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Abstract
A system of interacting dipoles is of paramount importance for understanding
many-body physics. The interaction between dipoles is anisotropic and long-
range. While the former allows one to observe rich effects due to different
geometries of the system, long-range ( r1 3) interactions lead to strong correla-
tions between dipoles and frustration. In effect, interacting dipoles in a lattice
form a paradigmatic system with strong correlations and exotic properties with
possible applications in quantum information technologies, and as quantum
simulators of condensed matter physics, material science, etc. Notably, such a
system is extremely difficult to model due to a proliferation of interaction
induced multi-band excitations for sufficiently strong dipole−dipole interactions.
In this article we develop a consistent theoretical model of interacting polar
molecules in a lattice by applying the concepts and ideas of ionization theory
which allows us to include highly excited Bloch bands. Additionally, by
involving concepts from quantum optics (population trapping), we show that one
can induce frustration and engineer exotic states, such as Majumdar–Ghosh
state, or vector-chiral states in such a system.
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1. Introduction

In recent years the ultracold gases have been used as a tool to quantum engineer various novel
states of matter with an unprecedented precision and control. In this regard, particularly
challenging is the engineering of frustrated systems for ultracold gases trapped in optical
lattices. Frustration can either be induced by the lattice geometry, which can lead to kinetic
frustration, or by higher order exchange processes due to strong interactions [1, 2]. Polar
molecules are particularly interesting in this context, as they can interact via long-range dipolar
forces, which can induce yet another kind of frustration. In particular, dipolar lattice gases have
been proposed to simulate various quantum phases and exotic phenomena, such as supersolidity
[3, 4], quantum magnetism [5], topological states [6, 7], exotic pair-superfluidity [8], etc.
Experimental progress towards creation of quantum degenerate gas of ground state polar
molecules has been spectacular over the last years [9–12], leading, for instance, to realization of
quantum spin models using fermionic molecules [13] or dipolar Chromium atoms [14].

One of the important properties of the polar molecules is that their dipole moment can be
tuned by applying an electric field. The more polarized these molecules get, the stronger
becomes the dipolar interaction between them. Theoretically it is a challenge to investigate the
properties of these strongly interacting molecules trapped in an optical lattice [15]. The standard
approach based on Bose-Hubbard models limited to the lowest Bloch band [3–8] becomes
inapplicable due to strong interaction induced coupling between the bands. In this paper we
provide a novel route to describe such strongly interacting systems. Specifically, we consider
bosonic polar molecules trapped in a one dimensional optical lattice. We find that the system
can be modeled with effective couplings between the localized states at lattices sites and the
continuum of highly excited states. This connects our approach to the extensive studies of
strong laser field induced ionization of atoms and molecules. In particular we find analogies to
auto- ionization processes, in which multi-configuration interactions couple discrete states with
continua, as in the celebrated Fano model [16]. Usually, due to the coupling to the continuum,
the electrons in atoms or molecules are transferred from the bound states to the continuum,
which leads in the long-time limit to the irreversible decay of bound state population. Strong
laser field, however, enables efficient couplings between different ionization paths leading to
various interference phenomena. For strong field auto-ionization it may lead to the so called
confluence of coherence [17, 18], which slows down very efficiently the ionization process.

Similarly, if several (at least two) bound states are coupled to a common continuum, a
phenomenon of coherent population trapping may occur—the ionization is incomplete and a
significant part of the system population is trapped in the bound subspace [19]. The resulting
stable bound configuration is a superposition of original bound states with properties depending
on the details of the coupling to the continua. The coherent population trapping phenomenon
appears also for multi-level discrete systems when coherent driving may create non-absorbing
states (often called ‘dark states’)—for a review of coherent population trapping see [20]. Most
importantly, in our system of polar molecules, we find that similar phenomenon can give rise to
frustration in lattice systems, as the population trapping can involve particles trapped in
different sites of the optical lattice. Specifically, we find that for a half-filling, the many-body
population trapped state is a dimer state known in the condensed-matter physics as
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Majumdar–Ghosh state [21]. Majumdar–Ghosh state is a paradigmatic example in the study of
frustrated models, since it retains basic properties of spin-liquid phases, such as fractional
excitations [22]. For lower filling we find that the effective model can be written as a −J J1 2

Hamiltonian with nearest and next-nearest neighbour tunneling, along with the long range
dipolar interactions. Similar models, restricted only to nearest and next-nearest neighbor
tunneling, have been investigated for long in connection with various magnetic materials [22].
But, in solid-state materials [23] as well as in optical lattices [2], such next-nearest neighbour
tunneling can only come from higher order exchange processes, which makes it considerably
weaker than the nearest neighbour tunneling. The corresponding temperature is thus very low.
Amazingly, the temperature scale associated with population trapped frustration remains
comparable to the characteristic temperature scale of the system. An alternative way to achieve
long range ‘tunneling’ in spin models is offered in ultracold ions setting [24–26], but such
systems are not easily scalable to macro- or even meso-scopic sizes.

2. The model

We consider bosonic polar molecules trapped in an optical potential inducing a one-
dimensional lattice geometry,

π Ω= + +( )V V
x

a
m y zsin

1
2

, (1)latt 0
2 2 2 2

where V0 denotes the lattice depth and a is the lattice constant. Ω denotes the harmonic (strong)
trapping frequency along the y and z direction. The molecules are polarized by an electric field
along the z axis. To describe this system we make two assumptions: (i) along the trapping
directions, only the lowest harmonic oscillator eigenstate is occupied, and (ii) at time <t 0,
repulsively bound pairs of molecules in the limit of weak dipolar strength are prepared by
tuning the lattice depth [27], or by applying a weak electric field. The molecules of the pair
repel each other and cannot separate due to the energy conservation—a separation would imply
populating single particle states in the band gap. Then at t = 0, we switch on a strong polarizing
electric field to induce a strong dipolar interaction between the molecules. The strength of the
dipolar interaction in dimensionless units is denoted by μ ϵ= D m a2b ind

2
0

2 , where μ
ind

is the
effective dipole moment controlled by the external electric field, ϵ0 is the vacuum permittivity
and mb is the mass of the molecules. The dipolar interaction is given by

= −⎡⎣ ⎤⎦( )V D z r rr 1 3 .dd
2 2 3

To describe the strongly interacting regime for our system, one needs to go beyond the simple
single band tight-binding approximations [28]. The single-particle motion in a periodic
potential results in energy bands, known as Bloch bands which can be expressed in terms of
quasi-momentum q. For each such a band, one constructs localized basis states or orbitals (the
so called Wannier functions (WF)) from the Bloch states [29]. By taking into account only the
lowest energy Wannier states, one arrives at a Hamiltonian containing density-density
interactions terms (both on-site and long-range) and nearest neighbour tunneling processes
along the x direction. In the presence of strong interactions such an approximation breaks down
due to two primary reasons: (i) the interaction mixes different bands or orbitals and different
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sites (specially for the higher orbitals), and (ii) for higher orbitals, one has to take into account
long-range tunneling matrix elements.

These problems have been partially addressed taking into account higher excited bands in
the tight-binding approximation and considering only the onsite interactions [30–36]. For strong
interactions though, serious complications appear due to the lack of convergence of results as a
function of number of bands taken into consideration. Subsequently, standard approaches
become questionable and impractical. The effective description that interaction effectively
increase or decrease the width of the Wannier functions [33] does not hold. For such strong
interactions an entirely new approach is needed. The method initiated in this work paves the
way for efficient description of such systems.

The essential observation, forming the core of our approach, is that for typical optical
lattice depths, only few lowest bands are separated from each other energetically with forbidden
gaps in between. The higher bands, in reality, form a continuum of energies. The simplest
situation occurs for relatively small lattice depths say of few recoil energies, as shown in
figure 1(a) for =V E7 R0 . Here two lowest, s and p, bands are separated from the continuum
formed by other bands. The Wannier states (called often orbitals) of the first two bands are
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Figure 1. (a) The left hand side panel shows the shape and energy of the first two
Wannier states (s- and p- orbitals) for lattice depth =V E7 R. The remaining Bloch states
are represented by a continuous band of states. The plot on the right hand side shows the
excitation spectrum of the Bloch bands as a function of quasi-momentum for the same
lattice depth. This shows that only the first two band are separated by energy gaps
whereas the higher bands form a continuum. (b) The cartoon depicts the coupling
between the discrete Wanner states with two particle in the ss-, sp- and pp-occupied
orbitals in a single site.



relatively well localized, and the mean energy calculated for them is lower than the optical
lattice depth V0. In this situation it is natural to express the motion of the particles in a mixed
basis, where only the low-energy motion is expressed in terms of localized Wannier orbitals.
Instead of using Wannier basis for the other bands too, as in the standard approaches, the
remaining higher energy states will be treated by continuous Bloch functions. For much deeper
lattices a natural generalization of our approach will be to take more than two discrete bands
into account; in this work we limit ourselves to the simplest situation. Therefore, we may write
down the field operator in the chosen mixed Wannier−Bloch basis as:

∑

∑

Φ ω ω ϕ ϕ

ϕ ϕ

= ˆ + ˆ

+ ˆ
>

⎡⎣ ⎤⎦


( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

s x p x z y

q a z y

r

(2)

i
i i

s

i i
p

q n n
n nq

0 0

,
0 0

0

where ω α ( )xi is the localized Wannier function at site i corresponding to α = s or α = p orbital

while ϕ
0
is the lowest harmonic oscillator eigenfunction for trapping directions. ˆ ˆ ˆ ˆ† †s s p p, , ,i i i i

are

the creation and annihilation operators for the bosons in the s- and p-orbitals. ( )qn denotes the
Bloch functions for band n with quasi-momentum q ( > =n n 20 the latter counts the number of

bands treated using Wannier basis). Consequently, ˆ ˆ†a a,nq nq denote the boson creation and

annihilation operators in the bands considered in the Bloch basis with a quasi-momentum q. To
define dimensionless quantities, we first rescale the distance π →x a x, that defines the scale for
the energy π= E m a2R b

2 2 2. So in the limit of ≫E Vn 00
, the simplified Hamiltonian in the

Wannier−Bloch basis is given by,

∑= ˆ ˆ + + +†H E p p H H H , (3)
i

p i i Int Bloch WB
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i j
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∑∑= ˆ ˆ ˆ ˆ +
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† † † †
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n
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nq nq i i
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;

, 1 2 , 1 2

, 1 2

1 2

1 2
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where Ep gives the single particle energy of the p-orbital ( =E 0s is assumed). Note that, from

the very begining we omit single particle tunneling terms between sites despite the lattice depth
being low. That assumption is due to the fact that we shall consider a specific preparation of the
system (see below) in form of pairs. The tunneling of pairs can be possible due to second order
processes only. The single particle tunnelings, on the other hand, are reduced for dipoles by
interaction mediated density-dependent (bond-charge) tunneling terms as discussed in [8].
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The full Hamiltonian is given in the appendix A while the estimates of the effects due to single-
particle and correlated tunneling terms are discussed in appendix B.

The interaction between particles in localized orbitals HInt contains (with σ σ′ = s p, ,
denoting the orbitals) the onsite intra-orbital interactions σσ′U , the possible transitions of a pair
between orbitals with the strength Tps and the long range dipolar interaction (again, additional

terms in the Hamiltonian have negligible effect as discussed in the appendix B). HBloch in
equation (3) contains the kinetic energy of the molecules in the continuous band,
∑ ˆ ˆ>

†( )E q a a
q n n n nq nq, 0

as well as interaction between particles in the continuum (see Methods

section). The Wannier−Bloch Hamiltonian part HWB describes the coupling between Wannier-

described sites with two particles and the Bloch continuum. ( ) ( )P q q P q q,i ss
n

i sp
n

, 1 2 , 1 2
and ( )P q qi pp

n
, 1 2

are the corresponding coupling constants of two particles at site i and the continuum for the ss-,
sp- and pp-orbitals respectively. A cartoon of these various transition processes is shown in
figure 1(b).

We would like to stress that in equation (4) we have taken into account the contribution
from the dipolar interactions only. There are additional van der Waals terms arising from the
mixing of rovibrational levels of molecules. Such contributions can potentially lead to a
formation of long-lived molecular complexes as described in [37] for RbCs molecules resulting
in additional loss processes which will limit the density of molecules in a lattice. Though for
molecules with low density of bound molecule-molecule states such loss rate can be
considerably lower.

To simplify the notation we denote the basis states for zero or two particles on a site as

→ → → →00 0 , 20 1 , 11 2 , 02 3 , (6)

where the state n n1 2 denotes n1 particles in the s-orbital and n2 particles at p-orbital. We refer to
these states as Wannier states in the following sections.

Before considering the physics generated by the postulated Hamiltonian let us mention
also that we treat the molecules rather brutally, considering them as simple dipoles. In particular
we neglect the rotational structure of molecular energy levels and the induced rotational level
mixing (with the effective van der Waals potential) [49]. In unfavorable situations that may lead
to creation of deeply bound molecular pairs [37] whose large kinetic energies allows them to
leave the optical lattice potential resulting in a strong loss. These effects are discussed in more
detail in appendix B, we believe that in the parameters regime discussed below these effects can
be neglected. Stability of dipolar condensate in optical lattice has also been discussed in [13].

3. Interesting configurations

A large variety of different situations may be considered for the model studied. Let us imagine
the situation when the system is prepared (for typical weak interactions) in an insulating state,
for example the Mott state. We assume that at t = 0 we suddenly switch on the electric field
which strongly polarizes the molecules inducing large dipoles along the static field direction
(assumed perpendicular to the lattice). The interaction between dipoles becomes strong making
the analysis of the system difficult. Whether strong interactions will destabilize the system if the
interaction energy becomes comparable to binding in the lattice? May be some metastable states
still survive leading to interesting effects? These are the basic questions we want to address.
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3.1. A single pair of molecules in neighboring sites

First we consider the simple non-trivial situation capturing the essential physics: two
neighbouring sites i and j share a single pair localized in either of the sites. Due to the action of
HWB, states in the neighbouring sites will be coupled via transitions to the common continuum.
The state of a pair distributed among sites i and j may be written as,

∑ ∑

∑

Φ

α

= + −

+
= =

C l C l0 0

1 1

0 0 3

0 0 , (7)

l
l i j

l
l i j

n n q q
q q
n n

i j q q

1

3

4

6

;1 2 1 2

1 2

1 2

1 2

where l
i
denotes the state of the system at site i [following the notation of (6)]; 0 denotes the

vacuum for the continuum and 1 1q q1 2
denotes the state with both particles in the continuum

corresponding to the quantum numbers n q1 1
and n q2 2

. The time-dependent Schrödinger equation

for Φ leads to a set of coupled equations for probability amplitudes Cl, grouped in a 6-

component vector C, corresponding to discrete states, as well as for continuum amplitudes αq q
n n

1 2

1 2.

∑

∑ ∑

α α

α

π Ω
α

π Ω
α

˙ = + ˙

= + +

− −

†

≠ ′

′ ′

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( ) ( )

i i

E q E q

D D

C U C P

P C

12 6
, (8)

n q q
ij q q
n

q q
nn

q q
nn

n n q q
nn

ij q q
n

q q
q q
nn

n n q q
q q
n n

1
,

,

1 2 ,

eff

,

eff

, ,

1 2

1 2 1 2 1 2

1 2 1 2

3 4

3 4

3 4

3 4

where − =i j 1 and U1 is the interaction matrix between the discrete states originating from the
Hamiltonian equation (4):

= ⎜ ⎟
⎛
⎝

⎞
⎠U U 0

0 U
(9)1

with

= +
+

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

U T

E U

T E U

U

0

0 0

0 2

. (10)
ss ps

1 ps

ps 1 pp

Due to a lack of the direct coupling between the Wannier states at different sites, U1 is block
diagonal. The Bloch−Wannier Hamiltonian in equation (5) will give rise to the discrete-

continuum coupling array = ⎡⎣ ⎤⎦P P P,ij q q
n

i q q
n

j q q
n

T

, , ,1 2 1 2 1 2
.

To find the time evolution of the pair in the continuum, we make the ansatz that α α≈q q
nn n

1 2
.

This is justified as the attractive interaction is momentum independent and much larger than the
bandwidth of the each Bloch band n, so that the population amplitudes have weak momentum
independence. Moreover, the last term in equation (8) denotes coupling of population amplitude
of a Bloch band n to that of another Bloch band ′n . The corresponding coupling strength ∼D is
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of the same order of magnitude as the energy difference of the nearest Bloch bands which will
be strongly coupled. Accordingly, we have assumed that for the last term in equation (8),

− ′ = ±n n 1 and α α α≈ ≈− +n n n1 1. Within these approximations, one can rewrite equation (8)
as,

α π Ω α˙ ≈ + −

+
†

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( ) ( )i E q E q D

P C, (11)

n
n n

n

ij q q
n

1 2 eff

, 1 2

where strong dipolar interaction effectively shifts the dispersion of each Bloch band. As initially
the pairs were prepared in the discrete states in the limit of weak polarizing field, by performing
Laplace transform of equation (11) we get,

α
π Ω

= −
− + −

†⎡⎣ ⎤⎦
⎡⎣ ⎤⎦( ) ( )

( )s i
s E q E q D

P C
. (12)n

ij q q
n

n n

,

1 2 eff

1 2

Then one can do similar Laplace transform for the discrete state amplitudes in equation (8) and
eliminate the continuum amplitudes by equation (12). Subsequently, in the time evolution of the
discrete state amplitudes, one gets expressions like,

∑
π Ω− + −>

†

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦( ) ( )s E q E q D
P

P C

i
, (13)

n n q q

n

ij q q
n ij q q

n

n n,
,

,

1 2 eff0 1 2

cut

1 2

1 2

where we have introduced a cut off ∼n 20cut in the band index and = −i 1 . Any excitations
to higher bands than ncut, will be lost due to formation of strongly bound molecular pairs (The
origin of this cut off—the abundance of sticking collisions [37]—is discussed in detail in
appendix B). Due to the shift of the energy of the continuum, the minimum of the continuum
energy, π Ω− ≪E D 2 0n eff0

. Then by transforming the summation over energy level n to

integration, one integrates over the range −∞ → ∞.
The procedure described above takes into account the continuum-continuum transitions in

a mean-field way. In effect, we obtain the effective coupled equations for the time evolution of
discrete Wannier states amplitudes ˙ = C C. The coupling matrix  is expressed as

∫ ∫∑

π Ω
π

Γ

Γ

= − +

=
†

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

 i
D

dq dq

U

P P

2 3
,

, (14)
n

q q
n

q q
n

1
eff

2

1 2 1 2 1 2

where we have introduced the decay matrix Γ and the effective trapping strength
Ω Ω=  E2 Reff . In the expression above Pq q

n

1 2
is a vector of couplings of 6 Wannier discrete

states (3 per site—compare equation (6)) with the continuum. The non-zero elements linking
different sites of the discrete-continuum coupling array will induce an additional effective
hopping terms for the pairs from site i to site j. One immediately notices that in the absence of
interference effects, the decay rate of each channel will be proportional to D2 (compare
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equation (14)). Thus deviation from this behaviour may serve as an indicator of important
interference terms affecting the dynamics.

The full time dependent solution of the problem now reads

Γ ϵ= ∑ − −= [ ]( )t c t iC uexp
l l l l l1

6 , where ul is the eigenvector of the matrix  with Γl and ϵl

being the decay rate and the energy of the l-th eigenstate for the neighbouring sites. In figure 2
(left panel) we plot the decays rates for two neighbouring sites − =i j 1. Let us concentrate on
the states with the low decay rates (black line and black-circled line). All the other channels
(denoted by red and blue curves) have decay rates proportional to D2, which points towards
absence of interference effects. The states with low decay rates show a much different and
slower scaling as a function of D. The corresponding eigenstates can be approximately
expressed as symmetric and anti-symmetric combinations of the single-site eigenstates

ϕ ϕ± = ±( ) 2
ij i

with energies ϵ± with ϵ ϵ<+ −:

ϕ β β= ˆ + ˆ† †⎡⎣ ⎤⎦( )( )s p 0 (15)
i i i1

2

2

2
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Figure 2. Left panel: on the top we plot the decay rates as a function of the dipolar
strength D, when two neighbouring sites are coupled to a continuum. The pair can
delocalize between the sites due to continuum-induced tunneling. Due to this coupling,
each single-site channel is now decomposed into two separate channels shown by the
continuous and circled lines. The state with the lowest decay rate (black line) is

described by the state, ϕ ϕ− = −⎡⎣ ⎤⎦ 2
ij i j

. Right panel: here we carried out the

decay rate computations for the single-site case. On the top, we plot the decay rates as a
function of the dipolar strength D. The decay rates are normalized to the recoil energy.
The blue and the red line denotes the high decay channel with decay rates Γ ∝( ) D0l

2.
The lowest decay rate channel (black line) can be written as a superposition of two
particles occupying the s- and p-orbitals as shown in the cartoon at the bottom of the
figure.



expressed in terms of s and p orbitals. The overlap of these approximate combinations with the

exact eigenstates: σ σ δ′ ≈ σσ′j
exact

i is large with ∼ 0.95, where σ σ′ = ±, . The

deviation from the perfect overlap is due to the fact that there is an additional continuum
induced off-site transition between states with opposite parity, ϕ ↔ − ˆ ˆ† †( )sign i j s p 0

i j j
.

The state with the lowest decay rate (black line in figure 2 (left panel)) corresponds to the
state −

ij
with highest energy. For this state we find that the ratio between the decay rate and

the energy lies in the range, Γ ϵ = →− − 0.01 .05 as the dipolar strength changes from →10 50.
On the other hand, for the state +

ij
, for the same dipolar range, Γ ϵ = →+ + 0.05 0.1.

It follows that on the timescale of Γ∼ ≈+ E1 10 R, only the −
ij
survives and will be

populated. What is the origin of this surprizing stabilization? What slows down the decay in
such a spectacular way? A clue lies in the fact that the analogous analysis of the fate of a pair
localized in a single site only indicates a much faster decay (see figure 2 (right panel)).
Therefore, we find a surprising situation in which a state is stabilized by delocalizing between
two neighbouring sites in the presence of continuum-induced tunneling—a coupling between
sites. Such a situation is well known from single bound electron quantum optics studies—it is
the phenomenon of population trapping [20]. While the physics seems to be quite similar to a
strong laser field induced trapping [20] let us stress that the ‘dark state’ in our situation
entangles two distinct lattice sites. We like to point out that in our scenario both the decay and
delocalization is induced by strong coupling to the continuum. Similar analysis may be carried
out for separated sites with − >i j 1. It shows that in that case the effect of the continuum-
assisted coupling is much smaller within the regime of dipolar strengths studied.

3.2. Continuum-assisted creation of dimer states

Next we discuss the creation of dimer states due to population trapping for the half-filling of the
pairs. It is known that the strong dipolar interaction induces a density-wave phase where the
pairs arrange in a checkerboard pattern [40]. As such pairs are pinned to the sites, the
checkerboard configuration will not be stable as each pair occupied site will decay rapidly to the
continuum. The stable configuration can only have states containing the delocalized state −

ij
.

Then, in the limit of strong interaction and for half-filling of pairs, −
ij
will cover the whole

region of lattice sites. The resulting many-body state is a checkerboard state of nearest-
neighbour dimers, Ψ Π= −

+A i i i2 ,2 1
or Ψ Π= −

−B i i i2 1,2
. These dimer states are the

ground states of the celebrated Majumder−Ghosh (MG) model [21]. This paradigmatic model
consists of a frustrated one-dimensional spin chain consisting of nearest and next-nearest
neighbour hopping with a particular ratio. The dimer state is characterized by an absence of

long-range correlations, ˆ ˆ = ˆ ˆ =
Ψ

†
b b n n 0i j i j for − >i j 1. This dimerized state can be

thought of as the simplest form of the valance-bond solid with short-range correlations and with
double the period of the original lattice. As a further support for our claim, in appendix B, we
have presented many-body calculation for small systems which shows that the state with lowest
decay has almost unit overlap with the MG state.
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To prepare the MG state, initially one prepares half-filling molecular repulsively bound
pairs in the regime of low dipolar interaction. Then one can switch on the strong electric field to
create a strong dipolar interaction. This couples the Wannier states to the continuum. Such a
coupling usually reduces the population of molecules in the Wannier states. But in our case, due
to the coherent population trapping, the initial particle density in the Wannier states will be
maintained within the decay time of the population-trapped state. Any small deviation of the
initial density from half-filling will manifest themselves as excitations to the final MG state.

The doubling of periodicity in a MG state can form an experimental signature in the time
of flight image due to the reduction of the Brillouin zone. The required temperature to reach this
phase depends on the delocalization energy which is given by the energy difference δE between
the single-site state ϕ

i
and the dimer state −

ij
. For a dipolar strength of ∼D 20 (near the

lowest decay rate in figure 2) this energy difference is of the order of E0.4 R. For RbCs
molecules, these parameters correspond to a dipole moment of ∼0.7 Debye with a lattice
constant ∼500 nm. Then the relevant temperature scale to observe this phase is ∼50 nK. Such a
temperature is much larger than the one needed to reach the super-exchange regime for the
ultracold atoms, and thus it is much easier to access experimentally. The price to pay in our
present case is the meta-stability of the dimerized state with the lifetime ∼10 ms. One way to
increase the stability is by decreasing the electric field strength within the decay time, which
makes all the interaction terms small. At the same time, by increasing the lattice depth one can
decrease the tunneling amplitudes. This will make the dimer state frozen in time felicitating the
characterization of it.

3.3. Many-body effects due to long-range dipolar interaction

Let us extend our calculation of a single pair distributed in two sites to a larger system size. We
have performed an exact diagonalization for half-filled pairs distributed over 8 sites. Following
the same procedure, we have found an effective equation of motion for the many-body discrete
state probability amplitudes denoted by Cmb with modified continuum induced transition matrix
Pmb where we have taken into account continuum induced long-range coupling. The resulting

equation of motion has the form, ˙ = C Cmb mb mb, and the many body coupling matrix mb is
given by

π Ω
π

= − +
⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥ i

D
U P

2 3
, (16)mb mb

eff
2

mb

where the discrete states interaction matrix Umb now also includes the long-range dipolar
interaction. We then find the eigenvalues and eigenstates of the matrixmb. The real part of the
eigenvalues describe the decay rate of the respective eigenstates. We then concentrate on the
state with the lowest decay rate which shows similar decrease in decay strength as the PT state
discussed in the manuscript. Next, we find the overlap of this state with the Majumdar–Ghosh
(MG) states ( Ψ Ψ,

A B
) defined in the manuscript. We find that for larger dipolar strength D,

there is large overlap of the lowest decay state with the antisymmetric MG state

Ψ Ψ Ψ= −
−

⎡⎣ ⎤⎦ 2
A B

. We denote this overlap by the function MG and plot it against

the dipolar strength in figure 3. Manifestly, in spite of a strong repulsive long-range interaction
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between the off-site molecular pairs, the phenomenon of PT can result in a creation of the
frustrated MG state. Such a result shows, furthermore, a possibility of a creation of resonating
valence-bond MG state. A detailed discussion of such a possibility is beyond the scope of the
present paper.

3.4. Constructing effective Hamiltonian for low filling

In this section we discuss a possible way to construct an effective Hamiltonian in terms of
local operators for low density of the pairs. To do this, we consider a simple system where
one pair of atoms is moving in three sites coupled to the continuum. Following the
same procedure as before we derive the full coupling matrix + + ( )i i i, 1, 2 for three
sites. Studying eigenstates related to the lowest decay rates we find, as before, that the
coherent population trapping occurs due to the coupling of neighbouring sites via ±

ij

states. Subsequently, a tunneling Hamiltonian in terms of the states ±
ij
is given by,

α= − − − + + + ++ + + + + + + +( )H J h.c.i i i i i i i i i i i, 1, 2 eff , 1 1, 2 , 1 1, 2
, where α can be extracted

from the eigenvalues of the effective coupling matrix + + ( )i i i, 1, 2 . As the states

− ±
+ + +

,
i i i i, 1 1, 2

are not orthogonal, it is convenient to rewrite + +Hi i i, 1, 2 in terms of local

orthogonal operators. To do that we define a local pair operator, ϕ = †b 0
i i which creates

a pair at site i in the lowest decay state. The pair operators satisfy bosonic commutation

relations δ=†⎡⎣ ⎤⎦b b,i j ij. In terms of these pair operators we can rewrite the states as

± = ±† †⎡⎣ ⎤⎦b b 0
ij i j

1

2
. Subsequently, the Hamiltonian + +Hi i i, 1, 2 is re-expressed as,
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Figure 3. The overlap function MG as a function of the dipolar strength D. For
sufficiently large D, there is a large overlap with the antisymmetric MG state as defined
in the text. ΨA and ΨB denotes the two configuration of the MG state.



α= − + + + −

+ +

α

α

+ †
+ +

†
+ +

†
+

− †
+ +

†

+ + ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( )b b b b h.c b b

b b b b

1

. (17)

H

J i i i i i i

i i i i

1
2 1 1 2 1 1

1
2 2 2

i i i, 1, 2

eff

The values of Jeff and α are derived by comparing the energies of Hamiltonian equation ( 17)
and the energies of the states with three lowest decay rates derived from the full coupling matrix

+ + ( )i i i, 1, 2 . For small values of the dipolar strength D we find that α ≈ 1, thus the long-
range tunneling is small and one recovers the usual picture with nearest-neighbour tunneling
only. But for higher dipolar strengths α ≠ 1, due to the different decay rates of ± states. For
such values of α one obtains, therefore, (compare equation (17)) an effective model with next-
nearest neighbour tunneling leading to frustration. We would like to point out that, in the
present situation, the origin of such a frustration is entirely different from the usual origin of
such terms due to the higher order processes in solid-state systems [23].

At this point, we write down the effective many-body Hamiltonian including long-range
dipolar interaction and involving all sites as,

∑ ∑ ∑

∑ ∑

∑ ∑

π
μ

α α

π
μ

= +
−

−

= − + + −

+
−

−

+ +

† †

≠

( )

H H
D n n

i j
n

J b b J b b

D n n

i j
n

1
1

2

2
, (18)

i
i i i

ij

i j

i
i

ij
i j

ij
i j

i j

i j

i
i

eff , 1, 2 3 3

eff eff

3 3

where we have introduced the chemical potential μ for the pairs and 〈〈 〉〉ij is a shorthand for
next nearest neighbour summation index. The Hamiltonian in equation (18) contains two
sources of frustration: (i) the effective next-nearest neighbour tunneling, and (ii) long-range
dipolar interaction. For our present system, the deviation of dipolar interaction from the cubic
power law is negligible [39]. The Hamiltonian, equation (18), is a generalization of the −J J1 2

model where the interaction is present to the next-nearest neighbours only. The −J J1 2 model is
a prototype for studying the effect of frustration and emergence of various proposed exotic
phases in magnetic materials [1]. The single particle dispersion relation for this Hamiltonian is

given by ϵ α= + + α−( )J qa J qa1 cos cos 2q eff eff
1

2
. For >α

α
−
+ 1 21

1
it shows two minima at

wavevectors ± = − α
α

− +
−

⎡⎣ ⎤⎦Qa cos ( )
1 1

2 1
. In our case, the two-minima limit corresponds to

>D 18. In the low-density limit, one way to treat the problem is by going to the two-
component homogenous Bose gas limit [39] with the effective Hamiltonian,

∫ ρ ρ ρ ρ μ ρ ρ= + + − +
⎡
⎣⎢

⎤
⎦⎥( ) ( )H T T dx

1
2

, (19)eff 1 1
2

2
2

12 1 2 1 2

where ρ
1,2

are the densities of the two component Bose gas centered around the the minima ±Q

and T T,1 12 are the renormalized intra-component and inter-component interaction. A detailed
discussion of the Hamiltonian equation (19) is presented in the methods section. For a short-
range −J J1 2 model, the phase diagram from such a procedure shows qualitative agreement
with more involved density-matrix renormalization group simulations [39]. When <T T1 12, the
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mean-field ground state solution is given by the phase-separated state ρ ρ≠ =0, 0
1 2

or

ρ ρ= ≠0, 0
1 2

. Choosing one of the ground state will break the discrete symmetry which will
result in true long-range order (LRO) even in one-dimension. The nature of this phase can
readily be observed by writing the wavefunction in phase space, ψ ρ θ= −[ ]iexp

s s s , with

s = 1, 2. When ρ = 0
1

, we see that ρ θˆ = − +
† [ ]b iQxexpi 1

. Such a ‘cone’ phase is

identified as a the vector-chiral (VC) phase which breaks the 2 symmetry. In contrast when
> >T T 01 12 , we have a mixed state with equal density from both components. This

homogeneous solution with ρ ρ=
1 2

is known as the two-component Tomonaga−Luttinger
(TLL2) liquid. There can be another possibility when the effective inter-species interaction is
attractive > <T T0, 01 12 . In this situation, intra-component bound states with emerge with
center of mass momentum ∼ Q2 . Such bound states with finite momenta are usually not present
in the anti-ferromagnetic model [39]. In the present case, these bound states are a direct
consequence of the long-range nature of the dipolar interaction which can induce resonances
[41]. The quasi-condensate of such bound pairs can give rise to a spin-nematic phase [42, 43],
or spin-density wave phase [44], a detailed discussion of which is beyond the scope of current
article. In figure 4, we have plotted the resulting phase diagram in the μ−D parameter space
for vanishingly small μ. We find that the vector-chiral phase is stable for smaller and larger
values of the dipolar strength D. In between the homogeneous TLL2 phase is the ground state.
For larger values of chemical potential μ, one finds that there is a bound state phase due to

<T 012 .
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Figure 4. The qualitative phase diagram corresponding to the Hamiltonian equation (19)
as a function of dipolar strength D and scaled chemical potential μ Jeff. For low dipolar
strength, the ground state is described by the vector-chiral (VC) state. With increasing
dipolar strength, one finds a transition to the two-component Luttinger liquid phase
(TLL2) phase. A re-entrant behavior for the VC state is observed. With increasing
chemical potential, we find that the inter-component renormalized interaction T12

becomes negative, signaling a bound state (BS) with center of mass momentum Q2 .
While such bound states are normally absent in the anti-ferromagnetic models, in our
case such a situation can arise due to resonances induced by the long-range dipolar
interaction.



4. Discussion

Summarizing, in the present article we have demonstrated a novel approach to the problem of
strongly interacting molecules in optical lattices. We have explored a mathematical analogy
between the system studied and strong bound-continuum couplings present in the theory of
strong field ionization. We have found that the phenomenon of coherent population trapping, a
well known interference effect in quantum optics, is responsible for frustration in our system in
a form of dimerization and next-nearest neighbour tunneling. One strong point of our proposal
is that the required temperature scale is much higher than the one corresponding to the usual
super-exchange regime. Our results can be generalized to higher dimensions, where one can
look for simulation of spin liquids, and valance bond crystals [22]. Our method can also be
extended to other strongly interacting systems, such as atoms in optical lattices, strongly-
coupled cavity-QED systems [45], recently proposed nano-plasmonic lattices [46], and possible
lattice geometries for the indirect excitons with strong dipolar interactions [47]. We hope that
further progress can be obtained in studies of strongly interacting systems by exploring
analogies with strongly coupled quantum optics problems in general, and strong field ionization
theory in particular.
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Appendix A. Derivation of the Microscopic model

The many-body Hamiltonian in terms of the field operators is given by = +H H H0 int, with
single particle Hamiltonian in the quasi one-dimensional optical lattice potential equation (1),

∫ Φ Φ= − +†
⎡
⎣⎢

⎤
⎦⎥

( ) ( )H d
m

Vr r r
2

(A.1)
b

0

2 2

latt

and the dipole−dipole interactions

∫ Φ Φ Φ Φ= ′ ′ − ′† †⎡⎣ ⎤⎦( ) ( ) ( ) ( ) ( )H d d Vr r r r r r r r
1
2

. (A.2)dd dd

Representing the field operators Φ ( )r by local site operators in the Wannier−Bloch basis
equation (2) and performing appropriate integrations we find the Hamiltonian for the discrete
states, discrete-continuum transitions and the continuum states.

Hamiltonian for the discrete subspace

Here we write down the Hamiltonian originating from the single-particle kinetic energy and
dipolar interaction between the discrete states,
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= + +H H H H (A.3)iscd T pair int

with HT describing standard and interaction induced (density-dependent) single particle
tunneling terms

∑ ∑

∑ ∑

∑ ∑

∑

= − ˆ ˆ + ˆ ˆ + ˆ ˆ + ˆ ˆ + ˆ ˆ + ˆ ˆ

+ ˆ ˆ + ˆ ˆ + ˆ ˆ + ˆ ˆ + ˆ ˆ ˆ +

+ ˆ ˆ ˆ + + ′ ˆ ˆ ˆ +

+ ′ ˆ ˆ ˆ +

† † † †

† † †

† †

†

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

( ) ( )

( ) ( )

H J s s J p p T s n n s Tp n n p

T s n n s T p n n p T f p n s h.c.

T f p n s h.c. T f p n s h.c.

T f p n s h.c. (A.4)

ij
i j i j

ij
i si sj j i pi pj j

ij
i pi pj j i si sj j

ij
ij i si j

ij
ij i pj j

ij
ij j si i

ij
ij j pj i

T 0 1 0 1

00 11 01

10 01

10

while the correlated pair hopping part of the Hamiltonian reads

∑= ˆ ˆ ˆ ˆ + ˆ ˆ ˆ ˆ + ˆ ˆ ˆ ˆ + + ˆ ˆ ˆ ˆ† † † † † † † †⎡
⎣⎢

⎤
⎦⎥( )H T s s s s T p p p p T s s p p h.c. T s p p s

1
2

1
2

1
2

(A.5)
ij

i i j j i i j j i i j j i i j jpair p,0 p,1 p,01 p,10

where >J J, 00 1 denote the single particle nearest neighbor tunneling amplitudes in the
s p, -orbital respectively. Intra-orbital interaction-induced tunneling amplitudes are denoted by
T T T T, , ,0 1 00 11. The interaction-induced inter-orbital tunneling amplitudes are given by

′ ′T T T T, , ,01 01 10 10. The staggered nature of the inter-orbital tunneling is denoted by = ±f 1
ij

when − = ∓i j 1. The pair tunneling Hamiltonian is denoted by Hpair and the corresponding

pair-tunneling amplitudes are given by T T T T, , ,p,0 p,1 p,01 p,10. All these terms, partially canceling

each other, are neglected in our simplified Hamiltonian equation (3). The extended analysis
taking into account single particle tunneling is discussed in appendix B, below.

Next, we rewrite the dipolar interaction between the various Wannier orbitals from
equation(3) in the main text,

∑ ∑

∑ ∑
π

= ˆ ˆ − + ˆ ˆ

+ ˆ ˆ ˆ ˆ + +
ˆ ˆ
−

′

σ

σσ
σ σ

σ σ

σ σ

=

† †

′ ≠

⎡⎣ ⎤⎦

( )H
U

n n U n n

T
p p ss H.c

D n n

i j

2
1

2 2
. (A.6)

i s p
i i

i
si pi

i
i i i i

i j

i j

int
, ,

ps

ps

3
, ,

3

The different amplitudes in the discrete subspace Hamiltonian are obtained by appropriate
integrals of the dipole−dipole interaction potential and the mode functions (compare
equation (2)) that contain Wannier functions for orbitals along x with product of ground
state Gaussians in perpendicular direction. For completness we list these integrals explicitly,
assuming a shorthand notation

ϕ ϕ ϕ ϕ′ = − ′ ′ ′ ( ) ( ) ( ) ( ) ( ) ( )V y y z zr r r r, dd 0
2

0
2

0
2

0
2

and assuming the Wannier functions to be real:

∫ ω ω= ′ ′ ′( ) ( ) ( )U d d x xr r r r, , (A.7)i
s

i
s

ss
2
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∫
∫
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∫
∫
∫
∫
∫
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∫
∫
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ps

p,0
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p,01

p,10

ps
2

00

2
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01
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The continuum states and their couplings to bounded subspace

Next we consider relevant properties of Bloch states. Let us denote the Bloch band n0 as the
start of the continuous bands with En0

as the minimum of energy and ≫E 1n0
. Then the energy

of the Bloch band = +n n m0 can be written as, = + + + += + ( )( )E q E n m m n m2 2n n m n 0
2

00 0

+q q2 for even m and one can get similar results for odd m. Moreover, we write the Bloch

wavefunctions in the ≫E 1n0
limit as [48], ≈ − −⎡⎣ ⎤⎦ [ ]( )x iqx E q V xexp cos . 2 ,nq L n

2 2

for even n and ≈ − −⎡⎣ ⎤⎦ [ ]( )x iqx E q V xexp sin . 2nq L n
2 2 for n odd. As these functions

are eigenstates, they are also orthogonal, ∫ δ δ=* *
′ ′( ) ( )U x U x dx .nq mq n m q q, , Now we write down the
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discrete-continuum coupling matrix elements as,

∫

∫

ω ω

ϕ ϕ ϕ ϕ

= ′ − ′ ′

× ′ ′ ′

≈ − +

× − − −

+ − −

× − − +

* *

σ

σ

σ

σ

⎡
⎣⎢

⎤
⎦⎥
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( ) ( ) ( ) ( ) ( )
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P q q U x U x V x x

z y z y d d

dkV k k q E q

k q E q

k q E q

k q E q

r r

r r ,

1
4
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i p p
n

nq nq i
p

i
p

i n

i n

i n

i n

, 1 2 dd

0 0
2

0 0
2

dd 1 1

2 1

1 1

2 1

1 2 1 2

1 2

1

1

2

2

1

1

2

2

where σ ( )ki is the Fourier transform of the Wannier function ω σ ( )xi . In deriving the above
form, we have used the orthogonality condition between the Bloch functions and assumed that

≫E 1n . Additionally, in the Hamiltonian equation (3), we have neglected terms corresponding

to processes like ˆ ˆ ˆ ˆ† †a s ssnq i i i1
where one particle is coupled to the continuum. The transition

amplitudes for such processes contains convolution sums of the form

∫∼ + + −σ σ ( ) ( ) ( )S k q E k V k dk.n n dd
1 2

As ≫E 1n , such terms are negligibly small. Thus we ignored them in comparison to the leading
two-particle transition amplitudes.

Hamiltonian for the continuum states

The Hamiltonian for the continuum Bloch states reads

∑ ∑

∑

∑

π Ω

π Ω

π Ω

≈ ˆ ˆ − ˆ ˆ ˆ ˆ

− ˆ ˆ ˆ ˆ

− ˆ ˆ ˆ ˆ

† † †

≠ ′

† †
′ ′

≠ ′

†
′

†
′

( )H E q a a
D

a a a a

D
a a a a

D
a a a a

12

6

6
, (A.9)

n q
n nq nq
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nq nq nq nq
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nq n q nq n q
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q

Bloch
,

eff

,

eff

,

eff

,

1 2 3 4

1 2 3 4

1 2 3 4

the continuous band index ′ >n n n, 0 and the momentum index = ⎡⎣ ⎤⎦q q q qq , , ,
1 2 3 4

. The second

term in the Hamiltonian equation (A.9) denotes the dipolar interaction between the molecules in
the same Bloch band n whereas the next term denotes the transition of pairs between two Bloch
bands and the last term denotes interaction between molecules from different Bloch bands. We
only include the leading terms whose strength is of the order of ∼D. Furthermore, from
Hamiltonian equation (A.9), we notice that the interaction is strongly attractive in the higher
Bloch bands and for strong interaction ( ≫D 1), the dipolar strength can exceed the width of the
first few continuous Bloch bands.
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Many-body effects in the continuum

Consider the effect of dipolar interaction when many pairs decay into the continuum. Again,
within each Bloch band, the dipolar attraction is larger than the respective bandwidth of the
Bloch band. This suggests strong binding of the molecular pairs. To denote this we introduce a
composite operator for the pairs,

∫ ∫
∫ ∫

ˆ =
ˆ ˆ†

† †

b
a a dq dq

dq dq
.n

nq nq 1 2

1 2

1 2

As the molecules can scatter to any quasi-momentum state with equal strong probability, one
can assume that each quasi-momentum level in the band n is at most occupied by one molecule.
Then, in terms sof the pairing operator, one can find an momentum average representation
Hamiltonian equation (A.9) in terms of the composite operators as,

∑ ∑

∑

ϵ
π Ω π Ω

π Ω

≈ − ˆ ˆ − ˆ ˆ

− ˆ ˆ ˆ ˆ

†

≠ ′

†
′

≠ ′

† †
′′

⎡
⎣⎢

⎤
⎦⎥H

D
b b

D
b b

D
b b b b

3

2

3

2

3
, (A.10)

n
n n n

n n
n n

n n
n n n n

Bloch ,avg
eff eff

eff

where the average dispersion energy of a pair in Bloch band n is given by ∫ϵ = ( )E q dq2n n,avg .

From the Hamiltonian equation (A.10), by taking a mean-field type approximation for the
composite operator will again result is the effective shift in the dispersion.

Appendix B. Testing the approximations

Small system analysis of a single pair

Let us reconsider the model of a pair distributed over neighbouring sites. This time we include
the effect of pair breaking due to the single particle tunneling matrix in Hamiltonian
equations (A.4) and (A.6). To do that, within the two-site model, we have reevaluated the
dynamics of the pairs by taking into account states with single molecule per site. Our initial
state consists of the situation where only one of the site contains a pair.

With this initial condition, we have carried out the full dynamics within the two-site case
and the result is presented in figure 5. There we have plotted the total population of the single-
particle states. We see that the maximum population of the single particle states are less than
<0.1. The main reason for such anobservation is that within the Wannier orbitals, the effective
single-particle tunneling terms are much smaller (due to the aspect ratio of a site in the lattice)
than the continuum induced pair tunnelings that are independent of any local aspects of the
Wannier function. This justifies our assumption of neglecting the pair-breaking effect of the
single-particle tunneling Hamiltonian. Moreover, due to such a negligible population of the
single-particle states, the decay rates of various channel remains unchanged with respect to the
case discussed in the paper.
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Effect of van der Waals (vdW) potential due to rotational level mixing

We discuss here the effect of rotational level mixing due to quantum nature of the dipolar
interaction, the effect neglected in the main text. Such a mixing gives rise to an effective vdW
like potential which decays with distance r as − r1 6 [49]. To look into its effect, we first
consider a polar molecule with dipole moment μ, rotational constant Be is polarized by a strong

electric field E along the z direction. In the limit of μ ≪( )BE 1e , one can write the rotational
Hamiltonian in the M = 0 sector (M is the projection of angular momentum along the molecular
axis) as,

μ θ μ θ= ˆ − ≈ − ∂ +θ H B J BE Ecos 2,e erot

2 2 2

where θ is the angle between the molecular axis and the electric field direction and μ is
the permamnent dipole moment. The energy levels of the Hamiltonain Hrot is denoted by

the index =m 0, 1, 2 ,..... with energy = + θ( )E m B d2 1 erot,m
2 and wavefunction Φ θ =( ) Nm m

θ θ− θ θ( ) ( )d H dexp 2 m
2 2 where ( )H .m is the Hermite polynomial of order m, Nm is the

normalization constant and the width μ=θ [ ]d B E2 e

1 4
. The rotational state of the polar

molecule is denoted by the lowest energy rotational wavefuntion Φ θ( )0 which induced a dipole

moment of ∫μ μ θΦ θ θ( ) dcos
ind 0

2 . This results in dipolar interaction between the ground state

molecules which falls of as r1 3. Additionally, dipolar interaction also induces excitations to
higher energy rotational states. Within second order perturbation theory, the resulting effective
interaction between the ground state molecules, in the units of recoil energy, is given by,

≈ −
ℓ

−⎡⎣ ⎤⎦( )V
r

z rr 1 3 , (B.1)vdW
vdW
4

6
2 2 2

where the distance are in the units of πa and the effective dimensionless vdW length ℓvdW is
given by,
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Figure 5. Here we plot the total population of the single particles states distributed over
the two sites as a function of the dipolar strength D. We find that the sing-particle states
have negligible population.



πℓ = −θ θ

⎡
⎣⎢

⎤
⎦⎥( )d d

D E

B
exp 2

4 2
,R

e
vdW

2 2 max
2 1 4

where the maximum dipolar strength is given by μ ϵ= D m a2bmax
2

0
2 . For RbCs molecule, the

rotational constant is given by =B 0.014e cm−1and the permanent dipole moment is given by
μ = 1.27 Debye. Then for an electric field strength of E = 10 kV/cm, the angular width reads

=θd 0.7. Correspondingly, the vdW length is given by ℓ ≈ 0.17vdW when the lattice constant is
a= 500 nm. From this we can also define a short distance cutoff scale ℓsr where rotational
mixing effect of the dipoles becomes similar magnitude to the rotational splitting [49]. In our
units, this cut off is given by ℓ ≈ .03sr for dipolar strength D= 20. For length scales > ℓr sr, the
perturbative form of the vdW interaction in equation (B.1) remain valid and for < ℓr sr, the
rotational level of the molecules becomes strongly mixed and the deeply bound molecular pairs
appears [37].

Following the discussion in the main text and the above sections, we write the vdW
Hamiltonian in the discrete (HvdW,int), continuous (HvdW,Bloch) and discrete-continuous (HvdW,WB)
sector. The interaction in discrete sector is weak compare to the dipolar interaction. This can be
easily seen by Fourier transforming equation (B.1), ≈ ℓ ℓ ( )( )V k k kvdW vdW

4 3
vdW , with the

function ∼ 1. The widths of the Wannier functions in the momentum space are of the order of
∼k 1. Then as ℓ ∼ ≪−10 1vdW

4 3 , we can neglect the vdW interaction in the discrete states
compare to the dipolar strength in equation (4).

Moreover, one can estimate the loss rate due to the coupling of the bound molecular
complex by evaluating the overlap between the Wannier orbitals and the bound state wave
function which is of the order of ρ− ℓ( )exp 1 vdW where ρ is the density of bound states in the
units of recoil energy. Here we have assumed that the bound state decays exponentially for a
large distance. From [37], for RbCs molecue in the rotational ground state, the density of states
is large, ρ ∼ 40. Accordingly, the decay rate will be proportional to the overlap which is of the
order of E0.1 R which gives a timescale of ∼1.0 ms. For other species of molecules it is possible
that the density of bound states is lower which can result in an increased stability.

In the continuous Bloch band, the corresponding momentum scale is given by ∼k En

and the corresponding strength of the vdW interaction in the continuum band n is in the order of
−ℓ EnvdW

4 3 2. Whereas from equation (A.9), we find that the strength of the dipolar attraction in
this band is of the order of ∼D. For dipolar strength of ∼D 20, the vdW interaction gets
prominent only for very high Bloch bands with ≳ ℓ ≈n 1 30cutoff sr . As such bands probes
distance shorter than ℓsr, this will result in strong overlap (or in other words, strong coupling)
with the molecular bound states which can give rise to phenomenon of molecular sticking [37].
Subsequently, any population in those Bloch bands will result in loss due to formation of
strongly bound molecular pairs and we denote this by loss rate ΓvdW.

The situation remains similar also for the discrete to continuous transitions. There the
transitions happens between states with momentum ∼k E n continuous states and discrete
states with momentum ∼k 1. As for continuous states, ≫E 1n , the corresponding vdW

discrete-continuous transition strength is of the order of −ℓ EnvdW
4 3 2. Subsequently, for

intermediate momentum, the discrete-continuum transition is again dominated by the dipolar
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terms in Hamiltonian equation (5) and molecular sticking due to vdW interaction involves very
high energy Bloch bands (or shorter distance) with band index ≳n 30.

Accordingly, while integrating out the high Bloch bands, one get additional terms
(equivalent to the term in equation (B.2)),

∑
π Ω Γ

Γ
π Ω

− + − +

≈
−

≈

>

†

−

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

( ) ( )s E q E q D

n D

P
P C

i

tan 0, (B.2)

n n
ij q q
n ij q q

n

n n

,

,

1 2 eff vdW

1 vdW

cut
2

eff

cut

1 2

1 2

as ≫n Dcut
2 , and the decay rate Γ ∼ DvdW for a lattice constant of 500 nm and dipolar strength

∼D 20. We have calculated ΓvdW from [37] but assuming temperature in the nano-Kelvin
regime which suppresses the d-wave resonances.

Two-component Bose gas limit of equation (18)

We rewrite our Hamiltonian equation (18) in the conventional −J J1 2 form as,

∑ ∑

∑ ∑μ

= +

+
−

−

† †H J b b J b b

V
n n

i j
n , (B.3)

ij
i j

ij
i j

ij

i j

i
i

eff 1 2

3

where J J,1 2 are the nearest and next-nearest neighbour tunneling and V is the strength of the
long-range interaction. In the dilute limit, such a system, with nearest and next-nearest
neighbour interaction only, has been solved qualitatively by mapping the problem to a two-
component Bose gas model [39]. Here we extend this treatment to include long-range dipolar
interaction. To do that we transform the Hamiltonian to the momentum space,

∑ ∑ ∑ϵ μ= + −†

′
+

†
−

†
′

†
′( )H b b V q b b b b b b , (B.4)

q
q q q

k k q
k q k q k k

i
q qeff

, ,

where the dispersion relation is given by ϵ = +J qa J qa2 cos 2 cos 2q 1 2 and the interaction

energy in momentum space is given by, = + ∑ =
∞( )V q U V nqa n2 cos
n 1

3, where the hard-core
constraint is given by → ∞U . We only consider the dilute limit, μ → 0. When >J J 42 1 , the

dispersion relation has two minima at wavevectors, = −− [ ]Qa J Jcos 41
1 2 . Around these

minima, we can write the dispersion relation as, ϵ ϵ= + *
+  k m2Q k Q

2 2 , where *m is the
effective mass. Then we expand the boson operator near the two minima,

ϕ ϕ ϕ= + ++ − +bk Q k Q k k1, 2,
, where ϕ

1
and ϕ

2
are the two-component Bose gas centered around

momentum ±Q respectively, while ϕ
k
denotes the high momentum contribution, which is

integrated out. Then one can re-express the Hamiltonian equation (B.4) in terms of the ϕ
1,2

which in position space reads,
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∫ ∑ ϕ ϕ

ρ ρ ρ ρ μ ρ ρ

= −

+ + + − +

*
σ

σ σ
=

†
⎡
⎣
⎢⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
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( ) ( )

H dx
m

T T

2

1
2

,

xeff
1,2

2
2

1 1
2

2
2

12 1 2 1 2

where T1 and T12 are renormalized interactions. To find these renormalized interactions, we first
write down the full Bethe−Salpeter equation,

∫ ϵ ϵ Ω π
′ = −

− ′
+ ++ ′−

( ) ( ) ( ) ( )
T k k q V q

V p q T k k p dp
, ;

, ;

2
. (B.5)

k p k p

In the dilute limit we can substitute Ω μ= 2 . Then the respective renormalized interaction is

given by, = ( )T T Q Q, , 01 and = − + −( ) ( )T T Q Q T Q Q Q, ; 0 , ; 212 . Imposing the hard-
core constraint with → ∞U , we get an additional equation,

∫ ϵ ϵ Ω π
′

+ +
=

+ ′−

( )T k k p dp, ;

2
1.

k p k p

Due to the form of the interaction V(q), we expand the full renormalized interaction as,
′ = + ∑( )T k k q A A nqa, ; cos

n n0 , where the coefficients A A, n0 depends on ′k k, . Putting this

ansatz in equation (B.5), we get a set of coupled equations for >m 0,

∫∑
Ω π

= − ′
+*

′=

∞

′ 
A

V

m

V

m
A

mpa m pa

p m

dp2 2 cos cos

2
,m

m
m3 3

0
2 2

and from the constraint condition,

∫∑
Ω π

=
+*

=

∞


A

A mpa

p m

dpcos

2
.

m

m
0

0
2 2

We found that in the limit of Ω → 0, the magnitude of the integral like ∫ Ω π+*
mpa

p m

dpcos

22 2 falls off

when >m 1. Then we get the following relation,

∫∑
Ω π

= −
− ′

+*
′= −

+

′ 
( )

A
V

m

V

m
A

m m pa

p m

dp2 2 cos

2
.m

m m

m

m3 3
1

1

2 2

We numerically find convergent solution for the Am by taking =m 100max .
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