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Abstract
The paper is devoted to a new kind of implicit obstacle problem given by a fractional
Laplacian-type operator and a set-valued term,which is described by a generalized gra-
dient.An existence theorem for the considered implicit obstacle problem is established,
using a surjectivity theorem for set-valuedmappings, Kluge’s fixed point principle and
nonsmooth analysis.
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1 Introduction

Partial differential equations, involving nonlocal operators, have recently received
much attention since the nonlocal operators, which are infinitesimal generators of
Lévy-type stochastic processes, describe precisely various phenomena in such fields
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as population dynamics, game theory, finance, image processing (see [1–5] and the
references therein). On the other hand, in many physical processes and engineering
applications, the mathematical models are formulated as inequalities instead of equa-
tions, extensively appearing in the form of variational inequalities and hemivariational
inequalities. Roughly speaking, the variational inequalities arise in a convex frame-
work, whereas the hemivariational inequalities address systems with nonconvex and
nonsmooth structure (see [6–17]).

Recent works focus on systems governed by nonlocal operators and exhibiting set-
valued terms in the form of generalized gradient of a locally Lipschitz function. Frassu
et al. [18] proved the existence of three nontrivial solutions for a pseudo-differential
inclusion driven by a nonlocal anisotropic operator and with generalized gradient
of a locally Lipschitz potential. Teng [19] and Xi et al. [20] applied the nonsmooth
critical point theory to obtain multiplicity results for nonlocal elliptic hemivariational
inequalities. Liu and Tan [21] employed a surjectivity theorem for pseudomonotone
and coercive operators to explore a nonlocal hemivariational inequality. For related
works, we refer to [13,14].

In relevant situations encountered in engineering and economic models, such as
Nash equilibriumwith shared constraints and transport optimization feedback control,
the constraint sets depend on the unknown state variable. For this reason, the theory
of quasi variational/hemivariational inequalities was prompted to become one of the
most promising research domains in appliedmathematics. Yet, as far as we know, there
is no publication considering differential inclusion problems with nonlocal operators
and implicit obstacle effect (i.e., the constraints depend on the unknown function).
It is the goal of the present work to study an implicit obstacle problem containing a
generalized fractional Laplace operator and a generalized gradient term. Specifically,
we establish a general existence theorem for this new type of problem.

The rest of the paper is organized as follows. In Sect. 2, we formulate the problem
and survey some preliminary material needed in the study of Problem 2.1. Section 3
provides the variational formulation of Problem 2.1, whereas Sect. 4 comprises the
study of variational selection associated to our problem. Section 5 presents our exis-
tence theorem with its proof employing Kluge’s fixed point principle, a surjectivity
theorem for multivalued operators and nonsmooth analysis. Section 6 sets forth our
existence result without the relaxed monotonicity condition. Section 7 is devoted to
conclusions.

2 Problem Formulation andMathematical Background

LetΩ be a bounded domain inRN with Lipschitz boundary, let s ∈]0, 1[with N > 2s
and let f ∈ L2(Ω). Denoting Ωc := R

N\Ω , we formulate the following implicit
obstacle problem:
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Problem 2.1 Find u : RN → R such that

(LK u)(x) + ∂ j(x, u(x)) + ζ(x) � f (x) in Ω,

u = 0 in Ωc,( ∫
R2N

(
u(x) − u(y)

)2
K (x − y) dx dy

) 1
2 ≤ U (u),

(1)

where LK stands for the generalized nonlocal fractional Laplace operator given by
LK u(x) := − ∫

RN

[
u(x + y) + u(x − y) − 2u(x)

]
K (y) dy for a.e. x ∈ R

N ,

U : L2(Ω) → R is a given function, the multivalued term ∂ j(x, ·) denotes the
generalized gradient (see Definition 2.2 below) of a locally Lipschitz function
r �→ j(x, r), and ζ ∈ L2(Ω) belongs to the (exterior) normal cone NC(u)(u)

in L2(Ω) of the set C(u) = {
v ∈ L2(RN ) : v = 0 in Ωc, R(v) ≤ U (u)

}
at the

point u ∈ C(u), that is,
∫
Ω

ζ(x)(v(x) − u(x)) dx ≤ 0 for all v ∈ C(u), where

R(v) := (
∫
R2N

(
v(x) − v(y)

)2
K (x − y) dx dy)

1
2 .

Throughout the paper, K is assumed to fulfill the conditions:
H(K ): K : RN\{0} →]0,+∞[ is such that

(i) The function x �→ min{|x |2, 1}K (x) belongs to L1(RN );
(ii) There exists a constant mK > 0 such that K (x) ≥ mK |x |−(N+2s) for all x ∈

R
N\{0};

(iii) K (x) = K (−x) for all x ∈ R
N\{0}.

If the constraint (
∫
R2N

(
u(x)− u(y)

)2
K (x − y) dx dy)

1
2 ≤ U (u) is dropped in (1),

then Problem 2.1 reduces to the nonlocal inclusion problem

(LK u)(x) + ∂ j(x, u(x)) � f (x) in Ω,

u(x) = 0 in Ωc,

which has been studied by Migórski et al. [22] for the particular case of kernel
K (x) := |x |−(N+2s) for all x ∈ R

N\{0}, i.e., LK is the fractional Laplace oper-
ator (−�)su(x) := − ∫

RN
u(x+y)+u(x−y)−2u(x)

|y|N+2s dy for a.e. x ∈ R
N .

Then, we briefly review basic notation and results which are needed in the sequel.
For more details, we refer to monographs [23–26].

Let us begin with some definitions and properties for set-valued mappings.

Definition 2.1 Let X and Y be topological spaces and let F : X ⇒ Y be a set-valued
mapping.

(i) We say that F is upper semicontinuous (u.s.c., for short) at x ∈ X , if for every
open set O ⊂ Y with F(x) ⊂ O there exists a neighborhood N (x) of x such that
F(N (x)) := ⋃

y∈N (x) F(y) ⊂ O. If this holds for every x ∈ X , then F is called
upper semicontinuous.

(ii) We say that F is sequentially closed at x0 ∈ X , if for every sequence {(xn, yn)} ⊂
Gr(F) with (xn, yn) → (x0, y0) in X × Y , then it holds (x0, y0) ∈ Gr(F), where
Gr(F) is the graph of the set-valued mapping F defined by Gr(F) := {(x, y) ∈
X × Y : y ∈ F(x)}. We say that F is sequentially closed, if it is sequentially
closed at every x0 ∈ X .
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The next proposition characterizes the upper semicontinuity of set-valued maps.

Proposition 2.1 Let F : X ⇒ Y , with X and Y topological spaces. Then F is upper
semicontinuous, if and only if, for each closed set C ⊂ Y , the set F−(C) := {x ∈
X : F(x) ∩ C �= ∅} is closed in X.

Let E be a Banach space with its dual E∗. A function J : E → R is said to be
locally Lipschitz at u ∈ E , if there exist a neighborhood N (u) of u and a constant
Lu > 0 such that |J (w) − J (v)| ≤ Lu‖w − v‖E for all w, v ∈ N (u).

Definition 2.2 Let u, v ∈ E and J : E → R be a locally Lipschitz function. The
generalized directional derivative J 0(u; v) of J at the point u in the direction v is
defined by J 0(u; v) := lim sup

w→u, t↓0
J (w+tv)−J (w)

t . The generalized gradient ∂ J : E ⇒

E∗ of J : E → R is defined by

∂ J (u) := { ξ ∈ E∗ : J 0(u; v) ≥ 〈ξ, v〉E∗×E for all v ∈ E }, ∀u ∈ E .

The next proposition collects some basic results (see, e.g., [25, Proposition 3.23]).

Proposition 2.2 Let J : E → R be locally Lipschitz of rank Lu > 0 at u ∈ E. Then
we have

(a) the function v �→ J 0(u; v) is positively homogeneous, subadditive, and satisfies
|J 0(u; v)| ≤ Lu‖v‖E for all v ∈ E;

(b) (u, v) �→ J 0(u; v) is upper semicontinuous;
(c) ∂ J (u) is a nonempty, convex, and weak∗ compact subset of E∗;
(d) J 0(u; v) = max

{〈ξ, v〉E∗×E : ξ ∈ ∂ J (u)
}
for all v ∈ E.

In what follows, we denote S := (RN\Ω) × (RN\Ω), P := R
2N\S and the

fractional critical exponent 2∗
s = 2N

N−2s if 2s < N and 2∗
s = +∞ otherwise, with

s ∈]0, 1[ and Ω ⊂ R
N as in Sect. 1. We introduce the function space

X := {
u : RN → R measurable : (u(x) − u(y))2K (x − y) ∈ L2(P)

and u|Ω ∈ L2(Ω)
}
,

with K : RN\{0} →]0,+∞[ verifying assumption H(K ), endowed with the norm

‖u‖X := ‖u‖L2(Ω)+(
∫
P |u(x)−u(y)|2K (x− y) dy dx)

1
2 for all u ∈ X (see, e.g., [27,

28]). In order to fit the generalized Dirichlet boundary condition in Problem 2.1 we
consider the subspace X0 of X given by

X0 := {u ∈ X : u = 0 for a.e. x ∈ Ωc}.

We list a few useful results (see, e.g., [27]).

Lemma 2.1 Let Ω be a bounded domain in R
N with Lipschitz boundary and let s ∈

]0, 1[ with N > 2s. Then we have:
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(i) X0 is a Hilbert space with the inner product for all u, v ∈ X0

〈u, v〉X0 :=
∫
RN

∫
RN

[u(x) − u(y)][v(x) − v(y)]K (x − y) dx dy;

(ii) If p ∈ [1, 2∗
s ], there exists c(p) > 0 such that ‖u‖L p(RN ) ≤ c(p)‖u‖X0 for all

u ∈ X0;
(iii) The embedding of X0 into L p(RN ) is compact for p ∈ [1, 2∗

s [.
From Lemma 2.1 (ii) it is seen that the norm ‖ · ‖X0 on X0 defined by

‖u‖X0 :=
( ∫

P
|u(x) − u(y)|2K (x − y) dy dx

) 1
2

is equivalent to the norm induced by ‖ · ‖X .
We end the section by recalling the fixed point theorem of Kluge [29] and the

surjectivity theorem for set-valued mappings of Le [30, Theorem 2.2], which will be
used in the proof of our existence result.

Theorem 2.1 Let Z be a reflexive Banach space and let C ⊂ Z be nonempty, closed
and convex. Assume thatΨ : C ⇒ C is a set-valuedmapping such that for every u ∈ C,
the setΨ (u) is nonempty, closed, and convex, and the graph ofΨ is sequentiallyweakly
closed. If Ψ (C) is bounded, then the map Ψ has at least one fixed point in C.

Remark 2.1 In the statement of Theorem 2.1, we took advantage of Referee’s comment
pointing out that the usual formulation “If either C is bounded or Ψ (C) is bounded”
of hypothesis in Kluge’s fixed point theorem is equivalent to “If Ψ (C) is bounded”.
This is true because Ψ (C) ⊂ C .

Theorem 2.2 Let E be a reflexive Banach space with dual E∗ and pairing 〈·, ·〉E∗×E ,
let A : D(A) ⊂ E ⇒ E∗ be a maximal monotone operator, let B : D(B) = E ⇒ E∗
be a bounded pseudomonotone operator, and let L ∈ E∗. Assume that there exist
u0 ∈ E and R ≥ ‖u0‖E such that D(A)∩OR(0) �= ∅ and 〈ξ+η−L, u−u0〉E∗×E > 0
for all u ∈ D(A) with ‖u‖E = R, all ξ ∈ A(u) and all η ∈ B(u), where OR(0) :=
{v ∈ E : ‖v‖E < R}. Then the inclusion A(u) + B(u) � L has a solution.

3 Hypotheses and Variational Formulation

In this section, we set forth our assumptions and give the variational formulation. In
what follows, we assume that the functions j : Ω × R → R and U : L2(Ω) → R

verify the following conditions:
H( j): j : Ω × R → R is such that

(i) j(·, r) is measurable on Ω for all r ∈ R and there exists l ∈ L2(Ω) such that
j(·, l(·)) belongs to L1(Ω);

(ii) j(x, ·) is locally Lipschitz for a.e. x ∈ Ω;
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(iii) There exists a constant m j ≥ 0 such that for all r1, r2 ∈ R and a.e. x ∈ Ω

it holds (ξ1 − ξ2)(r1 − r2) ≥ −m j |r1 − r2|2, whenever ξ1 ∈ ∂ j(x, r1) and
ξ2 ∈ ∂ j(x, r2), where ∂ j(x, r) stands for the generalized gradient of j with
respect to the variable r ;

(iv) There exist constants α j ≥ 0 and β j ∈]0, 1/c(2)2[ such that for all r ∈ R and
a.e. x ∈ Ω there holds j0(x, r;−r) ≤ α j + β j r2;

(v) There exist c j > 0 and a ∈ L2(Ω) with a(x) ≥ 0 satisfying |ξ | ≤ a(x) + c j |r |
for all ξ ∈ ∂ j(x, r) and a.e. x ∈ Ω .

Remark 3.1 Assumption H( j)(iii) is usually called relaxed monotone condition (see,
e.g., [25]) for the locally Lipschitz function j(x, ·). It is equivalent to the inequality
j0(x, s1; s2 − s1) + j0(x, s2; s1 − s2) ≤ m j |s1 − s2|2 for all s1, s2 ∈ R and for a.e.
x ∈ Ω .

Remark 3.2 The relaxed monotone condition H( j)(iii) reads as

(ξ1 + m jr1 − (ξ2 + m jr2))(r1 − r2) ≥ 0

for all ξ1 ∈ ∂ j(x, r1), ξ2 ∈ ∂ j(x, r2), and r1, r2 ∈ R. Observing that

ξk + m jrk ∈ ∂

(
j(x, rk) + m j

r2k
2

)
, k = 1, 2,

we infer that the function r �→ g(x, r) := j(x, r) + m j
r2
2 is convex (see [23, Propo-

sition 2.2.9]) with the subdifferential ∂Cg(x, r) = ∂ j(x, r) +m jr . Consequently, the
variational–hemivariational inequality in Problem 2.1 can be equivalently rewritten as
a linearly perturbed variational inequality by replacing ∂ j(x, u)with ∂Cg(x, u)−m ju.

Define the set-valued mapping C : X0 ⇒ X0 by

C(u) := {v ∈ X0 : ‖v‖X0 ≤ U (u)} (2)

(i.e., the set C(u) introduced in the statement of Problem 2.1) for all u ∈ X0. We note
that the set C(u) in (2) is closed and convex in X0, and 0X0 ∈ C(u).

Remark 3.3 The constraint in Problem 2.1 can be expressed as ‖u‖X0 ≤ U (u). This
is an implicit nonlocal formulation substantially different with respect to classical
statements as the pointwise constraints u(x) ≤ f (x) in obstacle problem. The moti-
vation is to locate the solution in a nonlocal way relying on the continuous embedding
X0 ⊂ L2(Ω). A natural choice of the continuous map U : L2(Ω) → R (see hypoth-
esis H(U )) is U (u) = a‖u‖L2(Ω) + b, with constants a > 0 and b > 0 sufficiently
large, giving rise to a constraint ‖u‖L2(Ω) ≤ ‖u‖X0 ≤ a‖u‖L2(Ω) + b.

To obtain the variational formulation of Problem 2.1, let u : RN → R be a smooth
function such that (1) holds. For any v ∈ C(u), we act on the inclusion (LK u)(x) +
∂ j(x, u(x)) � f (x) in Ω with v(x) − u(x) and then integrate over Ω to get
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∫
Ω

(LK u)(x)[v(x) − u(x)] dx +
∫

Ω

ξ(x)[v(x) − u(x)] dx

+
∫

Ω

ζ(x)[v(x) − u(x)] dx =
∫

Ω

f (x)[v(x) − u(x)] dx,

where the function ξ : Ω → R is such that ξ(x) ∈ ∂ j(x, u(x)) for a.e. x ∈ Ω and
ζ ∈ NC(u)(u), thus

∫
Ω

ζ(x)[v(x) − u(x)] dx ≤ 0. By virtue of the definitions of X0
and generalized gradient we find

∫
Ω

(LK u)(x)[v(x) − u(x)] dx =
∫
RN

(LK u)(x)[v(x) − u(x)] dx,
∫

Ω

ξ(x)[v(x) − u(x)] dx ≤
∫

Ω

j0(x, u(x); v(x) − u(x)) dx .

Taking into account the preceding discussion, the variational formulation of Prob-
lem 2.1 reads as follows.

Problem 3.1 Find u ∈ X0 such that u ∈ C(u) and
∫
RN

(LK u)(x)[v(x) − u(x)] dx +
∫

Ω

j0(x, u(x); v(x) − u(x)) dx

≥
∫

Ω

f (x)[v(x) − u(x)] dx ∀v ∈ C(u) (with C(u) in (2)).

Further, let us introduce the function J : L2(Ω) → R defined by

J (u) :=
∫

Ω

j(x, u(x)) dx (3)

for all u ∈ L2(Ω). On account of hypothesis H( j) and the definition of J in (3), the
next lemma is a direct consequence of [25, Theorem 3.47].

Lemma 3.1 If H( j) holds , then J defined in (3) has the properties:

(i) J : L2(Ω) → R is locally Lipschitz;
(ii) For all u, v ∈ L2(Ω), there hold the inequalities

J 0(u; v) ≤
∫

Ω

j0(x, u(x); v(x)) dx,

J 0(u;−u) ≤ α j |Ω| + β j

∫
Ω

|u(x)|2 dx,
J 0(u; v − u) + J 0(v; u − v) ≤ m j‖u − v‖2L2(Ω)

;

(iii) For each u ∈ L2(Ω), one has ∂ J (u) ⊂ ∫
Ω

∂ j(x, u(x)) dx and

‖ξ‖L2(Ω) ≤ cJ (1 + ‖u‖L2(Ω)) for all ξ ∈ ∂ J (u) and all u ∈ L2(Ω),

with some cJ > 0.

123



398 Journal of Optimization Theory and Applications (2020) 187:391–407

4 Variational Selection

The section is concerned with the existence of solutions to Problem 3.1. To this end,
we pass through a related inequality problem.

Problem 4.1 Find u ∈ X0 such that u ∈ C(u) and

∫
RN

(LK u)(x)[v(x) − u(x)] dx + J 0(u; v − u) ≥
∫

Ω

f (x)[v(x) − u(x)] dx

for all v ∈ C(u).

Lemma 3.1(ii) ensures that if u ∈ X0 is a solution to Problem 4.1, then u solves Prob-
lem 3.1 as well. Consequently, it is enough to establish the solvability of Problem 4.1.
This will be achieved by means of the auxiliary problem:

Problem 4.2 Given w ∈ X0, find u ∈ C(w) such that

∫
RN

(LK u)(x)[v(x) − u(x)] dx + J 0(u; v − u) ≥
∫

Ω

f (x)[v(x) − u(x)] dx

for all v ∈ C(w), with C(w) in (2).

We are going to find a fixed point of the set-valued mapping S : X0 ⇒ X0 that we
call variational selection, which is defined by

S(w) := {u ∈ X0 : u solves Problem 4.2} for all w ∈ X0.

Theorem 4.1 If H(K ), H( j) and H(U ) are satisfied and m jc(2)2 ≤ 1, where c(2)
is the constant in Lemma 2.1(ii), then for each w ∈ X0, the set S(w) is nonempty,
closed, bounded, and convex in X0.

Proof Let A : X0 → X∗
0 be such that 〈Au, v〉X0 = ∫

RN (LK u)(x)v(x) dx for all u, v ∈
X0, and consider the indicator function of C(w), that is the function IC(w) : X0 →
R := R

⋃{+∞} given by

IC(w)(v) :=
{
0, if v ∈ C(w),

+∞, otherwise.

From the respective definitions and the fact that f ∈ L2(Ω) ⊂ X∗
0 (see Lemma 2.1),

Problem 4.2 can be expressed as the variational–hemivariational inequality: find u ∈
X0 such that

〈Au, v − u〉X0 + J 0(u; v − u) + IC(w)(v) − IC(w)(u) ≥ 〈 f , v − u〉X0 (4)

for all v ∈ X0.

Claim 1 For each w ∈ X0, IC(w) : X0 → R is a proper, convex, and lower semicon-
tinuous function with 0X0 ∈ D(IC(w)) (the effective domain).
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This follows readily from the expression of the set C(w) (see (2)).
Claim 1 confirms that the inclusion problem: find u ∈ X0 such that

Au + ∂ J (u) + ∂C (IC(w))(u) � f (5)

is meaningful, where the notation ∂C (IC(w)) stands for the subdifferential of IC(w) in
the sense of convex analysis. Furthermore, Lemma 3.1 shows that every solution to
inclusion (5) is a solution to problem (4) too.

Next we aim to apply Theorem 2.2 to show that problem (5) is solvable.

Claim 2 A : X0 → X∗
0 is a linear, continuous and strongly monotone operator.

Notice that

〈A(u), v〉X0 :=
∫
RN

(LK u)(x)v(x) dx

= −
∫
R2N

[u(x + y) + u(x − y) − 2u(x)]v(x)K (y) dy dx

= −
∫
R2N

[u(x + y) − u(x)]v(x)K (y) dy dx

−
∫
R2N

[u(x − y) − u(x)]v(x)K (y) dy dx

=
∫
R2N

[u(x) − u(y)][v(x) − v(y)]K (x − y) dy dx = 〈u, v〉X0

for all u, v ∈ X0, where the change of variable and symmetry requirement H( j)(iii)
have been used. Thus we infer that

‖Au‖X∗
0

= ‖u‖X0 and 〈Au, u〉X0 = ‖u‖2X0
for all u ∈ X0. (6)

From (6), it follows that the linear operator A is bounded and strongly elliptic.

Claim 3 A + ∂ J : X0 → 2X
∗
0 is a bounded and pseudomonotone set-valued operator

such that for each u ∈ X0, the set A(u) + ∂ J (u) is closed and convex in X∗
0 .

Indeed, Proposition 2.2 andLemma3.1 ensure that for each u ∈ X0, the set Au+∂ J (u)

is nonempty, closed and convex in X∗
0 . But, Lemma 3.1(iii) and equality (6) imply

‖A(u)+ ξ‖X∗
0

≤ ‖u‖X0 + cJ
(
1+ c(2)‖u‖X0) for all u ∈ X0 and ξ ∈ ∂ J (u). We infer

that A + ∂ J is a bounded map.
Next we apply Proposition 2.1 to prove that the set-valued mapping A + ∂ J is

upper semicontinuous from X0 to X∗
0 with weak topology. It is sufficient to check that

for each weakly closed subset D in X∗
0 , the set (A + ∂ J )−(D) is closed in X0. Let a

sequence {un} ⊂ (A + ∂ J )−(D) be such that

un → u in X0 as n → ∞, for some u ∈ X0. (7)
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Then, u∗
n := Aun+ξn ∈ (

A(un)+∂ J (un)
)∩D for some ξn ∈ ∂ J (un). The continuity

of A (as shown in Claim 2) implies that A(un) → A(u) in X∗
0 as n → ∞. According

to Lemma 3.1(iii) and (7), {ξn} is bounded in L2(Ω), so we can assume that ξn → ξ

weakly in L2(Ω) with some ξ ∈ L2(Ω). Since ∂ J is upper semicontinuous from
L2(Ω) to w-L2(Ω) (i.e., L2(Ω)withweak topology) and has bounded, convex, closed
values, it has a closed graph in X0 ×w− X∗

0 (see [31, Theorem 1.1.4]). Hence, owing
to theweak closedness of D and the continuity of the embeddings X0 ⊂ L2(Ω) ⊂ X∗

0 ,

we derive that A(u)+ ξ ∈ D and ξ ∈ ∂ J (u), which provides that u ∈ (
A+∂ J

)−
(D).

Consequently, A + ∂ J is upper semicontinuous from X0 to X∗
0 with weak topology.

To prove that A+ ∂ J is pseudomonotone, let sequences {un} and {u∗
n} be such that

un → u weakly in X0, (8)

u∗
n ∈ A(un) + ∂ J (un) with lim sup

n→∞
〈u∗

n, un − u〉X0 ≤ 0. (9)

Our goal is to produce for each v ∈ X0 an element u∗(v) ∈ A(u) + ∂ J (u) with

lim inf
n→∞ 〈u∗

n, un − v〉X0 ≥ 〈u∗(v), u − v〉X0 . (10)

Indeed, by (9)we can find a sequence {ξn} ⊂ X∗
0 such that for each n ∈ N, ξn ∈ ∂ J (un)

and u∗
n = A(un) + ξn . From (9) and the above equality it follows

lim sup
n→∞

〈Aun, un − u〉X0 + lim inf
n→∞ 〈ξn, un − u〉X0 ≤ 0. (11)

Using (8) and the compact embedding of X0 into L2(Ω) (see Lemma 2.1), it holds
un → u in L2(Ω) as n → ∞. Moreover, in view of [32, Thoerem 2.2], it turns out
∂(J |X0)(u) ⊂ ∂(J |L2(Ω))(u) for all u ∈ X0, which leads to

〈ξn, un − u〉X0 = 〈ξn, un − u〉L2(Ω). (12)

Lemma 3.1 and the boundedness of {un} in X0 entail that the sequence {ξn} is bounded
both in L2(Ω) and X∗

0 . Then, through (12), we pass to the limit as n → ∞ to get
limn→∞〈ξn, un − u〉X0 = limn→∞〈ξn, un − u〉L2(Ω) = 0. The latter, in conjunction
with (11) and (6), yields

lim sup
n→∞

‖un − u‖2X0

= lim sup
n→∞

〈A(un) − A(u), un − u〉X0 + lim
n→∞〈A(u), un − u〉X0 ≤ 0.

This means that un → u in X0. On the other hand, the reflexivity of X∗
0 and bounded-

ness of {ξn} ⊂ X∗
0 permit us to suppose that ξn → ξ weakly in X∗

0 for some ξ ∈ X∗
0 .

Now we can assert that ξ ∈ ∂ J (u) (see, e.g., [31, Theorem 1.1.4]). Since

lim inf
n→∞ 〈u∗

n, un − v〉X0 = lim inf
n→∞ 〈A(un) + ξn, un − v〉X0 = 〈A(u) + ξ, u − v〉X0 ,
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it is clear that (10) is verified with u∗ = A(u) + ξ ∈ A(u) + ∂ J (u). We conclude that
A + ∂ J is pseudomonotone.

Claim 4 There exists R > 0 such that 〈Au + ξ + η − f , u〉X0 > 0 for all u ∈ C(w)

with ‖u‖X0 = R, all ξ ∈ ∂ J (u) and all η ∈ ∂C (IC(w)).

For any u ∈ D(∂C (IC(w))), ξ ∈ ∂ J (u) and η ∈ ∂C (IC(w)), on the basis of previous
considerations and Lemma 3.1(ii), it holds

〈Au + ξ + η − f , u〉X0

≥ ‖u‖2X0
− ‖ f ‖X∗

0
‖u‖X0 − J 0(u;−u)

≥ ‖u‖2X0
− ‖ f ‖X∗

0
‖u‖X0 − α j |Ω| − β j

∫
Ω

|u(x)|2 dx
≥ ‖u‖2X0

− ‖ f ‖X∗
0
‖u‖X0 − α j |Ω| − β j c(2)

2‖u‖2X0
. (13)

Let R > 0 be such that R((1− β j c(2)2)R − ‖ f ‖X∗
0
) − α j |Ω| > 0, which is possible

since β j ∈]0, 1/c(2)2[. Then estimate (13) proves the validity of Claim 4.
By Claims 1–4 and Theorem 2.2, there exists uw ∈ X0 resolving inclusion (5).

Thus S(w) �= ∅ holds true for each w ∈ X0.
Nowwe claim that the solution set S(w) of Problem 4.2 is closed. Let {un} ⊂ S(w)

be such that un → u in X0. For each n ∈ N, by (4), there holds

〈Aun, v − un〉X0 + J 0(un; v − un) + IC(w)(v) − IC(w)(un) ≥ 〈 f , v − un〉X0

for all v ∈ X0, or 〈Aun, v−un〉X0 + J 0(un; v−un) ≥ 〈 f , v−un〉X0 for all v ∈ C(w)

because un ∈ C(w). Passing to the upper limit as n → ∞ yields u ∈ S(w), hence the
claim that S(w) is closed in X0 is proved.

Moreover, we show that for each w ∈ X0, the set S(w) is convex. Toward this, we
note that assumption m jc(2)2 ≤ 1 turns A + ∂ J : X0 → 2X

∗
0 be monotone because

for all u, v ∈ X0, ξu ∈ ∂ J (u) and ξv ∈ ∂ J (v) we obtain

〈A(u) + ξu − A(v) − ξv, u − v〉X0

≥ ‖u − v‖2X0
− m j‖u − v‖2L2(Ω)

≥ ‖u − v‖2X0
− m jc(2)

2‖u − v‖2X0
≥ 0.

Let u1, u2 ∈ S(w), t ∈]0, 1[, and denote ut = tu1 + (1 − t)u2. The monotonicity of
A + ∂ J implies for i = 1, 2 that 〈Av + ξv, v − ui 〉X0 ≥ 〈 f , v − ui 〉X0 , whenever
ξv ∈ ∂ J (v) and v ∈ X0. The latter in conjunction with Proposition 2.2 (d) results in

〈Av, v − ut 〉X0 + J 0(v; v − ut ) ≥ 〈Av + ξv, v − ut 〉X0

= t〈Av + ξv, v − u1〉X0 + (1 − t)〈Av + ξv, v − u2〉X0 (for all ξv ∈ ∂ J (v))

≥ t〈 f , v − u1〉X0 + (1 − t)〈 f , v − u2〉X0 = 〈 f , v − ut 〉X0 (14)

for all v ∈ C(w). Let z ∈ X0 and λ ∈]0, 1[. Inserting v = zλ := λz + (1 − λ)ut in
(14) gives 〈Azλ, z − ut 〉X0 + J 0(zλ; z − ut ) ≥ 〈 f , z − ut 〉X0 . We pass to the upper
limit as λ → 0+ finding
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〈Aut , z − ut 〉X0 + J 0(ut ; z − ut ) ≥ lim sup
λ→0+

[〈Azλ, z − ut 〉X0 + J 0(zλ; z − ut )
]

≥ 〈 f , z − ut 〉X0 .

Recall that z ∈ C(w) was arbitrary, so this renders ut ∈ S(w). Therefore the set S(w)

is convex.
Next we demonstrate that the set S(w) is bounded in X0 for each w ∈ X0. Fix

w ∈ X0. Arguing by contradiction, suppose that S(w) is unbounded, whence there
exists a sequence {un} ⊂ S(w) such that

‖un‖X0 → ∞ as n → ∞. (15)

Since 0X0 ∈ C(w), we have 〈Aun, un〉X0 − J 0(un;−un) ≤ 〈 f , un〉X0 . Reasoning as
in (13) enables us to find ‖ f ‖X∗

0
‖un‖X0 ≥ ‖un‖2X0

− α j |Ω| − β j c(2)2‖un‖2X0
. As it

is known from assumption H( j)(iv) that β j ∈]0, 1/c(2)2[, then (15) and the above
estimate generate a contradiction, which completes the proof. ��

5 Existence Result

We are in a position to state our main result.

Theorem 5.1 Assume that H(K ), H( j), H(U ), and m jc(2)2 ≤ 1 are fulfilled. Then
Problem 3.1 possesses at least a solution.

Proof As already remarked, every fixed point of S solves Problem 4.1 as well. Besides,
Lemma 3.1 reveals that the set of solutions for Problem 4.1 is a subset of the set of
solutions for Problem 3.1. Consequently, it suffices to show that the set of fixed points
of S is nonempty.

Claim 5 The graph of S is sequentially weakly closed.

Let {wn} ⊂ X0 and {un} ⊂ X0 be sequences such that un ∈ S(wn), wn → w weakly
in X0 and un → u weakly in X0. Hence, for each n ∈ N, it holds un ∈ C(wn),
i.e., ‖un‖X0 ≤ U (wn). The compactness of the embedding of X0 in L2(Ω) and the
continuity of U postulated in condition H(U ) provide

‖u‖X0 ≤ lim inf
n→∞ ‖un‖X0 ≤ lim inf

n→∞ U (wn) = U (w),

so u ∈ C(w).
The fact that un ∈ S(wn) reads as

〈Aun, v − un〉X0 + J 0(un; v − un) ≥ 〈 f , v − un〉X0 (16)

for all v ∈ C(wn), whereas the monotonicity of u �→ Au + ∂ J (u) reveals

〈Awn, v − un〉X0 + J 0(wn; v − un) ≥ 〈 f , v − un〉X0 . (17)
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For each v ∈ C(w), consider the sequence {vn} defined by vn = U (wn)
U (w)

v for each

n ∈ N. Clearly, ‖vn‖X0 = U (wn)
U (w)

‖v‖X0 ≤ U (wn) and

lim
n→∞ ‖vn − v‖X0 = lim

n→∞
∣∣U (w) −U (wn)

∣∣‖v‖X0

U (w)
= 0.

We deduce that {vn} converges strongly to v in X0 and vn ∈ C(wn) for every n ∈ N.
It is thus permitted to insert v = vn in (17). Passing to the upper limit as n → ∞
produces

〈Av, v − u〉X0 + J 0(v; v − u)

≥ lim sup
n→∞

〈Avn, vn − un〉X0 + lim sup
n→∞

J 0(vn; vn − un)

≥ lim sup
n→∞

〈 f , vn − un〉X0 = 〈 f , v − u〉X0 ,

where we have used (6), the compact embedding of X0 in L2(Ω) and that L2(Ω) ×
L2(Ω) � (v, u) → J 0(u; v) ∈ R is upper semicontinuous (see Lemma 3.1 and
Proposition 2.2). The arbitrariness of v ∈ C(w) and Minty approach guarantee that
u ∈ S(w). Therefore, Claim 5 is proved.

Claim 6 The set S(X0) is bounded in X0.

If the claim were not true, then there would exist sequences {un} and {wn} with
un ∈ S(wn) such that

‖un‖X0 → ∞ as n → ∞. (18)

For every n ∈ N, one has (16) for all v ∈ C(wn). Bearing in mind that 0X0 ∈ C(w)

for each w ∈ X0, we take v = 0X0 as test function in (16) obtaining 〈Aun, un〉X0 −
J 0(un;−un) ≤ ‖ f ‖X∗

0
‖un‖X0 . The latter combinedwith (6) andLemma 3.1(ii) shows

‖un‖X0 − α j |Ω|
‖un‖X0 − β j c(2)2‖un‖X0 ≤ ‖ f ‖X∗

0
. This triggers a contradiction with (18)

owing to β j ∈]0, 1/c(2)2[. We conclude that Claim 6 holds true.
On account of Claims 5 and 6, the required conditions to apply Theorem 2.1 are

verified for the set-valued mapping S. Hence it has a fixed point in X0, which from
Lemma 3.1 is a solution to Problem 3.1. ��

6 Dropping Assumption H(j)(iii)

The aim of this section is to point out that assumption H( j)(iii) can be dropped in the
statement of Theorem 5.1. This important fact has been pointed out in one of Referee’s
reports, where it was also outlined the proof. We have preferred to keep the statement
of Theorem 5.1 because our original approach was completely different relying on
Theorem 2.2. Here is the improved statement.

Theorem 6.1 Theorem 5.1 holds true without assuming condition H( j)(iii).
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Proof Let us introduce the set-valued mapping T : X0 × L2(Ω) ⇒ X0 × L2(Ω)

by T (v,w) = (u, F(u)), where u is the unique solution of the classical variational
inequality in the Hilbert space X0: find u ∈ X0 such that u ∈ C(v) and

∫
RN

(LK u)(x)[z(x) − u(x)] dx +
∫

Ω

w(x)[z(x) − u(x)] dx

≥
∫

Ω

f (x)[z(x) − u(x)] dx (19)

for all z ∈ C(v) and, for a constant R > 0,

F(u) =
{

∂ J (u), if ‖u‖L2(Ω) ≤ R,

∂ J (Ru/‖u‖L2(Ω)), otherwise.

The set of constraints C(v) is given in (2), and it was already noted that C(v) is closed
and convex in X0, and 0X0 ∈ C(v).

Setting z = 0X0 in (19) yields

‖u‖2X0
≤ (‖w‖L2(Ω) + ‖ f ‖L2(Ω))c(2)‖u‖X0 . (20)

Combining with the continuous embedding X0 ⊂ L2(Ω), there exists a constant
R0 > 0 (independent of R) for which ‖u‖L2(Ω) ≤ R0. Now we fix R > R0. Then
the definition of the set-valued mapping F entails F(u) = ∂ J (u), so by (19) with the
fixed R, if (u, w) ∈ X0 × L2(Ω) is a fixed point of T , i.e., (u, w) ∈ T (u, w), one has
that u is a solution of Problem 4.1 and we are done.

We prove that the set-valued mapping T possesses a fixed point by applying The-
orem 2.1. To this end we check that the graph of T is sequentially weakly closed. Let
the sequences {vn} ⊂ X0 and {wn} ⊂ L2(Ω) satisfy vn → v weakly in X0, wn → w

weakly in L2(Ω), and let (un, σn) ∈ T (vn, wn) be such that (un, σn) → (u, σ )

weakly in X0 × L2(Ω), with σn ∈ ∂ J (un). By the definition of T and knowing that
(un, σn) ∈ T (vn, wn), it turns out un ∈ C(vn) and

∫
RN

(LK un)(x)[z(x) − un(x)] dx +
∫

Ω

wn(x)[z(x) − un(x)] dx

≥
∫

Ω

f (x)[z(x) − un(x)] dx (21)

for all z ∈ C(vn). Due to un → u weakly in X0 and the compact embedding X0 ⊂
L2(Ω)wehave along a relabeled subsequence that un → u strongly in L2(Ω), thereby
‖u‖X0 ≤ R0. Exploiting σn → σ weakly in L2(Ω) in conjunction with σn ∈ ∂ J (un)
enables us to deduce that σ ∈ ∂ J (u), thus σ ∈ F(u). Since ‖un‖X0 ≤ U (vn), by
the compact embedding of X0 in L2(Ω) and the continuity of U on L2(Ω) (note
hypotheesis H(U )), we infer that ‖u‖X0 ≤ U (v) or equivalently u ∈ C(v).
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In order to conclude that the graph of T is sequentially weakly closed it remains to
show that u ∈ X0 is a solution of

∫
RN

(LK u)(x)[z(x) − u(x)] dx +
∫

Ω

w(x)[z(x) − u(x)] dx

≥
∫

Ω

f (x)[z(x) − u(x)] dx (22)

for all z ∈ C(v). We proceed on the pattern in the proof of Theorem 5.1. Let z ∈ C(v).
For eachn ∈ N, we construct zn = U (vn)

U (v)
z. From the compact embedding X0 ⊂ L2(Ω)

and hypothesis H(U ), it follows that zn → z in X0 in view of limn→∞ ‖zn − z‖X0 =
limn→∞

∣∣U (v) − U (vn)
∣∣ ‖z‖X0
U (v)

= 0. Furthermore, we have ‖zn‖X0 = U (vn)
U (v)

‖z‖X0 ≤
U (vn) ensuring that zn ∈ C(vn) for every n ∈ N, which allows us to insert z = zn in
(21). We arrive at

∫
RN

(LK un)(x)zn(x) dx +
∫

Ω

wn(x)[zn(x) − un(x)] dx

≥
∫

Ω

f (x)[zn(x) − un(x)] dx + ‖un‖2X0
.

Through the weak lower semicontinuity of the norm, in the limit as n → ∞we obtain
(22).

Next we prove that the range T (X0 × L2(Ω)) of the set-valued mapping T is
bounded in X0 × L2(Ω). From the definition of T , we see that it suffices to show
that the first component u of T (v,w) is bounded. It is so since the function J in (3)
is Lipschitz continuous on every bounded set in L2(Ω), which reflects in the fact that
the generalized gradient ∂ J (u) is bounded whenever u is bounded. For z = 0X0 in
(19) we are led to estimate (20). Hence, admitting that w is bounded in L2(Ω) we get
that u is bounded in X0, whence T (X0 × L2(Ω)) is bounded in X0 × L2(Ω).

We have shown that the hypotheses of Theorem 2.1 are fulfilled in the case of the
set-valued mapping T : X0 × L2(Ω) → 2X0×L2(Ω). Then Theorem 2.1 provides the
existence of a fixed point of T . As remarked before, this completes the proof. ��

7 Conclusions

In this paper, we consider an implicit obstacle problem driven by a fractional Laplace
operator and a set-valuedmappingwhich is described by a generalized gradient. Under
quite general assumptions on the data, and employing Kluge’s fixed point principle
for multivalued operators, and a surjectivity theorem, we prove that the set of weak
solutions for the implicit obstacle problem is nonempty. Finally, implementing an idea
suggested by one of the Referees, we improve our existence result. Problems of this
type are encountered in transport optimization, Nash equilibrium theory and related
fields. In the future we plan to apply the theoretical results established in the current
paper to Nash equilibrium problems and population dynamics models.
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