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Quantum phase transitions in a spin-1 antiferromagnetic chain
with long-range interactions and modulated single-ion anisotropy
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We study the phase diagram of a spin-1 antiferromagnetic chain with isotropic antiferromagnetic interactions
decaying with a power law ∝r−α (α � 1) accompanied by modulated single-ion anisotropy. Employing the
techniques of the density-matrix renormalization group, the effects of long-range interactions and single-
ion anisotropy on a variety of correlations are investigated. In order to check the consistency, the fidelity
susceptibilities are evaluated across quantum phase transitions. The quantum critical points are faithfully detected
and orders of phase transitions are determined. The correlation-length critical exponent is extracted from scaling
functions of the fidelity susceptibility. The presence of long-range interactions leads to a quantitative change of
the phase boundaries and reduces the order of the phase transition under certain conditions. A direct first-order
transition between the periodic Néel phase and the large-D phase occurs for slowly decaying antiferromagnetic
interactions.
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I. INTRODUCTION

The Haldane phase [1,2] of the one-dimensional (1D)
antiferromagnetic (AF) spin-1 (S = 1) chain has received
continued attention as it is closely related to the breaking
of a hidden Z2 ⊗ Z2 symmetry [3] through a nonlocal uni-
tary transformation. In fact, long-range order is absent in
the isotropic 1D spin-1 chain with a short-range exchange
interaction but the ground state is characterized by a finite
spectral gap and exponentially decaying AF spin correlations.
The thoroughly studied gapped phase was conjectured by
Haldane [1,2], and was confirmed in a series of experimental
and theoretical papers [4–8]. An important benchmark of the
Haldane phase is the occurrence of the nonlocal string order
in the isotropic AF S = 1 Heisenberg chain [9]. At the same
time, the string order is a manifestation of the topological
hidden order, as pointed out by Kennedy and Tasaki [3].

Frustration may be introduced in the AF spin-1 chain by
other interactions, and as a result novel types of order could
emerge. For instance, Affleck, Lieb, Kennedy, and Tasaki
(AKLT) proposed [10] an extended model of an S = 1 chain
with an additional biquadratic spin interaction, whose ground
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state is exactly solvable and gives the phase depicted in
Fig. 1(a). The fourfold ground-state degeneracy arises due
to two free edge S = 1/2 spins for a chain with an open

FIG. 1. Schematic view of various phases considered in this
paper for the 1D AF S = 1 chain. Each spin S = 1 consists of
two S = 1/2 spins (blue dots); a pair of spins built out of two
adjacent spins and connected by a gray ellipse forms a singlet,
(|↑↓〉 − |↓↑〉)/

√
2. Depending on the actual parameters, the possible

phases of a frustrated 1D AF S = 1 chain investigated here are as
follows: (a) the Haldane phase (the AKLT state) which has two
free edge S = 1/2 spins for an open boundary condition; (b) the
singlet nondegenerate (large-D) state for a sufficiently large single-
site anisotropy D1 > 0; (c) the usual S = 1 Néel phase, |↑↓↑↓〉; and
(d) the periodic Néel phase which includes |0〉 states as separating
|↑〉 and |↓〉 states, i.e., |↑0↓0〉.
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boundary condition and provides crucial insight into the
symmetry-protected topological (SPT) order. Such a general
bilinear-biquadratic Hamiltonian leads to a dimerized spin-1
chain for a range of parameters [10]. Note that the biquadratic
spin-spin interaction, ∝(Si · Si+1)2, arises naturally within
the S = 1 Heisenberg model describing the strong-coupling
theory of the iron pnictides [11–13].

Yet, perhaps the simplest frustrated model for the AF
spin-1 chain includes both AF nearest-neighbor and next-
nearest-neighbor interactions—it has been shown [14] that
the latter dilutes the AKLT phase by singlet bond correla-
tions [15]. Here, we go further and analyze the frustrated
spin-1 chain with infinite-range AF correlations which decay
algebraically in the presence of a superposition of uniform
and alternating uniaxial single-ion anisotropy. We show below
that such a model gives an interesting competition of spin
correlations with those encountered in the Haldane phase.

Experimentally, the Haldane chain was most com-
prehensively studied via inelastic neutron scattering in
S = 1 chain materials, such as SrNi2V2O8 [16,17] and
Ni(C2H8N2)2NO2(ClO4) [18]. To reproduce the experimen-
tal findings for real materials, additional terms have to be
added to the ideal Heisenberg Hamiltonian, such as ex-
change anisotropy, bond alternation, or single-ion anisotropy.
Anisotropy effects can then significantly modify the ground-
state magnetic properties. A sufficiently strong easy-plane
single-ion anisotropy ∝D(Sz

i )2 induces a Gaussian quan-
tum phase transition (QPT) with central charge c = 1 from
the SPT state to a topologically trivial large-D phase
[19–25] [cf. Fig. 1(b)], such as the one encountered in
NiCl24SC(NH2)2(DTN) [26,27].

Recently, artificial materials have been adopted to simu-
late quasi-1D quantum materials in atomic, molecular, and
optical systems [28–30]. Different power-law decays of long-
range AF exchange interactions were considered in quasi-1D
quantum chains, such as the Coulomb-like interaction ∝1/r
[31], the dipole-dipole interaction ∝1/r3 [32–34], and the van
der Waals interaction ∝1/r6 [31]. More recently, power-law-
decaying long-range interactions ∝1/rα were also realized in
which the power α � 1 could even be continuously adjusted
in some region using careful manipulation [34–40].

We emphasize that long-range interactions cannot be con-
sidered as perturbations and play an essential role in the
critical phenomena [41–49]. Recently, two of us considered
a chain with anisotropic long-range-decaying interactions and
investigated its QPTs [50]. Interesting phase diagrams were
established, with the long-range interactions of the z com-
ponent resulting in a Wigner crystal phase, and the transver-
sal one resulting in a symmetry broken phase. The present
work addresses primarily the QPTs in the spin-1 chains with
long-range interactions and modulated single-ion anisotropy.
Using a combination of density-matrix renormalization group
(DMRG) calculations and a spin-wave analysis, various cor-
relations for a spin-1 chain with long-range interactions were
presented. The concept of fidelity susceptibility has been
successfully used to classify QPTs in the spin-1 AF chain
in the past [24,25,51–59]. We employ here the fidelity sus-
ceptibility and establish a rich phase diagram of a spin-1
chain by changing the uniform and alternating single-ion
anisotropy.

The remainder of this paper is organized as follows. We
introduce the S = 1 Heisenberg model with long-range inter-
actions and alternating single-ion anisotropy in Sec. II. The
details of the numerical methods and information metric are
also introduced. In Sec. III, the effects of long-range inter-
actions and modulated single-ion anisotropy are investigated.
Using fidelity susceptibility, the phase diagrams for various
cases are determined. The characteristics of each phase are
interpreted by diverse correlations and effective Hamiltonians
in various limiting cases. A discussion and summary are
presented in Sec. IV.

II. HAMILTONIAN AND CORRELATIONS

A. Frustrated Heisenberg chain

The Hamiltonian of the spin-1 Heisenberg chain of length
of N sites with long-range interactions and modulated single-
ion anisotropy is given by

H =
N∑

i< j

Ji jSi · S j +
N∑

i=1

[
D1 + (−1)iD2

](
Sz

i

)2
, (1)

where Si is the spin-1 operator on site i. We consider spin
states using the following notation |↑〉, |0〉, and |↓〉 for the
single-site states with Sz

i = 1, 0, and −1, respectively. The
interactions Ji j between two spins decay algebraically with
distance r = |i − j| � 1, i.e., as

Ji,i+r = Jr−α, (2)

and we take α � 1. The parameters D1 and D2 stand for
uniform and alternating components of uniaxial single-ion
anisotropy, respectively. For convenience, we take J = 1 for
nearest neighbors (|i − j| ≡ 1) and use open boundary condi-
tions in this study. Note that for D1 = D2 one finds single-ion
anisotropy only at every second site.

B. Order parameter and spin correlations

According to the Ginzburg-Landau scenario, a well-
defined order parameter is a vital ingredient for characterizing
the nature of a phase. In order to characterize the QPTs, the
two-point correlations

Cα
l,m = 〈

Sα
l Sα

m

〉
(α = x, y, z), (3)

and the nonlocal string order parameter (SOP),

Oz
l,m = −

〈
Sz

l exp

(
iπ

m−1∑
k=l+1

Sz
k

)
Sz

m

〉
, (4)

are defined. The difficulty in defining suitable order param-
eters in miscellaneous phases therein motivates us to adopt
instead widely accepted information measures.

As a Riemannian metric in the parameter space, quantum
fidelity susceptibility is intimately related to quantum fluc-
tuations and dissipative responses of the system. Consider
the Hamiltonian H (λ) with a set of external parameters,
λ = {λ1, λ2, . . . , λκ}, where κ is the dimension of the pa-
rameter space. The quantum geometric tensor describes the
geometric structure upon projecting the dynamics onto the
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FIG. 2. Phase diagram of the spin-1 AF chain Eq. (1) as in the {D1, D2} plane with different α. The locations of transition lines are obtained
for a system size of N = 100 sites, where we do not find any finite-size effects. The dashed lines in (a)–(c) separate approximately Néel from
the periodic Néel phase; they are given by D2 = −D1 + c0, with c0 selected for a given value of α. Parameters are (a) α = 10, c0 	 2.0,
(b) α = 3, c0 	 1.6, and (c) α = 1, c0 	 0.95.

(nondegenerate) ground state ψ0(λ), given by

χμ,ν = 〈∂μψ0(λ)(1 − |ψ0(λ)〉〈ψ0(λ)|)|∂νψ0(λ)〉. (5)

The imaginary part of the geometric tensor Im{χμ,ν} is re-
lated to the Berry curvature, and the real part Re{χμ,ν} is
dubbed the quantum fidelity susceptibility which measures
the change rate of the distance between the two closest states
as a driving parameter λμ is modulated [60]. The quantum
geometric tensor has been experimentally extracted by using
a superconducting qubit [61], coupled qubits in diamond [62],
and exciton polaritons in a planar microcavity [63].

As an information metric in the Hilbert space, quantum fi-
delity susceptibility has a gravity dual with the spatial volume
of the Einstein-Rosen bridge in anti-de Sitter (AdS) space
[64]. The sensitivity is greatly enhanced especially for the
system at the quantum criticality comparing with that away
from the critical region [65]. The divergence of χμ,μ (5) (in
what follows we use an abbreviation χ for this quantity)
can directly signal a QPT and locate the quantum critical
points. Quantum fidelity susceptibility has been proved to
play the role of a universal order parameter in identifying the
QPTs [66–68].

Both of these observations require us to calculate the
ground state or the reduced density matrix of the system.
Based on matrix product states, the finite-size DMRG tech-
nique was adopted [69–71]. In the numerics we keep up to
m = 300 eigenstates during the procedure of basis truncation
and the number of sweeps is n = 50. These conditions guar-
antee that the simulation converges sufficiently fast and the
truncation error is smaller than 10−9.

III. NUMERICAL RESULTS

A. Phase diagrams

First, we performed calculations for varying uniaxial
single-ion anisotropy parametrized by D1 and D2 [see Eq. (1)]
with fixed values of α = 10, 3, and 1, respectively. One
finds then generic phase diagrams, with the Néel (large-D)
phase for a negative (positive) value of D1 and the Haldane

phase in between (see Fig. 2). A large (positive) value of D2

induces a periodic Néel state. The characteristic spin states are
visualized for different phases in Fig. 1. One finds always four
phases; their range of stability changes when the exponent α,
which describes the long-range decay, varies from α = ∞ (the
AF Heisenberg model with nearest-neighbor AF interactions)
to α = 1. However, the intermediate Haldane phase shrinks as
α decreases.

Remarkably, for the AF Heisenberg model with nearest-
neighbor interactions (not shown for a general case), numeri-
cal studies revealed that the Haldane phase creeps in between
the periodic Néel phase, the Néel phase, and the large-D
phase. This limit is reached with an increasing value of α

from a finite value—then the Haldane phase is squeezed, and a
direct QPT from the large-D phase to the periodic Néel phase
occurs for large D1 through a first-order QPT. The critical
line of the periodic Néel to large-D transition will occur at
D1 = D2 for sufficiently large single-ion anisotropy D1.

A tricritical point emerges at moderate D1 for α = 1 [see
Fig. 2(c)]. However, there is still no direct transition between
the Néel phase and the periodic Néel phase, which emerges
from the Haldane state by lowering specific Néel-type spin
configurations compatible with the spatial modulation of
single-site anisotropy. A narrow Haldane phase would sur-
vive in the neighborhood of the line D1 + D2 = c0, i.e., at
D2 = −D1 + c0, where c0 is a constant and depends on the
parameter α.

To better understand such a rich phase diagram of Fig. 2
that results from the interplay of long-range AF couplings and
alternating single-ion anisotropies, we first consider the cases
with either D2 = 0 or D1 = 0 (see Fig. 3). For α = ∞ (the
AF Heisenberg model), the system reduces to a spin-1 chain
with a nearest-neighbor interaction, and it is in the Haldane
phase at the isotropic point (D1 = 0 and D2 = 0), which is
composed of the superposition of states with hidden nonlocal
AF order. At D2 = 0 one finds two QPTs by increasing
the value of D1, from the Néel phase through the Haldane
phase to the large-D phase [see Fig. 3(a)]. By going upwards
vertically at D1 = 0, there is only one QPT for increasing
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FIG. 3. Examples of QPTs found for the spin-1 chain in Fig. 2
as functions of α for (a) uniform anisotropy D1, with D2 = 0, and
(b) modulated anisotropy D2, with D1 = 0.

D2, from the Haldane phase to the periodic Néel phase
[see Fig. 3(b)].

Figure 4 shows spin-spin correlation functions for the
different phases found in the phase diagram of Fig. 2. In
Fig. 4(a) one observes that both spin correlation functions,
Cz

1,i and Cx
1,i, vanish fast over a separation of just a few sites,

while the nonlocal Oz
1,i (4) converges quickly to 0.452 (0.358)

for odd (even) site i, manifesting the existence of the Haldane
phase. The odd-even effect follows from the open boundary
condition. At D1 = 2 and D2 = 0 one finds the large-D phase
[see Fig. 4(b)].

Some specific AF order will be favored by varying the
single-site anisotropy. Changing the sign of D1, one finds the
Néel phase at D1 = −2 [see Fig. 4(c)]. The average magnetic
moments are 〈Sz

1〉 	 0.94 for the edge site and 〈Sz
50〉 	 0.90 in

the middle of the chain. On the other hand, for a quite large
alternating single-site anisotropy, i.e., D2 � J , the spins on
the odd sites are restricted to 〈Sz

2i−1〉 ≈ ±1 and those on the
even sites are confined to 〈Sz

2i〉 = 0. In Fig. 4(d) this state is
shown for D1 = 0 and D2 = 4. Indeed, two-spin correlations
Cz

1,i oscillate periodically between the values being close to
−1, 0, and 1, and Cx

1,i ≈ 0.

FIG. 4. Spin-spin correlation functions 〈Sα
l Sα

m〉, and string order
parameter Oz

l,m (4) as obtained with N = 100 for four representative
sets of {D1, D2} parameters (see legends) which correspond to differ-
ent phases of the spin-1 AF Heisenberg chain (with α = ∞).

To elucidate the dominated configurations, the effective
interactions between Sz

2i−1 and Sz
2i+1 as the first-order pertur-

bation in J plays the leading role, which for a chain of even
length N is of the form

H (1)
eff = J13

N/2−1∑
i=1

Sz
2i−1Sz

2i+1. (6)

The crucial point here is the AF coupling J13 between next-
nearest-neighbor spins at odd sites which triggers the peri-
odic Néel phase, being | · · · ↑0↓0↑0↓〉 · · · 〉 [cf. Fig. 1(d)];
the long-range interactions frustrate this term. For an open
system, one finds the net magnetization being zero if
(N − 2) sites is a multiple of 4, i.e., the considered open chain
may accommodate a certain number of unit cells of length
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FIG. 5. (a) Fidelity susceptibility per site χ plotted as a function
of the alternating anisotropy parameter D2 for different system sizes
(see legends). The inset shows the finite-size scaling of the maximum
of the fidelity susceptibility Dc1

2 . The lines are fitted and represent
guides to the eye. (b) The second derivative of the ground-state
energy density (d2e/dD2

2 ) plotted for increasing parameter D2 for
different system sizes. Parameters: α = 1 and D1 = 0.

four. Quantum fluctuation corrections are small but somewhat
larger than in the Néel phase, and one finds |〈Sz

2i−1〉| 	 0.88.

B. Spin correlations and fidelity susceptibility

The phase transition between the Haldane phase and the
periodic Néel phase can be accurately determined by the
analysis of the fidelity susceptibility. The results for D1 = 0
and α = 1 are shown in Fig. 5(a). With increasing D2, a
peak of the ground-state fidelity susceptibility is observed at
D∗

2 	 1.84, which signals an approach to the transition in the
thermodynamic limit, N → ∞. Further evidence for identify-
ing the QPT is provided by the results of the second derivative
of the ground-state energy density (d2e/dD2

2 ), which is shown
in Fig. 5(b). We thus confirm that the Haldane-to-periodic-
Néel transition is a QPT of second order.

According to the finite-size scaling theory [72], the posi-
tion of the maximal points of the fidelity susceptibility can be
fitted by the following formula,

|D∗
2(N ) − Dc

2| ∼ N−b, (7)

where b is a constant given by the critical exponent ν,
b ≡ 1/ν, and Dc

2 is the quantum critical point in the thermo-
dynamic limit. Accordingly, the scaling of the extremal points
of the fidelity susceptibility gives rise to Dc

2 = 1.845, b1 	 1,
as is shown in the inset of Fig. 5(a). For a second-order QPT,
it is shown that the fidelity susceptibility at the peak point for

FIG. 6. Log-log plot of maximum fidelity susceptibility χmax as
a function of the chain length N with α = 1 for (a) the Haldane-to-
periodic-Néel QPT with D1 = 0, and (b) the Haldane-to-Néel QPT
with D2 = 0. The insets show the critical exponent ν as a function of
the parameter α [see Eq. (2)].

finite size N behaves as

χ (D∗
2 ) ∝ Nμ−1, (8)

where μ is the critical adiabatic dimension.
The critical exponent ν of the correlation length can be

obtained from μ, ν = 2/μ. As is disclosed in Fig. 6(a), the
linear dependence of the log-log plot suggests that μ = 1.94
and ν = 1.03. This illustrates that the Haldane-to-periodic-
Néel QPT belongs to the Ising universality class [73,74]. We
recall that the phase diagram of the model Hamiltonian (1)
for D1 = 0 is shown in Fig. 3(a), and the whole critical line
corresponds to second-order QPT. For the AF Heisenberg
model (at α = ∞), the Haldane-to-periodic-Néel transition
occurs at D2 	 3.30 [20,58]. It is seen that the critical point
Dc1

2 drops when α decreases.
Analogously, we consider the uniform case with

D2 = 0, see Fig. 6(b). Although the AF long-range
interactions are frustrated, the system would be reminiscent
of a Haldane phase when D1 = 0 and α � 1 [47]. The system
is in the Haldane phase for α = ∞ and −0.31 < D1 < 0.99
[19,21,25,51]. For D1 � −J , all spins are restricted to be in
the states 〈Sz

i 〉 = ±1. When α = ∞, the effective coupling
between the nearest-neighbor spins is obtained within the
first-order perturbation theory in J as [20]

H (1)
eff = J12

∑
i

Sz
i Sz

i+1. (9)
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FIG. 7. (a) Fidelity susceptibility χ per site plotted as a function
of the parameter D1 for different system sizes, N ∈ [40, 120], with
α = 1. The inset shows the finite-size scaling of Dc1

1 and Dc2
1 of the

fidelity susceptibility. The lines are fitted straight lines. (b) The sec-
ond derivative of the ground-state energy density plotted as a func-
tion of the parameter D1 for different system sizes, N ∈ [40, 120],
with α = 1.

In this regard, the system is in the |↑↓↑↓〉-type Néel phase
for a strong easy-axis single-site anisotropy D1 < −0.31. In
the Néel phase, the two-spin correlations Cz

1,i 	 (−1)i−1 and
Cx

1,i decay exponentially over the distance between two spins,
as shown in Fig. 4(c). In the opposite limit, i.e., with D1 � J ,
spins will be confined to be in the state |〈Sz

i 〉| = 0, annotating
that the system enters the large-D phase for a sufficiently large
easy-plane anisotropy, D1 > 0.99. In the large-D phase, the
correlations Cz

1,i, Cx
1,i, and Oz

1,i vanish [see Fig. 4(b)].
In order to determine the phase boundary with high accu-

racy, we also calculated the fidelity susceptibility for α = 1
and D2 = 0 of the ground state for a system size N up to 120.
The ground-state fidelity susceptibility per site χD1,D1/N is
plotted as a function of the parameter D1 for different sizes
N in Fig. 7(a). Two peaks in the fidelity susceptibility can
be seen and they both increase with increasing system size.
This implies the divergence of fidelity susceptibility in the
thermodynamic limit, which suggests the occurrence of two
successive QPTs. We can conclude that the left peak indicates
the Néel-to-Haldane transition and the right peak indicates
the Haldane-to-large-D transition. We then plot the location
of the maximum fidelity susceptibility as a function of 1/N

FIG. 8. Spin-spin correlation functions and string order param-
eter are plotted as functions of D1 with α = 1, D2 = 3. Parameter:
N = 100.

and show the numerical fits in the inset of Fig. 7(a). We obtain
that Dc1

1 = −0.688, b1 	 1.05, and Dc2
1 = 0.805, b2 	 1.00

according to Eq. (7).
Further evidence which indicates QPTs is provided by

the second derivative of the ground-state energy density
(d2e/dD2

1) in Fig. 7(b). One observes that two peaks of
(d2e/dD2

1) become more pronounced for increasing system
size N , which means that both of the phase transitions are of
second order. As is shown in Fig. 6(b), the linear dependence
of the log-log plot gives rise to μ = 1.93 and ν = 1.03 for the
Haldane-to-Néel QPT with α = 1, D2 = 0. The Haldane-to-
Néel phase transition belongs to the Ising universality class
for all values of α. However, it was reported that the Haldane-
to-large-D transition may be of higher order larger than two
for the nearest-neighbor model (α = ∞) [25]. The long-range
interaction would then reduce the order of the transition.
The values of the critical points of Haldane-to-large-D and
Haldane-to-Néel shift to a lower value when α decreases, as
is shown in Fig. 3(b).

After considering the special cases, we then speculate that
both the easy-axis and easy-plane D terms coexist in the
Heisenberg chain. The correlation functions and the SOP for
D2 = 3 are plotted as a function of D1 with α = 1 in Fig. 8(a).
One finds Cz

1,N/2−1 	 1 and Cz
1,N/2 	 −1 when D1 < −2.5.

After surpassing the critical point, the z-component corre-
lations vanish. When D1 > −1.5, the correlation Cz

1,N/2−1
rebounds but Cz

1,N/2 remains vanishing, which means that the
system enters the periodic Néel phase. Furthermore, Cz

1,N/2−1
vanishes suddenly at the periodic-Néel-to-large-D transition
point.

We also studied the SOP to characterize the phase in the
range −2.5 < D1 < −1.5 in Fig. 8(b). It is noted that the
SOP Oz

1,i ≈ |Cz
1,i| in the Néel phase. In order to determine the
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phase boundaries, we adopt Oz
1,N/2−1 − |Cz

1,N/2−1| to identify
the Haldane phase, in which the long-distance correlation Cz

1,i
disappears in the Haldane phase [75].

IV. CONCLUSIONS

In this paper, we investigated the quantum phase transi-
tions in the one-dimensional spin-1 chains with long-range
antiferromagnetic interactions decaying with a power law and
modulated single-ion anisotropy by using the density-matrix
renormalization group technique. Together with the short-
range correlations and the nonlocal string order parameter, the
ground-state fidelity susceptibility was employed to determine
the phase diagram and critical phenomena.

The presence of long-range interactions increased the dif-
ficulty of simulating the system numerically. Nevertheless,
we provided compelling evidence for the phase transitions
and critical lines in the thermodynamic limit. We identified
four phases including the Haldane, large-D, the |↑↓↑↓〉 Néel
phase, and the |↑0↓0〉 periodic Néel phase. The appearance of
long-range interactions modifies the phase boundaries and the
order of the phase transition comparing with their counterparts
with short-range interactions and leads to a direct first-order
transition between periodic Néel and large-D phase. However,
a narrow Haldane phase survives between the periodic Néel
and the Néel phase as the long-range interactions increase.

In summary, employing the scaling functions of the fi-
delity susceptibility gives a numerically economical way of
obtaining accurately the correlation-length critical exponents.

We find that both the Haldane-to-periodic-Néel and Haldane-
to-Néel quantum phase transitions are of second order and
are classified for the model in Eq. (1) as belonging to the
Ising universality class. The local correlations are capable
of characterizing those phases as topological trivial ones,
while only the nonlocal string order parameter can identify
the topological phase. More precisely, the difference between
the string order parameter and the two-point spin correla-
tion, Oz

1,N/2−1 − |Cz
1,N/2−1|, can exclusively detect the Haldane

phase. We remark that the order of the Haldane-to-large-D
transition is higher than two for the nearest-neighbor model
(α = ∞) and will drop to two as α decreases. Further studies
of the spin ordered phases in the presence of long-range in-
teractions is experimentally challenging and could also bring
about some novel types of phase transitions.
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