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An immune challenge of female great tits decreases offspring
survival and has sex-specific effects on offspring body size
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Abstract
Investment in immunity is expected to decrease (costly immunity) or enhance (terminal investment) reproductive performance.
Here, we tested the effects of activation of the immune system in female great tits (Parus major) on (1) their reproductive effort
and (2) the survival and body condition of their offspring, controlling for chick sex.We injected females tending 3-day-old chicks
with sheep red blood cells (SRBC) or saline (control) and recorded their provisioning rates 6 days later, during the expected peak
of antibody production.Wemeasured tarsus length and bodymass in 11-day-old chicks andmonitored changes in brood size.We
found that female provisioning rates were unaffected by the SRBC challenge. An analysis without an outlier, however, showed a
significant challenge-by-hatch date interaction. This interaction indicated that female provisioning rates decreased with hatch
dates in the SRBC but not in the control nests, suggesting a stronger effect in later breeders. Chick bodymass was not affected by
female immunisation nor by its interaction with chick sex. However, we found a significant challenge-by-sex interaction on
offspring tarsus. In SRBC nests, the difference in tarsus length between male and female chicks was lower than in controls,
suggesting sex-dependent effects of the challenge on offspring structural growth. Finally, chick mortality was greater in SRBC
nests compared with controls, but chick survival probability was not affected by sex. Overall, our results support the costly
immunity but not the terminal investment hypothesis in the great tit.
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Introduction

Mechanisms underlying life history decisions can be better
understood by studying their relationship with immune func-
tion, which, being part of self-maintenance, is expected to be
traded-off with reproduction (Stearns 1992; Zuk and Stoehr
2002). This generates two complementary predictions, assum-
ing that resources are limited (Norris and Evans 2000). First,

investment in reproduction can impair performance of the
immune system. Second, individuals mounting an immune
response are predicted to decrease their breeding effort and
may suffer a lower current reproductive success.

In birds, the former prediction has been widely tested exper-
imentally, showing that increased breeding effort negatively
affects immune function and parasite load (Knowles et al.
2009; González-Medina et al. 2015; Colominas-Ciuró et al.
2017). In contrast, effects of immune responses on reproductive
effort and success have received less attention, and the studies
yielded mixed results. These effects have typically been tested
experimentally, by activation of the immune response with a
novel, non-pathogenic antigen (immune challenge), such as
sheep red blood cells (SRBC), lipopolysaccharide (LPS),
Newcastle disease virus (NDV) or tetanus toxoid (Demas
et al. 2011). Injecting a non-pathogenic antigen triggers the
immune response but does not involve toxicity to cells. Thus,
a non-pathogenic antigen allows studying the costs of the im-
mune response independently of the negative effects caused by
multiplication of a pathogenic microorganism.
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Some of the avian studies that employed immune challenge
showed its negative influence on clutch initiation date, egg size,
brood size, brood feeding rates, chick quality, reproductive
success and time to relay a replacement clutch (Ilmonen et al.
2000; Råberg et al. 2000; Bonneaud et al. 2003; Marzal et al.
2007; Gasparini et al. 2009; Cucco et al. 2010; Needham et al.
2017). These results lend support for the costly immunity hy-
pothesis, stating that costs of mounting an immune response are
negatively reflected in current reproduction. However, other
studies failed to find a negative effect of immune system acti-
vation on variables related to reproductive effort and output
(Williams et al. 1999; Råberg et al. 2000; Bonneaud et al.
2003, 2004; Marzal et al. 2007) or found negative effects that
were dependent on parental age, sex of young or environmental
conditions (Lozano and Ydenberg 2002; Bonneaud et al. 2004;
Hanssen 2006; Velando et al. 2006; Bowers et al. 2012;
Grzędzicka 2017). Thus, the costly immunity hypothesis has
to date not found conclusive support.

In fact, in some studies, the effect of immunisation increased
breeding effort and performance. Activation of the immune
response can decrease survival and longevity (Hanssen et al.
2004; Eraud et al. 2009) and thus can be interpreted by an
individual as a cue of lowered chances of future survival and
consequently a lowered residual reproductive value. As a result,
an individual which otherwise would save resources for future
reproduction will enhance its current reproductive effort. Yet,
this terminal investment hypothesis (Clutton-Brock 1984) has
received limited interest in avian studies that experimentally
manipulated the immune response to determine its effect on
breeding performance (Lozano and Ydenberg 2002;
Bonneaud et al. 2004; Hanssen 2006; Velando et al. 2006;
Bowers et al. 2012; Sköld-Chiriac et al. 2019).

Here, we investigated whether immunisation of free-living
female great tits (Parus major) with SRBC affects their repro-
ductive effort (provisioning rates) and output (offspring body
mass, body size and survival). According to the costly immu-
nity hypothesis, an immune challenge would negatively affect
reproductive effort and performance, while it would increase
breeding effort and output under the terminal investment hy-
pothesis. We also tested whether the immunisation effects on
offspring are sex-dependent. In the great tit, this can be ex-
pected because males are larger than females (Svensson 1992)
and therefore more costly to produce, which suggests that
parental condition might have different effects on male and
female chicks (Trivers and Willard 1973; Nager et al. 1999).

Methods

Study area and general protocol

The study was conducted during one breeding season in the
Niepołomice Forest, southern Poland (N 50°6′, E 20°25′), in a

population of great tits breeding in nest boxes. To estimate
clutch sizes and hatching dates, after April 20, we carried out
regular nest box checks. We determined the first egg-laying
date by subtracting the number of eggs found before clutch
completion from the date of the check, assuming that only one
egg is laid per day. To find out the final clutch size, we
checked the box 15 days after the first egg date. The expected
hatching date was then calculated as the final clutch date plus
11 days. Beginning from the expected hatching date, we con-
ducted checks every day, to pinpoint the date of hatching (day
0). Days after hatching are given as ‘+’ followed by the num-
ber of days since the hatching date.

The studywas carried out on 23 nests during the first breed-
ing attempt. The order of procedures was as follows (see be-
low for detailed description). On day + 3, we caught and
ringed the female or both parents at each nest and carried
out the immune challenge procedure on the females. Chicks
were blood sampled for sex identification. On day + 9, we
videotaped nest boxes to record female brood provisioning
rates. On day + 11, the body mass and tarsus of chicks were
measured. Brood size was tracked throughout chick develop-
ment (+ 3, + 9, + 11, + 14). Between + 11 and + 14, a second
capture attempt was made to catch and ring the male if he had
not been caught on + 3.

Immunisation of females

Females were metal-ringed and given an individual combina-
tion of three colour plastic rings (AC Hughes, UK). Males, if
caught, were metal-ringed. Each nest was randomly assigned
to the experimental or control treatment. Females tending ex-
perimental nests (N = 12) were injected intraperitoneally with
0.1 ml of 40% SRBC solution in phosphate-buffered saline
(PBS), and those tending control nests (N = 11) were injected
with 0.1 ml PBS. Birds were released immediately after
injection.

SRBC has been widely used in eco-immunology studies to
evaluate the costs of the immune response on reproduction
and survival in captive and wild birds (Williams et al. 1999;
Lozano and Ydenberg 2002; Verhulst et al. 2005; Hanssen
2006; Pinxten et al. 2008; Demas et al. 2011; Martyka et al.
2011; Rutkowska et al. 2012). This non-pathogenic antigen
triggers a humoral immune response by activating B lympho-
cytes with the help of T lymphocytes, ultimately leading to the
production of antibodies by the former (Janeway et al. 2001).
SRBC is a relatively benign antigen, which does not cause
multiple effects, unlike, e.g. LPS (Hõrak et al. 2003;
Davison et al. 2008). In birds, the antibody response to
SRBC elevates the basal metabolic rate and reduces locomo-
tory activity (Ots et al. 2001; Hõrak et al. 2003; Eraud et al.
2005). It can also be an index of resistance to natural patho-
gens. For example, lines of poultry selected for high anti-
SRBC antibody production show higher resistance, relative

174 acta ethol (2020) 23:173–181



to lines selected for none or low SRBC response, to important
avian pathogens, such as the Newcastle disease virus,
Mycoplasma gallisepticum, Eimeria necatrix, a splenomegaly
virus and feather mites (Gross et al. 1980).

Recording brood provisioning rates

Parental feeding rates were videotaped with digital cameras
(Samsung and Sony) mounted on plastic holders screwed to
trees (ca. 3–7 m from nest box). The day of videotaping (+ 9)
corresponded to the expected peak of antibody production in
the great tit following immunisation with SRBC (Snoeijs et al.
2007) and high brood demand (van Balen 1973). Each nest
was videotaped for 1 h, between 7 and 11 h a.m. All videos
were recorded in rainless weather.

During analysis of the videos, we identified the female by
the colour rings and counted the number of feeding events
(such that the female entered the nest box with a food item
and left it without food). To determine the provisioning rate,
we discarded the time preceding arrival of the first parent to
feed young (mean ± standard deviation, 12.6 ± 11.1 min), to
eliminate a potential effect of human disturbance on the birds.
The provisioning rate was calculated as the number of feeds
per hour and per chick.

We observed that at four nests (two SRBC and two control
ones) males were not present on the video. In three of these
nests, we had either caught the male on day + 3 or re-caught
him between + 11 and + 14. In the case of the fourth nest,
however, we did not catch or see the male on day + 3 nor
during the subsequent trapping attempt.

Measurement of nestling body condition

In seven control and nine SRBC nests (not all due to man-
power limitations), we measured all the chicks when the brood
size was up to six and six chicks (two lightest, two middle and
two heaviest of the brood) when the brood size was above six.
The average proportion of the brood that was measured was
0.65 ± 0.19 standard deviation. Tarsus length was measured
with a calliper to the nearest 0.1 mm, and bodymass was taken
with an electronic balance to the nearest 0.1 g. We recorded
offspring bodymass and body size because they are predictors
of survival, recruitment to the breeding population and repro-
ductive investment (Both et al. 1999; Lindström 1999;
Monrós et al. 2002; Ringsby et al. 2007; Cleasby et al.
2010), thus being important fitness-related variables.

Offspring sex identification

Approximately 20 μl of blood was collected into a capillary
from the pedal vein by puncture with a sterile syringe needle.
Blood samples were immediately stored in 96% ethanol
(Sigma-Aldrich). DNA was extracted from blood samples in

the Chelex medium (Walsh et al. 1991). Sex was determined
by PCR amplification of sequences in the CHD-W and CHD-
Z genes, located on sex chromosomes, using the P2 and P8
primers (Griffiths et al. 1998). PCR products were separated
by electrophoresis for 60 min at 80 V, in a 3% agarose gel
stained with ethidium bromide. Sex of the chicks was deter-
mined by the presence of the CHD-Z sequence (350 bases,
both sexes) and the CHD-W sequence (400 bases, females
only).

Statistical analysis

A general linear model (GLM) was applied to test for the
effect of the SRBC challenge on female per capita provision-
ing rates. We also controlled for the hatch date (May 1 = day
1), because it is associated with temporal changes in environ-
mental conditions and individual quality (Verhulst et al. 1995)
and therefore can interact with the effects of immune chal-
lenge (Ilmonen et al. 1999; Wiehn et al. 1999; Ardia 2005).
Hence, the model included treatment as a fixed effect (SRBC
vs. control), hatch date as a covariate and the interaction be-
tween the treatment and the hatch date. The hatch date was
centred to allow correct estimation and interpretation of the
treatment effect in the presence of an interaction (Schielzeth
2010).

We also tested whether there were differences between the
SRBC and the control group in variables which could poten-
tially confound the observed effect of immune challenge on
the provisioning rates. We fitted one GLM per each variable.
We did not find significant differences between treatments in
(estimates ± standard errors are given): hatch date (control
7.27 ± 0.61, SRBC 7.00 ± 0.58, F(1,21) = 0.10, p = 0.750),
clutch size (control 10.64 ± 0.59, SRBC 10.42 ± 0.56,
F(1,21) = 0.07, p = 0.789), brood size on day + 3 (control
9.64 ± 0.77, SRBC 9.42 ± 0.73, F(1,21) = 0.04, p = 0.838),
sex ratio in brood on day + 3 (proportion of males: control
0.53 ± 0.06, SRBC 0.58 ± 0.05, F(1,20) = 0.35, p = 0.559), fe-
male body mass on day + 3 (control 18.42 ± 0.21, SRBC
18.44 ± 0.21, F(1,21) = 0.01, p = 0.938) and time (in minutes)
before the arrival of the first parent to feed young (control
15.73 ± 3.31, SRBC 9.75 ± 3.17, F(1,21) = 1.70, p = 0.206).

General linear mixed models (GLMMs) were used to test
for the effect of immunisation on nestling condition: body
mass and tarsus length on day + 11, with ‘box ID’ as a random
factor. We included sex as an explanatory variable and its
interaction with treatment, to check whether nestlings of dif-
ferent sex responded differently to the immunisation of the
female parents. The non-parametric Wilcoxon rank sum test
was applied to test the effect of female SRBC challenge on the
change in nestling number between day + 3 and + 14.We used
a non-parametric test because the change in brood size did not
meet the normality assumption. Finally, a general non-linear
mixed model with the binomial distribution and logit link was
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applied to test whether the probability of survival to day + 14
was affected by treatment, sex and their interaction.

We ran graphical diagnostics of the GLM and GLMM
models to make sure that their assumptions (linearity, normal-
ity of error and homogeneity of variance) are not violated and
checked for outliers using the Cook’s distance (D). By eye
inspection, we did not identify important departures from
model assumptions except for the provisioning model, in
which we noticed a clearly influential outlier. This data point
had an abnormally high residual, which departed from the
normal Q-Q curve and had a D of 1.55, with the D of the
remaining data points being below 0.5. The outlier was the
nest in which the male was not seen on the video nor captured
in either of the two trapping attempts. This suggested that the
nest could have been tended only by the female and hence
could belong to a different statistical population. For this rea-
son, we removed the outlier and re-ran the model. In the model
without the outlier, the diagnostics plots did not raise our
concerns, and the Cook’s distances were all below 0.9. We
reported results of the model both with and without the outlier.
In addition, we also ran a model that excluded all the four
nests to which males did not come to feed during videotaping.

All the computations were performed in the R environment
(R Core Team 2019), using the following functions: ‘lm’ for
the general linear models, ‘lmer’ for the general linear mixed
models from the lme4 package (Bates et al. 2015), ‘wilcox.test’
for the Wilcoxon sum rank test, ‘plot_model’ for model diag-
nostics from the ‘sjPlot’ package (Lüdecke 2020) and
‘cooks.distance’ to calculate the Cook’s distance. Sum con-
trasts were used in the GLMs and GLMMs, to obtain
between-group comparisons for each main effect. To obtain
F-statistics for the models, we used the ‘Anova’ function from
the ‘car’ package (Fox and Weisberg 2011). Throughout
Results, we report model estimates ± standard errors of the
dependent variables for the SRBC and control group.

Results

Female provisioning frequency

The female provisioning rate was not significantly affected by
the immune challenge (control 1.05 ± 0.18, SRBC 0.97 ±
0.18) nor by its interaction with the hatch date (Table 1,
Fig. 1). However, the model without the outlier showed that
while female brood feeding rates were not affected by the
SRBC treatment (control 1.06 ± 0.12, SRBC 0.77 ± 0.12),
there was a significant treatment-by-hatch date interaction
(see Online Resource 1A). When we explored this interaction
by testing whether the female provisioning rate varies with the
hatch date in each of the two treatment groups separately, we
found that it was unrelated to hatch dates in control broods
(F(1,9) = 0.43, p = 0.529) but decreased with hatch dates in

SRBC broods (F(1,9) = 37.25, p < 0.001; see Online
Resource 2A).

When we ran the models excluding all the four nests at
which the males were not seen during videotaping, the effect
of SRBC challenge on female provisioning rate was signifi-
cant (control 1.19 ± 0.11, SRBC 0.72 ± 0.11) and so was the
interaction between the SRBC challenge and hatch dates (see
Online Resource 1B and 2B).

Nestling body condition and survival

Immunisation of female parents did not affect nestling body
mass (control 14.93 ± 0.37, SRBC 14.98 ± 0.31) and tarsus
length (control 19.45 ± 0.20, SRBC 19.45 ± 0.16; Table 2).
The interaction between SRBC immune challenge and sex
did not affect chick body mass. However, it had a significant
effect on tarsus length (Table 2). In SRBC broods, the differ-
ence in tarsus length between female and male chicks was
smaller compared with control broods (Fig. 2).

The change in brood size between days + 3 and + 14 was
significantly higher in the SRBC-immunised than in the con-
trol group (Wilcoxon rank sum test,W = 104.5, p = 0.003). All
nestlings survived in the nests of control females and mortality
(median – 1; range 0 to −1) was observed in seven out of the
12 SRBC nests, with one chick dying by day + 9 in each of
these nests and no mortality afterwards. Due to the lack of
mortality in the control group, we analysed sex effects on
chick survival probability only in the SRBC group. In this
group, the chances that a chick survives from day + 3 to +
14 did not vary between the sexes (z = 1.53, p = 0.126).

Discussion

We found that immunisation of breeding female great tits did
not affect their provisioning rates. The analysis excluding the
outlier nest suggested that SRBC challenge had a hatch date-
dependent effect on female provisioning rates. In addition, the
SRBC challenge had a sex-dependent effect on offspring tarsus
length and increased offspring mortality, independently of sex.

Table 1 Results of the GLM testing for the effect of SRBC immunisation
of female great tits on their brood provisioning rates, measured as the
number of nest visits with prey per hour divided by the brood size (i.e.
per chick)

Term F (df) p Estimate (SE)

Intercept 63.71 (1, 19) < 0.001 1.010 (0.127)

SRBC treatment 0.10 (1, 19) 0.754 0.040 (0.127)

Hatch date 1.81 (1, 19) 0.195 − 0.090 (0.067)

SRBC treatment x hatch date 0.51 (1, 19) 0.483 0.048 (0.067)

The sum contrasts were applied. df degrees of freedom, SE standard error
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Effects of SRBC challenge on female provisioning
rates

A negative effect of experimental activation of the immune
system on chick provisioning rates has been found in female
blue tits (Cyanistes caeruleus) immunised with the diphtheria-
tetanus toxin (Råberg et al. 2000) and in female house
sparrows (Passer domesticus) injected with LPS
(Bonneaud et al. 2003). Another study actually recorded
an increase in feeding rates in SRBC-challenged female
great tits (Grzędzicka 2018).

In our study, we did not observe a general effect of SRBC
challenge on female provisioning rates. Although we did not
measure whether the birds produced antibodies in response to
SRBC, this antigen is known to trigger the immune response
in the great tit (Ots et al. 2001; Snoeijs et al. 2004a,b, 2007;
Pinxten et al. 2008). However, the 1-h videotaping time could
have been too short to measure provisioning rates in a repre-
sentative way. Since all the nest boxes were treated equally
(i.e. all of them were recorded for about 1 h) and the absence
of males during recording was balanced between the treatment
groups, these shortcomings should not have caused a bias in
provisioning rates in any of the groups. Nevertheless, most
likely due to a short recording time, we did not capture some

males on the video, and the female provisioning rates in the
absence of the males could have been distorted. This is
suggested by the provisioning model without the nest
boxes at which the males were absent on the video, in
which we found a significant effect of the SRBC
treatment.

In the model that excluded the outlier nest, we observed an
interaction between the immune challenge and hatch dates,
suggesting that the negative SRBC effect increased with the
time of clutch initiation. In the great tit, as in many other birds,
reproductive output declines with hatch dates (Perrins 1970;
Perrins and McCleery 1989; Verhulst and Tinbergen 1991;
Barba et al. 1995; Verhulst et al. 1995). This pattern is caused
by environmental conditions (e.g. food abundance) deteriorat-
ing with season advancement, or by parental quality, with
higher quality individuals breeding earlier and occupying bet-
ter territories, or having better foraging abilities compared to
late breeders (Verhulst et al. 1995). Consequently, the hatch
date-dependent effect of SRBC suggests that in female great
tits, the trade-off between offspring provisioning and immu-
nity could be more evident in harsher environmental condi-
tions or lower quality individuals. However, the interaction of
hatch dates and female feeding rates must be interpreted with
caution, since we cannot be confident that the excluded outlier

Fig. 1 Chick provisioning rates
(day + 9 post-hatch) of female
great tits in the SRBC-challenged
and control (PBS-injected) group
in relation to the hatch date.
Regression lines and their
confidence intervals estimated
from the female provisioning
model (see Table 1) are shown.
The arrow indicates the
outlier nest

Table 2 Results of the GLMMs testing for the effect of SRBC immunisation of female great tits on the bodymass and tarsus length of their nestlings at
day + 11 post-hatch

Term Nestling body mass (g) Nestling tarsus length (mm)

F (df) p Estimate (SE) F (df) p Estimate (SE)

Intercept 3800.31 (1, 12.7) < 0.001 14.952 (0.242) 22,746.15 (1, 12.8) < 0.001 19.449 (0.129)

Treatment 0.01 (1, 12.7) 0.918 − 0.025 (0.242) 0.00 (1, 12.8) 0.988 0.002 (0.129)

Sex 11.60 (1, 73.3) 0.001 − 0.539 (0.157) 33.98 (1, 71.7) < 0.001 − 0.406 (0.069)

Treatment x sex 3.11 (1, 73.3) 0.082 − 0.279 (0.157) 7.31 (1, 71.7) 0.009 − 0.188 (0.069)

The sum contrasts were applied. df degrees of freedom, SE standard error
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nest was indeed tended only by the female and the model
including the outlier showed non-significant results.

Effects of SRBC challenge on offspring body condition
and survival

Some avian studies, for example, on pied flycatchers
(Ficedula hypoleuca) and tawny owls (Strix aluco), showed
a negative effect of mother immunisation on nestling body
mass (Ilmonen et al. 2000; Gasparini et al. 2009). However,
others failed to find any effects (Bonneaud et al. 2003; Marzal
et al. 2007). The lack of an effect of female immune challenge
on nestling body mass in our study may to some extent be
explained by the increased mortality of the nestlings of
immunised females.

The sex-dependent effect of female SRBC challenge on
offspring tarsus length adds to the scarce evidence for sex-
specific effects of immunisation of breeding birds on their
offspring. To our knowledge, only two studies found such
effects. Martyka et al. (2011) demonstrated that female zebra
finches (Taeniopygia guttata) injected with SRBC prior and
during egg-laying produced larger female but not male off-
spring. Bowers et al. (2012) observed that female house wrens
(Troglodytes aedon) injected with LPS at onset of incubation
raised heavier sons and daughters with a stronger immune
response to phytohemagglutinin (PHA) in replacement
broods. Our result could indicate that the SRBC challenge
caused a shift in resource allocation towards female offspring
to the disadvantage of male offspring. This could be an adap-
tive strategy that optimises offspring reproductive value, since
great tit males are the more costly sex to raise. Alternatively,
parents did not discriminate any of the sexes but on average
brought smaller prey items, thus decreasing the volume of
food delivered to the nest. If the volume of prey fed to chicks
is lower, male offspring, being the more demanding sex dur-
ing development, will incur a higher cost.

We replicated a negative effect of immune challenge on
chick survival in a model passerine and using another, rela-
tively benign antigen. In birds, such effect has been shown
only in a few studies. In the study by Bonneaud et al. (2003),
LPS-injected females with experimentally enlarged broods
had a lower breeding success relative to uninjected females.
Higher nestling mortality was also recorded by Ilmonen et al.
(2000), who vaccinated female pied flycatchers with the
diphtheria-tetanus toxin and by Marzal et al. (2007), who
immunised female house martins (Delichon urbica) with the
Newcastle disease virus. The drop in nestling survival could
have resulted from a change in the size and/or type of prey
brought to the nest (Wright et al. 1998; Grzędzicka 2017). In
passerines, supply of the largest food items predicts
nestling growth and survival (Naef-Daenzer and Keller
1999; Naef-Daenzer et al. 2000; Schwagmeyer and
Mock 2008). In addition, as chick mortality was ob-
served only before day + 9, when chicks are brooded by the
female (Gosler 1993), immunisation with SRBC could have
affected brooding quality.

Conclusion

We found that female great tits challenged with SRBC, a
relatively benign non-pathogenic antigen, incurred costs to
their current breeding success. This result indicates a trade-
off between activation of the immune system and repro-
duction, which supports the costly immunity but not the
terminal investment hypothesis. In addition, our findings
suggest that such trade-offs can have sex-dependent ef-
fects on offspring and could possibly depend on envi-
ronmental factors that change with hatch dates. This points to
the importance of including key ecological and individual
correlates in studies on trade-offs between reproduction and
immunity.

Fig. 2 Chick tarsus length
(day + 11 post-hatch) in the nests
of SRBC-challenged and control
(PBS-injected) female great tits,
shown by nestling sex. Means
(circles) and their confidence
intervals (whiskers) estimated
from the chick tarsus length
model in Table 2 are presented
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