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We study the prompt photon hadroproduction at the LHC with the kT-factorization approach and the
qg� → qγ and g�g� → qq̄γ partonic channels, using three unintegrated gluon distributions which depend
on gluon transverse momentum. They represent three different theoretical schemes which are usually
considered in the kT-factorization approach, known under the acronyms: KMR, CCFM, and GBW gluon
distributions. We find sensitivity of the calculated prompt photon transverse momentum distribution to the
gluon transverse momentum distribution. The predictions obtained with the three approaches are compared
to data, that allows to differentiate between them. We also discuss the significance of the two partonic
channels, confronted with the expectations which are based on the applicability of the kT-factorization
scheme in the high energy approximation.
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I. INTRODUCTION

Prompt photon production in hadron collisions is one
of the cleanest probes of the strong interactions and the
structure of hadrons. Prompt photons are produced in hard
partonic scattering and with sufficiently large photon
transverse momentum qT and suitable photon isolation
criteria, this process may be calculated with high precision
in perturbative QCD framework. Since the produced
photons do not experience the final state interactions, their
cross sections carry information about the properties of
incoming partons.
The analysis performed in this study is based on the

kT-factorization framework [1–3] which is well motivated
in the high energy limit. For the prompt photon production
at the LHC in the central rapidity region, the high energy
limit provides a very good approximation at a lower range of
the measured photon transverse momenta. In order to apply
the high energy factorization scheme it is necessary that the
high energy approximation works. It has been argued that
the conditions required to apply the high energy approxi-
mation hold in the quasi-multi Regge kinematics, extended

for hard processes toward the region of moderate parton
momentum fraction x [4,5]. In the small x regime, the gluon
channel contributions to hadronic cross sections are dom-
inant, and due to an intense gluon radiation, a sizable parton
transverse momentum is expected to build up in the QCD
radiation process. Within the kT-factorization approach,
such effects may be treated within all-order resummation
schemes like e.g., the Balitsky–Fadin–Kuraev–Lipatov
(BFKL) [6–8] or Catani–Ciafaloni–Fiorani–Marche–sini
(CCFM) [9–12] schemes. The possibility to investigate
the effects of both the all order resummations and large
transverse momenta of partons at the tree level parton
scattering made this approach vivid and fruitful for phe-
nomenological applications.
The main purpose of this study is to investigate in detail

the constraints that the prompt photon production at the
Large Hadron Collider (LHC) impose on the transverse
momentum dependent gluon distribution Fgðx; kT; μFÞ,
computed in the kT-factorization framework at small and
moderate values of x, in wide ranges of the gluon
momentum kT and hard factorization scales μF. This is
an important issue since in inclusive cross sections, like
e.g., for the deep inelastic scattering (DIS), the gluon
transverse momentum is integrated out whereas the photon
transverse momentum distribution, dσγ=dqT , is expected to
exhibit significant sensitivity to the transverse momenta of
incoming partons. Also the range of scales μF probed in the
prompt photon production at the LHC is wider than in most
processes used for this purpose in the past. Hence, we aim
to use the new available precision data from the LHC to
better constrain the transverse momentum dependence of
the gluon distribution Fg.
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In general terms, a similar approach has already been
used in the past [13–26]. In the approach proposed in
[13,14] one considers a fast quark propagating through a
color field of a target that scatters by gluon absorption,
and a brehmsstrahlung photon is emitted. In the high
energy limit, this process may be represented in a color
dipole form [13,14], similarly to the forward Drell–Yan
production [27]. This approach has an advantage to include
multiple scattering effects within the framework of the
color glass condensate (CGC) [28–30], as it was done in
Refs. [15–19,25,26]. Another approach, valid in the single
scattering (leading twist) approximation, including effects
of the partons’ transverse momenta, was developed in
Refs. [20–24]. Calculations made in both the approaches
may be divided according to the final state produced in the
hard scatter: the prompt photon may be produced in
association with one or two jets, and possibly without
an accompanying jet, as the incoming partons carry non-
zero transverse momentum. The last contribution is, how-
ever, suppressed for large transverse momentum of the
photon and it is often neglected. Recently, in the framework
of CGC, the process of g�g� → qq̄γ was thoroughly studied
[16–18] as the leading one in hadronic and nuclei collisions
at large energies, where the large gluon densities at small x
contribute.
One of the main goals of this paper is to study in detail

the g�g� channel in the single scattering approximation, that
is very accurate at larger values of qT , and to compare the
results with recent data from the LHC. In addition, this
analysis is an important step in our ongoing program to
constrain the transverse momentum parton distributions
with the LHC data, see Ref. [5] for the analysis of the
Lam–Tung relation breaking in Z0 hadroproduction at the
LHC. We improve on the previously known results by
carefully comparing two possible realizations of the prompt
photon production at the parton level with off-shell gluons
g�: the 2 → 2 processes qg� → qγ and q̄g� → q̄γ, and the
2 → 3 process g�g� → qq̄γ. We impose in our analysis the
photon isolation criteria of Frixione [31] and use the data
from the LHC [32–34].
Hence, besides constraining the gluon distribution

Fgðx; kT; μFÞ, we also focus on the comparison of two
different partonic channels that should be close to each
other at the leading logarithmic approximation for small
and moderate values of parton momentum fractions x.
These are already mentioned, the qg� → qγ and g�g� →
qq̄γ channels with off-shell gluons. In general, the gluon
distribution is larger than the sea quark distributions, and
due to larger anomalous dimensions, the gluon distribution
is more rapid and drives the evolution of the sea quark sea
distributions in scale μF and in parton x. Hence, one may
approximate the sea quarks as coming from the gluon in the
last splitting of the parton evolution. This approximation is
a basis of a very successful dipole picture of high energy
scattering, see, e.g., [35,36]. Thus, one expects that the

contribution with sea quarks, qseag� → qγ, should be well
represented as a part of the g�g� → qq̄γ contribution. This
should hold true because the amplitude for g�g� → qq̄γ
contains diagrams describing the g� → qsea splitting in the
last step, and in addition subleading terms in the collinear
limit. So, in principle one could expect an improved
theoretical precision of the hard matrix element in the
latter approach. Jumping to the conclusions, to some
surprise, we find the opposite to be true. We view this
result as an interesting theoretical puzzle and a strong
inspiration to perform the complete NLO analysis of the
process in the kT-factorization framework.
The prompt photon production at the LHC has been

thoroughly analyzed within the collinear factorization
framework up to the NNLO accuracy [37]. Using this
approach, good agreement with the data was found. We do
not expect better agreement in our analysis with the
kT-factorization approach since the process has been
treated so far only at the tree level. We rather apply more
phenomenologically minded logic to use the theoretically
clean observables and precision data in order to refine
details of the transverse momentum distribution of partons
within the kT-factorization framework. Nevertheless, even
at the tree level, we find a rather good description of the
LHC data in one of the considered scenarios.
The paper is organized as follows. In Sec. II we present

the formalism for qg� → qγ and g�g� → qq̄γ channels. In
Sec. III we discuss the transverse momentum dependent
gluon distributions used in the paper. In Sec. IV we discuss
the photon isolation criteria and present our results. We
conclude in Sec. V.

II. OVERVIEW OF THE PROCESS DESCRIPTION

We consider the prompt photon production in the pp
scattering in the kT-factorization approach, depicted in
Fig. 1. The incoming proton beam momenta, P1 and P2, are
consider to be light-like: P2

1 ¼ P2
2 ¼ 0 in the high energy

approximation: S ¼ ðP1 þ P2Þ2 ≫ 4m2
p. The photon kin-

ematics is parametrized with the help of Feynman variable
xF and the transverse momentum qT . In the light-cone

FIG. 1. Prompt photon production in proton-proton collisions.
The dashed lines represent the photon isolation cone.
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variables, the real photon momentum in the pp center-of-
mass frame reads

qγ ¼ ðqþγ ; q−γ ; qTÞ ¼ ðxF
ffiffiffi
S

p
; q2T=xF

ffiffiffi
S

p
; qTÞ; ð1Þ

where q�γ ¼ q0γ � q3γ .
At the leading order (LO), the real photon may be

produced in the 2→2 partonic channels: qg→qγ, q̄g → q̄γ
and qq̄ → gγ. At the NLO, these 2 → 2 processes receive
one loop correction and the tree level 2 → 3 processes
appear: gg → qq̄γ, qg → qgγ, q̄g → q̄gγ, qq → qqγ,
qq̄→qq̄γ, q̄ q̄ → q̄ q̄ γ. In our approach, we apply the high
energy approximation for all the incoming partons. Since in
this regime the gluon density is strongly dominant, it drives
evolution of the sea quark densities. Therefore, we shall
keep only the contributions with the maximal number of
incoming gluons, i.e., qg → qγ and q̄g → q̄γ for the 2 → 2
processes and gg → qq̄γ for the 2 → 3 processes.
We apply the kT-factorization approach for these proc-

esses in which gluons carry nonzero transverse momentum
and are off-shell: g → g�. For the incoming quarks and
antiquarks, we neglect the transverse momentum and we
use the collinear approximation. This setup is often called a
hybrid factorization approach. The main motivation for this
approximation scheme is our focus on the gluon transverse
momentum distribution at small and moderate x.
It should be stressed that the available data on the prompt

photon hadroproduction at the LHC extend from the
kinematic region where the values of parton x are small,
x ∼ 0.002, to larger x > 0.1. It is well known that the high
energy approximation is best motivated in the former
region. It was however argued in detail in Refs. [4,5]
that the high energy factorization scheme may provide a
good approximation of the high energy amplitudes also
for moderate parton x. The key argument used there is
based on a detailed analysis of the values of exchanged
gluon kinematics in the Sudakov decomposition. In gen-
eral, the momentum k of the off-shell gluon exchanged
in the t-channel between the proton with momentum P1

and the hard interaction vertex may be written as k ¼
xP1 þ βP2 þ k⊥, where the protons’ momenta P1 and P2

are approximated to be lightlike, and k⊥ belongs to the
plane orthogonal to P1 and P2. Then, the quality of the high
energy approximation crucially depends on the value of the
Sudakov parameter β [4,5], which is typically much smaller
than the value of parton x. These two values are correlated
because they both are inversely proportional to the collision
energy. The gluon x, however, is driven by the large
invariant mass of the state produced in the hard collision,
while the Sudakov parameter β is driven by a usually much
smaller mass of the proton remnant. Hence, β ≪ x, and the
high energy approximation is still applicable at moderate x.
For a detailed discussion of this issue and the gauge
invariance problem in this approximation scheme for

related Drell–Yan and Z0 hadroproduction processes,
see Ref. [5].

A. Photon production in the qg� partonic channel

We start the description of the prompt photon hadro-
production in the kT-factorization approach with the 2 → 2
approximation, i.e., with the qg� → qγ and q̄g� → q̄γ
channels. In what follows, we use the light cone coordi-
nates of the photon polarization vectors corresponding to
helicities σ ¼ �:

ϵðσÞ ¼ ð0; 0; ϵðσÞ⊥ Þ; ð2Þ

where ϵð�Þ
⊥ ¼∓ ð1;�iÞ= ffiffiffi

2
p

. The quark–gluon channel
contribution to the photon production with rapidity y
and transverse momentum qT , derived in [13,14,38], reads

dσðqg
�→qγÞ

σ

dyd2qT
¼ 4παsðμRÞ

3

Z
1

xF

dxq
X

i∈ff;f̄g
e2i qiðxq; μFÞ

×
Z

d2kT
πk2T

Fgðxg; kT; μFÞΦ̃σσðqT; kT; xF=xqÞ;

ð3Þ

where kT ¼ jkT j, ei are quark charges in units of the
elementary charge e, qi are collinear distributions of quarks
and antiquarks with flavors f and f̄ (not multiplied by x).
In addition, the photon Feynman variable reads

xF ¼ qTffiffiffi
S

p ey; ð4Þ

while the gluon momentum fraction xg is obtained from
kinematics of the parton scattering in the high energy limit

xg ¼
qTffiffiffi
S

p e−y þ zðkT − qTÞ2
ð1 − zÞqT

ffiffiffi
S

p e−y; ð5Þ

where z ¼ xF=xq. From now on, we keep the renormaliza-
tion and factorization scales to be equal, μR ¼ μF.
The function Fg is the transverse momentum dependent

(or unintegrated) gluon density, in the form fixed by the
leading logarithmic relation to the collinear gluon density
gðx; μFÞ:

Z
μ2F

0

dk2TFgðx; kT; μFÞ ¼ xgðx; μFÞ: ð6Þ

All quarks are assumed to be massless when compared to
the photon transverse momentum qT . The diagonal in
photon helicity impact factors are given by

PROMPT PHOTON PRODUCTION IN PROTON COLLISIONS AS … PHYS. REV. D 103, 034013 (2021)

034013-3



Φ̃σσðqT; kT; zÞ ¼
X

λ1;λ2∈fþ;−g
AðσÞ
λ1;λ2

†AðσÞ
λ1;λ2

; ð7Þ

where λ1 and λ2 are helicities of the incoming and outgoing
quark, respectively. With the chosen photon polarization
vectors (2), the functions

Að�Þ
λ1;λ2

¼ e
8π

δλ1;λ2ð2 − z ∓ λ1zÞ
�
−qT
q2T

−
−ðqT − zkTÞ
ðqT − zkTÞ2

�
· ϵð�Þ

⊥

ð8Þ

are proportional to the photon emission amplitudes. After
summation over quark and photon helicities, the cross
section for the real photon hadroproduction reads

dσγ

dyd2qT
¼ αem

3π

Z
1

xF

dz
z
xF
z

X
i∈ff;f̄g

e2i qi

�
xF
z
; μF

�

×
Z

d2kT
k2T

αsFgðxg; kT; μFÞ
½1þ ð1 − zÞ2�z2k2T
q2TðqT − zkTÞ2

þ ðy → −yÞ; ð9Þ

where the symmetrization y → −y since both the initial
states, qðk1Þg�ðk2Þ and g�ðk1Þqðk2Þ, contribute.
The integrand in (9) is singular for qT ¼ zkT. This is a

collinear singularity coming from the emitted photon
momentum parallel to the outgoing quark momentum.
In experiments, however, the photon measurement requires
a separation from the outgoing hadrons (or jets). Hence,
the experimental data assume certain isolation cut,
ΘRγ

ðqγ; fpH
i gÞ, which depends on the photon momentum

qγ , the hadron momenta fpH
i g and the isolation cone

parameter Rγ. In the parton level formulas, the isolation
criterion is implemented with outgoing parton momenta
fpig instead of the hadronic momenta fpH

i g. Thus, in order
to obtain a physically meaningful result, Eq. (9) must
be complemented by a suitable cut ΘRγ

ðqT; z; kTÞ.
The detailed discussion of our implementation is given
Sec. IVA.
The qg� → qγ channel described in the high energy limit

within the kT-factorization framework was shown [13,14]
to be equivalent to the dipole picture of high energy
scattering, in close analogy to the dipole picture of the
Drell–Yan process [13,14,27], see also [38,39] for recent
developments. This picture is obtained by the Fourier
transform of the impact factors to the impact parameter
space, and the color dipole scattering amplitude emerges as
a result of an interference between the initial and final state
photon emission amplitudes. This approach has an advan-
tage to be capable to efficiently include the effects of
multiple scattering and it was explored for instance in
recent analyses [25,26].

B. Photon production in the g�g� partonic channel

In an alternative approach to the prompt photon pro-
duction in the high energy approximation, one generates
sea quarks from the gluon in the last splitting. With this
assumption, the sea quark contributions qsea can be
absorbed into the g�g� → qq̄γ hard matrix elements. The
valence quark contribution qval, however, is not included in
the g�g� channel, and these two contributions enter the
cross section additively, see Fig. 2,

dσγ ¼ dσðqvalg�→qγÞ þ dσðg�g�→qq̄γÞ: ð10Þ

The g�g� → qq̄γ hard subprocesses cross section is
calculated in the kT-factorization framework. The scheme
and details of the calculations follow closely more general
calculations performed in the same setup for the Drell–Yan
structure functions [5]. In fact, the formulas for the photon
production may be recovered from those derived in Ref. [5]
by removing leptonic part with boson propagator, taking
the limitM → 0 for the Drell–Yan intermediate boson mass
and considering only the diagonal in helicity structure
functions for the transverse polarizations. For complete-
ness, we shortly repeat the main steps of these calculations
adjusted to the photon hadroproduction case.
In the kT-factorization gluons are virtual, k2i ≃ −k2iT < 0,

and quarks are taken to be massless, p2
3 ¼ p4

4 ¼ 0. The
standard gluon momenta decomposition in the high energy
limit is applied: k1 ¼ x1P1 þ k1⊥ and k2 ¼ x2P2 þ k2⊥,
see also the discussion in Sec. II, preceding Sec. II A. The
parton level scattering amplitude is a sum of eight diagrams
shown in Fig. 3. The high energy limit for virtual gluon
polarizations is used, in which the virtual gluon polariza-
tion vectors πg� ðkiÞ are approximated by the so-called
“nonsense polarizations”, using the so-called Collins–
Ellis trick [40] in the derivations,

πμg�ðk1Þ ≃ x1P
μ
1=

ffiffiffiffiffiffiffi
k21T

q
; πμg� ðk2Þ ≃ x2P

μ
2=

ffiffiffiffiffiffiffi
k22T

q
: ð11Þ

The impact factors T ðiÞ
μ with i ¼ 1; 2;…; 8 are defined as

(a) (b)

FIG. 2. Partonic channels in γ hadroproduction: (a) the qvalg� →
qγ channel and (b) the g�g� → qq̄γ channel. The crossed blobs
represent channel dependent hard scattering amplitudes.
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T ðiÞ
μ ¼ MðiÞ

μ;αβP
α
1P

β
2; ð12Þ

where MðiÞ
μ;αβ are the amplitudes for the diagrams shown in

Fig. 3 with amputated polarization vectors of the incoming
gluons and outgoing photon. The explicit expressions for
the impact factors are given in Appendix of Ref. [5].
The g�g� → qq̄γ impact factor, given by T g�g�

μ ¼P
8
i¼1 T

ðiÞ
μ , is used to calculate the g�g� channel contribu-

tions cross sections for photon production with helicity σ,

dσðg
�g�→qq̄γÞ

σ ¼
Z

dx1

Z
d2k1T
πk21T

Fgðx1; k1T; μFÞ
Z

dx2

×
Z

d2k2T
πk22T

Fgðx2; k2T; μFÞ

×
ð2πÞ4
2S

HσdPS3ðk1 þ k2 → p3 þ p4 þ qÞ;
ð13Þ

with Fg being the unintegrated gluon distribution intro-
duced in the previous section and

Hσ ¼
X

f∈fu;d;s;c;bg

1

ðN2
c − 1Þ2

X
a;b

X
i3;i4

X
r3;r4

ðT g�g�
μ ϵμðσÞÞ

× ðT g�g�
ν ϵνðσÞÞ†; ð14Þ

where summations are performed over quark flavors f
(present through the charge ef in the amplitudes T g�g�

μ ),
color indices of the gluons ða; bÞ and quarks ði3; i4Þ, and
over the quark helicities ðr3; r4Þ. The latter summation
leads to traces over Dirac spinors which are evaluated
with the FORM program for symbolic manipulations [41].
The resulting expressions, obtained in two independent

calculations, are lengthy and do not need to be explicitly
displayed. It was also checked that Hσ ∼ k2iT when the
gluon transverse momentum k2iT → 0, as required by the
gauge invariance condition in the high energy limit.
The phase space for the final state particles of partonic

scattering is parametrized in terms of the photon variables
ðy; qTÞ and the variables ðz;ϕκÞ describing the qq̄ kin-
ematic configuration,

dPS3ðk1 þ k2 → p3 þ p4 þ qÞ

¼ dyd2qTdzdϕκ

8ð2πÞ9 dκ2

× δ

�
κ2 − zð1 − zÞ

�
xqq̄x2S − xqq̄

q2T
xF

− Δ2

��
; ð15Þ

where the variables ðz; κÞ are implicitly defined by the
parametrization of the quark and antiquark momenta

p3 ¼ zxqq̄P1 þ
p23

zxqq̄S
P2 þ p3⊥;

p4 ¼ ð1 − zÞxqq̄P1 þ
p24

ð1 − zÞxqq̄S
P2 þ p4⊥; ð16Þ

in which

p3⊥ ¼ ð0; 0; p3Þ; p4⊥ ¼ ð0; 0; p4Þ;
p3 ¼ zΔþ κ; p4 ¼ ð1 − zÞΔ − κ;

Δ ¼ k1 þ k2 − q; xqq̄ ¼ x1 − xF: ð17Þ

For the comparison with data it is necessary to integrate
over the final state quark/antiquark kinematical variables
and sum over the photon polarizations,

dσγ

dyd2qT
¼

Z
dz

Z
dϕκ

X
σ¼�

dσðg
�g�→qq̄γÞ

σ

dyd2qTdzdϕκ
: ð18Þ

III. TRANSVERSE MOMENTUM DEPENDENT
GLUON DISTRIBUTIONS

Several parametrizations of the transverse momentum
dependent gluon distribution in the proton, Fgðx; kT; μFÞ,
were proposed. Many of them were derived in the regime of
small-x dynamics, including solutions of the BFKL equa-
tion [6–8] or the Balitsky–Kovchegov (BK) [42–44]
equation. The data for the prompt photon production,
however, extend out of the small-x domain. Therefore,
we consider parametrizations that may be used also for
moderate values of x > 0.01. The most widely used
approaches having this feature are the following:
(A) TheKimber–Martin–Ryskin (KMR)approach [45,46]

that permits to recover the unintegrated parton

FIG. 3. Eight Feynman diagrams that contribute to the g�g� →
qq̄γ partonic channel corresponding to the amplitudes MðiÞ for
i ¼ 1; 2;…; 8, respectively. The black blobs denote the effective
triple gluon vertex Veff , see Appendix of Ref. [5] for its definition.
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distributions from the collinear parton distribution
functions.

(B) The approach based on the solutions of the CCFM
equation [9–12], implemented by Jung and Hansson
(JH) [47] and later on by Jung and Hautmann
(JH-2013) [48].

(C) We also consider the gluon distribution from
the Golec-Biernat–Wüsthoff (GBW) model [35],
extended phenomenologically to the values of
x > 0.01.

All of these parametrizations were optimized to describe
the HERA data on the proton structure function F2 (for the
GBW gluon distribution, the optimization was performed
for x ≤ 0.01 but not for its phenomenological extension).

A. KMR-AO gluon distribution

The KMR scheme was used in several variations. Our
choice is the integral version of the KMR prescription
[49] in which the unintegrated gluon distribution for
kT > Q0 ¼ 1 GeV is given by

Fgðx; kT; QÞ≡ TaðQ; kTÞ
kT2

X
a0∈ff;f̄;gg

Z
1−ΔðkT ;QÞ

x

dz
z

× Pga0 ðz; kTÞDa0

�
x
z
; kT

�
; ð19Þ

where the function Ta is called the Sudakov form factor

TgðQ; kTÞ ¼ exp

�
−
Z

Q2

k2T

dp2
T

p2
T

×
X

a0∈ff;f̄;gg

Z
1−ΔðpT;QÞ

0

dzzPa0gðz; pTÞ
�
: ð20Þ

In the above, f=f̄ denote quark/antiquark flavors, Paa0 ðz; μÞ
are the Altarelli–Parisi splitting functions given in terms
of the expansion in αsðμÞ=ð2πÞ and Daðx; μÞ are collinear
parton distribution functions (PDFs). We choose the lead-
ing order splitting functions and the CT10 PDFs [50]. We
consider the angular ordering version of the KMR distri-
bution (KMR-AO) in which the function Δ in the upper
integration limits equals

ΔðkT;QÞ ¼ kT
kT þQ

: ð21Þ

This prescription imposes angular ordering in the last step
of the evolution [46]. For the values kT ≤ Q0, the unin-
tegrated gluon distribution is frozen at the boundary
value Fgðx;Q0; QÞ.
We prefer to use the integral version of the KMR

distribution over the differential one since it allows to
avoid problems for large values of transverse momentum,
kT > Q, discussed in [49].

B. JH and JH-2013 gluon distribution

The unintegrated gluon distribution in the all-loop
CCFM scheme [12,51,52] takes into account small-x
coherence effects which are reflected in angular ordering
in gluon cascade branching. This leads to a non-Sudakov
form factor which screens the 1=z singularity in the Pgg

splitting function. The CCFM scheme was extended for
gluons to the region of large x by taking into account
terms with finite z in Pgg, and the Sudakov form factor with
angular ordering of the final state emissions. Infrared
parameters in such a scheme were fitted to the HERA data
on F2 by Jung and Hansson in [47], which analysis offers
the JH unintegrated gluon distribution. Along similar lines
in the year 2013 a new parametrization (called JH-2013) of
the unintegrated gluon distribution was constructed by Jung
and Hautmann [48]. The new parametrization is based on
the angular ordered CCFM gluon branching scheme with
unintegrated valence quark distributions included.

C. Extended GBW gluon distribution

The unintegrated gluon density Fg from the GBW
saturation model is given by

αsFgðx; kT; μÞ ¼
3σ0
4π2

k2T
Q2

s
expð−k2T=Q2

sÞ ×
�

1 − x
1 − 0.01

�
7

;

ð22Þ

where the saturation scale Q2
s ¼ ðx=x0Þ−λ GeV2. We use

the parameters from the recent refit of the GBW
model done in [36]: σ0¼27.32mb, x0 ¼ 0.42 × 10−4

and λ ¼ 0.248. Since the GBW model was fitted to the
data with x < 0.01, the original form of the gluon dis-
tribution was extrapolated to the values of x > 0.01 by
multiplying by the factor ð1 − xÞ7=ð1 − 0.01Þ7, that ensures
a smooth transition from the small-x domain to the region
of x ∼ 1. The form of the distribution for x → 1 follows
from dimensional scaling rules of the Regge formalism
close to the kinematic end point. The main purpose of using
the extrapolated GBW gluon distribution is its distinct
transverse momentum dependence that is exponentially
suppressed for kT > 1 GeV. Such a strong and narrow in kT
suppression is not present in the KMR-AO and JH gluon
distributions.

D. Gluon distribution comparison

In Fig. 4, we illustrate the properties of the considered
unintegrated gluon distributions, which are shown as a
function of gluon transverse momentum kT for two values
of the longitudinal momentum fraction, x ¼ 0.002 and
0.04, and two values of the factorization scale, μF ¼ 15 and
90 GeV, correspondingly. They are motivated by typical
values in the prompt photon production at the LHC in
the central region when μF ¼ qT . Clearly, the GBW
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distribution is much narrower and strongly peaked at small
kT than other distributions, which are similar in the region
Q0 ¼ 1 GeV < kT < μF but differ at the ends of the kT
spectrum. In particular, while the KMR and JH distribu-
tions are almost the same for k < Q0, the new distribution
JH-2013 is significantly higher. On the other hand, while
the JH and JH-2013 distributions are practically the same
for kT ≫ μF, they are much more strongly suppressed than
the KMR distribution which decreases much slower,
approximately as a moderate negative power of kT .
These distinct kT-shapes should have an important impact
on the predictions of the measured photon distribution in
transverse momentum qT .
We also compare the x-dependence of the gluon dis-

tributions. We choose to illustrate this dependence by
evaluating the “collinear integral” of the unintegrated gluon
distributions

exgðx; μ2FÞ ¼
Z

μ2F

0

dk2TFgðx; kT; μFÞ: ð23Þ

This integral should reproduce the true collinear gluon
distribution xgðx; μ2FÞ in the leading logarithmic approxi-
mation. In our approach, however, the effects beyond the
leading logarithmic approximation are also present, so
differences between xgðx; μ2FÞ and exgðx; μ2FÞ should appear.
In Fig. 5, the gluon distribution (23) computed for the

considered unintegrated gluon distributions are compared
to the collinear NLO gluon distribution CT10 [50] from
which the KMR-AO distribution is extracted. The inte-
grated KMR-AO gluon is closest to the CT10 distribution,
reproducing quite well the x-dependence but having a
sightly higher normalization. This is due to the prescription
for the value of the KMR distribution (19) in the non-
perturbative region of kT < Q0 ¼ 1 GeV, where Fg is
frozen to the value for kT ¼ Q0. This difference could
be reduced to zero by fitting the nonperturbative value of Fg

but paying the price of discontinuity of Fg at the boundary
kT ¼ Q0. We prefer to avoid such a situation. The inte-
grated JH and JH-2013 distributions have similar shapes in
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FIG. 5. The “collinear integral” (23) computed for the four indicated unintegrated gluon distributions and two factorization scales μF
as a function of x, compared to the collinear gluon distribution CT10 at the NLO.
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indicated values of gluon x and factorization scales μF. In the computation of the GBW gluon distribution, the leading order running
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x to the CT10 gluon distribution, but their normalizations
are significantly different. This is particularly visible for
the new JH-2013 distribution, which confirms the results
shown in the original paper [48]. The shape in x of the
collinear integral (23) with the GBW distribution is not
related to the CT10 gluon shape in any way. However, the
GBW curve stays in the ballpark of the CT10 gluon values
for x < 0.01, while for x > 0.01 the x dependence is driven
by the postulated extrapolation factor ð1 − xÞ7, which is
clearly too mild in this region of x.

IV. COMPARISON TO DATA

A. Isolation of γ

In order to perform the comparison of our numerical
results with the LHC data, we need to perform photon
isolation from jets in similar manner as it was done by the
ATLAS and CMS experiments. To this end, we implement
the Frixione cone cut at the parton level [31]. For the final
state qq̄γ, we define the distances Ri between the outgoing
quarks, labeled by i ¼ 3, 4, and the photon:

Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϕi − ϕγÞ2 þ ðyi − yγÞ2

q
; ð24Þ

where ϕi are parton azimuthal angles and yi are their
rapidity. We take R0 ¼ 0.4. The Frixione cone isolation
procedure leads then to the following conditions which
have to be satisfied by the kinematic configuration:

(i) if R3 < R4 < R0 then

p3T þ p4T < qT
1 − cosR4

1 − cosR0

and

p3T < qT
1 − cosR3

1 − cosR0

; ð25Þ

(ii) if R3 < R0 < R4 then

p3T < qT
1 − cosR3

1 − cosR0

; ð26Þ

(iii) no constrains when R0 < R3 < R4,
(iv) if R4 > R3 then conditions (25) and (26) are applied

with the indices 3 ↔ 4,
(v) for simpler partonic final states, qγ and q̄γ, only

condition (26) is imposed.

B. LHC data sets

In the comparison, we focus on the available sets of data
that probe the smallest values of gluon x variable. Hence we
choose the following measurements of the prompt photon
production from the ATLAS and CMS experiments:

(i) ATLAS data at
ffiffiffi
S

p ¼ 7 TeV with 15 GeV < qT <
100 GeV (ATLAS@7 TeV) [32],

(ii) CMS data at
ffiffiffi
S

p ¼ 7 TeV with 25 GeV < qT <
400 GeV (CMS@7 TeV) [33],

(iii) ATLAS data at
ffiffiffi
S

p ¼ 8 TeV with 25 GeV < qT <
1500 GeV (ATLAS@8 TeV) [34],

where qT is the photon transverse momentum. In these
experiments the cross sections were measured as a function
of qT in several rapidity intervals. In the following figures,
the experimental data are compared to theoretical predictions
obtained within the kT-factorization formalism in the two
schemes described in the previous sections: the qg� scheme
based on the qg� → qγ and q̄g� → q̄γ partonic channels, and
the g�g� scheme based on a combination of the qvalg� → qγ
and g�g� → qq̄γ channels. For each theoretical scheme, we
display the results obtained with the three unintegrated gluon
distributions: KMR-AO, JH and GBW.

C. Comparison to data

In Fig. 6, we show the theory curves against the
ATLAS@8 TeV data for the central rapidity, jyj < 0.6,
in the log-log scale. This is the way the experimental results
are usually presented. In the upper plot, the predictions
are obtained in the qg� scheme while in the lower plot the
predictions are computed in the g�g� scheme. Clearly, the
qg� scheme with the KMR-AO gluon distribution gives
the best description of the data. The same gluon distribution
used in the g�g� scheme leads to a reasonable description of
the data, but the cross section is somewhat underestimated
for intermediate values of qT . The cross sections obtained
with the JH and KMR-AO distributions are very close to
each other for qT < 100 GeV, where the JH parametriza-
tion may be applied.
The new JH-2013 parametrization allows to extend the

JH results up to kT ≃ 300 GeV. However, the agreement
with the data for kT < 100 GeV becomes much worse in
the g�g� scheme. The predictions obtained with the GBW
gluon are close to the data at lower qT, but lead to too flat
qT-dependence. Clearly, this is due to too flat x-dependence
of the GBW gluon, discussed in more detail in the previous
section. Based on Fig. 6, one concludes that the best
description of the prompt photon data from the LHC in the
full range of the measured photon transverse momentum is
obtained for the KMR-AO gluon distribution in both the
qg� and g�g� schemes.
In order to perform more detailed studies of the descrip-

tion quality, we change the way the data and theoretical
results are presented. Namely, in Figs. 7, 8, and 9 we
display the ratios of the theoretical results to the exper-
imental data. For the sake of the optimal comparison, the
theoretical result are integrated over the bins used in the
experiments. The theoretical uncertainties are due to the
variation of the factorization scales, μF ¼ μR, between
qT=2 and 2qT .
In Fig. 7, using central bin of the ATLAS@8 TeV data,

we show the typical result for the comparison of the data
with the predictions given by the JH and JH-2013 gluon
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distributions. We see that the new JH-2013 distribution
significantly overestimates the data for qT < 100 GeV.
This could be attributed to a much higher the JH-2013
gluon distribution than the JH one for the gluon
kT < 1 GeV, see Fig. 4. In the forthcoming analyses we
will show only the JH predictions.
The theory to data ratios obtained within the qg� scheme

are shown in Fig. 8 for the three considered LHC data sets.
The absolute value of the photon rapidities jyj grows from
the top row down. Clearly, the best overall description
of the data is found with the KMR-AO gluon (green shaded
bands). It is seen at best for the data set with the smallest
errors, that is the ATLAS@8 TeV data (right column). For
most bins, these theoretical results are close to the data,
with relative differences smaller than 20%. Given the fact
that the leading order kT-factorization approach is used, this
is a very good accuracy. Somewhat larger deviations are
found only for larger values of jyj and qT > 500 GeV. In
this region, however, the kT-factorization approach is less
accurate since the contributions from relatively large values
of the gluon x are becoming important. The scale uncer-
tainty of these results is very small and does not allow to
overlap with the data. The description of the CMS@7 TeV
data with qT < 400 GeV (middle column) with the KMR-
AO gluon is also very good for all rapidities. The
predictions for ATLAS@7 TeV (left column) are above
the central data points, but stays consistent with the data
within the experimental errors, somewhat larger in this
measurement.
The data description in Fig. 8 with the JH gluon (red

hatched bands) is reasonable, but the application of this
gluon is limited to qT < 100 GeV. The results calculated
with JH are somewhat below the KMR-AO results and
more away from the CMS@7 TeV and ATLAS@8 TeV
data. This is interesting in the context of Fig. 5, where one
sees a larger integrated gluon from JH than from KMR-AO
distributions. This suggests that the lower prompt photon
production cross sections from the JH distribution are due
to the cut-off of larger transverse momenta, kT > μF, that is

FIG. 7. Theory to experiment ratios for the prompt photon production at ATLAS@8 TeV obtained from the JH and JH-2013
unintegrated gluon distributions within the qg� (right) and g�g� (left) schemes for the central rapidity bin.
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not present in the KMR-AO case, see Fig. 4. This shows
that the prompt photon data are sensitive to the shape of the
transverse momentum gluon distribution, and that the
longer kT-tail of the KMR-AO distribution is preferred
by the data.
We also see that the uncertainty of the cross section due

to scale variation is much larger for JH than for KMR-AO.
The gluon from the GBW model does not reproduce well
the qT-dependence of the data. The predictions are sig-
nificantly below the data at the lower limits of qT and much
above data at very large qT . One has to remember, however,
that in our study the GBW model is used far outside the

range of very small x values and moderate scales, where it
was fitted and should work well. The deviations from the
data reflect the tendency visible already in the integrated
GBW gluon, see Fig. 5 and the corresponding discussion of
its content.
Let us move now to the other approach, the g�g� scheme,

which results are shown in Fig. 9. Here the cross sections
are obtained by adding the g�g� → qq̄γ and qvalg� → qγ
contributions. Due to different dependencies on x of the
valence quark and gluon distributions, the g�g� → qq̄γ is
dominant at lower qT while qvalg� → qγ takes over at larger
qT . In the region where the gluon x is small or moderate,

FIG. 8. Theory to experiment ratios for the prompt photon production within the qg� scheme for the ATLAS@7 TeV [32] (left
column), CMS@7 TeV [33] (central column) and ATLAS@8 TeV [34] (right column) data and the KMR-AO (green shaded bands), JH
(red hatched bands) and GBW (blue curves) unintegrated gluon distributions. The theory uncertainties are due to the variation of the
factorization scale μF ¼ μR between qT=2 and 2qT .
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i.e., for qT < 50 GeV, the g�g� scheme gives a rather good
description of all the datasets with the KMR-AO gluon. The
scale uncertainty is significantly larger than it was for the
qg� scheme. This approach, however, is consistently less
successful for qT > 50 GeV. The biggest deviation occurs
in the region of qT ∼ 300–500 GeV, where the theory to
experiment ratio is at the level of 0.6–0.7. For larger qT, the
theory results become dominated by the qvalg� → qγ
channel, and the results approach the results of the qg�
scheme, see Fig. 10. Within its limits of applicability, the
JH gluon gives rather similar results to the KMR-AO gluon,
hence well consistent with the data. The approach based on

the GBW gluon experiences strengthened problems due to
inaccuracy of the used extrapolation beyond x > 0.01 and
too mild scale dependence since the gluon distribution
enters the hadronic cross sections twice in the g�g� scheme.
There is an interesting message coming from the

comparison of the results in the qg� anf g�g� schemes.
On the diagrammatic level, the g�g� contribution incorpo-
rates the qseag� contribution, where the sea quark is
produced in the last splitting. Therefore, one expects that
the g�g� scheme should lead to results that are close to the
qg� scheme. This is, however, not confirmed by the data at
larger qT. In order to provide more insight into this

FIG. 9. Theory to experiment ratios for the prompt photon production within the g�g� scheme for the ATLAS@7 TeV [32] (left
column), CMS@7 TeV [33] (central column) and ATLAS@8 TeV [34] (right column) data and the KMR-AO (green shaded bands), JH
(red hatched bands) and GBW (blue curves) unintegrated gluon distributions. The theory uncertainties are due to the variation of the
factorization scale μF ¼ μR between qT=2 and 2qT .
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problem, in Fig. 10 we show the partonic components of
the cross sections in both the schemes. We plot the ratios:
σðqvalg�Þ=σðqg�Þ, σðqseag�Þ=σðqg�Þ and σðg�g�Þ=σðqg�Þ,
where the reference cross section σðqg�Þ ¼ σðqseag�Þ þ
σðqvalg�Þ is obtained in the qg� scheme. Note that σðqvalg�Þ
is the same in both schemes.
Clearly, at lower qT, that is for smaller values of the

parton x, the qseag� or g�g� contributions strongly dominate
over the qvalg� channel. For qT ∼ 200–600 GeV, depending
on the scheme, the qvalg� channel is leading. Interestingly
enough, both for the KMR-AO and JH gluons, the g�g�
channel is larger at the lowest qT ¼ 10 GeV, but it
decreases faster with qT than the qseag� channel, and at
qT ∼ 1000 GeV the difference is already very pronounced.
At this stage, we do not have good understanding of this
behavior. One could attempt to connect this deviation
to going out of the small x domain, but this simple
explanation is undermined by the fact that the results
obtained in the qg� scheme stay close to data even at
qT ∼ 1000 GeV, where the gluon x is not small. Hence we
consider this problem to be an interesting theoretical puzzle
that calls for explanation.

V. CONCLUSIONS

In this paper, we have analyzed the prompt photon
hadroproduction at the LHC using the kT-factorization
approach with the qg� → qγ and g�g� → qq̄γ partonic
channels.The data from the ATLAS and CMS collaboration
were considered, obtained at

ffiffiffi
S

p ¼7TeV and
ffiffiffi
S

p ¼ 8 TeV
with the range of the photon transverse momentum from
15 GeV to 1500 GeV in several rapidity bins of the photon.
The unintegrated, transverse momentum dependent gluon
distributions of different origin were probed: from the
integral KMR procedure with angular ordering (KMR-AO),
the Jung–Hansson distribution (JH) obtained from the
CCFM equation as well as the Jung-Hautmann newer
version JH-2013 and the gluon distribution from the
GBW saturation model extended to large values of x.
With the qg� partonic channel and the KMR-AO gluon

distribution, the best overall description of the data was

obtained with typical accuracy of 10–20%. The results
obtained with the JH gluon were found to be slightly
less accurate in the region of their applicability with
qT < 100 GeV. The JH-2013 results significantly overshoot
the data. The GBW gluon does not provide satisfactory
description beyond this region and for central values of the
photon rapidity, which shows the expected region of its
validity due to small-x nature of this distribution.
We point out that our findings indicate that the precision

prompt photon data allow for constraining the transverse
momentum distribution of the gluons in the proton. At
larger photon rapidities, the JH description of the data
deteriorates for increasing photon transverse momentum
qT , underestimating the data while the KMR-AO descrip-
tion stays close to the data. This effect may be traced back
to a much steeper decrease of the JH distribution than the
KMR-AO one for gluon transverse momenta kT larger than
the factorization scale μF.
The description obtained with the g�g� channel was

shown to provide a good description of the data at lower
photon transverse momentum qT , where also the values of
the partons’ x are lower. At larger qT, however, the data
are significantly underestimated in this approach. We find
this result rather puzzling as the g�g� channel should
partially include the NLO effects besides the sea quark
contributions to the qg� channel from the last splitting,
which is the main contribution to the total qg� channel.
This puzzle calls for a complete NLO analysis of the
prompt photon hadroproduction in the kT-factorization
framework.
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