Orientation of lutein in a lipid bilayer — revisited*

Marta Pasenkiewicz-Gierula, Krzysztof Baczyński, Krzysztof Murzyn and Michał Markiewicz

Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland

Lutein is present in the human retina and lens, where it plays a protective role. As lutein is associated with the lipid matrix of biomembranes, the role depends on its membrane location. Experimental studies predicted two orientations of lutein in a phosphatidylcholine (PC) bilayer: vertical and horizontal. Using a molecular dynamics simulation, we observed, in two different PC bilayers, both orientations of lutein, and in each bilayer, a single change from vertical to horizontal orientation or vice versa. Both orientations were stabilized by hydrogen bonding of lutein OH groups with mainly carbonyl but also phosphate oxygen atoms of PC.

Key words: molecular modeling, macular pigment, tilt angle

Received: 17 October, 2011, accepted: 01 March, 2012; available on-line: 17 March, 2012

INTRODUCTION

Lutein is a xanthophyll found in many fruits and vegetables. It is also, together with zeaxanthin, the most common ocular pigment in humans. In the retina, its highest concentration is in the fovea, the central region of the macula lutea (yellow spot) but the concentration rapidly decreases with an increasing distance from the fovea (Hammond et al., 1997). Lutein is also present in the human lens, and in a higher concentration in epithelial and cortical cell layers than in the nucleus (Bernstein et al., 2001).

In the retina, lutein as well as other macular pigments, protect against excess blue light. It has been estimated that the pigments are able to reduce the blue light intensity by 40% (Snodderly et al., 1984). Moreover, lutein can also act as an antioxidant by reducing the rate of photooxidation (Khachik et al., 1997).

In humans, lutein originates exclusively in the diet (Khachik et al., 1997). It has been shown that dietary intake of lutein is positively correlated with its optical density in retina (Hammond et al., 1996). Several studies have shown that higher level of macular pigmentation lowers the risk of eye diseases such as age-related macular degeneration (AMD) (Richer, 1999; Richer et al., 2004; Group, 2001). It has been also shown that increased lutein consumption reduces the risk of cataract (Moeller et al., 2003).

In the present study, molecular modeling approach was used to determine orientations of lutein molecules in the PC bilayer as well as interactions stabilizing the orientations.

METHODS

In this study, we used classical molecular modeling with atomic resolution, mainly molecular dynamics (MD) simulation to study lutein intercalation and orientation in the hydrated 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer. The initial structure of (3R,3’R,6’R) lutein was constructed using Avogadro program (Avogadro). The structure, with the Gasteiger-Marsili charges (Gasteiger & Marsili, 1980), was optimized using Dreiding (Mayo et al., 2005) forcefield. Afterwards, the structure was fully optimized at B3LYP/6-31G(d) level of theory using Gaussian 09 program (Gaussian, 2010). For MD simulations, POPC and lutein molecules were parameterized using all-atom optimized potentials for liquid simulations (OPLS-AA) (Jorgensen et al., 1996), and for water, TIP3P parameters (Jorgensen et al., 1983) were used. A rotational profile for the C6’–C7’ dihedral angle in the lutein molecule (Fig. 1), based on the OPLS-AA parameters, was positively verified against that calculated at the B3LYP/6-31G(d) level of theory for 12 rotamers and that calculated by Landrum et al. (2010). In the POPC molecule, some of the original OPLS-AA parameters for CH, CH₂ and CH₃ groups of the acyl chains were parameterized using all-atom optimized potentials for liquid simulations (OPLS-AA) (Jorgensen et al., 1996), and for water, TIP3P parameters (Jorgensen et al., 1983) were used.

Figure 1. Chemical structure of lutein with indicated ionone rings and atoms that are used in analyses described below.
were modified to better reproduce the bilayer thermotropic phase (unpublished results). To this end, the point charges on C and H atoms were altered to match calculated dipole moments of C-H bonds (Vereshchagin & Vulfson, 1966) in these groups. The new point charges are: in -CH$_2$ –0.24e C, +0.12e H; in -CH$_3$ –0.48e C, +0.16e H; and in =CH –0.23e C, +0.23e H. It is interesting to note that in case of -CH$_2$ and =CH groups, new point charges are exactly twice as large as in the original OPLS-AA parameter set.

Six lutein molecules were added to the 200-ns equilibrated bilayer system consisting of 200 POPC and 6000 water molecules (Plesnar et al., 2012). Lutein molecules were located on the bilayer surfaces, three on each side, on the water phase side (Fig. 2). Altogether, two systems with the same molecular composition and slightly differing initial positions of the lutein molecules, were constructed and optimized (system_1, and system_2). MD simulations of the two systems were carried out for 200 ns using Gromacs 4.5.4 package (Hess et al., 2008). LINCS algorithm (Hess et al., 1997) was used to preserve lengths of covalent bonds with hydrogen atoms, and the time step was set to 2 fs. Long-range electrostatic interactions were evaluated by means of the particle-mesh Ewald summation method with the β-spline interpolation order of 5, and a direct sum tolerance of 10^{-6} (Essmann et al., 1995). For the real space, three-dimensional periodic boundary conditions with the usual minimum image convention and a cutoff of 1 nm were used. The list of non-bonded pairs was updated every 5 steps. Simulations were carried out at a constant temperature of 310 K = 37°C, which is above the main phase transition temperature for a pure POPC bilayer (–5°C, Seelig & Waespe-Sarcevic, 1978), and a constant pressure of 1 atm. Temperatures of the solute and solvent were controlled independently by the Nose-Hoover method (Hoover, 1985), pressure was controlled anisotropically by the Parrinello-Rahman method (Parrinello & Rahman, 1981), both relaxation times were set at 0.6 ps.

RESULTS

Location and orientation of lutein

In order to check the readiness of the lutein molecules to intercalate into the POPC bilayer and to check their orientations during the simulations, the vertical position of the C15 carbon atom in each of the six lutein molecules as a function of time, was recorded (Fig. 3). Also, time profiles of z-coordinates of center-of-masses of the β-ring and the ε-ring of the lutein molecules that intercalated into the hydrophobic core of the bilayer, were recorded (Fig. 3).

In each system, one of the six lutein molecule had intercalated into the bilayer and that occurred within the first 2 ns of MD simulations. Both molecules penetrated the bilayer hydrophobic core from the β-ring-side. In system_1, the intercalated molecule placed itself horizontally at a depth of POPC carbonyl oxygen atoms and remained in such a position for the next 80 ns of MD simulation. After that time, it gradually switched to the vertical orientation, in which it remained until the end of the simulation. In system_2, the situation was opposite. The lutein molecule first penetrated one leaflet of the bilayer in a vertical orientation, and at about 70 ns of the simulation, it reoriented to horizontal position and remained in that orientation until the end of the simulation. Lutein molecules that did not intercalate into the

![Figure 2. Initial location of six lutein molecules on the POPC bilayer upper and lower surfaces after energy minimization — system_1.](image)

![Figure 3. Time profiles of vertical locations (z-axis) of C15s (Fig. 1) of the lutein molecules remaining outside the bilayer (gray lines) and intercalated into the bilayer (black lines) as well as center-of-masses of the β (open circles) and ε (open triangles) rings of the intercalated lutein molecules. Two horizontal dashed lines indicate the average vertical location of the POPC P atoms in each of the bilayer leaflets; (a) system_1, and (b) system_2.](image)
Orientation of lutein in a PC bilayer

in the aqueous phase and remained in such a form for the rest of MD simulations. In order to obtain a more precise picture of the process of lutein reorientation in the bilayer, time evolution of tilt angles of both intercalated lutein molecules was recorded (Fig. 4). The lutein tilt angle is defined as the angle between the vector connecting the center-of-mass of both ionone rings and the bilayer normal.

In system_1, the lutein reorientation process was “smooth”, which could be explained by the necessity of reorganization of the lipids in both bilayer leaflets to enable the lutein to locate across the bilayer. In system_2, lutein reorientation occurred only in one bilayer leaflet, permitting a dynamic, stepwise character of the change of the orientation.

Specific lutein-POPC interactions

In both systems, the lutein molecules intercalated into the bilayer changed their initial orientation at around 70–80 ns of MD simulations and then kept on the new orientation for the remaining time of 120–130 ns. To check, what interactions stabilized these new, stable orientations of the lutein molecules in the bilayer, we inspected specific, i.e., involving polar groups, POPC-lutein interactions by calculating radial distribution functions (RDF) of lutein oxygen atoms of both β and ε rings relative the POPC carbonyl (Oc) and phosphate (Op) oxygen atoms, lutein-Oc and lutein-Op RDF, respectively (Fig. 5). The position of the first peak in RDFs in Fig. 5 (≈0.27 nm) indicates formation of hydrogen (H-) bonds between the lutein OH groups and Oc and Op atoms.

The lutein molecule in system_1 makes H-bonds with Oc atoms via OH groups both in 3 and 3’ positions, and with Op atoms via OH groups in the 3’ position (ε-ring) (Fig. 5a). Almost vertical orientation of lutein during most of the simulation results in sharp peak in the lutein-Op RDF indicating exposure of the ε-rings to the phosphate groups region of the bilayer. In system_2, the horizontal orientation of the lutein molecule is stabilized mainly by H-bonding with Oc atoms and only slightly, by H-bonding with Op atoms (Fig. 5b).

Discussion

The aim of this work was to obtain information about preferred orientations of lutein in a PC bilayer as well as about interactions stabilizing those orientations, using molecular modeling methodology. MD simulations results indicate that both vertical and horizontal orientations of lutein are possible, which agrees with the experimental results of the Gruszecki’s group (Sujak et al., 1999; Sujak et al., 2000). MD simulation is, nevertheless, confined to a relatively short time-scale — in this case to 200 ns, which otherwise is considered up to the present standards. Moreover, only two of twelve lutein molecules intercalated into the bilayer. Thus, based on the present MD simulations, one can only say, that after the first reorientation in each of the simulation systems, which took place during first 70–80 ns of MD simulation, the orientation of the lutein molecule is stable for over 120 ns. However, it is not possible to say, for how much longer, and whether both vertical and horizontal orientations are the preferred ones or one or both of them is transit, and in the latter case, what is time.
scale of the following reorientations. It should be noted that the observed transition from horizontal to vertical orientation in system_1 was relatively slow most likely, because it involved reorientation of lipids in both bilayer leaflets. The vertical orientation of lutein is stabilized by lutein H-bonding with both Oc and Op atoms of POPC, whereas the horizontal orientation is stabilized mainly by lutein H-bonding with only Oc atoms. In this study, we did not analyze nonpolar interactions between lutein and POPC in the bilayer. Further analyses are in progress.

Acknowledgements
Some calculations were performed on the cluster purchased under contract No. POIG.02.01.00-12-175/08, project MCB.

REFERENCES
Avogadro: an open-source molecular builder and visualization tool.
Version 1.0.3. http://avogadro.openmolecules.net/