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We show that the pT spectra measured in pp collisions at the LHC
exhibit geometrical scaling introduced earlier in the context of deep inelastic
scattering. We also argue that the onset of geometrical scaling can be seen
in nucleus–nucleus collisions at lower RHIC energies.
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1. Introduction

With the start of the LHC we have been confronted with a wealth of data
on multiparticle production at high energies both in pp [1,2,3] and in heavy
ion collisions [4]. One of the remarkable results is that total multiplicity of
charged particles produced in central rapidity in pp collisions is rising like a
power of s

dNch

dη
∼ sλ̃ with λ̃ ' 0.23 . (1)

The power law behavior (1) is expected in saturation models [5, 6, 7, 8, 9,
10]. In this paper we show that power like behavior of total multiplicity
follows naturally if pT spectra of charged particles exhibit geometrical scaling
[11, 12]. In Sec. 2 we remind basic properties of geometrical scaling which
was introduced in the context of small x deep inelastic scattering (DIS). In
Sec. 3 we introduce geometrical scaling in pp collisions. In Sec. 4 we briefly
discuss a possibility of geometrical scaling in heavy ion collisions. Finally,
we summarize and give conclusions in Sec. 5.

∗ Based on a talk presented at the Cracow Epiphany Conference on the First Year of
the LHC, Cracow, Poland, January 10–12, 2011.
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2. Geometrical scaling in DIS

In a successful description of small x DIS proposed in seminal papers by
Golec-Biernat and Wüsthoff (GBW model) [13], a cross-section for virtual
photon–proton scattering in DIS reads

σγ∗p =
∫
dr2

∣∣ψ(r,Q2)
∣∣2 σdP (r2Q2

s (x)). (2)

Here ψ is the wave function describing dissociation of a virtual photon into
a qq̄ dipole and σdP is a dipole-proton cross-section. The main assumption
of the GBW model is that σdP which in principle is a function of two inde-
pendent variables: dipole size r and dipole-proton energy W (or Bjorken x),
depends in practice only on a certain combination of these two variables,
namely on the product r2Q2

s (x), where

Q2
s (x) = Q2

0

(x0

x

)λ
(3)

is called a saturation scale. Bjorken x is defined as

x =
Q2

Q2 +W 2
. (4)

Here Q0 ∼ 1 GeV and x0 ∼ 10−3 are free parameters whose precise values
can be extracted by fitting (2) to the HERA data. Power λ is known to be
of the order of λ ∼ 0.2÷ 0.3.

For transverse photons (neglecting quark masses)

∣∣ψT

(
r,Q2

)∣∣2 =

1∫
0

dz
[
z2 + (1− z)2

]
Q

2
K2

1

(
Qr
)
, (5)

where
Q

2 = z(1− z)Q2 (6)

and K1 is a modified Bessel function. From Eq. (5) it follows that∣∣ψT

(
r,Q2

)∣∣2 = Q2
∣∣∣ψ̃T(rQ)

∣∣∣2 , (7)

where we have explicitly factored out Q2. Defining new variable u = Q2r2,
new function φ(u) = u|ψ̃T(u)|2 and scaling variable τ

τ =
Q2

Q2
s (x)

(8)
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we arrive at
σγ∗p =

∫
du

u
φ(u)σdP (uτ) . (9)

It follows that σγ∗p is a function of scaling variable τ , rather than a function
of two variables Q2 and x. This phenomenon is known as geometrical scaling
(GS) [14]. GS has been observed in DIS data for x < 0.01.

In the Golec-Biernat–Wüsthoff model

σdP
(
r2Q2

s (x)
)

= σ0

(
1− exp

(
−r2Q2

s (x)
))
, (10)

where σ0 is dimensional constant; σ0 ' 23 mb.
In practice, Q2

s may also have some residual dependence on Q2 if DGLAP
evolution in (2) is taken into account [15]. Indeed, it can be shown that in
the GBW model — up to logarithmic corrections — DIS structure function
is proportional to Q2

s

σγ∗p
(
x,Q2

)
∼ σ0

Q2
s (x)
Q2

and F2

(
x,Q2

)
∼ σ0Q

2
s (x) . (11)

At first sight Eq. (11) may look contradictory, since left-hand sides depend
non-trivially on Q2 and the right-hand sides do not. In practice, exact
calculation of the integral in (2) renders some mild Q2 dependence of the
right-hand sides. Moreover, DGLAP evolution introduces Q2 dependence of
Q2

s (x). Therefore, the effective saturation scale can be conveniently param-
eterized as

Q2
s,eff

(
x,Q2

)
= Q2

0

(x0

x

)λeff(Q2)
. (12)
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Fig. 1. Dependence of λeff on Q2 from HERA (HERA data points [16] after
Ref. [17]).
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Exponent λeff(Q2) has been extracted from the HERA data [16]. This is
shown in Fig. 1 (after Ref. [17]) together with an eyeballing fit [12]

λeff(Q) = 0.13 + 0.1
(
Q2

10

)0.35

. (13)

3. Geometrical scaling in pp collisions

In pp collisions we do not have a viable model of low and medium pT par-
ticle production at high energies. Nevertheless one often uses a kT factorized
form of a cross-section describing production of a pT gluon at rapidity y [18]

E
dσ

d3p
=

3π
2

1
p2

T

∫
dk2

Tαs(kT)ϕ1

(
x1, k

2
T

)
ϕ2

(
x2, (k − p)2

T

)
, (14)

where
x1,2 =

pT√
s
e±y (15)

are Bjorken xs of colliding partons. Here ϕs are unintegrated gluon densities.
Introducing “regular” gluon distribution

xG
(
x,Q2

)
=

Q2∫
dk2

Tϕ
(
x, k2

T

)
(16)

one obtains for p2
T > Q2

s

E
dσ

d3p
=

3π
2
αs(Qs)
p2

T

{
ϕ1

(
x1, p

2
T

)
x2G

(
x2, p

2
T

)
+ ϕ2

(
x2, p

2
T

)
x1G

(
x1, p

2
T

)}
.

(17)
There have been recently more involved model calculations of particle mul-
tiplicity based on Eq. (14) [19,20,21].

Kharzeev an Levin proposed a simple Ansatz for unintegrated gluon
distribution [22]

ϕ
(
x, p2

T

)
=

3σ0

π2αs (Q2
s )

 1 for p2
T < Q2

s ,

Q2
s/p

2
T for Q2

s < p2
T .

(18)

Hence, up to the logarithmic corrections due to the running coupling con-
stant, we arrive at geometrical scaling for the multiplicity distribution

dNch

dηd2pT
=

1
σinel

E
dσ

d3p
=

1
Q2

0

F (τ) , (19)
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where Q0 ∼ 1 GeV and σinel is the inelastic cross-section. Although we
have used a very simple Ansatz (18) for unintegrated gluon distribution ϕ,
it satisfies the generic property that xG(x,Q2

s ) ∼ Q2
s which is enough for

GS to hold.
F (τ) is a universal function of the scaling variable

τ =
p2

T

Q2
s

, (20)

where in view of (3) and (15)

Q2
s = Q2

0

(pT

W

)−λ
, (21)

where W =
√
s × 10−3. Here factor 10−3 corresponds to the (arbitrary at

this moment) choice of x0.
The power like growth of the multiplicity can be easily understood as a

consequence of geometrical scaling. Indeed

dNch

dy
=
∫
dp2

T

Q2
0

F (τ) . (22)

Simple change of variables gives [11]

dp2
T

Q2
0

=
2

2 + λ

(
W

Q0

) 2λ
2+λ

τ−
λ

2+λdτ . (23)

The integral over dτ is convergent and universal, i.e. it does not depend on
energy. It follows from Eq. (23) that the effective power of the multiplicity
growth is

λ̃ =
2λ

2 + λ
< λ (24)

rather than λ. For λ = 0.27 we have that λ̃ = 0.238.
In Refs. [11] it was shown that CMS charged particle pT spectra [2] at

mid rapidity |η| < 2.4 plotted as functions of scaling variable τ fall on one
universal curve (19). This is depicted in Fig. 2, where we plot pT spectra
for three LHC energies as functions of p2

T (left panel) and as functions of
scaling variable τ for λ = 0.27 (right panel).

In order to examine the quality of geometrical scaling in pp collisions we
plot in Fig. 3 ratios of spectra measured at 7 TeV to spectra at 0.9 and 2.36
TeV in function of pT (left panel) and

√
τ (right panel). We see that original

ratios plotted in terms of pT range from 1.5 to 7, whereas plotted in terms
of
√
τ they are well concentrated around unity. This is further illustrated in
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Fig. 2. Charged particle multiplicity at mid rapidity |η| < 2.4 as measured by
CMS [2], plotted as functions of p2

T (left) and scaling variable τ (right) for λ = 0.27.
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Fig. 3. Ratios of CMS pT spectra [2] at 0.7 TeV to 0.9 (blue circles) and 2.36 TeV
(red triangles) plotted as functions of pT (left) and scaling variable

√
τ (right) for

λ = 0.27.

the left panel of Fig. 4 which presents the enlarged view of the right panel of
Fig. 3. With this accuracy we see a small systematic increase of the ratios
(apart from the first 4, 5 points which correspond to particles of very low
pT where a different production mechanism may dominate) which suggests
some weak dependence of exponent λ on pT. The value of λ = 0.27 has
been obtained by minimizing deviations of ratios R7/0.9 and R7/2.36 from 1
for central pT points (i.e. rejecting first 5 and last 4 points).



Geometrical Scaling in Hadronic Collisions 1563

0 1 2 3 4 50 . 5

1 . 0

1 . 5

 R 7 / 0 . 9
 R 7 / 2 . 3 6

   �  =  0 . 2 7

R

� 1/2

0 1 2 3 4 50 . 5

1 . 0

1 . 5

 R 7 / 0 . 9
 R 7 / 2 . 3 6

   �  =  �� D I S ( 2 p T )

R
� 1/2

Fig. 4. Enlarged plot of the right panel of Fig. 3 for λ = 0.27 (left) and for λ =
λeff(2pT).

Residual dependence of exponent λ on pT is in agreement with small x
dependence of the DIS structure function as measured in HERA [16]. In
Ref. [12] we have argued that this dependence can be well approximated
by use of the effective exponent λeff of Eq. (13) with argument Q = 2pT.
This is demonstrated in the right panel of Fig. 4, where we used λeff(2pT)
to calculate the ratios R7/0.9 and R7/2.36. An impressive improvement of
geometrical scaling (i.e. of the equalities R7/0.9 ' 1 and R7/2.36 ' 1) can be
indeed seen.

4. Onset of geometrical scaling in heavy ion collisions

Heavy ions provide much reacher information on the characteristics of
particle production at high energies. Indeed, one can study not only energy
dependence but also atomic number A-dependence, rapidity dependence (at
RHIC much larger rapidity range has been covered than so far at the LHC)
and finally centrality dependence. The production of quark-gluon plasma
and its ability to “remember” the initial conditions of the saturated glu-
onic matter are here of primary interest. Unfortunately RHIC energies are
presumably too low for geometrical scaling to work. Nevertheless we show
below, that approximate GS can be seen in the RHIC data. To this end we
choose the PHOBOS pT distributions measured in gold–gold and copper–
copper collisions at 62.4 and 200 GeV per nucleon [23,24].

Here a new scaling law is particularly interesting. Namely the satura-
tion scale in nucleus–nucleus collisions scales with A as [25] (for review see
Ref. [26])
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Q2
A s = A1/3Q2

s (25)

which implies that the relevant scaling variable reads

τA =
p2

T

A1/3Q2
s

=
1

A1/3

p2
T

Q2
0

(pT

W

)−λ
. (26)

In Fig. 5 we plot multiplicity distribution for central Au–Au and Cu–Cu
collisions in function of p2

T and τA. In this case a slightly higher value of the
exponent λ is used, namely λ = 0.3. We see again that the rescaled spectra
seem to fall on one curve, although the alinement of Au and Cu spectra
is not perfect for small and medium values of τA. Nevertheless a tendency
towards geometrical scaling is clearly seen. Similar conclusions can be drawn
for more peripheral collisions. A detailed study of the onset of geometrical
scaling in heavy ion collisions will be presented elsewhere.
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Fig. 5. Multiplicity distribution in heavy ion collisions for Au–Au and Cu–Cu at
two RHIC energies 200 and 62.4 GeV [23, 24] plotted in terms of p2

T (left panel)
and scaling variable τA (right panel).

5. Conclusions

In this paper we have demonstrated that geometrical scaling originally
postulated in deep inelastic scattering [14] is also exhibited by the pT spectra
in hadronic collisions [11, 12]. To this end recent CMS data [2] have been
analyzed and shown to scale with scaling variable τ defined in Eqs. (20),
(21). A simplified model of Gribov, Levin and Ryskin [18] has been used to
motivate the appearance of GS in hadronic collisions. This model can be a
priori used to study the shape of the universal scaling function F (τ) which
deserves a separate study.
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A notable difference between DIS and hadronic collisions is that in DIS
we deal with totally inclusive cross-section, whereas in pp both hadronization
and final state interactions play essential role. Nevertheless, the imprint
of the saturation scale Qs is visible in the spectra, which means that the
information on the initial fireball survives until final hadrons are formed.

It has been shown that the quality of geometrical scaling is improved if
the exponent λ becomes pT-dependent [12] in accordance withQ-dependence
of λeff(Q = 2pT) obtained from DIS. This is a remarkable feature that sup-
ports the picture in which medium pT particles are produced from saturated
gluonic matter irrespectively of the scattering states.

If so, geometrical scaling should be also present in heavy ion collisions.
The detailed studies will be certainly carried out at the LHC. Here we have
analyzed PHOBOS data [23, 24] for two RHIC energies and for two differ-
ent nuclei: gold and copper, and the onset of geometrical scaling has been
clearly seen. Interestingly, we have found that the exponent λ that governs
geometrical scaling in heavy ion collisions is higher than the one in pp. This
is in striking agreement with the fact that multiplicity growth with energy
observed by ALICE [4] is faster in heavy ions than in pp. Question arises
to what extent the hydrodynamical evolution of the quark-gluon plasma is
going to wash out geometrical scaling that is present in the initial state. Fur-
ther studies should also concentrate on centrality and rapidity dependence
of GS.

The author wants to thank Larry McLerran for a number of stimulating
discussions that triggered this work and Andrzej Białas for discussion and
encouragement. Special thanks are due to Barbara Wosiek for the guidance
through the wealth of heavy ion RHIC data. Part of this work has been
completed during a short visit at CERN TH Department.
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