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1 Introduction

It is a generic feature of strongly-interacting theories that their vacua are not invariant

under all their global symmetries, and that the resulting effective low-energy Lagrangians

possess soliton solutions [1, 2]. The archetype is QCD, and many other four-dimensional

examples have been studied theoretically (for a rigorous example, see [3, 4]). In the case

of QCD, most studies have built upon the pioneering work of Skyrme [5, 6], and Skyrmion

phenomenology has had a number of phenomenological successes [7–13]. However, gener-

alizations of the Skyrme model are possible even in QCD, and a fortiori in other strongly-

interacting models that may exhibit dynamics rather different from QCD.

Strongly-interacting models of electroweak symmetry breaking have long attracted

considerable attention [14, 15], with renewed intensity now that LHC experiments have

discovered a Higgs-like particle [16, 17]. However, although it has some of the characteristic

properties predicted for the Higgs boson in the Standard Model, the jury is still out, and

many alternative scenarios described by low-energy effective chiral Lagrangians remain

viable [18–21]. For example, there is active interest in the simplest possibility that the

recently-discovered particle might be the pseudo-dilaton of some nearly-conformal strongly-

interacting electroweak sector [22–43]. Discriminating between scenarios for electroweak

symmetry breaking is a phenomenological priority, and the existence (or otherwise) of

soliton solutions may be a valuable diagnostic tool for this task [44].

The masses and other properties of solitons in models described by effective low-energy

chiral Lagrangians depend on the strengths of higher-order terms in their derivative ex-

pansions, and specifically of the coefficients of the fourth-order terms [2]. In the case of

the minimal effective Lagrangian for SU(2) × SU(2) → SU(2) that may be used to de-

scribe both QCD and electroweak symmetry breaking, there are two such parameters, as
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discussed in section 2. One of these was considered originally by Skyrme [5, 6], and has

been the basis for most subsequent studies of Skyrmion phenomenology [7–11]. However, a

priori the other term could also be present, and there have been some studies of generalized

soliton solutions in the presence of this extra term [45–50]. In generic strongly-interacting

models there may be a relation between the fourth-order Lagrangian parameters and the

electroweak S parameter, but exploring this goes beyond the scope of this paper.

Truncating the derivative expansion at fourth order is dictated primarily by practical

reasons, namely that phenomenological information is available only about the fourth-order

electroweak coefficients. However, we recall that the contributions of higher-derivative

terms to solitonic masses are not parametrically suppressed [51]. In the leading order of

the 1/Nc expansion the soliton mass can be written as an expansion in powers of the soliton

size r0:

M ∼ 4πv̄Nc

[
a2v̄r0 + a4

1

v̄r0
+ a6

1

(v̄r0)3
+ . . .

]
, (1.1)

where v̄ = v/
√
Nc is the Nc-independent energy scale of chiral symmetry breaking (corre-

sponding to Fπ/
√
Nc in QCD), and the an are generic coefficients of n’th-order terms in

the derivative expansion that are expected to be of order 1. If one minimizes just the first

two terms of M with respect to r0, treating the sixth-order term as a perturbation, its con-

tribution is linear in a6. This might suggest that for large a6 (and this is the case in QCD,

where a sixth-order term is generated by ω-meson exchange [12, 52, 53]) the sixth-order

term would even dominate. However, if one minimizes the whole expression for M (up to

a given order) the situation changes dramatically. For positive a6, the sixth-order term

provides a ‘barrier’ around r0 = 0 (as do higher-order terms). Consequently, the optimal

r0 is increased and, although the a2v̄r0 term increases, the 4-th and 6-th order terms get

smaller. As a result the sensitivity of the soliton mass to the 6-th order term saturates at

large a6 > 0. The soliton mass with large positive a6 is obviously larger than without it,

but “only” by factor ∼ 2 [53], so higher-order terms need not have large effects.

One should also remember that keeping only one specific fourth-order term, namely the

Skyrme term introduced in section 2, gives results accurate to within 20− 30% in the case

of QCD, which would be sufficient for our purposes here. Estimates using the Skyrme term

alone actually overshoot the experimental nucleon mass, and we find that a somewhat

larger range of classical masses is obtained when the non-Skyrme term is included. We

infer that the truncated Lagrangian may well be a useful guide to possible upper limits on

electroweak soliton masses.

The classical approximation is then followed by semiclassical quantization. Semiclas-

sical rotations are suppressed in QCD in the 1/Nc expansion [2]. So even if a given La-

grangian generates higher-order time derivatives, which is the case for the solitons with

the non-Skyrme term present, they can be neglected within large Nc approximation. A

similar justification is applicable in many strongly-interacting models of electroweak sym-

metry breaking, but needs exploration on a case-by-case basis. Here we do not study issues

beyond the classical approximation. Nor do we consider the negative Casimir O(N0
c ) con-

tribution to the soliton mass, which is the hardest to calculate. One can find discussion

and estimates of the Casimir energy in the QCD Skyrme model in refs. [54, 55].

– 2 –



J
H
E
P
0
3
(
2
0
1
3
)
1
6
3

As we review later in the context of our analysis, the existence or absence of stable

soliton solutions hinges upon the ratio of the two fourth-order coefficients, and there is

a generic range of this ratio where no stable solitons exist [45–50]. Equally, there is a

generic range, including the original Skyrmion as a special case, where solitons do exist

and are stable, at least against spherically-symmetric decay. In the case of QCD, large-Nc

arguments favour values of the fourth-order parameters within this stable range, close to

the Skyrmion limit, and this possibility is also favoured by the available phenomenological

estimates of these parameters in the effective chiral Lagrangian of QCD [56, 57].

However, currently we know very little about the possible magnitudes of the fourth-

order coefficients in the electroweak case, and it is possible that their ratio is quite unlike

the original Skyrme model, quite possibly in the range where no stable solitons exist. On

the other hand, if the strongly-interacting electroweak sector is based on a theory with

underlying constituents that bind to form ‘electroweak baryons’, one would expect solitons

to exist and describe qualitatively their masses and other properties, even if they are rather

different from the baryons and Skyrmions in QCD-like theories [44].

The purpose of this paper is to explore the non-Skyrmionic possibilities [45–50], par-

ticularly in the electroweak case, discussing their existence, stability and masses in the

classical approximation. This analysis is an essential ingredient in the exploration of the

consistency of different strongly-interacting electroweak models with experiment. To this

end, we assess the prospects for probing strongly-interacting electroweak models by con-

fronting present [58, 59] and future limits [58] on (measurements of) fourth-order interac-

tion parameters with limits on (measurements of) electroweak baryon masses. We also note

that stable solitons would be present at some level in the Universe today as relics from the

Big Bang and contribute to the dark matter [60]. One should check whether calculations

of their abundance are compatible with cosmological and astrophysical estimates of the

density of cold dark matter, and whether estimates of the rate for their elastic scattering

on nuclei [61] are compatible with upper limits from direct searches for dark matter [63].

The structure of this paper is as follows. In section 2 we discuss the mass and stability

of an SU(2) soliton in the classical limit, including both possible fourth-order derivative

terms. These calculations are used in section 3 to set phenomenological bounds on the

possible masses of QCD and electroweak solitons, taking into account the present and

prospective experimental constraints on the fourth-order terms. Section 4 summarizes

considerations concerning electroweak solitons as cold dark matter, and section 5 contains

some concluding remarks.

2 Classical mass and stability of an SU(2) soliton

The effective chiral Lagrangian corresponding to some strongly-interacting sector with

spontaneously-broken SU(2)×SU(2) chiral symmetry is usually organized in terms of (even)

powers of derivatives of the chiral field:

U(x) = exp

(
i
~τ · ~π(x)

v

)
, (2.1)
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where the fields ~π(x) correspond to the Nambu-Goldstone bosons (pions in the case of QCD,

longitudinal polarization states of massive gauge bosons in the case of a strongly-interacting

electroweak sector) and v is a typical symmetry breaking scale (v = Fπ = 93 MeV in QCD,

v ∼ 246 GeV in the case of electroweak theory). The derivative expansion is usually

truncated at the fourth order, which could be reliable at energies below the characteristic

strong-interaction scale, ∼GeV in QCD and ∼TeV or more in the electroweak theory:

Leff = L2 + L4 , (2.2)

where

L2 =
v2

4
Tr
(
∂µU∂

µU †
)
. (2.3)

In the SU(2) case there are two independent invariants containing just four space-time

derivatives [45–50]:

L4 = 2sTr
[
(RµRν)(RµRν)− (RµR

µ)2
]

+ 2tTr
[
(RµRν)(RµRν) + (RµR

µ)2
]
, (2.4)

where

Rµ = ∂µU U
† . (2.5)

The parameters s and t can be in principle calculated from the underlying strongly-

interacting theory by integrating out the constituent degrees of freedom (quarks and glu-

ons in the case of QCD, and yet to be determined in an electroweak theory) or — in a

phenomenological approach — can be extracted from the data on the scattering of the

Nambu-Goldstone bosons or massive gauge bosons [58].1 In QCD, as we discuss in more

detail later, the large-Nc expansion and pion data indicate that |t| � |s|, so that the effec-

tive Lagrangian contains (in a first approximation) only the kinetic term (2.3) and the first

term in (2.4), as in Skyrme’s original work. For this reason, we refer to this as the Skyrme

term, and refer to other term in (2.4), that with coefficient t, as the non-Skyrme term.

Over fifty years ago already, Skyrme [5, 6] observed that (2.2) with t = 0 possesses soli-

tonic solutions that, due to the fact that π3(SU(2)) = Z, carry an integer-valued topological

quantum number

B =
1

24π2

∫
d3xεijkTr

[
(U †∂iU)(U †∂jU)(U †∂kU)

]
. (2.6)

that can be interpreted as baryon number (see also [1]).

It is straightforward to calculate the classical contribution to the mass of the baryon

in terms of the parameters v, s and t. In principle, all terms in the derivative expansion

make significant contributions to the soliton mass, whereas we have no information on the

possible magnitudes of higher-order terms. On the other hand, we know that classical

calculations in QCD keeping only the fourth-order term Skyrme term, i.e., setting t = 0,

are accurate to ∼ 20 − 30% [7–11, 13]. In the case with non-zero non-Skyrme term a

somewhat larger masses are allowed, cf. our calculation below for QCD point A in Sect 3.1.

1For rigorous lower bounds from Lorentz invariance, analyticity, unitarity and crossing, see [59].
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We therefore hope that classical calculations in the electroweak case, keeping the general

form of fourth-order coupling, sample the range of possible masses with similar accuracy.

Possible refinements to this classical calculation could include calculation of the Casimir

energy, inclusion of the current-quark mass terms and semiclassical quantization of the ro-

tational modes (which provide better agreement with the observed baryon masses). How-

ever, we do not go into them here, for three reasons in addition to our ignorance of possible

higher-order terms in the electroweak case. One is that we are primarily interested in

bounds on the masses of the possible electroweak baryons, rather than in details of their

spectrum. A second reason is that, in any case, we lack the information about the un-

derlying strongly-interacting theory that would be needed to calculate the non-classical

corrections in this case. The third reason is that in reality, even in QCD, the parameter

t is not necessarily negligible. For example in an approximation where the Skyrme La-

grangian is derived by integrating out heavy mesons (typically ρ and σ) one can relate the

parameters s and t to the heavy meson masses [12, 53, 62]. Comparing our Lagrangian (2.2)

with ref. [62] we get:

s =
F 2
π

48

3m2
σ − 2m2

ρ

m2
ρm

2
σ

= (0.6÷ 3.2)× 10−4, t =
F 2
π

24m2
σ

= (5.8÷ 8.4)× 10−4 (2.7)

with Fπ = 93 MeV. The soliton is unstable with these values, as we discuss shortly in

connection with figure 1, since t/s > 1.7 and stable solutions exist only for t/s ≤ 0.29.

Moreover, the values (2.7) are beyond the range allowed for the QCD effective Lagrangian

discussed in section 3.1. Therefore, it does not seem possible to constrain the electroweak

s and t parameters using ideas about the (as yet unknown) technimeson masses.2

Our primary interest here will be the classical soliton mass in the presence of a non-

negligible non-Skyrme term, and how the possibility that t 6= 0 affects the (approximate)

mass bounds provided by the Skyrme calculation with t = 0 discussed in [44].

Classical soliton solutions of the chiral field equations are usually found within the

spherically-symmetric ‘hedgehog’ Ansatz for a static field configuration:

U(~r ) = exp

(
i
~τ · ~r
r
P (r)

)
, (2.8)

where the profile function P (r) is a solution to the Euler-Lagrange equation of motion,

which for the Lagrangian (2.2)–(2.4) takes the following form:

P ′′(ρ) = −G(ρ)

F (ρ)
(2.9)

with boundary conditions

P (0) = π, P (∞) = 0 . (2.10)

2We note also that (2.7) implies t > 0, whereas the bounds shown in figure 4 do not exclude negative t.
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Here

F (ρ) ≡ρ2
(
1− 96 tP ′ 2

)
+ 64 s sin2 P ,

G(ρ) ≡− 64 tρP ′ 3 + 32 s sin 2P P ′ 2 + 2ρP ′

− sin 2P

(
1 + 32 (s− t) sin2 P

ρ2

)
, (2.11)

and the dimensionless radial variable ρ is defined as

ρ ≡ rv , (2.12)

where v = Fπ,' 246 GeV in the QCD and electroweak cases, respectively.

Following the pioneering paper [2], classical solutions of the field equations were studied

numerically long ago in [45, 46] and stability regions in the (s, t) parameter space were

analyzed in [47–50]. We have repeated their analyses for the purpose of the present work

with the following results.

The total classical soliton mass

Msol = 4πv (M2 +M4) (2.13)

where

M2 =
1

2

∞∫
0

dρ
(
ρ2P

′ 2 + 2 sin2 P
)
,

M4 = 16s

∞∫
0

dρ

(
2P ′ 2 sin2 P +

sin4 P

ρ2

)
− 8t

∞∫
0

dr

(
ρ2P ′ 4 + 2

sin4 P

ρ2

)
, (2.14)

where the contribution M2 corresponds to L2 and is clearly always positive, and the contri-

bution M4 corresponds to L4. By changing variable once more: ρ→ ρ/
√
|s| or ρ→ ρ/

√
|t|,

one can show that the solutions depend only on the ratio t/s. By rescaling: ρ → λρ, one

can show that solutions exist only when M4 is positive. Inspecting directly M4 in (2.14),

we see that in the fourth quadrant of the (s, t) plane (s > 0, t < 0) M4 is always positive,

so that solutions of (2.9) always exist, whereas in the second quadrant (s < 0, t > 0) M4 is

always negative, so there are no solutions of (2.9). In the first and third quadrants positiv-

ity bounds can be derived [45–47]. It turns out that in the first quadrant M4 is negative for

t/s > 2, so the soliton is unstable, and in the third quadrant M4 stays positive for t/s > 2,

so the soliton is stable. This is illustrated in figure 1, where the regions of positive and

negative M4 are displayed by green shading (diagonal squares) and red shading (vertical

squares), respectively.

In the remaining parts of quadrants I and III, no positivity bounds can be derived

and the positivity of M4 has to be checked numerically. It turns out that in the third

quadrant Msol > 0 and → 0+ when t/s→ 2+, whereas no solution exists for t/s < 2. The

situation is different in the first quadrant, where solutions with positive M4 exist for small

– 6 –
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Figure 1. The (s, t) parameter plane, indicating with green shading (diagonal squares) the range of

parameters satisfying the positivity bound M4 > 0 and hence admitting a solution of the differential

equation (2.9), and with red shading (vertical squares) the range where solutions do not exist due to

the negativity of the fourth order term: M4 < 0. In the range t/s < 0.29 within the first quadrant,

indicated in blue (vertical bars), solutions with positive M4 exist, but no positivity bound can

be derived.

t/s below the line t/s ' 0.29, where the function F (ρ) vanishes and equation (2.9) cannot

be solved. Interestingly, F (ρ) is equal to the second variation of Msol, so the positivity of

F (ρ) is a necessary condition for Msol to be the minimum with respect to the variations of

P (r). Below the line t/s ∼ 0.29 the solution is classically stable, and above this line it is

classically unstable.

However, it has been shown in [45, 46] that there is no lower limit on the soliton

mass anywhere in the first quadrant. This means that, when t/s < 0.29, the classical

solution discussed above, though stable against local spherically-symmetric perturbations,

can only be metastable at best, and might be unstable against non-spherically-symmetric

perturbations. This region is shaded blue (with vertical bars) in figure 1.

As already remarked, soliton solutions depend only on the ratio t/s (or s/t). We

analyze solutions starting from the Skyrme-like case with t = 0 and the non-Skyrme-like

case with s = 0, and have divided the allowed parameter space into two branches on either

side of the line t/s = −1, as also depicted in figure 1. In order to solve equation (2.9)

within the Skyrme branch where s 6= 0, we have rescaled ρ → ρ/
√
s and evaluated the

soliton mass in units of 4πv
√
s, whereas within the non-Skyrme branch where t 6= 0 we

have rescaled ρ→ ρ/
√
−t and evaluated the soliton mass in units of 4πv

√
−t. The results

are presented in figure 2 as functions of ε ≡ t/s for the Skyrme branch and ε ≡ s/t for the

non-Skyrme branch.

– 7 –
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Figure 2. The soliton mass in units of 4πv
√
s for the Skyrme branch where ε = t/s (solid blue

line), and for the the non-Skyrme branch in units of 4πv
√
−t where ε = s/t (dashed red line). The

Skyrme branch ends at t/s ∼ 0.29 (see figure 1).

Finally, in figure 3 we present a contour plot of the classical soliton mass in units of

4πv over the allowed range of parameter space. We see that the contours of constant Msol

are almost parallel to the line t/s = 2 where the soliton mass vanishes. This feature is

very helpful for finding the maximum of the generalized soliton mass, as we discuss in the

next section.

3 Phenomenological estimates of soliton masses

We now discuss constraints on the conventional baryon mass using constraints on the pa-

rameters of the low-energy effective chiral Lagrangian for QCD, and constraints on the

masses of possible ‘electroweak baryons’ given by the constraints on higher-order elec-

troweak Lagrangian parameters from electroweak theory, current phenomenology and the

potential sensitivity from the LHC [44, 58].

Phenomenological constraints on higher-order Lagrangian parameters are often given

in terms of the coefficients α4,5 that are related to the parameters s and t discussed in

section 2 in the following way [44]:

s =
α4 − α5

4
, t =

α4 + α5

4
. (3.1)

Although limits on electroweak baryon masses are our principal interest, we first discuss

the limits that can be derived for ordinary baryons in QCD, comparing the non-Skyrmion

case with t 6= 0 with the conventional Skyrmion case t = 0.

– 8 –
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Figure 3. Contour plot of the mass of the generalized Skyrmion in units of 4πv.

3.1 QCD baryons

Higher-order coefficients in the low-energy effective Lagrangian of QCD have been the

subject of many studies. Here we use the following ranges extracted from low-energy

strong-interaction data: [44, 56, 57]:

11× 10−4 < α4 < 17× 10−4 ,

14× 10−4 < α4 − α5 < 40× 10−4. (3.2)

We can compare these values with the predictions of the large-Nc approximation within

the framework of chiral SU(3) × SU(3) → SU(3) [57]:

α4 = 18× 10−4 ,

α5 = −16× 10−4 . (3.3)

The bounds (3.2) are displayed in figure 4, where the large-Nc prediction is also indicated,

as a red spot.3

As already discussed in section 2 the contours of constant Msol are almost parallel

to the line t = 2s. Therefore the maximal mass corresponds to the right-most corner of

the region allowed by the QCD bounds, called Point A below. For completeness, we also

include two pure Skyrme points (B and C) and the point corresponding to minimal mass,

located right below the stability line t/s = 0.29 (Point D):

3We represent the constraints (3.2), (3.6), (3.7) as parallelograms in the (s, t) plane, whereas they should

be ellipses. However, the correlations between the errors in s and t are not available, so these ellipses cannot

be drawn accurately.

– 9 –
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Figure 4. Comparison of the parameter ranges allowed for the low-energy chiral perturbation

theory coefficients in QCD [56, 57], eq. (3.2), with the range of parameters where stable baryonic

solitons exist. The parameters α4, α5, s and t are in units of 10−4. The red spot corresponds to the

large-Nc values given in eq. (3.3). Point A has the maximal mass overall, Points B and C bracket

the range of parameters allowed in the pure Skyrme limit: t = 0, and Point D lies on the stability

boundary t/s = 0.29 and has the minimal mass overall.

• A : (s, t) = (10,−4.5)× 10−4 (maximal mass point overall): MA ' 1354 MeV;

• B : (s, t) = (8.5, 0.0)× 10−4 (maximal mass Skyrme point): MB ' 1118 MeV;

• C : (s, t) = (5.5, 0.0)× 10−4 (minimal mass Skyrme point): MC ' 900 MeV;

• D : (s, t) = (4.3, 1.2)× 10−4 (minimal mass point overall): MD ' 728 MeV.

We see that the range of classical masses allowed in the Skyrme case t = 0 includes

the physical value of the nucleon mass. In terms of the conventional representation

s =
1

32e2
, (3.4)

this range corresponds to

6 < e < 7.5 . (3.5)

We also note that the range of possible QCD baryon masses is extended significantly in the

presence of a non-Skyrme term, by O(200) GeV in either direction. However, detailed QCD

baryon phenomenology including the evaluation of corrections to the classical soliton mass

due to the Casimir energy, inclusion of the current-quark mass terms and semiclassical

quantization of the rotational modes lies beyond the scope of this paper.
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Figure 5. Comparison of the parameter ranges currently allowed [58] for the effective low-energy

electroweak Lagrangian with the range of parameters where stable electroweak baryonic solitons

exist. The parameters α4, α5, s and t are in units of 10−1. Point A has the maximal mass overall,

Point B has the maximal mass allowed in the pure Skyrme limit: t = 0, and Point C has the

maximal mass allowed in the limit where the Skyrme term vanishes: s = 0.

3.2 Current bounds on electroweak baryon masses

The higher-order coefficients in an effective electroweak Lagrangian are currently poorly

constrained, namely by the following bounds [58]:

−3.5× 10−1 < α4 < 0.6× 10−1 ,

−8.7× 10−1 < α5 < 1.5× 10−1 . (3.6)

These constraints are superimposed on the (s, t) plane in figure 5. As in the QCD case, we

superpose various points that illustrate the range of possible electroweak baryon masses

currently allowed, as obtained using the values of the soliton mass calculated in section 2

and displayed in figure 2. We note that there is no minimal electroweak baryon mass,

since the constraints (3.6) include the possibility that Msol = 0 for t = 2s < 0. The points

displayed include the maximal mass point denoted by A, the maximal-mass Skyrme case

(Point B), and the maximal-mass case with vanishing Skyrme term s = 0 (Point C):

• A : (s, t) = (0.23,−0.20) (maximal mass point overall): MA ' 59 TeV;

• B : (s, t) = (0.03, 0.0 ) (maximal mass Skyrme point): MB ' 18 TeV;

• C : (s, t) = (0.0, −0.175) (maximal mass with s = 0): MC ' 31 TeV.
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This analysis indicates that the upper bound on the possible electroweak baryon mass

over the range of parameter space currently allowed is approximately 60 TeV.4 This upper

limit is somewhat higher than in [44], because we have extended the analysis to the case

of a non-zero non-Skyrme term. If the conjectural strongly-interacting electroweak theory

were to resemble QCD, i.e., the parameter t were small, the upper limit on the possible

electroweak baryon mass limit would be significantly reduced to ' 18 TeV.

3.3 Prospective LHC bounds on electroweak baryon masses

A study has been made of the prospective LHC sensitivity to the higher-order electroweak

Lagrangian terms. It was estimated that, in the absence of a signal, the LHC could yield

the following allowed ranges [58]

−7.7× 10−3 < α4 < 15× 10−3 ,

−12× 10−3 < α5 < 10× 10−3 . (3.7)

These ranges are superimposed on the (s, t) plane in figure 6. As in the previous examples,

we list below the classical masses calculated for three illustrative points that are also

displayed in figure 6:

• A : (s, t) = (6.75, 0.75) × 10−3 (maximal mass point): MA ' 8.1 TeV;

• B : (s, t) = (6.0, 0.0 ) × 10−3 (Skyrme point): MB ' 7.9 TeV;

• C : (s, t) = (0.0,−3.85)× 10−3 (non-Skyrme point): MC ' 4.6 TeV.

The upper limit on the possible electroweak baryon mass in the event that the LHC

does not find non-zero higher-order effective Lagrangian parameters is ' 8 TeV, very similar

to the bound quoted in [44]. This reflects the fact that the point with maximal mass overall

is quite close to the Skyrme limit t = 0. In this case, unlike the previous examples, the

upper limit on the soliton mass is not relaxed by allowing a non-Skyrme term with t < 0.

4 Electroweak baryons as dark matter?

If they exist, electroweak baryons should be present in the Universe today, and could

provide cold dark matter [60]. Their possible relic density today depends on the presence

and magnitude of a primordial electroweak baryon asymmetry. If this was small, and the

electroweak baryon density was completely equilibriated in the early Universe, the present

abundance of electroweak baryons would be insufficient to provide the present density of

cold dark matter. In this case, one or more other sources of cold dark matter would

be required, and the constraints on dark matter scattering that we now discuss would

be irrelevant.

Assuming that they make up the bulk of the cold dark matter density, it is clear that

electroweak baryons should have no electric charge. Moreover, it was pointed out in [64]

4Assuming that the model-dependent corrections to the classical mass calculation are not very large.
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Figure 6. Comparison of the estimated LHC sensitivity range [58] for higher-order electroweak

Lagrangian parameters with the the range of parameters where stable electroweak baryonic solitons

exist. The parameters α4, α5, s and t are in units of 10−3. Point A has the maximal mass overall,

Point B has the maximal mass allowed in the pure Skyrme limit: t = 0, and Point C has the

maximal mass allowed in the limit where the Skyrme term vanishes: s = 0.

that they could not be fermions, as these would have an unacceptably large cross section

for spin-independent scattering through magnetic moment couplings. Some scenarios for

the effective low-energy electroweak Lagrangian in which the lightest electroweak baryon

is a neutral boson have been enumerated in [65], in an analysis based on the Wess-Zumino-

Witten term and the standard relation Qem = I3 + Y . The neutral boson scenarios found

do not include SU(3) × SU(3)→ SU(3) (which could yield a neutral fermion if Nc = 3 or a

bosonic baryon if Nc is even), but do include SU(N) × SU(N) → SU(N) with N > 3 and

Nc even, and SO(N) × SO(N)→ SO(N). However, SU(N)→ SO(N) would yield a boson

with charge Nc, and the other coset structures considered in [65] have trivial homotopy

and hence no electroweak baryons.

It should be noted that dark matter scattering is a non-trivial constraint, even if the

lightest electroweak baryon is a neutral boson. The scattering cross section for this case

was estimated in [61], with results indicating that models containing a pseudo-dilaton

identified with the recently-discovered boson X with mass ' 125 GeV would be consistent

with the (updated) XENON100 limit [63] if the pseudo-dilaton couplings were scaled by

≥ 1 TeV.5 and the electroweak baryon weighed ≤ 1 TeV, as seen in figure 4 of [61]. The

XENON100 Collaboration does not report results for larger dark matter particle masses,

but naive extrapolation of the theoretical calculations and experimental sensitivity would

suggest some tension for masses above 1 TeV.

5This is in the ball-park calculated in holographic dilaton models, and is reported to be consistent with

the available data on X(125) [40], once the contributions of the strongly-interacting electroweak sector the

Xgg and Xγγ couplings are taken into account.
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Our results suggest that scenarios which, according to the analysis of [65], might yield

either a charged bosonic baryon or a fermionic baryon should not necessarily be aban-

doned. By the same token, one might not need to worry about the prospective tension

with XENON100. This is because the parameters of the fourth-order effective Lagrangian

might be in the range where no stable solitonic baryon exists, i.e., t > 0 or t < 0 and

t/s > 2. That said, it could be that stable electroweak baryons nevertheless exist for such

parameter choices, but cannot be found using the solitonic Ansatz discussed here.

5 Concluding remarks

In this paper we have revisited the existence, stability and possible masses of classical

solitonic solutions to the effective low-energy Lagrangians of QCD and a possible strongly-

interacting electroweak sector, with particular attention to the presence and consequences

of a possible non-Skyrme quartic term as in (2.4) [45–48, 50]. We have revisited the stability

constraints in the (s, t) plane, see figure 1, and given general results for the classical soliton

mass, see, e.g., figure 3.

In the QCD case, we have found that current phenomenological constraints on the

quartic chiral Lagrangian terms [56, 57] allow a range of classical baryon masses that is

somewhat broader than in the pure Skyrme case with t = 0. In the case of a possible

strongly-interacting electroweak sector, current data [58] allow a somewhat wider range of

t/s than in QCD, and the expansion in the possible range of electroweak baryon masses is

proportionally larger than in the pure Skyrme case. On the other hand, the prospective

LHC sensitivity [58] to quartic Lagrangian parameters would not allow masses substantially

larger than in the Skyrme limit.

It would be interesting to establish a ‘no-lose’ theorem that the LHC will either find

non-zero higher-order Lagrangian parameters or discover electroweak baryons. However,

this would require greater LHC sensitivity than indicated by the prospective range (3.7).

To our knowledge, there is no accurate estimate of the range of electroweak baryon masses

that the LHC could detect, but it is surely less than the ranges quoted above on the basis of

a theoretical estimate of the possible LHC sensitivity to higher-order Lagrangian terms. On

the other hand, the prospective LHC sensitivity should be revisited by a full experimental

simulation including the possibility of high-luminosity LHC running.

As already commented, in order to be a valid dark matter candidate, a stable elec-

troweak solitonic baryon should be a neutral boson. Even in this case, figure 4 of [61]

indicates that such a model is quite constrained, at least in models in which the recently-

discovered new boson is interpreted as a pseudo-dilaton. The estimate given in [61] of the

spin-independent cold dark matter scattering cross section rises with the Skyrmion mass,

so that experiments such as XENON100 [63] may be more sensitive to models with heavier

electroweak baryons. Full exploration of this issue lies beyond the scope of this paper,

but it is clear that dark matter scattering experiments are potentially interesting probes

of strongly-interacting electroweak models with Skyrmion solutions.
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