enumeration of Non-isomorphic Interval Graphs 9

x, y

S1
. . . Sk

T1 Tk

x, y

T1 T2

Fig. 4: Removing an edge from a P-node that is not a leaf leads to an induced C4 cycle.

Proof: Without loss of generality assume that x < y, and consider the canonical string S for the MPQ-tree

T . Clearly, S is of the form S = LAxByCC̄yB̄xĀR, see Figure 5. In order to remove the edge (x, y) we

find the first and the last occurrence of x in S. Then, until x does not occupy two consecutive positions, we

swap S[i] with S[i+ 1], and S[j] with S[j − 1], where i denotes the first occurrence of x and j denotes

the second. Next, we do the same for y, and as a result we get a string such that both y’s are next to

each other and are surrounded by both x’s, see Figure 5c. Finally, we swap the first occurrence of y with

the second occurrence of x, effectively removing the edge (x, y). Clearly, this procedure runs in O(n)
time, but we have to ensure that it does not add or remove any other edge. Note that, all modifications are

performed in a substring of S that represents a clique, and is of the form z1z2 . . . zkzk . . . z2z1. Hence,

each swapping operation - except the last one - swapped either two left endpoints or two right endpoints.

Thus, Lemma 7 ensures that no edge was added or removed during this process. Finally, during the last

swap x and y occupy four consecutive indexes. Hence, the only affected vertices are x and y.

prefix PNode sufix

L|AxByCC̄yB̄xĀ|R
L|AByCxxC̄yB̄Ā|R
L|ABCxyyxC̄B̄Ā|R
L|ABCxxyyC̄B̄Ā|R

a)

b)

c)

d)

Fig. 5: Removing an edge from a leaf P-node.

✷

4.2 x and y belong to the same Q-node

The next case is when both vertices belong to the same Q-node. Here we show that (x, y) is an interval

edge if and only if x and y have exactly one common section and the subtree of this section represents a

clique (possibly empty).

Lemma 10 If node(x) = node(y) is a Q-node, then (x, y) is not an interval edge if:

1. x and y have more than one common section in node(x) = node(y), or

2. a subtree of the common section does not represent a clique (possibly empty).

10 Patryk Mikos

Proof: Assume that there is a common section Si and its nonempty subtree Ti that does not represent a

clique. Hence, there are at least two vertices z1 and z2 in Vi such that there is no edge between them,

otherwise Ti would represent a clique. Thus, Observation 6 implies that (x, y) is not an interval edge.

Moreover, if there are two common sections Si and Sj such that both of them have nonempty subtrees Ti

and Tj respectively, then we may choose z1 ∈ Vi and z2 ∈ Vj and use the same argument. This proves

that common sections have empty subtrees except at most one which represents a clique. Now, assume

that there is more than one common section ie. Si, Si+1, . . . , Sj−1, Sj , and without loss of generality Si

has an empty subtree. Lemma 3f implies that there is a vertex z1 for which the section Si is the last one

(z1 does not belong to sections Si+1, . . . , Sj). Notice that z1 /∈ {x, y}, otherwise j = i. If there is a

nonempty subtree Ta for some i < a 6 j, then we choose z2 ∈ Va, and Observation 6 leads to an induced

chordless cycle. Hence, all common subtrees are empty and Lemma 3f gives us a vertex z2 for which Sj

is the first section. Observation 6 for vertices x, y, z1 and z2 finishes the proof. ✷

Lemma 11 If node(x) = node(y) is a Q-node, x and y have exactly one common section Si in it, and the

subtree Ti represents a clique, then (x, y) is an interval edge. Moreover, there is a linear time algorithm

that produces a string representation for the graph G− (x, y).

Proof: Again, we assume that x < y and consider the canonical string S for the MPQ-tree T , but in this

case S has a more complex form than in the Lemma 9. In fact, it is of the formP1xP2L1yL2ViV̄iR1xR2S1yS2,

where L1 ∪ L2 represents the left endpoints of vertices from Si, R1 ∪ R2 represents the right endpoints

of vertices from Si, and Vi ∪ V̄i represents a clique from the subtree, see Figure 6. In order to remove the

edge (x, y), at first we need to determine for each element in S whether it represents the left or the right

endpoint. It can be easily done in O(n), since all elements in S belong to the set {1, . . . , n}. The next

phase swaps the first occurrence of y with its successor until the next element represents a right endpoint.

Analogously, we swap the second occurrence of x with its predecessor until the next element represents

a left endpoint. Clearly, because of Lemma 7 we did not add or remove any edge till this moment, and S
looks like in Figure 6c. Finally, we can remove the edge (x, y) by swapping the first occurrence of y with

the second occurrence of x, that in fact occupy consecutive positions in S.

prefix section Si sufix

P1xP2|L1yL2ViV̄iR1xR2|S1yS2

P1xP2|L1L2ViyV̄iR1xR2|S1yS2

P1xP2|L1L2ViyxV̄iR1R2|S1yS2

P1xP2|L1L2VixyV̄iR1R2|S1yS2

a)

b)

c)

d)

R
x

y
L

Ti

Si

. . .

. . .

Fig. 6: Removing an edge from the same Q-node.

✷

4.3 x and y belong to different nodes.

In the previous two subsections, we provided a full classification for the cases where x and y belong to

the same node in T . In this subsection, we consider the cases where x and y belong to different nodes in

Efficient Enumeration of Non-isomorphic Interval Graphs 11

T . Before we present our results in those cases, we introduce a terminology that allows us to describe a

relative position of node(x) and node(y) in T .

For a Q-node with k sections S1, . . . , Sk, we say that the section Sa is a central section if 1 < a < k.

Sections S1 and Sk are called non-central sections. For a vertex v we say that the section Sa is a v-central

section if l(v) < a < r(v). Sections Sl(v) and Sr(v) are v-non-central sections. For every two vertices x
and y, there is exactly one path in the tree T between node(x) and node(y). We say that this unique path

is an 〈x, y〉-tree-path if x is over y in T . For an 〈x, y〉-tree-path: node(x) = n1−n2−. . .−nt = node(y),
we say that this path goes through the central section if there is a Q-node ni for 1 < i < t such that ni+1

belongs to a subtree of some central section of ni, see Figure 10. Moreover, we say that the path starts in

a central section if n1 is a Q-node, and n2 belongs to a subtree of some x-central section. Analogously,

it starts in a non-central section if n2 belongs to a subtree of some x-non-central section. We also say

that an 〈x, y〉-tree-path starts in a P-node, if node(x) is a P-node, and ends in a P-node if node(y) is a

P-node. Analogous definitions apply to Q-nodes. Finally, we say that an 〈x, y〉-tree-path is almost rotable

if it does not go through the central section, and ends in a P-node that is a leaf. An 〈x, y〉-tree-path is

rotable if it is almost rotable, and either starts in a P-node, or starts in a non-central section. Intuitively, if

an 〈x, y〉-tree-path is almost rotable, then we are able to rotate all the nodes on the path n2 − . . .− nt in

such a way that y is the leftmost vertex in the subtree which root is n2.

Now we are ready to characterize interval edges in the case where x and y belong to different nodes in

T . We prove that if 〈x, y〉-tree-path is rotable, then (x, y) is an interval edge. Unfortunately, the reverse

implication is not true and sometimes 〈x, y〉-tree-path is not rotable, but (x, y) is still an interval edge.

We shall prove that this happens only for almost rotable 〈x, y〉-tree-paths satisfying some additional, and

quite technical, conditions. First, we show how to compute a string representation for an interval graph

G− (x, y) if 〈x, y〉-tree-path is rotable.

Lemma 12 If an 〈x, y〉-tree-path is rotable, then (x, y) is an interval edge. Moreover, there is a linear

time algorithm that produces a string representation for the graph G− (x, y).

Proof: In order to remove the edge (x, y), we do not produce a canonical string S immediately. At first,

we need to adjust the tree T using some preprocessing. If node(x) is a Q-node, then we rotate node(x)
so that 〈x, y〉-tree-path starts in the section Sl(x). Then, we rotate T so that the path from node(x) to

node(y) goes through the leftmost children of P-nodes and the leftmost sections of Q-nodes. Let T ′ be

the result of the described adjustment, and let S be a string representation of T ′. Clearly, S is of form

LxAByCC̄yB̄DxR, see Figure 7, and both occurrences of y lay in between occurrences of x in S. Node

node(y) is a P-node that is a leaf, so we start with moving the first occurrence of y to the right and the

second occurrence of y to the left until they both meet, as in the Lemma 9. All vertices that lay between

the first occurrence of x and the first occurrence of y represent the left endpoints. Hence, we can swap the

first occurrence of x with its successor until it meets the second occurrence of y. Lemma 7 ensures that

no edge is added or removed during this process. Finally, moving x once more to the right swaps the left

endpoint of x with the right endpoint of y effectively removing the edge (x, y).
✷

Now, we consider those 〈x, y〉-tree-paths that are not rotable, but are almost rotable. Hence, all those

paths start in some x-central section of some Q-node. We denote S1, . . . , Sk the sections of considered Q-

node, and Sa the x-central section where the 〈x, y〉-tree-path starts. As we already mentioned, sometimes

12 Patryk Mikos

prefix node(y) sufix

prefix node(y) + x sufix

LxA|ByCC̄yB̄|DxR

LxA|BCyyC̄B̄|DxR

LA|BCyxyC̄B̄|DxR

LA|BCyyxC̄D̄|DxR

a)

b)

c)

d)

Fig. 7: Removing an edge (x, y) in the case where 〈x, y〉-tree-path is rotable.

in that case the edge (x, y) is an interval edge. The next two lemmas establish the required conditions for

that to happen.

Lemma 13 If an 〈x, y〉-tree-path is almost rotable, starts in a central section Sa, y has no neighbor in a

subtree Ta and:

1. ∃1<b6l(x) : Sa r {x} ⊂ Sb and Sb−1 ∩ Sb ⊂ Sa, or

2. ∃r(x)6b<k : Sa r {x} ⊂ Sb and Sb ∩ Sb+1 ⊂ Sa, or

3. Sa r {x} ⊂ S1, or

4. Sa r {x} ⊂ Sk,

then (x, y) is an interval edge. Moreover, there is a linear time algorithm that produces a string represen-

tation for the graph G− (x, y).

Proof: Proofs for all four cases are very similar, so we show only the proof for the first case. Assume

that there is a 1 < b 6 l(x) such that Sa r {x} ⊂ Sb and Sb−1 ∩ Sb ⊂ Sa. As in the proof of Lemma

12, before we produce the string representation S, we need to make some adjustments in the tree T . At

first, we insert a new section S∗ = Sa r {x} in between sections Sb−1 and Sb, see Figure 8. Clearly, an

insertion of a new section does not remove the old edges, but it might add some new ones. However, the

section S∗ is a subset of an already existing section, so it is not the case. Moreover, the condition that

each vertex belongs to the sequence of consecutive sections is preserved. That’s because we assumed that

Sb−1 ∩ Sb ⊂ Sa and Sa r {x} ⊂ Sb. Next, we remove the vertex y from the subtree Ta. We also define

a subtree T ∗ of the section S∗ to be a single P-node containing y. Note that y has no neighbor in Ta,

so no edges were removed, except the edge (x, y). Thus, we obtained a tree T ′ that encodes the graph

G − (x, y). In order to get the string representation for the graph G − (x, y) it is enough to compute the

string representation for T ′. We proved only the first case, but observe that the second case is symmetric,

and cases 3 and 4 are the corner cases, so in the third case we simply insert the section S∗ before S1 and

in the fourth case we insert S∗ after Sk.

✷

Lemma 14 If an 〈x, y〉-tree-path is almost rotable, starts in a central section Sa, y has a neighbor in a

subtree Ta and:

Efficient Enumeration of Non-isomorphic Interval Graphs 13

Sb−1 Sb Sl(x) Sa

x

Tb−1 Tb Tl(x) Ta

Sb−1 S∗ Sb Sl(x) Sa

x

Tb−1 y Tb Tl(x) Ta − y

→

Fig. 8: Removing an edge (x, y) in the case where 〈x, y〉-tree-path is almost rotable, starts in some x-central section

Sa and y does not have a neighbor in a subtree Ta. (Case 1)

1. l(x) > 1 and Sa r {x} ⊂ Sl(x) and Sl(x)−1 ∩ Sl(x) ⊂ Sa, or

2. r(x) < k and Sa r {x} ⊂ Sr(x) and Sr(x) ∩ Sr(x)+1 ⊂ Sa, or

3. l(x) = 1 and Sa r {x} ⊂ S1, or

4. r(x) = k and Sa r {x} ⊂ Sk,

then (x, y) is an interval edge. Moreover, there is a linear time algorithm that produces a string represen-

tation for the graph G− (x, y).

Proof: The proof of this lemma is similar to the proof of Lemma 13, but now y has at least one neighbor

in Ta, so we cannot simply remove y from Ta. That’s also the reason why conditions of this lemma are

more strict than in the previous one. Yet again, we are going to prove only the first case, so assume that

Sar {x} ⊂ Sl(x) and Sl(x)−1 ∩Sl(x) ⊂ Sa. Instead of inserting a new section, we remove the section Sa

and insert it in between sections Sl(x)−1 and Sl(x), see Figure 9. Clearly, no edge is added or removed,

and the condition that each vertex belongs to the sequence of consecutive sections is preserved. Now, we

remove x from the section Sa. This, removes the edge (x, y), but also all the edges (x, v), where v ∈ Va.

In the next phase, we are going to restore those edges. In order to do it, at first we rotate the subtree Ta

in such a way that the path from node(x) to node(y) goes through the leftmost children of P-nodes and

the leftmost sections of Q-nodes. Then, we compute the string representation S of the modified tree, and

move the first occurrence of y to the right and the second occurrence of y to the left until both meet, as

in the Lemma 9. After this operation is done, y is the leftmost vertex of the tree Ta - its right endpoint

appears first in the string representation of Ta. In order to restore all the removed edges except (x, y), we

move the first occurrence of x in S to the left, until its predecessor is the second occurrence of y. Clearly,

this procedure restores all the removed edges except (x, y).
✷

The above two lemmas show the only cases where 〈x, y〉-tree-path is not rotable, but (x, y) is an interval

edge. Now, we are going to show that if 〈x, y〉-tree-path is not rotable, and the conditions of those lemmas

are not satisfied, then (x, y) is not an interval edge. At first, we prove that if 〈x, y〉-tree-path does not end

in a P-node that is a leaf, then (x, y) is not an interval edge.

Lemma 15 If an 〈x, y〉-tree-path ends in a Q-node, then (x, y) is not an interval edge.

Proof: If y belongs only to central sections (y /∈ S1 ∪ Sk), then Lemma 3f implies that there are vertices

z1 ∈
(

Sl(y) ∪ Vl(y)

)

r Sl(y)+1 and z2 ∈
(

Sr(y) ∪ Vr(y)

)

r Sr(y)−1. If y belongs to S1 (or Sk), then just

14 Patryk Mikos

Sl(x)−1 Sl(x) Sa

x

Tl(x)−1 Tl(x) Ta

Sl(x)−1 Sa Sl(x)

x

Tl(x)−1 Ta Tl(x)

→

Fig. 9: Removing an edge (x, y) in the case where 〈x, y〉-tree-path is almost rotable, starts in some x-central section

Sa, and y has some neighbor in a subtree Ta. (Case 1)

take z1 ∈ V1 (or z2 ∈ Vk). Clearly, there is no edge between z1 and z2, and both x and y are over z1 and

z2. Thus, Observation 6 finishes the proof. ✷

Lemma 16 If an 〈x, y〉-tree-path ends in a P-node that is not a leaf, then (x, y) is not an interval edge.

Proof: The same argument as in Lemma 8. ✷

Now, we are going to prove that if an 〈x, y〉-tree-path goes through the central section, then (x, y) is

not an interval edge. First, we define a nested path. Consider a Q-node with k sections S1, . . . , Sk. For

a clarity let S0 = Sk+1 = ∅, and say that a set of vertices Pi,j = (Si ∪ . . . ∪ Sj) r (Si−1 ∪ Sj+1) is a

nested path, if for every i 6 a < j there is at least one vertex va ∈ Pi,j that belongs to Sa ∩ Sa+1. We

call it a nested path, because vertices vi, vi+1 . . . , vj−1 in that order form (possibly not simple) path in the

graph G, and all of them are contained in the sections Si, . . . , Sj . In the following lemma, we show that

if 〈x, y〉-tree-path goes through a central section of some Q-node, then we can find an asteroidal triple in

the graph G− (x, y). Nested paths help us to find this triple.

Lemma 17 If 〈x, y〉-tree-path goes through the central section, then (x, y) is not an interval edge.

Proof: Assume that the 〈x, y〉-tree-path goes through some central section Si of a Q-node Q, and let

S1, . . . , Sk be the sections of Q. Subtrees of the first and last section are nonempty, so let z1 ∈ V1 and

z2 ∈ Vk . We show that vertices y, z1 and z2 form an asteroidal triple in the graph G− (x, y).
There is no edge (x, y), so a path z1 − x − z2 avoids the neighborhood of y. To prove that there is a

path between z1 and y that avoids the neighborhood of z2, we show that there is a nested path P1,k−1,

and so the shortest path of form z1 − P1,k−1 − y fulfill our requirements. Let P1,j be a nested path with

maximum j < k. Clearly, such a path exists. Otherwise, either S1 is empty, or all vertices that belong to

S1 belong to all sections. In both cases, properties listed in Lemma 3 are violated. Moreover, if j is less

than k − 1, then either Sj ∩ Sj+1 = ∅, or Sj ∩ Sj+1 ⊂ Sk. Again, this contradicts Lemma 3, and we are

done. A path from z2 to y that avoids the neighborhood of z1 is constructed in a similar way. ✷

A consequence of the previous three lemmas is the following corollary.

Corollary 18 If an 〈x, y〉-tree-path is not almost rotable, then (x, y) is not an interval edge.

We are almost done with the classification. In Lemma 12 we proved that if an 〈x, y〉-tree-path is rotable,

then (x, y) is always an interval edge. On the other hand, in Lemmas 15, 16 and 17 we considered 〈x, y〉-
tree-paths that are not almost rotable, and showed that for such paths (x, y) is not an interval edge. Hence,

the only remaining cases are the 〈x, y〉-tree-paths that are almost rotable, but not rotable. In Lemmas 13

Efficient Enumeration of Non-isomorphic Interval Graphs 15

S1
. . . Si

. . . Sk

T1

y

Tk

x

Fig. 10: An 〈x, y〉-tree-path which goes through a central section Si of some Q-node.

and 14 we investigated such paths, and proved that under some additional conditions (x, y) is an interval

edge. Now we show that if an 〈x, y〉-tree-path is almost rotable, but is not rotable, and conditions of

Lemmas 13 and 14 are not satisfied, then (x, y) is not an interval edge. This case is the hardest one, and

before we prove it, we need to prove two auxiliary lemmas.

Lemma 19 Let S1, . . . , Sk be the sections of some Q-node in an MPQ-tree T , and for the simplicity

assume that S0 = Sk+1 = ∅. For every pair of indices (a, b) 6= (1, k), a < b there is a vertex v ∈
((Sa−1 ∩ Sa)r Sb) ∪ ((Sb ∩ Sb+1)r Sa).

Proof: By contradiction, assume that for some pair of indices (a, b) there is no such vertex, so each

vertex u ∈ Sa ∪ . . . ∪ Sb is either contained in Sa, . . . , Sb, or belongs to Sa ∩ . . . ∩ Sb. Without loss

of generality assume that b < k. Each vertex belongs to at least two sections. Hence, no vertex has

its right endpoint in Sa or left endpoint in Sb, and Lemma 3 implies that Va, Vb and Vk are not empty.

Let va ∈ Va, vb ∈ Vb, vk ∈ Vk, and consider any maximal cliques Ca, Cb and Ck such that va ∈ Ca,

vb ∈ Cb and vk ∈ Ck . Note that, T encodes only those orderings of maximal cliques in which either

Ca < Cb < Ck or Ck < Cb < Ca. Now, consider a modified tree T ′ in which we reverse the order of

sections Sa, . . . , Sb. Clearly, because of our assumptions, T ′ represents the same interval graph as T , but

T ′ encodes an ordering Cb < Ca < Ck, which is not encoded by T . Thus, T is not a valid MPQ-tree,

and we are done. ✷

Lemma 20 If an 〈x, y〉-tree-path starts in a central section Sa, and there is a vertex q ∈ Sar
(

Sl(x) ∪ Sr(x)

)

,

then (x, y) is not an interval edge.

Proof: By contradiction, assume that (x, y) is an interval edge, Let Pl1,r1 for r1 < a be a nested path that

intersects q and have the smallest l1. Analogously, let Pl2,r2 for a < l2 be a nested path that intersects q
and have the biggest r2. Notice that these paths may not exist. For instance, if q has its right endpoint in

Sa, then Pl2,r2 does not exist.

At first, we consider the case where both paths do not exist, and prove that there is an asteroidal triple in

the graph G− (x, y). By Lemma 19, without loss of generality, there is a vertex v ∈
(

Sr(q) ∩ Sr(q)+1

)

r

Sl(q). Both paths do not exist, so v has to belong to Sa. Moreover, Lemma 3f gives two vertices vL ∈
(

Sl(q) ∪ Vl(q)

)

rSl(q)+1, and vR ∈
(

Sr(q)+1 ∪ Vr(q)+1

)

rSr(q). Thus, the paths: vL−x−vR, vL−q−y,

and vR − v − y certify the asteroidal triple {vL, vR, y}, and we are done in this case.

Now, assume that both paths exist, and put L = max {l1, l(x)} and R = min {r2, r(x)}. Lemma 3f

implies that there is a vertex vL which has its right endpoint in SL or vL ∈ VL. Analogously, define a

16 Patryk Mikos

SaSl(x) Sr(x)

x
q

Pl2,r2Pl1,r1

Fig. 11: Paths Pl1,r1 and Pl2,r2 .

vertex vR for the section SR. Clearly, both vL and vR are neighbors of x, but they do not belong to the

neighborhood of q. Hence, {vL, vR, y} is an asteroidal triple in the graph G− (x, y). To see this, consider

the paths: vL−x− vR, vL−Pl1,r1 − q− y, and vR−Pl2,r2 − q− y. Thus, if both paths exist, then (x, y)
is not an interval edge.

Without loss of generality, assume that Pl1,r1 exists, but Pl2,r2 does not. Lemma 19 implies that there

is a vertex v such that v ∈ (Sl1−1 ∩ Sl1)r Sr(q), or v ∈
(

Sr(q) ∩ Sr(q)+1

)

r Sl1 . Note that, a this point

v and x might be the same vertex. We assumed that right path does not exist, so Sr(q) ∩ Sr(q)+1 ⊂ Sa.

Moreover, l1 is the smallest index such that there is a nested path Pl1,r1 for r1 < a that intersects q.

Hence, Sl1−1 ∩ Sl1 ⊂ Sa, and so in both cases v belongs to Sa. Lemma 3f gives three vertices: vL ∈
(Sl1 ∪ Vl1) r Sl1−1, vR ∈

(

Sr(q) ∪ Vr(q)

)

r Sr(q)−1, and vR+1 ∈
(

Sr(q)+1 ∪ Vr(q)+1

)

r Sr(q). Note

that, both vR and vR+1 are neighbors of x, and both vL and vR+1 are not neighbors of q.

If l1 < l(x), then the paths: vL − Pl1,r1 − x − vR+1, vL − Pl1,r1 − q − y, and vR+1 − x − q − y
certify the asteroidal triple {vL, vR+1, y}. Thus, we conclude that l(x) 6 l1 < l(q), which means that the

whole path Pl1,r1 is contained in x. Moreover, v and x are different vertices, and vL is a neighbor of x. If

v ∈ (Sl1−1 ∩ Sl1)r Sr(q), then there is an asteroidal triple {vL, vR, y} certified by paths: vL − x − vR,

vL − v − y and vR − q − y. On the other hand, if v ∈
(

Sr(q) ∩ Sr(q)+1

)

r Sl1 , then {vL, vR+1, y} is an

asteroidal triple certified by paths: vL − x− vR+1, vL − Pl1,r1 − q − y, and vR+1 − v − y. Thus, in this

case the edge (x, y) is also not an interval edge, and we are done. ✷

Finally, we are ready to prove the last two negative results on interval edges.

Lemma 21 If an 〈x, y〉-tree-path starts in a central section Sa, y has a neighbor in subtree Ta, and:

1. i > 1 ⇒ (∃zi 6=x : zi ∈ Sa r Si or ∃z̄i : z̄i ∈ (Si−1 ∩ Si)r Sa), and

2. j < k ⇒
(

∃zj 6=x : zj ∈ Sa r Sj or ∃z̄j : z̄j ∈ (Sj ∩ Sj+1)r Sa

)

, and

3. i = 1 ⇒ ∃z1 6=x : z1 ∈ Sa r S1, and

4. j = k ⇒ ∃zk 6=x : zk ∈ Sa r Sk,

where i = l(x) and j = r(x), then (x, y) is not an interval edge.

Proof: By contradiction, assume that (x, y) is an interval edge, and let z be the neighbor of y in Ta. If both

vertices zi and zj exist, and zi = zj , then zi ∈ Sa r (Si ∪ Sj), and Lemma 20 leads to a contradiction.

Hence, if both of them exist, then zi 6= zj . But, in this case we can find an asteroidal triple {vL, vR, y},

where vL ∈ (Si ∪ Vi)r Si+1 and vR ∈ (Sj ∪ Vj)r Sj−1, certified by paths: vL − x− vR, vL − zj − y,

and vR − zi − y.

Efficient Enumeration of Non-isomorphic Interval Graphs 17

Thus, without loss of generality zj does not exist, and there is a vertex z̄j which belongs to (Sj ∩ Sj+1)r
Sa. If z̄i also exists, then consider vertices vL ∈ (Si−1 ∪ Vi−1)r Si, and vR ∈ (Sj+1 ∪ Vj+1)r Sj that

are given by Lemma 3f, and notice that paths: vL − z̄i − x − z̄j − vR, vL − z̄i − x − z − y, and

vR − z̄j − x− z − y certify the asteroidal triple {vL, vR, y}.

Hence, z̄i does not exist, and the only remaining case is where z̄j and zi exist. Note that if zi does not

belong to Sj , then zi ∈ Sa r (Si ∪ Sj) and Lemma 20 gives a contradiction. Hence, zi ∈ Sj and there is

an edge between zi and z̄j . Lemma 3f gives vertices vL ∈ (Si ∪ Vi)rSi+1 and vR ∈ (Sj+1 ∪ Vj+1)rSj ,

and the asteroidal triple {vL, vR, y} is certified by paths: vL−x−z̄j−vR, vL−x−z−y, and vR−z̄j−zi−y.

✷

Lemma 22 If an 〈x, y〉-tree-path starts in a central section Sa, y does not have a neighbor in subtree Ta,

and:

1. ∀1<b6l(x) : ∃zb 6=x : zb ∈ Sa r Sb or ∃z̄b : z̄b ∈ (Sb−1 ∩ Sb)r Sa, and

2. ∀r(x)6b<k : ∃zb 6=x : zb ∈ Sa r Sb or ∃z̄b : z̄b ∈ (Sb ∩ Sb+1)r Sa, and

3. ∃z1 6=x : z1 ∈ Sa r S1, and

4. ∃zk 6=x : zk ∈ Sa r Sk,

then (x, y) is not an interval edge.

Proof: By contradiction, assume that (x, y) is an interval edge. Let pL be the longest sequence ¯zl(x), ¯zl(x)−1, . . . , z̄L,

and pR be the longest sequence ¯zr(x), ¯zr(x)+1, . . . , z̄R. If both sequences are empty, then there are ver-

tices zl(x) ∈ Sa r Sl(x) and zr(x) ∈ Sa r Sr(x). But, the same argument as in Lemma 21, shows

that there is an asteroidal triple in the graph G − (x, y). Thus, without loss of generality pL is not

empty. If both sequences are not empty, then Lemma 3f gives vertices vL ∈ (SL−1 ∪ VL−1) r SL

and vR ∈ (SR+1 ∪ VR+1)r SR. Moreover, both sequences are the longest possible, so there are vertices

zL−1 ∈ SarSL−1 and zR+1 ∈ SarSR+1. Thus, the paths vL−pL−x−pR−vR, vL−pL−x−zR+1−y,

and vR − pR − x− zL−1 − y certify the asteroidal triple {vL, vR, y}. Hence, pR is empty, but pL is not.

In that case, let vR be a vertex that belongs to Sr(x) ∪ Vr(x), but does not belong to Sr(x)−1. Sequence

pR is empty, so there is a vertex zl(x) that belongs to Sa, but does not belong to Sr(x). Yet, again we can

find an asteroidal triple {vL, vR, y} certified by paths: vL − pL − x− vR, vL − pL − x− zr(x) − y, and

vR − x− zL−1 − y. ✷

Finally, we are done with the classification of interval edges. For each edge (x, y) which is an interval

edge, we provided a linear time algorithm that produces a string representation for the graph G − (x, y),
see Lemmas 9, 11, 12, 13, and 14. Moreover, for every edge (x, y) that is not an interval edge we presented

structures certifying that G− (x, y) is not an interval graph, see Lemmas 8, 10, 15, 16, 17, 21 and 22. The

consequence of all those lemmas is the following theorem.

Theorem 23 There is a linear time algorithm, that for every MPQ-tree T representing graph G, and

every interval edge (x, y), produces a string representation S ′ for the graph G− (x, y).

18 Patryk Mikos

5 Listing interval edges

In this section we present an efficient algorithm that for a given MPQ-tree T lists all interval edges of the

graph represented by T . Let S1, . . . , Sk be the sections of a Q-node Q. For b ∈ {2, . . . , k}, denote fr(b)
the maximal index of a section such that Sb−1∩Sb ⊂ Sfr(b). Analogously, for b ∈ {1, . . . , k − 1}, denote

fl(b) the minimal index of a section such that Sb ∩ Sb+1 ⊂ Sfl(b). For every vertex x which belongs to

Q, and every l(x) 6 a 6 r(x) let:

L∗(x, a) =

{

1 , Sa = {x}

max
v∈Sar{x}

l(v), Sa r {x} 6= ∅ R∗(x, a) =

{

k , Sa = {x}

min
v∈Sar{x}

r(v), Sa r {x} 6= ∅

In other words, if Sa 6= {x}, then L∗(x, a) = i if Si is the rightmost section such that there is a vertex

v 6= x which belongs to Sa and v has its left endpoint in Si. Now, we are ready to express the inclusion

conditions on Q-node sections in terms of the functions fl, fr, L∗, and R∗.

Observation 24 In respect to the above definitions, we have the following equivalences:

1. ∀1<b6a : Sb−1 ∩ Sb ⊂ Sa ⇔ fr(b) > a.

2. ∀a6b<k : Sb ∩ Sb+1 ⊂ Sa ⇔ fl(b) 6 a.

3. ∀l(x)6a6r(x) : Sa r {x} ⊂ Sb ⇔ b ∈ [L∗(x, a), R∗(x, a)].

Using those equivalences, we are able to reformulate the conditions of Lemmas 13 and 14.

Observation 25 For an 〈x, y〉-tree-path that starts in a central section Sa, the conditions (1), (2), (3),

and (4) of Lemma 13 are equivalent to the following:

1. L∗(x, a) 6 l(x) and min {l(x), R∗(x, a)} > 1 and fr(min {l(x), R∗(x, a)}) > a, or

2. R∗(x, a) > r(x) and max {r(x), L∗(x, a)} < k and fl(max {r(x), L∗(x, a)}) 6 a, or

3. L∗(x, a) = 1, or

4. R∗(x, a) = k.

Proof: Note that, conditions (3) and (4) translate directly, and conditions (1) and (2) are symmetrical.

Hence, we only show the equivalence of the first cases. At first, we show that if there is 1 < b 6 l(x)
such that Sa r {x} ⊂ Sb and Sb−1 ∩ Sb ⊂ Sa, then L∗(x, a) 6 l(x) and fr(min {l(x), R∗(x, a)}) >

a. From Observation 24 we have b ∈ [L∗(x, a), R∗(x, a)] and fr(b) > a. Thus, L∗(x, a) 6 l(x),
and 1 < b 6 min {l(x), R∗(x, a)}. Note that fr is a non-decreasing function, so fr(b) > a, implies

fr(min {l(x), R∗(x, a)}) > a, and we are done.

Now, we take b = min {l(x), R∗(x, a)}, and show that if b > 1, fr(b) > a, and L∗(x, a) 6 l(x),
then Sb−1 ∩ Sb ⊂ Sa and Sa r {x} ⊂ Sb. Clearly, 1 < b 6 l(x) and fr(b) > a, so Sb−1 ∩ Sb ⊂ Sa.

Hence, the only thing we need to show is Sa r {x} ⊂ Sb. According to Observation 24 it is equivalent to

b ∈ [L∗(x, a), R∗(x, a)]. It is easy to see that for every x and a we have L∗(x, a) 6 R∗(x, a). Thus, the

interval [L∗(x, a), R∗(x, a)] is never empty. If b = R∗(x, a), then we are done, so assume that b = l(x).
But, in this case L∗(x, a) 6 l(x) = b 6 R∗(x, a), and we are done too. ✷

A very similar proof applies to the following observation, so we leave it to the reader.

Efficient Enumeration of Non-isomorphic Interval Graphs 19

Observation 26 For an 〈x, y〉-tree-path that starts in a central section Sa, the conditions (1), (2), (3),

and (4) of Lemma 14 are equivalent to the following:

1. l(x) > 1 and l(x) ∈ [L∗(x, a), R∗(x, a)] and fr(l(x)) > a, or

2. r(x) < k and r(x) ∈ [L∗(x, a), R∗(x, a)] and fl(r(x)) 6 a, or

3. l(x) = 1 and L∗(x, a) = 1, or

4. r(x) = k and R∗(x, a) = k.

Observations 25 and 26 provide fast and easy tests under the assumption that all the functions l, r, fl,
fr, L∗ and R∗ are already computed. To represent functions l, r, fl and fr in computer’s memory we use

O(n)-element arrays of integers. Functions L∗ and R∗ in their explicit forms may require O
(

n2
)

space.

Hence, for performance purposes, we do not represent those functions as two-dimensional arrays. Instead,

we observe that the function L∗ can be defined using some one-dimensional functions L1 and L2. We set

L1(a) = max {l(v) : v ∈ Sa}, and denote v1(a) a vertex for which l(v1(a)) = L1(a). We also define

L2(a) = max {l(v) : v ∈ Sa r {v1(a)}}, or L2(a) = 1 if Sa = {v1(a)}. Using those two functions we

are able to compute the function L∗ in the following way:

L∗(x, a) =

{

L1(a), L1(a) 6= l(x)

L2(a), otherwise

Analogously, we can represent the function R∗ using two functions R1 and R2. Now we are ready to

show the interval edges enumeration algorithm.

Lemma 27 Functions l, r, fl and fr for all Q-nodes of the tree T can be computed in O(n logn) time.

Proof: We compute these functions for each Q-node separately. Assume that we are computing the

function fr for a Q-node Qd. Let i be the minimum index of the section containing a right endpoint of

some vertex from Sb−1 ∩ Sb. Clearly, Sb−1 ∩ Sb ⊂ Si and ¬(Sb−1 ∩ Sb ⊂ Si+1). Hence, fr(b) = i,
and in order to compute the function fr for all b, it is enough to scan the sections of Qd from left to right

maintaining a heap of right endpoints. When algorithm enters the section Sb+1 it adds to the heap all right

endpoints of vertices that have its left endpoint in Sb, assigns fr(b) to be the minimum value stored in the

heap, and removes all the endpoints of vertices that have its right endpoint in Sb. Thus, the computation

of the function fr for Qd takes O(nd lognd) time, where nd denotes the number of vertices in Qd. As
∑

nd 6 n, the computation of all functions fr takes no more than O(n logn) time. A similar argument

applies to the functions fl. ✷

Lemma 28 Functions L1, L2, R1 and R2 for all Q-nodes of the tree T can be computed in O(n logn)
time.

Proof: The proof is very similar to the proof of Lemma 27. Yet again, we use a heap of right or left

endpoints, but now we are not only interested in the minimal element but also in the second one. ✷

Theorem 29 There is an algorithm that for a given MPQ-tree T lists all its interval edges in

O(max {n+m,n logn}) time.

20 Patryk Mikos

Proof: The algorithm is pretty straightforward. At first, we compute all the functions l, r, fl, fr, L1, L2,

R1 and R2. Then, we inspect all P-nodes and all sections of Q-nodes listing all edges (x, y) that satisfy

the conditions of Lemmas 9 or 11. For a P-node that is a leaf, we list all pairs (va, vb) for a 6= b, while

for the section Si with subtree that is either empty or is a P-node with no children, we list the edges of

the form (vL, vR), where vL is a vertex that has its right endpoint in Si, and vR is a vertex that has its left

endpoint in Si. Note that, an MPQ-tree has no more than O(n) nodes and sections. Moreover, we have a

constant time access to all vertices vL and vR. Thus, this phase works in O(n+m).
Now, we want to find all interval edges (x, y) such that x and y belong to different nodes in T , and x

is over y. Lemmas 15 and 16 imply that it is enough to consider only those pair of vertices (x, y), where

y belongs to a leaf of T . Hence, for each leaf L of a tree T , we traverse a unique path between L and the

root of T , starting from L, and listing edges of the form (x, y), where x belongs to the currently visited

node, and y belongs to L. We do not list all such edges, but for each candidate we need to decide whether

(x, y) is an interval edge or not. In order to do it efficiently, we keep two boolean variables: 1. does y have

a neighbor in the visited subtree, and 2. does the path go through some central section. Using those two

variables and precomputed functions, we can decide whether (x, y) is an interval edge in a constant time

thanks to Lemma 12, and Observations 25 and 26. Thus, the time spent by the algorithm in this phase is

bounded from above by the sum of lengths of all paths we have visited plus the number of tested edges.

Lemma 3g, implies that on those paths there are no two consecutive empty P-nodes, so we can bound the

sum of lengths of those paths by O(m). Thus, the time spent by the algorithm in this phase is O(n+m),
and the whole algorithm works in O(max {n+m,n logn}) time. ✷

6 Parent-Child Relationship

In this section we present the graph enumeration algorithm. We define a parent-child relationship in the

same way as authors in Yamazaki et al. (2019) did using the following lemma.

Lemma 30 (Kiyomi et al. (2006)) If G = (V,E) is an interval graph which is not a clique, then there is

at least one edge e ∈ E such that G+ e is also an interval graph.

Theorem 31 (Yamazaki et al. (2019) Thm. 5) Let G = (V,E) be any interval graph. Then its parent

can be computed in O(n+m) time.

Yamazaki et al. used Lemma 30 and defined the parent of G to be a graph G+ e such that G+ e is an

interval graph and e is lexicographically the smallest possible. They proved that for every interval graph

G its parent can be computed in O(n+m) time - see Theorem 31. Thanks to the fact that we work with

MPQ-trees and string representations, we are able to get rid of the O(m) factor using the algorithm from

Theorem 1.

Theorem 32 There is a linear time algorithm that for every canonical MPQ-tree T representing an in-

terval graph G that is not a clique, produces a string representation S ′ of a graph G + e, where e is the

lexicographically smallest edge.

Proof: Let S be the canonical string for T . Let 12...j be the longest prefix of S such that j...21 is a suffix

of S. Clearly, such prefix can be found in O(n) time. Moreover, all vertices 1, . . . , j have degree n − 1
in the graph G. Hence there is no pair (x, y) /∈ E such that x ∈ {1, . . . , j}. We prove that there is a

pair (j + 1, y) for some y > j + 2 such that G + (j + 1, y) is an interval graph. Let y be the leftmost

Efficient Enumeration of Non-isomorphic Interval Graphs 21

endpoint of an interval that is to the right of the right endpoint of j + 1. If such y does not exist, then

to the right of the right endpoint of j + 1 there are only right endpoints. Hence, G is a clique and we

reached a contradiction. Thus, y exists, (j + 1, k) is an edge for all k 6 y, and there is no edge between

j + 1 and y. So, G + (j + 1, y) is the parent of G. In order to produce a string representation for the

graph G + (j + 1, y), we move the right endpoint of j + 1 to the right until it passes the left endpoint of

y. Lemma 7 guarantees that no edge except (j + 1, y) was added. ✷

Finally, we take all the pieces together and present our main result.

Theorem 33 Let T be a canonical MPQ-tree representing a non-empty (m > 1) interval graph G. The

set of canonical trees for children of G in the family tree Fn can be computed in O(nm logn) time.

Proof: At first, we list all interval edges for the tree T in O(max {n+m,n logn}) time, see Theorem

29. Then, for each interval edge e, we produce a string representation S ′ of G − e in linear time, build

MPQ-tree T ′ for the interval graph represented by S ′ in O(n), and finally compute the canonical form of

T ′ in O(n logn) time, see Theorems 23, 1, and 5. Hence, we compute all canonical strings for children

candidates in O(nm logn) time. Theorem 4 implies that in order to check isomorphism, it is enough to

remove duplicates from this set. It can be easily done by storing all computed strings in a trie. Finally,

we need to filter out those graphs for which G is not a parent. For each candidate canonical string, we

compute its parent string in O(n) time, see Theorem 32, build a canonical MPQ-tree in O(n logn) time

and check whether its canonical string equals with a canonical string for the graph G in O(n) time. Thus,

we filter out non-children in O(nm logn) time, and the whole process takes O(nm logn) time. ✷

7 Performance

In the previous section we presented theoretical analysis of our enumeration algorithm. In this section we

present two lemmas, that helped us to significantly speedup the execution of the algorithm. Unfortunately,

presented tricks do not improve the worst-case time delay, and it is quite easy to show an MPQ-tree that

even with those tricks take O(nm logn) time to process. We leave it as an exercise.

Lemma 34 Let v1 6= v2 be two vertices of the graph G = (V,E). If N(v1) r {v2} = N(v2) r {v1},

then for every y /∈ {v1, v2} graphs G− (v1, y) and G− (v2, y) are isomorphic.

Proof: One can easily check that the function f : V → V such that f(v1) = v2, f(v2) = v1 and f
identifies other vertices, encodes an isomorphism between G− (v1, y) and G− (v2, y). ✷

A consequence of the above lemma is the fact that if a P-node contains more than one vertex namely

v1, . . . , vj , then graphs G − (v1, y) and G − (va, y) for every a > 1 are isomorphic. Thus, when listing

potential candidates for the children of the graph G, we may omit all edges of the form (va, y) for a > 1
and list only the edges of the form (v1, y). The same argument applies to a Q-node and vertices that

belong to the same sections.

Lemma 35 Let v1, . . . , vk be a subset of vertices of the graph G = (V,E) such that ∀i6=j : N(vi) r
{vj} = N(vj) r {vi}, and v1, . . . , vk form a clique in G. All graphs Gi,j = G − (vi, vj) are pairwise

isomorphic.

22 Patryk Mikos

Proof: Consider two graphs Gi,j and Gi′,j′ and a function f : V → V such that f(vi) = vi′ , f(vj) = vj′ .
For the other vertices f is an identity. ✷

A consequence of this lemma is the fact that if a P-node contains more than 2 vertices, then we may

omit all the edges between them, except (v1, v2). The same applies to the vertices that occupy the same

sections of a Q-node. Both presented optimizations do not improve the worst case complexity of our

algorithm, but significantly speed it up.

We implemented the proposed algorithms, and generated all non-isomorphic interval graphs on n ver-

tices for all n ∈ {1, . . . , 15}. The results are available at https://patrykmikos.staff.tcs.

uj.edu.pl/graphs/.

References

H. Acan. Counting unlabeled interval graphs, 2018.

D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Applied Mathematics, 65(1):21–46,

1996. ISSN 0166-218X. doi: https://doi.org/10.1016/0166-218X(95)00026-N. First International

Colloquium on Graphs and Optimization.

P. Hanlon. Counting interval graphs. Transactions of The American Mathematical Society - TRANS AMER

MATH SOC, 272, 1982. doi: 10.2307/1998705.

N. P. J.C. Yang. On the enumeration of interval graphs. Proceedings of the American Mathematical

Society Series B, 4:1–3, 2017. ISSN 2330-1511. doi: https://doi.org/10.1090/bproc/27.

M. Kiyomi, S. Kijima, and T. Uno. Listing chordal graphs and interval graphs. In Graph-Theoretic

Concepts in Computer Science, pages 68–77, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

N. Korte and R. Möhring. An incremental linear-time algorithm for recognizing interval graphs. SIAM

Journal on Computing, 18(1):68–81, 1989. doi: 10.1137/0218005.

G. Lueker and K. Booth. A linear time algorithm for deciding interval graph isomorphism. J. ACM, 26

(2):183–195, 1979. ISSN 0004-5411. doi: 10.1145/322123.322125.

R. McConnell and F. de Montgolfier. Algebraic operations on pq trees and modular decomposition trees.

In D. Kratsch, editor, Graph-Theoretic Concepts in Computer Science, pages 421–432, Berlin, Heidel-

berg, 2005. Springer Berlin Heidelberg.

T. Saitoh, K. Yamanaka, M. Kiyomi, and R. Uehara. Random generation and enumeration of proper

interval graphs. IEICE Transactions on Information and Systems, E93.D(7):1816–1823, 2010. doi:

10.1587/transinf.E93.D.1816.

T. Saitoh, Y. Otachi, K. Yamanaka, and R. Uehara. Random generation and enumeration of bipartite

permutation graphs. Journal of Discrete Algorithms, 10:84–97, 2012. ISSN 1570-8667. doi: https:

//doi.org/10.1016/j.jda.2011.11.001.

R. U. T. Saitoh, M. Kiyomi. Simple efficient algorithm for mpq-tree of an interval graph. IEICE Technical

Report, 107(127):49–54, 2007. ISSN 0913-5685.

Efficient Enumeration of Non-isomorphic Interval Graphs 23

R. Uehara. Canonical data structure for interval probe graphs. In R. Fleischer and G. Trippen, editors,

Algorithms and Computation, pages 859–870, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

K. Yamazaki, T. Saitoh, M. Kiyomi, and R. Uehara. Enumeration of nonisomorphic interval graphs and

nonisomorphic permutation graphs. In WALCOM: Algorithms and Computation, pages 8–19, Cham,

2018. Springer International Publishing.

K. Yamazaki, T. Saitoh, M. Kiyomi, and R. Uehara. Enumeration of nonisomorphic interval graphs

and nonisomorphic permutation graphs. Theoretical Computer Science, 2019. ISSN 0304-3975. doi:

https://doi.org/10.1016/j.tcs.2019.04.017.

