Tomasz Tokarski

Matematyczne modele wzrostu gospodarczego

ujęcie neoklasyczne

Wydawnictwo Uniwersytetu Jagiellońskiego
Matematyczne modele wzrostu gospodarczego
Tomasz Tokarski

Matematyczne modele wzrostu gospodarczego

ujęcie neoklasyczne
Książka dofinansowana przez Uniwersytet Jagielloński ze środków Wydziału Zarządzania i Komunikacji Społecznej oraz Instytutu Ekonomii i Zarządzania

RECENZENT

dr hab. Magdalena Osińska, prof. Uniwersytetu Mikołaja Kopernika w Toruniu

PROJEKT OKŁADKI

Marcin Bruchnalski

Książka, ani żaden jej fragment, nie może być przedrukowywana bez pisemnej zgody Wydawcy. W sprawie zezwoleń na przedruk należy zwracać się do Wydawnictwa Uniwersytetu Jagiellońskiego

Wydawnictwo Uniwersytetu Jagiellońskiego
Redakcja: ul. Michałowskiego 9/2, 31-126 Kraków
tel. 012-631-18-81, 012-631-18-82, fax 012-631-18-83
Dystrybucja: ul. Wrocławska 53, 30-011 Kraków
tel. 012-631-01-97, tel./fax 012-631-01-98
tel. kom. 0506-006-674, e-mail: sprzedaż@wuj.pl
Konto: PEKAO SA, nr 80 1240 4722 1111 0000 4856 3325
Pani Profesorowi Władysławowi Welfe, któremu bardzo wiele zawdzięczam w moim dorobku akademickim

T. Tokarski
SPIS TREŚCI

Wstęp .. 9

Rozdział pierwszy. Funkcje produkcji .. 13
 1.1. Wprowadzenie ... 13
 1.2. Właściwości neoklasycznej funkcji produkcji ... 13
 1.3. Funkcja produkcji Cobba-Douglasa .. 17
 1.4. Funkcja produkcji CES .. 20
 1.5. Funkcja produkcji z postępem technicznym .. 27
 1.5.1. Definicja i klasyfikacje postępu technicznego .. 27
 1.5.2. Postęp techniczny w funkcji produkcji Cobba-Douglasa 30
 1.5.3. Postęp techniczny w funkcji produkcji CES ... 31
 1.6. Funkcja produkcji Cobba-Douglasa w warunkach efektów skali 33
 1.7. Podsumowanie ... 34

Rozdział drugi. Model wzrostu Solowa .. 37
 2.1. Wprowadzenie ... 37
 2.2. Założenia modelu Solowa ... 38
 2.3. Równowaga Solowa ... 40
 2.4. Równowaga Solowa przy funkcji produkcji Cobba-Douglasa 53
 2.5. Równowaga Solowa przy funkcji produkcji CES .. 64
 2.6. Podsumowanie ... 74

Rozdział trzeci. Model wzrostu Mankiwa-Romera-Weila i jego rozszerzenia............. 77
 3.1. Wprowadzenie ... 77
 3.2. Założenia modelu Mankiwa-Romera-Weila ... 78
 3.3. Równowaga Mankiwa-Romera-Weila .. 80
 3.4. Równowaga Mankiwa-Romera-Weila przy funkcji produkcji CES 103
 3.5. Równowaga N-kapitałowego modelu wzrostu Nonnemana-Vanhoudla 124
 3.6. Podsumowanie ... 138

Rozdział czwarty. Model z endogeniczną akumulacją wiedzy 141
 4.1. Wprowadzenie ... 141
 4.2. Założenia modelu ... 141
 4.3. Równowaga modelu ... 143
 4.4. Podsumowanie ... 154

Rozdział piąty. Złote reguły akumulacji kapitału ... 157
 5.1. Wprowadzenie ... 157
 5.2. Złote reguły akumulacji w równowadze Solowa .. 157
5.3. Złote reguły akumulacji w równowadze Mankiwa-Romera-Weila .. 161
5.4. Złote reguły akumulacji w równowadze Nonnemana-Vanhoudta 168
5.5. Podsumowanie .. 176

Rozdział szósty. Wzrost gospodarczy a zatrudnienie i bezrobocie .. 179
6.1. Wprowadzenie .. 179
6.2. Rynek pracy w modelu typu Solowa ... 179
6.3. Rynek pracy w modelu typu Mankiwa-Romera-Weila ... 194
6.4. Rynek pracy w modelu typu Nonnemana-Vanhoudta ... 208
6.5. Podsumowanie .. 214

Rozdział siódmego. Polityka fiskalna a wzrost gospodarczy .. 217
7.1. Wprowadzenie .. 217
7.2. Model podstawowy .. 217
7.3. Model z wyodrębnionym kapitałem publicznym .. 232
7.4. Podsumowanie .. 236

Rozdział ósmego. Polityka monetarna a wzrost gospodarczy. Równowaga typu Domara-Solowa .. 239
8.1. Wprowadzenie .. 239
8.2. Keynesowski model wzrostu Domara ... 240
8.3. Założenia modelu wzrostu typu Domara-Solowa .. 244
8.4. Równowaga modelu Domara-Solowa .. 247
8.5. Podsumowanie .. 265

Rozdział dziewiąty. Efekty skali a wzrost gospodarczy .. 269
9.1. Wprowadzenie .. 269
9.2. Efekty skali w równowadze typu Solowa .. 269
9.3. Efekty skali w równowadze typu Mankiwa-Romera-Weila .. 278
9.4. Efekty skali w równowadze typu Nonnemana-Vanhoudta .. 288
9.5. Podsumowanie .. 298

Rozdział dziesiąty. Wybrane modele optymalnego sterowania .. 301
10.1. Wprowadzenie ... 301
10.2. Model Ramseya .. 302
10.3. Model Lucasa .. 317
10.4. Model Romera ... 332
10.5. Optymalne stopy inwestycji w modelu typu Mankiwa-Romera-Weila 342
10.6. Optymalne stopy inwestycji w modelu typu Nonnemana-Vanhoudta 358
10.7. Podsumowanie ... 375

Literatura ... 379
WSTĘP

Wzrost gospodarczy jest procesem o wielostronnych, istotnych konsekwencjach społeczno-ekonomicznych. Ma on istotne znaczenie dla rozwoju gospodarek, standardu życia gospodarstw domowych, kształtowania się wielkości popytu na pracę, liczby pracujących i bezrobotnych. Analizy procesów długookresowego wzrostu gospodarczego stanowią jeden z najistotniejszych problemów współczesnej makroekonomii.

W pierwszym rozdziale scharakteryzowane jest pojęcie i podstawowe właściwości neoklasycznej funkcji produkcji oraz analizowane są szczególne przypadki neoklasycznej funkcji produkcji, tj. funkcja produkcji Cobba-Douglasa i funkcja produkcji CES (funkcja produkcji o stałej elastyczności substytucji czynników produkcji). Prowadzone w tym rozdziale rozważania stanowią wstęp do analiz dotyczących neoklasycznych modeli wzrostu gospodarczego z tego względu, że w owych modelach wzrostu proces produkcyjny zazwyczaj opisany jest przez neoklasyczną funkcję produkcji (najczęściej przez funkcję produkcji Cobba-Douglasa).

Rozdział drugi zawiera analizy dotyczące neoklasycznego modelu wzrostu Solowa. Model ten jest jednokapitałowym modelem wzrostu gospodarczego z egzogenicznym postępem technicznym, tj. takim modelem wzrostu, w którym (po pierwsze) na wielkość wytworzonych w gospodarce strumienia produktu wpływają nakłady kapitału (rzeczowego), pracy i wiedzy oraz (po drugie) przyrost wiedzy, utożsamiany z postępem technicznym, ma charakter egzogeniczny w stosunku do analizowanej gospodarki. W prowadzonych w rozdziale drugim analizach neoklasycznego modelu wzrostu gospodarczego Solowa wykorzystuje się zarówno ogólną, neoklasyczną funkcję produkcji, jak i jej szczególne przypadki, czyli funkcję produkcji Cobba-Douglasa i funkcję produkcji CES.

W trzecim rozdziale przedstawione są neoklasyczne modele wzrostu Mankiwa-Romera-Weila oraz Nonnemana-Vanhoudta, które stanowią rozszerzenia modelu wzrostu Solowa. Model Mankiwa-Romera-Weila jest rozszerzeniem modelu wzrostu Solowa z tego względu, iż w modelu tym do czynników produkcji oddziałujących na wielkość wytworzonego produktu dodaje się (obok kapitału rzeczowego) kapitał ludzki, którego akumulacja ma charakter endogeniczny. Natomiast model wzrostu Nonne-
Czwarty rozdział zawiera charakterystykę modelu wzrostu gospodarczego z endogeniczną akumulacją wiedzy naukowo-technicznej. Model ten również stanowi rozszerzenie neoklasycznego modelu wzrostu Solowa. Wynika to stąd, iż w modelu endogenicznego akumulacją wiedzy proces akumulacji kapitału rzeczowego opisany jest podobnie, jak ma to miejsce w modelu Solowa, zaś endogeniczna akumulacja wiedzy naukowo-technicznej wynika z celowego kierowania do sektora tworzącego ową wiedzę nakładów klasycznych czynników produkcji (kapitału rzeczowego i pracy).

Rozdział szósty zawiera rozszerzenia neoklasycznych modeli wzrostu gospodarczego Solowa, Mankiwa-Romera-Weila i Nonnemana-Vanhoudta. Rozważania te polegają na tym, że uchyla się neoklasyczne założenie o egzogenicznym charakterze długoookresowej stopy wzrostu liczb produkujących. Założenie to zastąpione jest przyjęciem dwóch następujących hipotez. W prezentowanych w rozdziale szóstym modelach wzrostu gospodarczego zakłada się, że (po pierwsze), podobnie jak w neoklasycznych modelach przedsiębiorstwa, popyt na pracę wyznaczany jest przez zrównanie krańcowego produktu pracy z płacami realnymi oraz (po drugie) płace te kształtują się zgodnie z modelami płac efektywnościowych typu Solowa (1979) i Summersa (1988). Takie rozszerzenie neoklasycznych modeli wzrostu gospodarczego Solowa, Mankiwa-Romera-Weila oraz Nonnemana-Vanhoudta pozwala na endogenizację liczby pracujących, liczby bezrobotnych, stopy bezrobocia i płac realnych w analizie długookresowej.

W siódym rozdziale dezagregowane są stopy inwestycji w zasoby kapitału rzeczowego i ludzkiego (na gruncie modelu wzrostu gospodarczego Mankiwa-Romera-Weila) na inwestycje sektora podmiotów mikroekonomicznych (gospodarstw domowych i przedsiębiorstw) oraz sektora budżetowego gospodarki. Opierając się na tak zdezagregowanych stopach inwestycji, szuka się takiej kombinacji stóp inwestycji sektora budżetowego gospodarki i takiej stopy fiskalizacji gospodarki, które (przy danej kombinacji stóp inwestycji sektora podmiotów mikroekonomicznych) wyprowadzają gospodarkę Mankiwa-Romera-Weila na możliwie najwyższej położoną ścieżkę wzrostu gospodarczego (utożsamianą ze ścieżką wzrostu wydajności pracy). Oznacza to, iż w prezentowanych w rozdziale siódmym modelach wzrostu gospodarczego analizuje się długookresowe skutki realizowanej przez państwo polityki fiskalnej.
Osmy rozdział zawiera keynesowski model wzrostu gospodarczego Domara (1946) oraz model wzrostu typu Domara-Solowa. Prezentacja modelu wzrostu Domara stanowi wprowadzenie do analizowanego w dalszej części tego rozdziału modelu Domara-Solowa. W modelu typu Domara-Solowa wyznacza się reguły polityki monetarnej banku centralnego, przy których gospodarka rozwija się przy pełnym wykorzystaniu istniejących w niej zdolności produkcyjnych. W rozdziale tym szuka się takiej ścieżki wzrostu realnych stóp procentowych, przy której popytowe (keynesowskie, wynikające z modelu Domara) i podażowe (neoklasyczne, wynikające z modelu Solowa) rezultaty realizowanych nakładów inwestycyjnych, zależnych od wyznaczanych przez bank centralny stóp procentowych, nie prowadzą ani do powstania luki inflacyjnej, ani do niepełnego wykorzystania zdolności produkcyjnych gospodarki, zaś liczba pracujących rosże według stopy równej egzogenicznej stopie wzrostu podaży pracy (a zatem stopa bezrobocia nie ulega wówczas w długim okresie zmianom w czasie).

W dziewiątym rozdziale uchyla się założenie o stałych efektach skali funkcji produkcji i analizuje się wpływ efektów skali makroekonomicznej funkcji produkcji (efektów skali procesu produkcyjnego) na długookresową równowagę neoklasycznych modeli wzrostu gospodarczego. Malejące (rosnące) efekty skali procesu produkcyjnego utożsamiane są tam z tym, że makroekonomiczna funkcja produkcji jest – matematycznie rzecz biorąc – jednorodna stopnia większego (mniejszego) od jedności. Oznacza to, że wówczas ζ-krotne, przy czym $\zeta > 1$, zwiększenie nakładów każdego z czynników produkcji prowadzi do więcej (mniej) niż ζ-krotnego wzrostu strumienia produktu. Analizy te prowadzone są na gruncie modeli wzrostu gospodarczego Solowa, Mankiwa-Romera-Weila oraz Nonnemana-Vanhoudta z funkcją produkcji Cobba-Douglasa jednorodną dowolnego stopnia $\Omega > 0$.

Wybór matematycznych modeli wzrostu gospodarczego oparty jest na dwóch następujących przesłankach. Pierwszą z nich jest to, że (zdziania autora) w każdej gospodarce występują dające się skwantyfikować zależności przyczynowo-skutkowe między najważniejszymi zmiennymi makroekonomicznymi. Jeśli zaś tak jest, to większość zmiennych makroekonomicznych powiązanych jest z sobą pewnymi, możliwymi do opisu matematycznego, zależnościami tożsamościowymi lub funkcjonalnymi. Drugą przy czyną, dla której wykorzystuje się w skrypcie właśnie matematyczne modele wzrostu gospodarczego, jest ich prostota oraz to, iż pozwalają one na jasne oddzieleńie przyjmowanych w modelu założeń od uzyskiwanych tez. Ponadto matematyczne modele wzrostu gospodarczego wyznaczają logicznie precyzyjną drogę między przyjmowanymi założeniami a płynącymi z nich wnioskami. Porównując zaś matematyczne metody analiz ekonomicznych np. z analizami graficznymi, okazuje się, że formalne metody mają dwojaką przewagę nad metodami geometrycznymi. Po pierwsze, z „dowodem” geometrycznym jest taki problem, że nie można być pewnym, czy wykreśliło się krzywe w jedyny dopuszczalny sposób, a w konsekwencji czy wykazane wyniki mają charakter ogólny. Po drugie, podejście algebraiczne daje możliwość rozszerzenia analizy przez dodawanie lub rozluźnianie ograniczeń w sposób, na który nie pozwala podejście geometryczne (Mayer, 1996: 62).
Rzecz jasna, wykorzystanie modeli matematycznych w analizach ekonomicznych napotyka pewne ograniczenia, gdyż

o przydatności pewnej teorii matematycznej do rozwiązywania praktycznych problemów decyduje m.in. to, czy jej założenia nie upraszczają zbyt mocno tych problemów, czyniąc je praktycznie nieciekawymi. Jednocześnie aby problem mógł być efektywnie rozwiązany na gruncie pewnej teorii matematycznej, powinien być sformułowany w możliwie prostej postaci, ponieważ teorie matematyczne bez „mocnych” założeń dają z reguły nieciekawe twierdzenia (Panek, 1986: 7).

Warto jednak zauważyć, że Domar twierdził, iż jedna z metod analiz procesów wzrostu gospodarczego

polega na formułowaniu problemu jako systemu nielicznych prostych równań różniczkowych, których rozwiązanie daje stopę wzrostu jednej lub drugiej zmiennej (Domar, 1962: 35).

Prowadzone w skrypcie analizy determinantów długookresowego wzrostu gospodarczego zazwyczaj sprowadzają się do tego, że:

I. Opisowo formułowane są założenia dotyczące funkcjonowania gospodarki w długim okresie.

II. Założenia te zapisywane są za pomocą pewnych, bardziej lub mniej skomplikowanych, zależności matematycznych (tożsamościowych i/lub funkcjonalnych).

III. Model rozwiązywany jest matematycznie.

IV. Matematyczne rozwiązanie modelu poddawane jest interpretacji ekonomicznej;

V. Tam, gdzie jest to możliwe, prowadzone w skrypcie rozważania ilustrowane są graficznie.

Skrypt *Matematyczne modele wzrostu gospodarczego (ujęcie neoklasyczne)* przeznaczony jest przede wszystkim do przedmiotu *wzrost gospodarczy* na studiach ekonomicznych na poziomie magisterskim. Może on być również wykorzystywany jako materiał pomocniczy do studiowania przedmiotu makroekonomia lub ekonomia matematyczna na kierunkach ekonomicznych o średnio zaawansowanym poziomie matematycznym.

Do zrozumienia materiału zawartego w skrypcie niezbędne jest posiadanie przez Czytelników podstawowej wiedzy z zakresu makroekonomii (od strony ekonomicznej) oraz znajomość podstaw rachunku różniczkowego i całkowego, ze szczególnym uwzględnieniem równań różniczkowych, oraz rachunku macierzowego i, w przypadku zagadnień poruszanych w rozdziale dzisiejszym skryptu, elementarnej wiedzy z zakresu teorii optymalnego sterowania (od strony matematycznej).

Autor dziękuje również Recenzentce skryptu, Pani prof. dr hab. Magdalene Osińskiej z Uniwersytetu Mikołaja Kopernika w Toruniu, za cenne uwagi do maszynopisu skryptu. Uwagi te pozwoliły na uniknięcie kilku istotnych błędów lub nieścisłości. Rzecz jasna, cała odpowiedzialność za występujące w skrypcie mankamenty spada wyłącznie na autora.
Rozdział pierwszy

FUNKCJE PRODUKCJI

1.1. WPROWADZENIE

W związku z tym celem rozważań prowadzonych w rozdziale pierwszym skryptu jest:

I. Zdefiniowanie pojęcia funkcji produkcji.
II. Określenie właściwości, którymi powinna się charakteryzować tzw. neoklasyczna funkcja produkcji.
III. Zdefiniowanie i zbadanie właściwości funkcji produkcji Cobba-Douglasa oraz funkcji produkcji CES.
IV. Zdefiniowanie pojęcia postępu technicznego.
V. Wprowadzenie podstawowych klasyfikacji postępu technicznego w makroekonomicznej teorii funkcji produkcji.
VI. Uwzględnienie postępu technicznego w rozważanych w rozdziale pierwszym funkcjach produkcji.
VII. Zdefiniowanie pojęcia efektów skali oraz zbadanie zależności zachodzących między postacią funkcji produkcji Cobba-Douglasa a efektami skali.

1.2. WŁAŚCIWOŚCI NEOKLASYCZNEJ FUNKCJI PRODUKCJI

Przez neoklasyczną, makroekonomiczną funkcję produkcji rozumie się pewną funkcję F, która opisuje zależności zachodzące między nakładami czynników produkcji, do których zazwyczaj zalicza się nakłady kapitału rzeczowego K i pracy L, a wielkością wytworzonego w gospodarce produktu Y. Oznacza to, iż funkcję produkcji można zapisać za pomocą następującego równania:

1 Mimo że w rozdziale pierwszym scharakteryzowane są jedynie dwuczynnikowe funkcje produkcji (tj. funkcje produkcji, w których zmiennymi objaśniającymi wielkość produktu Y są nakłady
\[Y = F(K,L). \] (1.1)

O funkcji produkcji (1.1) przyjmuje się, że spełnia następujące założenia:

1. Dziedziną \(D_F \) funkcji produkcji \(F \) jest zbiór takich nakładów \(K \) i \(L \), że \(K \geq 0 \) oraz \(L \geq 0 \).

2. Funkcja produkcji \(F(K,L) \) jest przynajmniej dwukrotnie różniczkowalna w \(D_F \).

3. Dla każdego \((K, L) \in D_F \) zachodzi:
 \[F(K,0) = F(0,L) = 0. \] (1.2)

Założenie to interpretuje się ekonomicznie w ten sposób, iż do wytworzenia jakiejkolwiek dodatniej wielkości produkcji \(Y \) niezbędne są zarówno nakłady kapitału rzeczowego \(K \), jak i nakłady pracy \(L \). Innymi słowy, brak jednego ze wspomnianych tu czynników produkcji uniemożliwia proces produkcyjny.

4. Funkcja produkcji (1.1) spełnia związek:
 \[\forall K, L > 0 \lim_{K \to +\infty} F(K,L) = \lim_{L \to +\infty} F(K,L) = +\infty. \] (1.3)

Z równania (1.3) wynika, że bardzo dużym, dążącym do \(+\infty \), nakładom kapitału \(K \) (pracy \(L \)), przy niezerowych nakładach pracy (kapitału), odpowiada bardzo duży, dążący do \(+\infty \), strumień wytworzonego produktu \(Y \).

5. Niech \(MPK = \frac{\partial Y}{\partial K} = \frac{\partial F}{\partial K} \) i \(MPL = \frac{\partial Y}{\partial L} = \frac{\partial F}{\partial L} \) oznaczają, odpowiednio, krańcowy produkt kapitału (MPK) i krańcowy produkt pracy (MPL)\(^3\) oraz dla każdego \(K > 0 \) i \(L > 0 \) zachodzą związki:
 \[MPK > 0 \] (1.4a)
 \[MPL > 0. \] (1.4b)

Nierówności (1.4ab) oznaczają, że każdej dodatniej kombinacji nakładów kapitału i pracy odpowiadają dodatnie krańcowe produkty tych czynników produkcji. Nierów-

kappałańczego krańcowego \(K \) i pracy \(L \)), to funkcje te oraz ich właściwości można rozszerzyć na N-czynnikowe funkcje produkcji (czyli takie funkcje produkcji, w których wyróżnia się dowolną, skończoną liczbę N czynników produkcji determinujących wielkość produktu). Właściwości N-czynnikowych funkcji produkcji przedstawione są np. w skrypcie Tokarskiego (2008b, podpunkt 1.4.2).

\(^2\) Założenia 1–2 nakładane na funkcję produkcji (1.1) nie mają bezpośredniej interpretacji ekonomicznej.

\(^3\) Zazwyczaj w teorii ekonomii przez krańcowy Produkt kapitału MPK (krańcowy produkt pracy MPL) rozumie się relację przyrostu produktu \(\Delta Y \) do przyrostu nakładów kapitału \(\Delta K \) (pracy \(\Delta L \)). Jeśli jednak \(\Delta K \to 0 \) (\(\Delta L \to 0 \)), to
 \[\frac{\Delta Y}{\Delta K} \to \frac{\partial Y}{\partial K} = \frac{\partial F}{\partial K} \quad \left(\frac{\Delta Y}{\Delta L} \to \frac{\partial Y}{\partial L} = \frac{\partial F}{\partial L} \right), \]
 co implikuje, że przy bardzo małych przyrostach nakładów kapitału (pracy) krańcowy produkt kapitału (krańcowy produkt pracy) utożsamia się z pochodną cząstkową funkcji produkcji \(F(K,L) \) po nakładach kapitału \(K \) (pracy \(L \)).
ności te można także interpretować ekonomicznie w ten sposób, iż jeśli rosną nakłady kapitału K (pracy L), przy stałych nakładach pracy (kapitału), to wielkość produkcji Y również rośnie.

6. Spełnione są tzw. warunki K.-I. Inady. Warunki te można zapisać matematycznie następująco:

\[\forall L > 0 \lim_{K \to 0^+} MPK = +\infty, \]
\[\forall L > 0 \lim_{K \to +\infty} MPK = 0, \]
\[\forall K > 0 \lim_{L \to 0^+} MPL = +\infty \]

oraz:

\[\forall K > 0 \lim_{L \to +\infty} MPL = 0. \]

Z warunków Inady (1.5ab) wynika, że bardzo małym (bardzo dużym) nakładom kapitału K, przy dodatnich nakładach pracy L, odpowiada bardzo duży (bardzo mały) krańcowy produkt kapitału MPK. Co więcej, ponieważ \(MPK = \frac{\partial Y}{\partial K} = \frac{\partial F}{\partial K} \), zatem przy bardzo małych (bardzo dużych) nakładach kapitału i stałych nakładach pracy nachylenie krzywej produkt–nakład kapitału dąży od nieskończoności (do zera). Warunki Inady (1.5cd) interpretuje się ekonomicznie analogicznie do warunków (1.5ab).

7. Zachodzą związki:

\[\forall K, L > 0 \frac{\partial MPK}{\partial K} = \frac{\partial^2 Y}{\partial K^2} < 0 \]

i:

\[\forall K, L > 0 \frac{\partial MPL}{\partial L} = \frac{\partial^2 Y}{\partial L^2} < 0. \]

Z zależności (1.6ab) wynika (po pierwsze), że wraz ze wzrostem nakładów kapitału (pracy), przy stałych nakładach drugiego z czynników produkcji, spada krańcowy produkt kapitału (pracy), oraz (po drugie), iż krzywa produkt–nakład kapitału (produkt–nakład pracy), przy stałych nakładach pracy (kapitału), jest wklęsła. Krzywe produkt–nakład czynnika produkcji oraz krańcowy produkt czynnika produkcji–nakład owego czynnika, wynikające z założeń 3–7 nakładanych na makroekonomiczną funkcję produkcji (1.1), zilustrowane są na rysunkach 1.1ab.

4 Zapis postaci \(X|_Z \) oznaczał bydże dalej, iż zachodzi X po warunkiem, że zachodzi Z. Dlatego też np. oznaczenie \(K|_{L=\text{const}} \) na osi poziomej rysunku 1.1a należy interpretować w ten sposób, że na osi tej odkłada się zmienne k przy stałej wartości zmiennej L.
Z rysunków 1.1ab wynika, iż funkcja produkcji spełnia prawo malejącej produkcyjności krańcowej, zarówno względem nakładów kapitału rzeczowego K, jak i nakładów pracy L. Prawo to interpretuje się ekonomicznie w ten sposób, iż jeśli rosną nakłady kapitału (pracy), przy stałych nakładach pracy (kapitału), to wielkość produkcji rośnie coraz wolniej, zaś krańcowy produkt kapitału (krańcowy produkt pracy) spada.

8. Makroekonomiczna funkcja produkcji (1.1) jest jednorodna stopnia pierwszego (innymi słowy, funkcja ta jest liniowo jednorodna) względem nakładów kapitału i pracy. Płynie stąd wniosek, że dla każdego $\zeta \geq 0$ oraz $(K, L) \in D_F$ zachodzi równanie:

$$F(\zeta K, \zeta L) = \zeta F(K, L) = \zeta Y.$$

(1.7)

Fakt, że funkcja produkcji jest jednorodna stopnia pierwszego, tożsamy jest z tym, iż w gospodarce występują stałe efekty skali procesu produkcyjnego. Stałe efekty skali interpretuje się zaś ekonomicznie w ten sposób, że dowolnemu ζ-krotnemu ($\zeta \geq 0$)
 wzrostowi nakładów obu rozważanych tu czynników produkcji odpowiada dokładnie \(\zeta\)-krotny wzrost wytworzonego w gospodarce strumienia produktu. Innymi słowy, jeśli w gospodarce występują stałe efekty skali i np. w ciągu 50 (70) lat nastąpi podwojenie (potrojenie) nakładów każdego z czynników produkcji, to w gospodarce tej nastąpi również podwojenie (potrojenie) wielkości wytworzonej produkcji.

1.3. Funkcja produkcji Cobba-Douglasa

Szczególnym przypadkiem neoklasycznej funkcji produkcji (1.1) jest powstała w 1928 roku funkcja produkcji Cobba-Douglasa. Funkcja ta opisana jest przez następujące równanie:

\[
\forall K, L \geq 0 \quad Y = F(K, L) = AK^aL^{1-a},
\]

(1.8)

gdzie \(A\) jest łączną produktywnością czynników produkcji (total factor productivity), zaś \(\alpha\) i \(1 - \alpha \in (0;1)\) to zarówno elastyczności produktu \(Y\) względem nakładów kapitału \(K\) i pracy \(L\), jak i (na gruncie marginalnej teorii podziału J.B. Clarka) udziały kapitału i pracy w produkcie.

Łącza produkcyjność czynników produkcji \(A\) można utożsamiać z produktem, który byłby wytworzony w gospodarce przy jednostkowych nakładach każdego z analizowanych tu czynników produkcji. Wynika to stąd, iż dla każdego \(A > 0\) zachodzi:

\[
F(1,1) = A \cdot 1^a \cdot 1^{1-a} = A.
\]

Łączna produkcyjność czynników produkcji wyznacza również poziom zaawansowania technologicznego gospodarki. Wynika to stąd, iż im wyższa jest owa produkcyjność, tym wyższy produkt może być wytworzony z danych nakładów czynników produkcji.

Parametry \(\alpha\) i \(1 - \alpha\) w makroekonomicznej funkcji produkcji Cobba-Douglasa są elastycznościami produkcji względem nakładów kapitału i pracy z tego względu, iż dla każdego \(K > 0\) i \(L > 0\) zachodzą związki:

\[
\varepsilon_{\gamma K} = \frac{\partial Y}{\partial K}. \frac{K}{Y} = \frac{\partial}{\partial K}\left(AK^aL^{1-a}\right). \frac{K}{AK^aL^{1-a}} = \alpha AK^{a-1}L^{1-a} \cdot \frac{K}{AK^aL^{1-a}} = \alpha
\]

oraz (analogicznie):

\[
\varepsilon_{\gamma L} = \frac{\partial Y}{\partial L}. \frac{L}{Y} = 1 - \alpha.
\]

Z powyższych zależności wynika, że jeśli nakłady kapitału \(K\) (pracy \(L\)) wzrośną o \(\zeta\%\), przy stałych nakładach pracy (kapitału) i stałej łącznej produkcyjności czynników produkcji \(A\), to wielkość produkcji \(Y\) wzrośnie o \(\zeta\alpha\%\) (\(\zeta\cdot(1 - \alpha)\%\)).

Jeśli zaś weźmie się pod uwagę marginalną teorię podziału Clarka\(^5\), to się okaże, że przy funkcji produkcji Cobba-Douglasa (1.8) zachodzą związki:

\(^5\) Marginalna teoria podziału Clarka sprowadza się do tego, że w warunkach konkurencji doskonałej i maksymalizujących zysk przedsiębiorców każdy z czynników produkcji jest opłacany według jego produktu krańcowego.
\[w_K = MPK \equiv \frac{\partial Y}{\partial K} = \frac{\partial}{\partial K} \left(AK^a L^{1-a} \right) = \alpha AK^{a-1} L^{1-a} = \alpha \frac{AK^a L^{1-a}}{K} = \frac{\alpha Y}{K} \]
i (analogicznie):

\[w_L = MPL \equiv \frac{\partial Y}{\partial L} = (1 - \alpha) \frac{Y}{L}, \]
gdzie \(w_K > 0 \) oraz \(w_L > 0 \) oznaczają realne ceny zaangażowania kapitału \(K \) i pracy \(L \) w procesie produkcyjnym. Z powyższych zależności wynika, że:

\[
\alpha = \frac{w_K K}{Y}
\]
oraz:

\[
1 - \alpha = \frac{w_L L}{Y},
\]
co oznacza, że parametry \(\alpha \) i \(1 - \alpha \) w funkcji produkcji Cobba-Douglasa wyznaczają udziały nakładów kapitału \(K \) i pracy \(L \) w produkcie \(Y \). Płynie stąd wniosek, że jeśli np. \(\alpha = 1/3 \) (a więc \(1 - \alpha = 2/3 \)), to do każdego złotego wytworzonego w gospodarce produktu kapitał (praca) wnosi 1/3 (2/3) złotego.

Makroekonomiczna funkcja produkcji Cobba-Douglasa spełnia wszystkie warunki nakładane na neoklasyczną funkcję produkcji (1.1). Wynika to stąd, że:

(i) \(\forall K \geq 0 \quad F(K, 0) = A \cdot K^a \cdot 0^{1-a} = 0 \) i \(\forall L \geq 0 \quad F(0, L) = A \cdot 0^a \cdot L^{1-a} = 0; \)

(ii) \(\forall L > 0 \lim_{K \to +\infty} F(K, L) = \lim_{K \to +\infty} \left(AK^a L^{1-a} \right) = AL^1-a \lim_{K \to +\infty} \left(K^{a} \right) = +\infty \)

[bo \(\alpha \in (0;1) \)] oraz

\(\forall K > 0 \lim_{L \to +\infty} F(K, L) = \lim_{L \to +\infty} \left(AK^a L^{1-a} \right) = AK^a \lim_{L \to +\infty} \left(L^{1-a} \right) = +\infty \)

[co wynika stąd, że \((1 - \alpha) \in (0;1) \)];

(iii) dla każdego \(K, L > 0 \) zachodzi:

\[MPK \equiv \frac{\partial Y}{\partial K} = \frac{\partial}{\partial K} \left(AK^a L^{1-a} \right) = \alpha AK^{a-1} L^{1-a} > 0 \]
oraz \[MPL \equiv \frac{\partial Y}{\partial L} = \frac{\partial}{\partial L} \left(AK^a L^{1-a} \right) = (1 - \alpha) AK^a L^{-a} > 0; \]

(iv) spełnione są warunki Inady, co wynika stąd, że:

\[
\forall L > 0 \lim_{K \to 0^+} MPK = \lim_{K \to 0^+} \left(\alpha AK^{a-1} L^{1-a} \right) = \frac{\alpha AL^{1-a}}{\lim_{K \to 0^+} \left(K^{1-a} \right)} = +\infty,
\]

\[
\forall L > 0 \lim_{K \to +\infty} MPK = \lim_{K \to +\infty} \left(\alpha AK^{a-1} L^{1-a} \right) = \frac{\alpha AL^{1-a}}{\lim_{K \to +\infty} \left(K^{1-a} \right)} = 0,
\]
∀K > 0 \lim_{L \to 0^+} MPL = \lim_{K \to 0^+} \left((1 - \alpha)AK^\alpha L^{-\alpha} \right) = \frac{(1 - \alpha)AK^\alpha}{\lim_{L \to 0^+} (L^\alpha)} = +\infty

oraz:

∀K > 0 \lim_{L \to +\infty} MPL = \lim_{L \to +\infty} \left((1 - \alpha)AK^\alpha L^{-\alpha} \right) = \frac{(1 - \alpha)AK^\alpha}{\lim_{L \to +\infty} (L^\alpha)} = 0;

(v) pochodne cząstkowe krańcowych produktów czynników produkcji (czyli MPK i MPL) po nakładach owych czynników produkcji (K i L) są ujemne, gdyż:

\frac{\partial MPK}{\partial K} = \frac{\partial}{\partial K} \left(AK^{\alpha-1} L^{1-\alpha} \right) = \alpha(\alpha - 1)AK^{\alpha-2} L^{1-\alpha} = -\alpha(1 - \alpha)AK^{\alpha-2} L^{1-\alpha} < 0

oraz:

\frac{\partial MPL}{\partial L} = \frac{\partial}{\partial L} \left((1 - \alpha)AK^\alpha L^{-\alpha} \right) = -\alpha(1 - \alpha)AK^\alpha L^{-\alpha-1} < 0;

(vi) ponieważ dla każdego \(\zeta > 0 \) zachodzi:

\(F(\zeta K, \zeta L) = A(\zeta K)^\alpha (\zeta L)^{1-\alpha} = A\zeta^\alpha K^\alpha \zeta^{1-\alpha} L^{1-\alpha} = \zeta AK^\alpha L^{1-\alpha} = \zeta F(K, L) \),

zatem makroekonomiczna funkcja produkcji Cobb-Douglasa jest jednorodną stopnia pierwszego (występują stałe efekty skali procesu produkcyjnego).

Logarytmując stronami (np. logarytmem naturalnym) funkcję produkcji Cobb-Douglasa (1.8), uzyskuje się związek:

\[\ln(Y) = \ln(A) + \alpha \ln(K) + (1 - \alpha) \ln(L). \]

Różniczkując powyższą zależność względem czasu \(t \in [0;+\infty) \), uzyskuje się równanie\(^6\):

\[\forall t \in [0;+\infty) \quad \frac{1}{Y} \frac{dY}{dt} = \frac{1}{A} \frac{dA}{dt} + \frac{1}{K} \frac{dK}{dt} + (1 - \alpha) \frac{1}{L} \frac{dL}{dt}. \]

lub:

\[\forall t \in [0;+\infty) \quad \frac{\dot{Y}(t)}{Y(t)} = \frac{\dot{A}(t)}{A(t)} + \alpha \frac{\dot{K}(t)}{K(t)} + (1 - \alpha) \frac{\dot{L}(t)}{L(t)}. \] \((1.9) \)

Równanie (1.9) wyznacza dynamiczną postać funkcji produkcji Cobb-Douglasa. Z zależności tej wynika, że stopa wzrostu strumienia produktu \(\dot{Y} \) równa jest stopie

\(^6\) O wszystkich występujących dalej zmiennych makroekonomicznych implicite będziemy zakłada- dali, że są różniczkowalnymi funkcjami czasu \(t \in [0;+\infty) \). Zapis postaci \(\dot{x} = \ddot{x}(t) = \frac{dx}{dt} = \frac{d^2x}{dt^2} \) oznaczał będzie dalej pierwszą pochodną zmiennej \(x \) po czasie \(t \), czyli – ekonomicznie rzecz ujmując – przyrost wartości owej zmiennej w momencie \(t \in [0;+\infty) \).
wzrostu łącznej produkcyjności czynników produkcji \(\frac{\dot{A}}{A} \)\(^7\) powiększona o sumę stóp wzrostu nakładów kapitału \(\frac{\dot{K}}{K} \) i pracy \(\frac{\dot{L}}{L} \) ważoną udziałami nakładów kapitału (\(\alpha \)) i pracy (\(1 - \alpha \)) w produkcie. Równanie to pozwala również na określenie udziałów wpływu postępu technicznego, akumulacji kapitału i wzrostu liczby pracujących na wzrost produktu. Ze związku (1.9) wynika bowiem, iż udział postępu technicznego we wzroście produktu równy jest \(\frac{\dot{A}}{A} \left/ \left(\frac{\dot{Y}}{Y} \right) \right. \), udział akumulacji kapitału wynosi \(\left(\frac{\dot{K}}{K} \right) \left/ \left(\frac{\dot{Y}}{Y} \right) \right. \), zaś udział wzrostu liczby pracujących we wzroście produkcji określa zależność: \(\left((1 - \alpha) \frac{\dot{L}}{L} \right) \left/ \left(\frac{\dot{Y}}{Y} \right) \right. \).

1.4. FUNKCJA PRODUKCJI CES

Innym przykładem funkcji produkcji, zbliżonej do neoklasycznej funkcji produkcji (1.1), jest funkcja produkcji o stałej elastyczności substytucji czynników produkcji (nazywana dalej funkcją produkcji CES). Funkcję tę opisuje następujące równanie:

\[
\forall K,L > 0 \quad Y = F(K,L) = A \left[uK^{-\psi} + (1-u)L^{-\psi} \right]^{1/\psi} = \frac{A}{\left(\frac{u}{K^\psi} + \frac{1-u}{L^\psi} \right)^{1/\psi}}, \quad (1.10)
\]

gdzie \(A > 0, \ u \in (0;1) \), zaś \(\psi \in (0;+\infty) \). Parametr \(A \) w funkcji produkcji CES (1.10) jest, podobnie jak w przypadku funkcji produkcji Cobba-Douglasa (1.8), łączną produkcyjnością czynników produkcji. Wynika to stąd, że zgodnie ze związkiem (1.10) dla każdego \(A > 0 \) zachodzi zależność:

\[
F(l,l) = A \left[u \cdot l^{-\psi} + (1-u) \cdot l^{-\psi} \right]^{1/\psi} = A.
\]

Co więcej, z funkcji produkcji CES (1.10) wynika, że krańcowe produkty kapitału i pracy określone są przez równania:

\[
\forall K,L > 0 \quad \text{MPK} = \frac{\partial Y}{\partial K} = \frac{\partial}{\partial K} \left(A \left[uK^{-\psi} + (1-u)L^{-\psi} \right]^{1/\psi} \right) =
\]

\[
= A \left(-\frac{1}{\psi} \right) \left[uK^{-\psi} + (1-u)L^{-\psi} \right]^{-1/\psi-1} u(1-\psi)K^{-\psi-1} =
\]

\(^7 \) Jak się niebawem okaże (por. punkt 1.5 skryptu), stopa wzrostu łącznej produkcyjności czynników produkcji \(\frac{\dot{A}}{A} \) równa jest stopie postępu technicznego w sensie Hicksa.
czyli:

∀K, L > 0 \ MPK = \frac{\nu}{A^\psi} \left(\frac{Y}{K} \right)^{\psi+1} \quad (1.11a)

i (analogicznie):

∀K, L > 0 \ MPL = \frac{\delta Y}{\delta L} = \frac{1-\nu}{A^\psi} \left(\frac{Y}{L} \right)^{\psi+1} \quad (1.11b)

Krańcowe produkty kapitału i pracy, zgodnie z marginalną teorią podziału Clarka, powinny być równe realnym cenom kapitału (wK) i pracy (wL). Oznacza to, że:

MPK = \frac{\nu}{A^\psi} \left(\frac{Y}{K} \right)^{\psi+1} = w_K \quad (1.12a)

oraz:

MPL = \frac{1-\nu}{A^\psi} \left(\frac{Y}{L} \right)^{\psi+1} = w_L \quad (1.12b)

Równania (1.12ab) można również zapisać następująco:

\nu \frac{Y}{K} \left(\frac{Y}{AK} \right)^\psi = w_K \quad \Rightarrow \quad \nu \left(\frac{Y}{AK} \right)^\psi = \frac{w_K K}{Y} \quad (1.13a)

i:

(1-\nu) \frac{Y}{L} \left(\frac{Y}{AL} \right)^\psi = w_L \quad \Rightarrow \quad (1-\nu) \left(\frac{Y}{AL} \right)^\psi = \frac{w_L L}{Y} \quad (1.13b)

Wyrażenia \left(\frac{Y}{AK} \right)^\psi oraz \left(\frac{Y}{AL} \right)^\psi, po uwzględnieniu równania (1.10), można zapisać za pomocą związków:

\left(\frac{Y}{AK} \right)^\psi = \left(\frac{A \left(\nu K^{-\psi} + (1-\nu) L^{-\psi} \right)^{1/\psi}}{AK} \right)^\psi = \left[\nu K^{-\psi} + (1-\nu) L^{-\psi} \right]^{1/\psi} = \\
\frac{1}{\left[\nu K^{-\psi} + (1-\nu) L^{-\psi} \right]^{K^\psi}} = \frac{1}{\nu + (1-\nu) \left(\frac{K}{L} \right)^{\psi}}
i (podobnie):

$$
\left(\frac{Y}{AL} \right) ^\psi = \frac{1}{\nu (\frac{K}{L})^{-\psi} + 1 - \nu}.
$$

Wstawiając dwie powyższe zależności do równań (1.13ab), uzyskuje się udziały kapitału i pracy w produkcie, opisane wzorami:

$$
\frac{w_K K}{Y} = \frac{\nu}{\nu + (1 - \nu) \left(\frac{K}{L} \right)^\psi},
$$

(1.14a)

oraz:

$$
\frac{w_L L}{Y} = \frac{1 - \nu}{\nu \left(\frac{K}{L} \right)^\psi + 1 - \nu}.
$$

(1.14b)

Z równań (1.14ab) płynie wniosek, że jeśli parametr ψ w funkcji produkcji CES jest zbliżony do zera, to przy $K > 0$ oraz $L > 0$ zarówno $\left(\frac{K}{L} \right)^\psi \to 1$, jak i $\left(\frac{K}{L} \right)^\psi \to 1$, co z kolei implikuje, iż wówczas $\frac{w_K K}{Y} = \frac{\nu}{\nu + (1 - \nu) \left(\frac{K}{L} \right)^\psi} \to \nu$ oraz $\frac{w_L L}{Y} = \frac{1 - \nu}{\nu \left(\frac{K}{L} \right)^\psi + 1 - \nu} \to 1 - \nu$. Oznacza to, że jeśli parametr ψ dąży do zera, to udziały nakładów kapitału K i pracy L w produkcie Y zbliżone są do parametrów ν oraz $1 - \nu$ w funkcji produkcji CES.

Parametr ψ w funkcji produkcji CES determinuje elastyczność substytucji nakładów czynników produkcji. Można bowiem pokazać, iż elastyczność substytucji ε czynników produkcji w procesie produkcyjnym przy funkcji produkcji CES dana jest wzorem:

$$
\varepsilon = \frac{1}{1 + \psi}.
$$

(1.15)

Z równania (1.15) wyciągnąć można trzy następujące wnioski:

- Po pierwsze, przy $\psi \to 0^+$ elastyczność substytucji ε zbliżona jest do jedności.
- Po drugie, dla $\psi \in (0;+\infty)$ elastyczność ta jest mniejsza od jedności.
- Po trzecie, przy $\psi \to +\infty$ elastyczność substytucji $\varepsilon \to 0$.

Pokażemy również, że funkcja produkcji CES dana wzorem (1.10) spełnia prawie wszystkie ograniczenia nakładane na neoklasyczną funkcję produkcji (1.1). Dzieje się tak dlatego, że:

(i) \[\forall L > 0 \lim_{K \to 0^+} F(K, L) = \lim_{K \to 0^+} \frac{A}{\left(\frac{\nu}{K^\psi} + \frac{1-\nu}{L^\psi} \right)^{1/\psi}} = 0 \]

i (analogicznie):

\[\forall K > 0 \lim_{L \to 0^+} F(K, L) = \lim_{L \to 0^+} \frac{A}{\left(\frac{\nu}{K^\psi} + \frac{1-\nu}{L^\psi} \right)^{1/\psi}} = 0^9. \]

(ii) Nie są spełnione równania (1.3) dla każdego \(K > 0 \) i \(L > 0 \), gdyż:

\[\forall L > 0 \lim_{K \to +\infty} F(K, L) = \lim_{K \to +\infty} \frac{A}{\left(\frac{\nu}{K^\psi} + \frac{1-\nu}{L^\psi} \right)^{1/\psi}} = \frac{AL}{(1-\nu)^{1/\psi}} \]

i:

\[\forall K > 0 \lim_{L \to +\infty} F(K, L) = \lim_{L \to +\infty} \frac{A}{\left(\frac{\nu}{K^\psi} + \frac{1-\nu}{L^\psi} \right)^{1/\psi}} = \frac{AK}{\nu^{1/\psi}}. \]

Warto jednak zauważyć, iż warunek (1.3) jest spełniony dopiero wówczas, gdy zarówno nakłady kapitału, jak i nakłady pracy są bardzo wysokie (zbieżne do +∞). Wynika to stąd, iż:

\[\lim_{K \to +\infty \land L \to +\infty} F(K, L) = \lim_{K \to +\infty \land L \to +\infty} \frac{A}{\left(\frac{\nu}{K^\psi} + \frac{1-\nu}{L^\psi} \right)^{1/\psi}} = +\infty. \]

(iii) Krańcowe produkty nakładów kapitału (MPK) i pracy (MPL) są dodatnie. Wynika to stąd, że dla każdego \(K, L > 0 \), zgodnie z równaniami (1.11ab), zachodzą związki:

\[\text{MPK} \equiv \frac{\partial Y}{\partial K} = \frac{\nu}{A^\psi} \left(\frac{Y}{K} \right)^{\psi+1} > 0 \]

oraz:

\[\text{MPL} \equiv \frac{\partial Y}{\partial L} = \frac{1-\nu}{A^\psi} \left(\frac{Y}{L} \right)^{\psi+1} > 0. \]

9 Ponieważ dziedzina funkcji produkcji CES jest węższa od \(D_F \), zatem ograniczenia (1.2) nakładane na tę funkcję produkcji spełnione są jedynie przy \(K \to 0^+ \) oraz \(L \to 0^+ \).
(iv) Częściowo spełnione są warunki Inady, gdyż:

\[
\forall L > 0 \lim_{K \to 0^+} MPK = \lim_{K \to 0^+} \left[\frac{\nu}{A^\psi} \left(\frac{Y}{K} \right)^{\psi+1} \right] = \frac{\nu}{A^\psi} \lim_{K \to 0^+} \left(\frac{A}{K^{\psi+1}} \right)^{1/\psi} = \frac{A}{\nu} > 0,
\]

\[
\forall L > 0 \lim_{K \to +\infty} MPK = \lim_{K \to +\infty} \left[\frac{\nu}{A^\psi} \left(\frac{Y}{K} \right)^{\psi+1} \right] = \frac{\nu}{A^\psi} \lim_{K \to +\infty} \left(\frac{A}{K^{\psi+1}} \right)^{1/\psi} = 0,
\]

\[
\forall K > 0 \lim_{L \to 0^+} MPL = \lim_{L \to 0^+} \left[\frac{1-u}{A^\psi} \left(\frac{Y}{L} \right)^{\psi+1} \right] = \frac{1-u}{A^\psi} \lim_{L \to 0^+} \left(\frac{A}{L^{\psi+1}} \right)^{1/\psi} = \frac{uA}{(1-u)^{1/\psi}} > 0.
\]

oraz:

\[
\forall K > 0 \lim_{L \to +\infty} MPL = \lim_{L \to +\infty} \left[\frac{1-u}{A^\psi} \left(\frac{Y}{L} \right)^{\psi+1} \right] = \frac{1-u}{A^\psi} \lim_{L \to +\infty} \left(\frac{A}{L^{\psi+1}} \right)^{1/\psi} = 0.
\]

(v) Drugie pochodne cząstkowe funkcji produkcji CES opisane są przez równania:

\[
\forall K, L > 0 \quad \frac{\partial MPK}{\partial K} = \frac{\partial}{\partial K} \left(\frac{\nu}{A^\psi} \left(\frac{Y}{K} \right)^{\psi+1} \right) = \frac{\nu}{A^\psi} \frac{\partial}{\partial K} \left(\left(\frac{Y}{K} \right)^{\psi+1} \right) = \frac{u}{A^\psi} (\psi+1) \left(\frac{Y}{K} \right)^{\psi} \frac{\partial Y}{\partial K} \cdot \frac{K^2}{K^2} = \frac{u}{A^\psi} (\psi+1) \left(\frac{Y}{K} \right)^{\psi} \frac{\partial Y}{\partial K} \cdot K - \frac{Y}{K^2}.
\]

oraz:

\[
\forall K, L > 0 \quad \frac{\partial MPL}{\partial L} = \frac{\partial}{\partial L} \left(\frac{1-u}{A^\psi} \left(\frac{Y}{L} \right)^{\psi+1} \right) = \frac{1-u}{A^\psi} (\psi+1) \left(\frac{Y}{L} \right)^{\psi} \frac{\partial Y}{\partial L} \cdot L - \frac{Y}{L^2}.
\]
Pochodne te są ujemne, gdyż wyrażenia \(\frac{v}{A^\psi} (\psi + 1) \left(\frac{Y}{K} \right)^\psi \) i \(\frac{1 - v}{A^\psi} (\psi + 1) \left(\frac{Y}{L} \right)^\psi \) są dodatnie, związki \(\frac{\partial Y}{\partial K} K - Y \) oraz \(\frac{\partial Y}{\partial L} L - Y \) przyjmują natomiast wartości ujemne. Fakt, iż \(\frac{\partial Y}{\partial K} K - Y < 0 \) i \(\frac{\partial Y}{\partial L} L - Y < 0 \), wynika stąd, że (jak się niebawem okaże) funkcja produkcji CES jest jednorodna stopnia pierwszego. To zaś (na mocy twierdzenia Eule- ra o funkcji jednorodnej) implikuje, że spełnione jest równanie:

\[
Y = \frac{\partial Y}{\partial K} K + \frac{\partial Y}{\partial L} L.
\]

Ponieważ pochodne cząstkowe funkcji CES są dodatnie, zatem produkcja \(Y \) jest wyższa zarówno od iloczynu \(\frac{\partial Y}{\partial K} K \), jak i od \(\frac{\partial Y}{\partial L} L \), skąd płynie wniosek, że \(\frac{\partial Y}{\partial K} K - Y < 0 \) oraz \(\frac{\partial Y}{\partial L} L - Y < 0 \), a zatem drugie pochodne funkcji produkcji CES są ujemne. Dlatego też przy funkcji produkcji CES spełnione jest prawo malejącej produkcyjności krańcowej nakładów kapitału i nakładów pracy.

(vi) Jak już wspomniano, funkcja produkcji CES (1.10) jest jednorodna stopnia pierwszego (występują stałe efekty skali procesu produkcyjnego). Wynika to stąd, że:

\[
\forall \zeta, K, L > 0 \quad F(\zeta K, \zeta L) = \frac{A}{u(\zeta K)^\psi + (1 - u)(\zeta L)^\psi} = \frac{A}{[u\zeta^{\psi}K^\psi + (1 - u)\zeta^{\psi}L^\psi]^{\psi}} = \frac{A}{\zeta^{-1}[uK^{-\psi} + (1 - u)L^{-\psi}]^{\psi}} = \zeta \frac{A}{[uK^{-\psi} + (1 - u)L^{-\psi}]^{\psi}} = \zeta F(K, L).
\]

Można również pokazać, iż przy \(\psi \rightarrow 0 \) funkcja produkcji CES jest zbliżna do funkcji produkcji Cobba-Douglasa. Dzieje się tak dlatego, że:

\[
\forall K, L > 0 \quad \lim_{\psi \rightarrow 0^+} \left(A[uK^{-\psi} + (1 - u)L^{-\psi}]^{-1/\psi} \right) = \lim_{\psi \rightarrow 0^+} \left(e^{\ln[A[uK^{-\psi} + (1 - u)L^{-\psi}]^{-1/\psi}]} \right) = \lim_{\psi \rightarrow 0^+} \left(e^{\frac{\ln(A) - \frac{1}{\psi} \ln(uK^{-\psi} + (1 - u)L^{-\psi})}{\psi}} \right) = \lim_{\psi \rightarrow 0^+} \left(e^{\frac{\ln(A) - \lim_{\psi \rightarrow 0^+} \frac{\ln(uK^{-\psi} + (1 - u)L^{-\psi})}{\psi}}}{\psi} \right) = e^{\ln(A) - \frac{1}{\psi} \ln(uK^{-\psi} + (1 - u)L^{-\psi})} = e^{\ln(A) - \frac{\ln(uK^{-\psi} + (1 - u)L^{-\psi})}{\psi}}.
\]

Ponieważ iloraz \(\frac{\ln(uK^{-\psi} + (1 - u)L^{-\psi})}{\psi} \) jest wyrażeniem nieoznaczonym typu 0/0, zatem (po zastosowaniu reguły del’Hospitala) uzyskuje się związek\(^\text{10}\):

\(^{10}\) Zapis postaci \(\left[\begin{array}{c} 0 \\ 0 \end{array} \right] \) oznaczałby wyrażenie nieoznaczone postaci 0/0. Podobnie zapis \(\left[\begin{array}{c} \infty \\ \infty \end{array} \right] \) utożsamiany byłby w wyrażeniem nieoznaczonym typu \(\infty/\infty \).
\(\forall K, L > 0 \lim_{\psi \to 0^*} \left(\frac{\ln(\psi K^{-\psi} + (1-\psi)L^{-\psi})}{\psi} \right)^{\frac{\mu}{\mu(\psi)}} = \lim_{\psi \to 0^*} \left(\frac{-\psi K^{-\psi} \ln(K) - (1-\psi)L^{-\psi} \ln(L)}{\psi K^{-\psi} + (1-\psi)L^{-\psi}} \right) = -[\psi \ln(K) + (1-\psi)\ln(L)]. \)

Wstawiając powyższą zależność do granicy (1.16), granicę tę można zapisać następująco:

\[
\forall K, L > 0 \lim_{\psi \to 0^*} \left(A \left[\psi K^{-\psi} + (1-\psi)L^{-\psi} \right]^{1/\psi} \right) = e^{\ln(A) + \psi \ln(K) + (1-\psi)\ln(L)} = e^{\ln(AK^\psi L^{1-\psi}).
\]

Równanie (1.17) dowodzi, że przy \(\psi \to 0^* \) funkcja produkcji CES (1.10) jest zbieżna do funkcji produkcji Cobba-Douglasa (1.8).

Logarytmując stronami funkcję produkcji CES, uzyskuje się zależność:

\[
\ln(Y) = \ln(A) - \frac{\ln(\psi K^{-\psi} + (1-\psi)L^{-\psi})}{\psi}.
\]

Różniczkując powyższy związek względem czasu \(t \in [0;+\infty) \), dochodzimy do równania:

\[
\frac{\dot{Y}}{Y} = \frac{\dot{A}}{A} - \frac{1}{\psi} - uA K^{-\psi-1} K - (1-\psi)uL^{-\psi-1} \dot{L} = \frac{A}{A} + \frac{\psi K^{-\psi-1} K + (1-\psi)L^{-\psi-1} \dot{L}}{\psi K^{-\psi} + (1-\psi)L^{-\psi}}
\]

lub:

\[
\frac{\dot{Y}}{Y} = \frac{\dot{A}}{A} + uA K^{-\psi} \frac{\dot{K}}{K} + (1-\psi)uL^{-\psi} \frac{\dot{L}}{L}.
\]

Równanie (1.18) wyznacza dynamiczną postać funkcji produkcji CES.

Z równania tego wyciągnąć można m.in. kilka następujących wniosków:

- Stopa wzrostu produktu \(\frac{\dot{Y}}{Y} \) przy funkcji produkcji CES, podobnie jak ma to miejsce w przypadku funkcji produkcji Cobba-Douglasa, zależy od stopy wzrostu łącznej produkcyjności czynników produkcji \(\frac{\dot{A}}{A} \), stopy wzrostu zasobu kapitału \(\frac{\dot{K}}{K} \) oraz od stopy wzrostu liczby pracujących \(\frac{\dot{L}}{L} \).

- Każdy punkt procentowy stopy wzrostu łącznej produkcyjności czynników produkcji, podobnie jak przy funkcji produkcji Cobba-Douglasa, przekłada się (ceteris paribus) na punkt procentowy stopy wzrostu produktu.

- Co więcej, ponieważ przy \(K > 0 \) i \(L > 0 \) wyrażenia \(\frac{\psi K^{-\psi}}{\psi K^{-\psi} + (1-\psi)L^{-\psi}} \) oraz \(\frac{(1-\psi)L^{-\psi}}{\psi K^{-\psi} + (1-\psi)L^{-\psi}} \) przyjmują wartości dodatnie, zatem im wyższe są stopy wzrostu
zasobów kapitału \(\frac{\dot{K}}{K} \) i pracy \(\frac{\dot{L}}{L} \), tym wyższa jest stopa wzrostu strumienia wytworzonego produktu \(\frac{\dot{Y}}{Y} \).

- O ile jednak przy dynamicznej funkcji produkcji Cobba-Douglasa (1.9) zależności między stopą wzrostu produktu a stopami wzrostu kapitału i pracy są zależnościami liniowymi, o tyle przy dynamicznej funkcji produkcji CES (1.18) związki te są nieliniowe oraz zależne zarówno od parametrów \(v \) i \(\psi \) funkcji produkcji CES, jak i od wielkości nakładów \(K \) i \(L \).

1.5. Funkcja Produkcji z Postępuem Technicznym

W prowadzonych wcześniej analizach dotyczących funkcji produkcji Cobba-Douglasa i CES definiowano pojęcie łącznej produkcyjności czynników produkcji. Zmienność ta mierzyła poziom zaangażowania (rozwoju) technologicznego gospodarki. Nie zdefiniowano jednak pojęcia postępu technicznego. Dlatego też w podpunkcie 1.5.1 zdefiniowane zostanie owo pojęcie oraz przedstawione będą jego podstawowe klasyfikacje w teorii makroekonomicznej. W podpunktach 1.5.2 oraz 1.5.3 uwzględniony będzie wpływ postępu technicznego i jego rodzajów zarówno na funkcję produkcji Cobba-Douglasa (podpunkt 1.5.2), jak i na funkcję produkcji CES (podpunkt 1.5.3).

1.5.1. Definicja i klasyfikacje postępu technicznego

W teorii makroekonomicznej przez postęp techniczny rozumie się zazwyczaj dynamiczny proces polegający na tym, że na skutek jego działania z tych samych nakładów klasycznych nakładów czynników produkcji (kapitału \(K \) i pracy \(L \)) może być wytworzony coraz większy strumień produktu \(Y \) lub, co na jedno wychodzi, ten sam strumień produktu może być wytworzony przy coraz mniejszych nakładach kapitału i pracy. Definicja ta zaczerpnięta jest od R.M. Solowa, który twierdził, że:

Gdy rozważmy postęp techniczny we właściwy ekonomistom, abstrakcyjny sposób, jest całkiem naturalne, że wyobrażamy sobie typowy wykres produkcji z nakładami mierzonymi wzdłuż osi układu i zespołem krzywych jednakowego produktu i twierdzymy, że przy postępie technicznym krzywe te przesuwają się w ten sposób, iż z danych nakładów może być wytworzona większa ilość produktu, albo że ten sam produkt może być wytworzony przy mniejszych nakładach (Solow, 1967: 48).

Płynie stąd wniosek, że przez postęp techniczny będzie dalej rozumiany dynamiczny proces, który polega na tym, że na skutek działania postępu technicznego izokwanta z funkcji produkcji (czyli krzywa jednokwadratowego produktu){\footnote{Przez izokwantę z funkcji produkcji rozumiane są wszystkie takie kombinacje nakładów czynników produkcji \((K > 0 \text{ i } L > 0)\), przy których możliwa jest realizacja określonej wielkości produkcji (wynoszącej np. \(Y_0 > 0 \)). Stąd zaś wynika, że izokwanta z funkcji produkcji jest, matematycznie rzecz biorąc, warstwicą z owej funkcji.}} będzie się przesuwała wraz
z upływem czasu w kierunku początku układu współrzędnych, w którym na osiach odłożone są nakłady kapitału K i pracy L. Definicję tę ilustruje rysunek 1.2.

![Rys. 1.2. Izokwenty z funkcji produkcji w warunkach występowania postępu technicznego](image)

Z rysunku 1.2 wynika, że jeśli w pewnym momencie \(t_1 \in [0;+\infty) \) wytworzenie wielkości produkcji \(Y_0 > 0 \) możliwe było np. przy zaangażowaniu \(K_0 > 0 \) jednostek kapitału i \(L_0 > 0 \) jednostek pracy, o tyle w momencie \(t_2 > t_1 \) (na skutek działania postępu technicznego) uzyskanie tej samej wielkości produkcji możliwe jest przy wykorzystaniu np. \(K_1 < K_0 \) jednostek kapitału (przy tych samych nakładach pracy \(L_0 \)) lub przy wykorzystaniu \(L_1 < L_0 \) jednostek pracy (przy tych samych, wynoszących \(K_0 \), nakładach kapitału). Oznacza to, że na skutek działania postępu technicznego izokwanta z funkcji produkcji przesuwa się w kierunku początku układu współrzędnych.

Co więcej, załóżmy, że funkcję produkcji definiuje się następująco:

\[
\forall t \in [0;+\infty) \quad Y(t) = \Phi(\Lambda(t),K(t),L(t)),
\]

(1.19)

gdzie K i L definiuje się tak jak uprzednio, zaś \(\Lambda > 0 \) jest dostępnym w gospodarce zasobem wiedzy naukowo-technicznej\(^{12} \), przy czym funkcja produkcji (1.19) spełnia (względem K i L) wszystkie założenia nakładane na funkcję produkcji (1.1) oraz \(\frac{\partial \Phi}{\partial \Lambda} > 0 \) i \(\Lambda > 0 \). Warunek \(\frac{\partial \Phi}{\partial \Lambda} > 0 \) oznacza tyle, że jeśli rośnie zasób dostępnej wiedzy \(\Lambda \), to (ceteris paribus) rośnie również wielkość wytworzonego produktu \(Y \). Jeśli zaś w funkcji produkcji (1.19) postęp techniczny utożsamiany jest ze wzrostem zasobu \(\Lambda \), to postęp ów występuje wtedy i tylko wtedy, gdy rośnie zasób dostępnej wiedzy, a więc wówczas, gdy w każdym momencie \(t \in [0;+\infty) \) zachodzi związek: \(\Lambda > 0 \). Stopę wzrostu wiedzy \(g = \frac{\dot{\Lambda}}{\Lambda} \) nazywali będziemy dalej stopą postępu technicznego.

\(^{12}\) Należy tutaj wyraźnie podkreślić, iż zasób \(\Lambda \) w funkcji produkcji (1.19) nie musi być tożsamy z łączną produkcyjnością czynników produkcji \(\Lambda \) w funkcjach produkcji Cobba-Douglasa i CES.
Ponadto w literaturze makroekonomicznej wyróżnia się kilka rodzajów postępu technicznego. Mówi się m.in. o postępie technicznym w sensie J.R. Hicksa, R.M. Solowa oraz R.F. Harroda. Przez postęp techniczny w sensie Hicksa rozumie się taki rodzaj postępu technicznego, który w takim samym stopniu potęguje produktywność kapitału rzeczowego i pracy. Innymi słowy, postęp techniczny w sensie Hicksa można utożsamić z takim przyrostem zasobu wiedzy A, który nie zmienia krańcowej stopy substytucji mrs = −\frac{\text{MPK}}{\text{MPL}} między nakładami czynników produkcji. Oznacza to, że przy postępie technicznym w sensie Hicksa funkcję produkcji (1.19) można zapisać następująco:

\[Y(t) = \Phi(\Lambda(t),K(t),L(t)) = \Lambda(t) \cdot F(K(t),L(t)), \]
(1.20a) gdzie funkcja F(K, L) opisana jest przez równanie (1.1).

Przez postęp techniczny w sensie Solowa rozumie się natomiast taki rodzaj postępu technicznego, który bezpośrednio potęguje produktywność nakładów kapitału. Postęp techniczny w sensie Harroda definiuje się zaś jako ten rodzaj postępu technicznego, który bezpośrednio potęguje produktywność pracy\(^{13}\). Płynie stąd wniosek, że przy postępie technicznym w sensie Solowa funkcję produkcji (1.19) można zapisać następująco:

\[Y(t) = \Omega(\Lambda(t),K(t),L(t)) = F(\Lambda(t),K(t),L(t)) = F(K(t),L(t)), \]
(1.20b) zaś postęp techniczny w sensie Harroda implikuje zależność:

\[Y(t) = \Phi(\Lambda(t),K(t),L(t)) = F(K(t),\Lambda(t) \cdot L(t)) = F(K(t),\tilde{L}(t)), \]
(1.20c) gdzie \(\tilde{K} = \Lambda K \) i \(\tilde{L} = \Lambda L \) oznaczają (odpowiednio) tzw. jednostki efektywnego kapitału \(\tilde{K} \) oraz jednostki efektywnej pracy \(\tilde{L} \).

Różniczkując równania (1.20abc) względem czasu \(t \in [0;+\infty) \), uzyskuje się następujące związki:

\[\dot{Y}(t) = \dot{\Lambda}(t) \cdot F(K(t),L(t)) + \Lambda(t) \cdot \frac{\partial F}{\partial K} \cdot \dot{K}(t) + \frac{\partial F}{\partial L} \cdot \dot{L}(t), \]
(1.21a)

\[\dot{Y}(t) = \frac{\partial F}{\partial K} \cdot \dot{K}(t) + \frac{\partial F}{\partial L} \cdot \dot{L}(t) = \frac{\partial F}{\partial K} \cdot (\dot{\Lambda}(t) \cdot K(t) + \Lambda(t) \cdot \dot{K}(t)) + \frac{\partial F}{\partial L} \cdot \dot{L}(t) \]
(1.21b) oraz:

\[\dot{Y}(t) = \frac{\partial F}{\partial K} \cdot \dot{K}(t) + \frac{\partial F}{\partial L} \cdot \dot{L}(t) = \frac{\partial F}{\partial K} \cdot \dot{K}(t) + \frac{\partial F}{\partial L} \cdot (\dot{\Lambda}(t) \cdot L(t) + \Lambda(t) \cdot \dot{L}(t)) \]
(1.21c)

\(^{13}\) Postęp techniczny w sensie Harroda „jest postępem technicznym potęgującym pracę w tym sensie, że jest równoznaczny z odpowiednim wzrostem siły roboczej”, a „daną produkcję można otrzymać z danych nakładów kapitału połączonych z malejącymi w czasie nakładami siły roboczej, L, mierzonymi w jednostkach naturalnych” (Allen, 1975: 237). Analogicznie rzecz się ma z postępem technicznym w sensie Solowa.
Równania (1.21abc) opisują relacje, które zachodzą między przyrostem nakładów kapitału \(K \), pracy \(L \) i wiedzy \(A \) a przyrostem produktu \(Y \) przy różnych (wyróżnionych tu) rodzajach postępu technicznego.

1.5.2. Postęp techniczny w funkcji produkcji Cobba-Douglasa

W przypadku funkcji produkcji Cobba-Douglasa postęp techniczny w sensie Hicksa występuje wówczas, gdy funkcja ta dana jest wzorem:

\[
\forall t \in [0;+\infty) \quad Y(t) = \Lambda(t)(K(t))^{\alpha}(L(t))^{1-\alpha}, \tag{1.22}
\]

gdzie \(\Lambda \) jest zasobem wiedzy odpowiadającym łącznej produkcyjności czynników produkcji w równaniu (1.8). Jeśli zasób ów rośnie według stopy postępu technicznego w sensie Hicksa równej \(g > 0 \), to (po zlogarytmowaniu związku (1.22) logarytmem naturalnym) uzyskuje się zależność:

\[
\forall t \in [0;+\infty) \quad \ln(Y(t)) = \ln(\Lambda(t)) + \alpha \cdot \ln(K(t)) + (1-\alpha) \cdot \ln(L(t)).
\]

Różniczkując powyższy związek względem czasu \(t \in [0;+\infty) \), dochodzi się do dynamicznej funkcji produkcji Cobba-Douglasa danej wzorem:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{Y}(t)}{Y(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \alpha \frac{\dot{K}(t)}{K(t)} + (1-\alpha) \frac{\dot{L}(t)}{L(t)} = g + \alpha \frac{\dot{K}(t)}{K(t)} + (1-\alpha) \frac{\dot{L}(t)}{L(t)}. \tag{1.23}
\]

Ponieważ równanie (1.23) tożsame jest z równaniem (1.9), zatem interpretacja ekonomiczna jest taka sama jak interpretacja owego równania.

Przy postępie technicznym w sensie Solowa funkcję produkcji Cobba-Douglasa można zapisać następująco:

\[
\forall t \in [0;+\infty) \quad Y(t) = (\Lambda(t) \cdot K(t))^{\alpha}(L(t))^{1-\alpha} = \left(\frac{\dot{K}(t)}{K(t)}\right)^{\alpha}(L(t))^{1-\alpha}. \tag{1.24}
\]

Łączna produkcyjność czynników produkcji w funkcji (1.24) równa jest \(\Lambda^{\alpha} \). Wynika to stąd, iż jednostkowym nakładem kapitału i pracy (\(K = L = 1 \)) odpowiada produkt \(Y \) równy właśnie \(\Lambda^{\alpha} \).

Jeśli założy się, iż zasób wiedzy \(\Lambda \) rośnie według stopy wzrostu \(g > 0 \) (będącej stopą postępu technicznego w sensie Solowa), to dokonując analogicznych przekształceń, jak przy przejściu z równania (1.22) do (1.23), okazuje się, że:

\[
\forall t \in [0;+\infty) \quad \ln(Y(t)) = \alpha \ln(\dot{K}(t)) + (1-\alpha)\ln(L(t)) = \alpha\ln(\Lambda(t)) + \ln(K(t)) + (1-\alpha)\ln(L(t)),
\]

skąd wynika, iż:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{Y}(t)}{Y(t)} = \alpha \frac{\dot{K}(t)}{K(t)} + (1-\alpha) \frac{\dot{L}(t)}{L(t)} = \alpha \left(\frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{K}(t)}{K(t)}\right) + (1-\alpha) \frac{\dot{L}(t)}{L(t)}. \tag{1.25}
\]
Z równania (1.25) płyną dwa następujące wnioski:

- Stopa wzrostu produktu \(\frac{\dot{Y}}{Y} \) równa jest sumie stopy wzrostu jednostek efektywnego kapitału \(\frac{\dot{K}}{K} \) i stopy wzrostu liczby pracujących \(\frac{\dot{L}}{L} \), ważonej elastycznościami \(\alpha \) i \(1 - \alpha \).

- Stopa wzrostu jednostek efektywnego kapitału jest zaś równa stopie postępu technicznego w sensie Solowa (g), powiększonej o stopę wzrostu zasobu kapitału \(\left(\frac{\dot{K}}{K} \right) \).

Przy postępie technicznym w sensie Harroda funkcja produkcji Cobba-Douglasa dana jest wzorem:

\[
\forall t \in [0;+\infty) \quad Y(t) = \left(K(t) \right)^{\alpha} \left(\Lambda(t) \cdot L(t) \right)^{1-\alpha} = \left(K(t) \right)^{\alpha} \left(L(t) \right)^{1-\alpha}.
\]

(1.26)

Czytelnicy powinni sami uzasadnić to, iż przy funkcji produkcji (1.26) łączna produkcyjność czynników produkcji równa jest \(\Lambda^{1-\alpha} \). Co więcej, korzystając z założenia, że \(\frac{\dot{\Lambda}}{\Lambda} = g \) (gdzie \(g > 0 \) jest stopą postępu technicznego w sensie Harroda) i dokonując analogicznych przekształceń jak poprzednio, dochodzi się do następującego równania stopy wzrostu produktu:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{Y}(t)}{Y(t)} = \frac{\dot{K}(t)}{K(t)} + \left(1 - \alpha \right) \frac{\dot{L}(t)}{L(t)} = \\
= \alpha \frac{\dot{K}(t)}{K(t)} + \left(1 - \alpha \right) \left(\frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{L}(t)}{L(t)} \right) = \alpha \frac{\dot{K}(t)}{K(t)} + \left(1 - \alpha \right) \left(g + \frac{\dot{L}(t)}{L(t)} \right).
\]

(1.27)

Ponieważ równanie (1.27) jest analogiczne do równania (1.25), zatem jego interpretację ekonomiczną pozostawiamy Czytelnikom.

1.5.3. Postęp techniczny w funkcji produkcji CES

Funkcję produkcji CES z postępem technicznym można zapisać za pomocą następujących wzórorów:

\[
\forall t \in [0;+\infty) \quad Y(t) = \Lambda(t) \left[\nu \cdot (K(t))^{-\psi} + (1 - \nu) \cdot (L(t))^{-\psi} \right]^{1/\psi}
\]

(1.28a)

(przy postępie technicznym w sensie Hicksa)

\[
\forall t \in [0;+\infty) \quad Y(t) = \left[\nu \cdot (\Lambda(t) \cdot K(t))^{-\psi} + (1 - \nu) \cdot (L(t))^{-\psi} \right]^{1/\psi}
\]

(1.28b)

(wówczas, gdy postęp techniczny jest postępowem w sensie Solowa) oraz:

\[
\forall t \in [0;+\infty) \quad Y(t) = \left[\nu \cdot (K(t))^{-\psi} + (1 - \nu) \cdot (\Lambda(t) \cdot L(t))^{-\psi} \right]^{1/\psi}
\]

(1.28c)
(przy postępie w sensie Harroda). Różniczkując równania (1.28abc) względem czasu \(t \in [0;+\infty) \), uzyskuje się następujące zależności:

\[
\forall t \in [0;+\infty) \quad \dot{Y}(t) = \dot{\Lambda}(t) \cdot \left[u \cdot [K(t)]^{-\psi} + (1-u) \cdot [L(t)]^{-\psi} \right]^{1/\psi} - \frac{\Lambda(t)}{\psi} \cdot \\
\left[u \cdot [K(t)]^{-\psi} + (1-u) \cdot [L(t)]^{-\psi} \right]^{1/\psi-1} \cdot \left(-u\psi(K(t))^{-\psi-1} \dot{K}(t) - (1-u)\psi(L(t))^{-\psi-1} \dot{L}(t) \right) =
\]

\[
= Y(t) \left(\frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\psi(K(t))^{-\psi-1} \dot{K}(t) + (1-u)(L(t))^{-\psi-1} \dot{L}(t)}{\psi(K(t))^{-\psi} + (1-u)(L(t))^{-\psi}} \right),
\]

\[
\forall t \in [0;+\infty) \quad \dot{Y}(t) = -\frac{1}{\psi} \left[u(\Lambda(t)K(t))^{-\psi} + (1-u)(L(t))^{-\psi} \right]^{1/\psi-1} \cdot \\
\left(-u\psi(\Lambda(t)K(t))^{-\psi-1} (\dot{\Lambda}(t)K(t) + \Lambda(t)\dot{K}(t)) + \\
(1-u)\psi(L(t))^{-\psi-1} \dot{L}(t) \right) =
\]

\[
= Y(t) \frac{u(\Lambda(t)K(t))^{-\psi-1} (\dot{\Lambda}(t)K(t) + \Lambda(t)\dot{K}(t)) + (1-u)(L(t))^{-\psi-1} \dot{L}(t)}{u(\Lambda(t)K(t))^{-\psi} + (1-u)L(t)}
\]

i (analogicznie):

\[
\forall t \in [0;+\infty) \quad \dot{Y}(t) = Y(t) \cdot \\
\frac{u(K(t))^{-\psi-1} \dot{K}(t) + (1-u)(\Lambda(t)L(t))^{-\psi-1} (\dot{\Lambda}(t)L(t) + \Lambda(t)\dot{L}(t))}{u(K(t))^{-\psi-1} + (1-u)(\Lambda(t)L(t))^{-\psi-1}}.
\]

Związki (1.29abc) wyznaczają zależności zachodzące między przyrostem kapitału \(\dot{K} \), wzrostem liczby pracujących \(\dot{L} \), przyrostem wiedzy \(\dot{\Lambda} \) a wzrostem produktu \(\dot{Y} \) przy funkcji produkcji CES i postępie technicznym w sensie Hicksa (1.29a), Solowa (1.29b) oraz Harroda (1.29c).
1.6. FUNKCJE PRODUKCJI COBBA-DOUGLASA W WARUNKACH EFEKTÓW SKALI

W prowadzonych w poprzednich punktach analizach przyjmowaliśmy założenie, że funkcje produkcji są jednorodne stopnia pierwszego względem nakładów kapitału rzeczowego K i nakładów pracy L. Założenie to było równoznaczne z tym, że proces produkcyjny charakteryzuje się stałymi efektami skali. Teraz uchylimy to założenie, w przedstawionych analizach przyjmowaliśmy założenie, że funkcje produkcji są jednorodne stopnia pierwszego w zakresie nakładów kapitału rzeczowego K i nakładów pracy L.

Może być jednorodna dowolnego stopnia \(\Omega > 0 \). Oznacza to, że dla każdego \(\zeta \geq 0 \) zachodzi równość:

\[
Y = \Phi(A, K, L)
\]

Co więcej, jeśli stopień jednorodności \(\Omega \) będzie większy (mniejszy) od jedności, to będziemy mówili, że funkcja produkcji (1.30) charakteryzuje się rosnącymi (malejącymi) efektami skali. Wynika to stąd, iż przy jednorodności stopnia \(\Omega > 1 \) \((\Omega < 1) \) funkcja produkcyjna charakteryzuje się rosnącymi (malejącymi) efektami skali.

Jeśli rozważa się funkcje produkcji typu Cobba-Douglasa w warunkach występowania efektów skali, to przy postępie technicznym w sensie Hicksa, Solowa i Harroda funkcje te można zapisać następującymi wzorami:

\[
Y = \Phi(A, K, L) = \Lambda F(K, L) = \Lambda K^\alpha L^\Theta; \quad \text{gdzie } \alpha, \Theta \in (0;1) \quad (1.31a)
\]

(przy postępie w sensie Hicksa);

\[
Y = \Phi(A, K, L) = F(\Lambda K, L) = (\Lambda K)^\alpha L^\Theta; \quad \text{gdzie } \alpha, \Theta \in (0;1) \quad (1.31b)
\]

(gdy postęp techniczny ma charakter postępu technicznego w sensie Solowa) oraz:

\[
Y = \Phi(A, K, L) = F(K, \Lambda L) = K^\alpha(\Lambda L)^\Theta; \quad \text{gdzie } \alpha, \Theta \in (0;1) \quad (1.31c)
\]

(wówczas, gdy mamy do czynienia z postępowaniem technicznym w sensie Harroda). Parametr \(\alpha \) jest elastycznością wytworzono produktu względem nakładów kapitału (przy postępie technicznym w sensie Hicksa i Harroda) lub jednostek efektywnego kapitału \(\bar{K} \equiv \Lambda K \) (gdy postęp techniczny jest postępowaniem technicznym w sensie Solowa). Wynika to stąd, że:

\[
\varepsilon_{YK} = \frac{\partial Y}{\partial K} \cdot \frac{K}{\Lambda K^\alpha L^\Theta} = \frac{\partial Y}{\partial K} \cdot \frac{K}{\Lambda K^\alpha L^\Theta} = \alpha \Lambda K^\alpha L^\Theta.
\]

14 Czytelnicy, którzy nie będą rozważali rozdziału dziewiątego skryptu, mogą pominać punkt 1.6.
przy funkcji produkcji (1.31a);
\[\varepsilon_{YK} = \frac{\partial Y}{\partial K} \cdot \frac{K}{Y} = \frac{\partial}{\partial K} \left(\frac{K^\alpha L^\Theta}{L^\Theta} \right) = \frac{\partial}{\partial K} \left(\frac{K^\alpha L^\Theta}{L^\Theta} \right) = \alpha \frac{K^\alpha L^\Theta}{L^\Theta} = \alpha \]

w przypadku funkcji produkcji (1.31b)\(^\text{15}\) oraz:
\[\varepsilon_{YK} = \frac{\partial Y}{\partial K} \cdot \frac{K}{Y} = \frac{\partial}{\partial K} \left(\frac{K^\alpha (L^\Theta)}{L^\Theta} \right) = \alpha \frac{K^\alpha (L^\Theta)}{L^\Theta} = \alpha \]

gdy makroekonomiczna funkcja produkcji opisana jest przez równanie (1.31c). Podobnie, parametr \(\Theta\) jest elastycznością wytworzonego produktu względem nakładów pracy, przy postępie w sensie Hicksa i Solowa, lub nakładów efektywnej pracy, przy harrodiańskim postępie technicznym (wykazanie tego pozostawiamy Czytelnikowi).

Funkcje produkcji (1.31abc) są jednorodne stopnia \(Q = a + \Theta > 0\). Wynika to stąd, że zachodzą następujące zależności:
\[\forall \zeta > 0 \quad \Phi(\Lambda, \zeta K, \zeta L) = \Lambda(\zeta K)^a (\zeta L)^\Theta = \zeta^{a+\Theta} \Lambda K^a L^\Theta = \zeta^{a+\Theta} \Phi(\Lambda, K, L) \]
(w przypadku funkcji produkcji z hicksowskim postępowem technicznym);
\[\forall \zeta > 0 \quad \Phi(\Lambda, \zeta K, \zeta L) = (\Lambda \zeta K)^a (\zeta L)^\Theta = \zeta^{a+\Theta} (\Lambda K)^a L^\Theta = \zeta^{a+\Theta} \Phi(\Lambda, K, L) \]
(gdy funkcja produkcji charakteryzuje się postępowem w sensie Solowa) oraz:
\[\forall \zeta > 0 \quad \Phi(\Lambda, \zeta K, \zeta L) = (\zeta K)^a (\Lambda \zeta L)^\Theta = \zeta^{a+\Theta} K^a (\Lambda L)^\Theta = \zeta^{a+\Theta} \Phi(\Lambda, K, L) \]
(przy harrodiańskim postępowem technicznym). Z powyższych zależności płynie również wniosek, że jeśli suma elastyczności \(a + \Theta\) jest większa (mniejsza) od jedności, to funkcje produkcji Cobba-Douglasa (1.31abc) charakteryzują się rosnącymi (malejącymi) efektami skali.

1.7. PODSUMOWANIE

Prowadzone w rozdziale pierwszym rozważania można podsumować następująco:

1. Przez neoklasyczną, makroekonomiczną funkcję produkcji rozumie się funkcję, która charakteryzuje się m.in. tym, że nakłady czynników produkcji (kapitału i pracy) są niezbędne do wytworzenia strumienia produktu, występują malejące produkcyjności krańcowe nakładów kapitału i pracy (czyli wzrost nakładów kapitału lub pracy ceteris paribus prowadzi do coraz mniejszych przyrostów produk-

15 W tym przypadku parametr \(a\) jest również elastycznością produkcji względem nakładów kapitału. Wynika to stąd, że:
\[\varepsilon_{YK} = \frac{\partial Y}{\partial K} \cdot \frac{K}{Y} = \frac{\partial}{\partial K} \left(\frac{\Lambda K^a L^\Theta}{L^\Theta} \right) = \frac{\partial}{\partial K} \left(\frac{\Lambda K^a L^\Theta}{L^\Theta} \right) = \alpha \frac{\Lambda K^a L^\Theta}{L^\Theta} = \alpha \]
tu) oraz mają miejsce stałe efekty skali procesu produkcyjnego (a więc dowolne, \(\zeta\)-krotne zwiększenie nakładów kapitału i pracy, przy \(\zeta > 1\), prowadzi do \(\zeta\)-kron- nego wzrostu strumienia wytworzonego produktu).

II. Szczególnym przypadkiem neoklasycznej funkcji produkcji jest funkcja produkcji Cobba-Douglasa. W przypadku tej funkcji produkcji elastyczności strumienia produktu względem nakładów kapitału i pracy sumują się do jedności. Elastycz- ności te są również, na gruncie marginalnej teorii podziału Clarka, udziałami na- kładów kapitału i pracy w wytworzonem produkcie.

III. Innym przykładem funkcji produkcji, która spełnia większość założeń nakłada- nych na neoklasyczną funkcję produkcji, jest funkcja produkcji o stałej elastycz- ności substytucji, nazywana funkcją produkcji CES.

IV. Przez postęp techniczny rozumie się dynamiczny proces, który polega na tym, że wraz z upływem czasu dana wielkość produkcji może być wytworzona z coraz mniejszych nakładów czynników produkcji lub (co na jedno wychodzi) te same nakłady kapitału i pracy prowadzą do wytworzenia coraz większej wielkości strumienia produkcji.

V. Podstawowe typy postępu technicznego w teorii makroekonomicznej to postęp techniczny w sensie Hicksa, Solowa i Harroda. Przez postęp techniczny w sensie Hicksa rozumie się taki typ postępu technicznego, który nie zmienia krańcowej stopy substytucji między nakładami czynników produkcji. Natomiast postęp techniczny, który bezpośrednio potęguje produkcyjność kapitału (pracy), nazy- wany jest postępowem technicznym w sensie Solowa (Harroda).

VI. Neoklasyczna funkcja produkcji, która charakteryzuje się stałymi efektami skali, jest jednorodna stopnia pierwszego. Jeśli zaś stopień jednorodności funkcji pro- dukcji jest większy (mniejszy) od jedności, to mają miejsce rosnące (malejące) efekty skali procesu produkcyjnego. Wynika to stąd, iż przy jednorodności funk- cji produkcji stopnia większego (mniejszego) od jedności dowolne \(\zeta\)-krotne, przy \(\zeta > 1\), zwiększenie nakładów kapitału i pracy prowadzi do więcej (mniej) niż \(\zeta\)-kronnego wzrostu wielkości produkcji.
Rozdział drugi

MODEL WZROSTU SOLOWA

2.1. WProwadzenie

W rozdziale pierwszym skryptu zdefiniowano oraz scharakteryzowano podstawowe właściwości neoklasycznych, makroekonomicznych funkcji produkcji. Poczynając od rozdziału drugiego, funkcje te będą wykorzystywane w modelowaniu procesów długo-okresowego wzrostu gospodarczego. Analizy dotyczące determinantów wzrostu gospodarczego rozpoczniemy od scharakteryzowania neoklasycznego modelu wzrostu gospodarczego Roberta M. Solowa z 1956 roku. Wynika to stąd, iż model wzrostu Solowa stanowi punkt odniesienia dla większości współczesnych modeli wzrostu gospodarczego.

Celem analiz prowadzonych w rozdziale drugim skryptu jest zatem:

I. Charakterystyka założeń neoklasycznego modelu wzrostu gospodarczego Solowa.

II. Wyznaczenie równowagi gospodarki Solowa przy ogólnej, neoklasycznej funkcji produkcji.

III. Określenie determinantów długoookresowej równowagi Solowa.

IV. Rozwiązanie modelu wzrostu Solowa wówczas, gdy proces produkcyjny w gospodarce opisany jest przez funkcję produkcji Cobba-Douglasa.

V. Rozważanie determinantów równowagi Solowa przy funkcji produkcji Cobba-Douglasa.

VI. Wyznaczenie równowagi modelu Solowa przy funkcji produkcji CES.

VII. Określenie determinantów równowagi Solowa przy funkcji produkcji CES.

Należy również zaznaczyć, iż w prowadzonych dalej rozważaniach zakłada się, że postęp techniczny ma charakter egzogeniczny w stosunku do gospodarki oraz że postęp ten jest postępm w sensie Harroda. Założenie o tym, że egzogeniczny postęp techniczny jest postępem w sensie Harroda, wynika z dwóch względów. Wynika to (po pierwsze) stąd, że przy harrodiańskim postępie technicznym natychmiast jest rozwiązać większość modeli wzrostu gospodarczego, oraz (po drugie) stąd, iż rozwiązania modelu Solowa przy postępie w sensie Hicksa i Solowa są w znacznej mierze analogiczne do rozwiązań przy postępie technicznym w sensie Harroda.
2.2. ZAŁOŻENIA MODELU SOLOWA

W modelu wzrostu gospodarczego Solowa z postępem technicznym w sensie Harroda przyjmuje się następujące założenia dotyczące funkcjonowania gospodarki w długim okresie:

1. Proces produkcyjny opisany jest przez neoklasyczną funkcję produkcji z harrodiańskim postępem technicznym daną wzorem:

\[Y(t) = F(\Lambda(t), K(t), L(t)) = F(K(t), \Lambda(t)L(t)), \tag{2.1} \]

gdzie \(Y \) jest strumieniem wytworzonego w gospodarce produktu, \(\Lambda > 0 \) to zasób do-stępnej wiedzy (naukowej i technicznej), która wykorzystywana jest w procesach produkcyjnych, \(K \geq 0 \) i \(L \geq 0 \) są nakładami kapitału i pracy, \(\widetilde{L} = \Lambda L \) to (zdefiniowane w rozdziale pierwszym skryptu) jednostki efektywnej pracy ä r zaś funkcja produkcji charakteryzuje się takimi samymi właściwościami jak funkcja produkcji (1.20c) z podpunktu 1.5.1 skryptu. Funkcja produkcji (2.1) opisuje makroekonomiczne relacje zachodzące w dowolnym momencie \(t \in [0;+\infty) \) między nakładami kapitału rzeczowego \(K \) i jednostkami efektywnej pracy \(\widetilde{L} \) a wielkością strumienia wytworzonego wówczas strumienia produktu \(Y \).

2. Przyrost zasobu kapitału \(\dot{K} \) w każdym momencie \(t \in [0;+\infty) \) stanowi różnicę między inwestycjami \(I \) a deprecjacją kapitału \(\delta K \), gdzie \(\delta \in (0;1) \) jest stopą deprecjacji kapitału. Stopę deprecjacji kapitału definiuje się jako odsetek kapitału, który ulega zużyciu w procesie produkcyjnym. Dla uproszczenia rozważań zakładamy też, że stopa deprecjacji kapitału nie ulega zmianom w czasie. Płynie stąd wniosek, że przyrost zasobu kapitału opisuje następujące równanie różniczkowe:

\[\forall t \in [0;+\infty) \quad \dot{K}(t) = I(t) - \delta K(t). \tag{2.2} \]

3. W warunkach gospodarki zamkniętej, jaką jest gospodarka w neoklasycznym modelu wzrostu Solowa, inwestycje \(I \) finansowane są tylko i wyłącznie przez oszczędności \(S \). Oszczędności te definiowane są zaś jako nieskonsumowana część wytworzonego produktu (a więc \(S = Y - C \), gdzie \(C \) jest strumieniem konsumpcji w gospodarce). Wynika stąd, że w każdym momencie \(t \in [0;+\infty) \) spełnione jest równanie:

\[I(t) = S(t). \tag{2.3} \]

4. Oszczędności stanowią s-tą część produkcji \(Y \), gdzie \(s \in (0;1) \) jest stopą oszczędności rozumianą jako udział oszczędności w produkcji (\textit{implicite} oznacza to również, że udział konsumpcji w produkcie \(\frac{C}{Y} \) wynosi \(1-s \)). Ponieważ, zgodnie z założeniem 3 modelu wzrostu gospodarczego Solowa, oszczędności determinują inwestycje, zatem zmienna s stanowi również udział inwestycji \(I \) w produkcie \(Y \). Dlatego też stopa s nazywana będzie dalej stopą oszczędności/inwestycji. Co więcej, zakładamy także, iż w każdym momencie \(t \in [0;+\infty) \) stopa oszczędności/inwestycji \(s \) jest taka sama. Wynika stąd, że dla każdego \(t \in [0;+\infty) \) spełniony jest związkek:
5. Liczba pracujących \(L \) rośnie według egzogenicznej, zdeterminowanej przez działanie czynników demograficznych, stopy wzrostu \(n > 0 \). Jeśli dodatkowo założy się, że w momencie \(t = 0 \) liczba pracujących wynosiła \(L(0) = L_0 > 0 \), to okaże się, że zachodzą następujące zależności:

\[
\forall t \in [0;+\infty) \quad L(t) = L_0 e^{nt} \Rightarrow \dot{L}(t) = nL(t).
\]

(2.5)

6. Zasób wiedzy w momencie \(t = 0 \) ukształtował się na poziomie \(\Lambda(0) = \Lambda_0 > 0 \) i w każdym następnym momencie rośnie według stopy \(g > 0 \), która jest stopą egzogenicznego postępu technicznego w sensie Harroda (lub stopą harrodiańskiego postępu technicznego). Wynika stąd, że w każdym momencie \(t \in [0;+\infty) \) spełnione są związki:

\[
\Lambda(t) = \Lambda_0 e^{gt} \Rightarrow \dot{\Lambda}(t) = g\Lambda(t).
\]

(2.6)

Ponieważ z równań (2.5) i (2.6) wynika, że \(\frac{\dot{L}}{L} = n \) oraz \(\frac{\dot{\Lambda}}{\Lambda} = g \), zaś jednostki efektywnie pracują zdefiniowane są jako iloczyn \(\Lambda L \), zatem:

\[
\forall t \in [0;+\infty) \quad \ln(\frac{\dot{L}(t)}{L(t)}) = \ln(\Lambda(t)) + \ln(L(t)) \Rightarrow \frac{\dot{L}(t)}{L(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{L}(t)}{L(t)} = g + n.
\]

(2.7)

Z zależności (2.7) płynie wniosek, że stopa wzrostu jednostek efektywnej pracy \(\frac{\dot{L}}{L} \) jest sumą stopy harrodiańskiego postępu technicznego \(g \) i stopy wzrostu liczby pracujących \(n \).

Związki zachodzące między zasobami (oznaczonymi prostokątami) a strumieniami (zaznaczonymi strzałkami) w neoklasycznym modelu wzrostu gospodarczego Solowa zilustrowane są na rysunku 2.1.
Z rysunku 2.1 wynika, że (zgodnie z założeniem 1 modelu wzrostu Solowa) wielkość wytworzonego strumienia produktu \(Y \) zależna jest od wielkości nakładów kapitału \(K \), pracy \(L \) oraz wiedzy \(\Lambda \) (ponieważ \(\tilde{L} = \Lambda L \) zatem wielkość produkcji \(Y \) uzależnić można również jedynie od nakładów \(K \) i \(\tilde{L} \)). Produkcja, na mocy założenia 4, rozkłada się na konsumpcję \(C = (1 - s)Y \) oraz oszczędności \(S = sY \). Oszczędności \(S \) determinują inwestycje \(I \) (założenie 3). Przyrost zasobu kapitału \(\dot{K} \) jest różnicą między strumieniem inwestycji \(I \) a deprecjacją kapitału \(\delta K \) (założenie 2). Natomiast zasoby pracy \(L \) i wiedzy \(\Lambda \), zgodnie z założeniami 5–6, rosną według stopę wzrostu równych (odpowiednio) \(g \) oraz \(n \).

2.3. RÓWNOWAGA SOLOWA

Ponieważ makroekonomiczna funkcja produkcji (2.1) jest jednorodna stopnia pierwszego (względem \(K \) i \(\tilde{L} \)), zatem dla każdego \(t, \zeta \geq 0 \) zachodzi związek:

\[
\zeta Y(t) = F(\zeta K(t), \zeta \tilde{L}(t)).
\]

(2.8)

W szczególności, przy \(\zeta = \frac{1}{L} \) dla dowolnego \(\tilde{L} > 0 \), w każdym momencie \(t \in [0;+\infty) \), równanie (2.8) zapisać można następująco:

\[
\frac{Y(t)}{\tilde{L}(t)} = F\left(\frac{K(t)}{\tilde{L}(t)}, \tilde{L}(t)\right) = f\left(\frac{K(t)}{\tilde{L}(t)}\right)
\]

lub:

\[
\tilde{y}(t) = F\left(\tilde{k}(t), 1\right) = f\left(\tilde{k}(t)\right),
\]

(2.9)

gdzie \(\tilde{y} = \frac{Y}{L} \) i \(\tilde{k} = \frac{K}{L} \) oznaczają, odpowiednio, produkt \(Y \) i kapitał \(K \) przypadające na jednostkę efektywnej pracy \(\tilde{L} \). Równanie (2.9) wyznacza funkcję produktu na jednostkę efektywnej pracy (zwaną również czasami funkcją produkcji w postaci intensywnej lub efektywnej). Funkcja ta opisuje relacje zachodzące między kapitałem na jednostkę efektywnej pracy \(\tilde{k} \) a produktem na jednostkę efektywnej pracy \(\tilde{y} \) w rozważanym tu modelu wzrostu gospodarczego.

1 Produkt na jednostkę efektywnej pracy \(\tilde{y} \) można również wyrazić w kategoriach wydajności pracy \(y = \frac{Y}{L} \) (rozumianej jako produkt na pracującego) i zasobu wiedzy \(\Lambda \). Wynika to stąd, że

\[
\tilde{y} = \frac{Y}{L} = \frac{Y}{\Lambda L} = \frac{Y}{\Lambda} \cdot \frac{1}{L} = \frac{Y}{\Lambda}.
\]

Rozumując analogicznie, co pozostawiamy Czytelnikowi, można również pokazać, że \(\tilde{k} = \frac{k}{\Lambda} \), gdzie \(k \) jest technicznym uzbrojeniem pracy (utożsamianym z kapitałem na pracującego).
Funkcja produkcji na jednostkę efektywnej pracy (2.9) charakteryzuje się następującymi właściwościami²:

(i) \(f(0) = F(0;1) = 0; \)

(ii) \(\lim_{k \to +\infty} f(k) = \lim_{k \to +\infty} F(k,1) = +\infty; \)

(iii) \(\forall k > 0 \quad \frac{df}{dk} = \frac{\partial F(k,1)}{\partial k} > 0; \)

(iv) \(\lim_{k \to 0^+} \left(\frac{df}{dk} \right) = \lim_{k \to 0^+} \left(\frac{\partial F(k,1)}{\partial k} \right) = +\infty; \)

(v) \(\lim_{k \to +\infty} \left(\frac{df}{dk} \right) = \lim_{k \to +\infty} \left(\frac{\partial F(k,1)}{\partial k} \right) = 0; \)

(vi) \(\forall k > 0 \quad \frac{d^2f}{dk^2} = \frac{\partial^2 F(k,1)}{\partial k^2} < 0. \)

Wstawiając równanie (2.4) do zależności (2.3), uzyskuje się związek:

\[\forall t \in [0;+\infty) \quad I(t) = sY(t). \]

Stąd zaś oraz z zależności (2.2) wynika, że w każdym momencie \(t \in [0;+\infty) \) spełnione jest równanie:

\[\dot{K}(t) = sY(t) - \delta K(t). \quad (2.10) \]

Ponieważ \(\tilde{k} = \frac{K}{L} \), więc, po zróżniczkowaniu \(\tilde{k} \) względem czasu \(t \in [0;+\infty) \), uzyskuje się równanie:

\[\forall t \in [0;+\infty) \quad \dot{\tilde{k}}(t) = \frac{\dot{K}(t)\tilde{L}(t) - K(t)\dot{\tilde{L}}(t)}{[\tilde{L}(t)]^2} = \frac{\dot{K}(t) - K(t)}{\tilde{L}(t)}. \]

Z powyższej zależności oraz z równań (2.7) i (2.10) wynika, iż:

\[\forall t \in [0;+\infty) \quad \dot{\tilde{k}}(t) = \frac{\dot{K}(t) - K(t)(g + n)}{\tilde{L}(t)} = \frac{sY(t) - \delta K(t) - (g + n)K(t)}{\tilde{L}(t)} = \]

\[= \frac{sY(t) - (\delta + g + n)K(t)}{\tilde{L}(t)} = s \frac{Y(t)}{\tilde{L}(t)} - (\delta + g + n) \frac{K(t)}{\tilde{L}(t)} \]

² Interpretacja ekonomiczna właściwości (i–vi) jest analogiczna do odpowiednich właściwości funkcji produkcji (1.1) w punkcie 1.2 skryptu. Dlatego też interpretację tę pozostawiamy Czytelnikom.
lub:

$$\forall t \in [0;+\infty) \quad \dot{k}(t) = s\tilde{y}(t) - (\delta + g + n)\tilde{k}(t). \quad (2.11)$$

Równanie (2.11) nazywali będziemy równaniem Solowa. Równanie Solowa interpretuje się ekonomicznie w ten sposób, iż przyrost zasobu kapitału na jednostkę efektywnej pracy (\dot{k}) równy jest różnicy między oszczędnościami/inwestycjami na jednostkę efektywnej pracy (czyli $s\tilde{y} = \frac{sY}{L} = \frac{S}{L} = \frac{I}{L}$) a ubytkiem kapitału na jednostkę efektywnej pracy ($[\delta + g + n]k$), który to ubytek wynika zarówno z deprecjacji kapitału (δk), jak i ze wzrostu jednostek efektywnej pracy ($[g + n]k$). Wynika stąd, że jeśli oszczędności/inwestycje na jednostkę efektywnej pracy będą wyższe (niższe) od ubytka kapitału na jednostkę efektywnej pracy, to przyrosty zasobu kapitału na jednostkę efektywnej pracy będą dodatnie (ujemne), co implikuje, iż wówczas zasób \tilde{k} będzie rósł (malał) wraz z upływem czasu. Jeśli zaś $s\tilde{y} = (\delta + g + n)\tilde{k}$, to $\dot{k} = 0$ i wielkość zasobu kapitału na jednostkę efektywnej pracy nie będzie ulegała zmianom w czasie.

Wstawiając funkcję (2.9) do równania Solowa (2.11), można je zapisać następująco:

$$\forall t \in [0;+\infty) \quad \dot{k}(t) = sf(\tilde{k}(t)) - (\delta + g + n)\tilde{k}(t). \quad (2.12)$$

Z równania różniczkowego (2.12) wynika, że dla każdego $\tilde{k} > 0$ oraz $t \in [0;+\infty)$ zachodzą związki:

$$\dot{k}(t) > 0 \iff sf(\tilde{k}(t)) - (\delta + g + n)\tilde{k}(t) > 0 \iff \frac{f(\tilde{k}(t))}{\tilde{k}(t)} > \frac{\delta + g + n}{s}, \quad (2.13a)$$

$$\dot{k}(t) = 0 \iff sf(\tilde{k}(t)) - (\delta + g + n)\tilde{k}(t) = 0 \iff \frac{f(\tilde{k}(t))}{\tilde{k}(t)} = \frac{\delta + g + n}{s} \quad (2.13b)$$

oraz:

$$\dot{k}(t) < 0 \iff sf(\tilde{k}(t)) - (\delta + g + n)\tilde{k}(t) < 0 \iff \frac{f(\tilde{k}(t))}{\tilde{k}(t)} < \frac{\delta + g + n}{s}, \quad (2.13c)$$

gdzie $\frac{f(\tilde{k})}{\tilde{k}} = \tilde{y} = \frac{Y}{L} = \frac{Y}{K}$ jest produktywnością kapitału rozumianą jako produkt Y przypadający na jednostkę kapitału K.

3 Należy w tym miejscu zwrócić uwagę na to, że przy $\tilde{k} = 0$ zależności (2.13abc) nie są spełnione, a równanie różniczkowe (2.12) posiada rozwiązanie trywialne $\tilde{k} = 0$, gdyż wówczas $\dot{k} = sf(\tilde{k}) - (\delta + g + n)\tilde{k} = 0$. Rozwiązanie trywialne $\tilde{k} = 0$ jest jednak mało interesujące z makroekonomicznego punktu widzenia (gdyż wyznacza stan gospodarki, w którym łączny zasób kapitału rzeczonego K równy jest 0) i dlatego będzie pomijane w prowadzonych dalej rozważaniach.
Oznaczmy teraz przez $\Pi(\tilde{k}) = \frac{f(\tilde{k})}{\tilde{k}}$ funkcję opisującą produkcyjność kapitału $\Pi(\tilde{k})$ w zależności od kapitału przypadającego na jednostkę efektywnej pracy \tilde{k}, przy czym $\tilde{k} \in (0;+\infty)$. Rozważając przebieg zmienności funkcji $\Pi(\tilde{k})$ przy $\tilde{k} \in (0;+\infty)$, okazuje się, że zgodnie z właściwościami (i–vi) funkcji (2.9) zachodzą następujące związki:

$$\lim_{k \to 0^+} \left[\Pi(\tilde{k}) \right] = \lim_{k \to 0^+} \left[\frac{f(\tilde{k})}{\tilde{k}} \right] = \lim_{k \to 0^+} \left[\frac{df/d\tilde{k}}{dk/d\tilde{k}} \right] = \lim_{k \to 0^+} \left[\frac{df}{dk} \right] = +\infty,$$

(2.14a)

$$\lim_{k \to +\infty} \left[\Pi(\tilde{k}) \right] = \lim_{k \to +\infty} \left[\frac{f(\tilde{k})}{\tilde{k}} \right] = \lim_{k \to +\infty} \left[\frac{df/d\tilde{k}}{dk/d\tilde{k}} \right] = \lim_{k \to +\infty} \left[\frac{df}{dk} \right] = 0$$

(2.14b)

oraz:

$$\forall \tilde{k} > 0 \quad \frac{d\Pi}{dk} = \frac{d}{dk} \left(\frac{f(\tilde{k})}{\tilde{k}} \right) = \frac{df}{dk} \frac{\tilde{k}}{\tilde{k}^2} - \frac{f(\tilde{k})}{\tilde{k}^2} < 0,$$

(2.14c)

gdzie przy $\tilde{k} \in (0;+\infty)$ wielkość \tilde{k}^2 przyjmuje wyłącznie wartości dodatnie, zaś wyrażenie $f(\tilde{k}) - \frac{df}{dk} \tilde{k}$ jest ilorazem krańcowego produktu pracy MPL i zasobu wiedzy Λ, który to iloraz (na mocy założeń przyjmowanych w rozdziale pierwszym skryptu) jest dodatni. Fakt, iż zachodzi związek $f(\tilde{k}) - \frac{df}{dk} \tilde{k} = \frac{\text{MPL}}{\Lambda}$, wynika stąd, że:

$$\forall t \in [0;+\infty) \quad Y(t) = \tilde{L}(t)\tilde{y}(t) = \Lambda(t)L(t)\tilde{y}(t),$$

a stąd i z równania (2.9) płynie wniosek, iż:

$$\forall t \in [0;+\infty) \quad Y(t) = \Lambda(t) \cdot L(t) \cdot f(\tilde{k}(t)),$$

gdzie: $\tilde{k} = \frac{K}{L} = \frac{K}{\Lambda L}$.

Różniczkując powyższy związek względem nakładów pracy L, uzyskuje się:

$$\text{MPL} = \frac{\partial Y}{\partial L} = \frac{\partial}{\partial L} \left(\Lambda L f(\tilde{k}) \right) = \Lambda \left(f(\tilde{k}) + L \frac{df}{dk} \tilde{k} \right) = \Lambda \left(f(\tilde{k}) + L \frac{df}{dk} \left(-\frac{K}{\Lambda L^2} \right) \right) =$$

$$= \Lambda \left(f(\tilde{k}) - \frac{df}{dk} \frac{K}{\Lambda L} \right) = \frac{\text{MPL}}{\Lambda},$$

a stąd:

$$f(\tilde{k}) - \frac{df}{dk} \tilde{k} = \frac{\text{MPL}}{\Lambda}.$$
Z zależności (2.14abc) wynika, że przy kapitale na jednostkę efektywnej pracy \(\tilde{k} \) zmieniającym się w przedziale \((0;+\infty)\) produktywność kapitału \(\Pi(\tilde{k}) \) spada w sposób ciągły od \(+\infty\) do 0. Krzywa ta zilustrowana jest na rysunku 2.2.

Z rysunku 2.2 wynika, że istnieje dokładnie jeden dodatni zasób kapitału na jednostkę efektywnej pracy \(\tilde{k}^* \), przy którym produktywność kapitału \(\Pi(\tilde{k}) = \frac{f(\tilde{k})}{\tilde{k}} \) równa jest dodatniej wartości \(\frac{\delta + g + n}{s} \). Co więcej, dla każdego \(\tilde{k} \in (0;\tilde{k}^*) \) \(\Pi(\tilde{k}) \) jest wyższa [niższa] od \(\frac{\delta + g + n}{s} \). Stąd zaś oraz ze związków (2.13abc) płyną trzy następujące wnioski. Po pierwsze, jeśli \(\tilde{k} \in (0;\tilde{k}^*) \), to przyrosty kapitału na jednostkę efektywnej pracy \(\tilde{k} \) są dodatnie. Po drugie, przy \(\tilde{k} = \tilde{k}^* \) przyrosty te równe są zeru. Po trzecie wreszcie, dla każdego \(\tilde{k} \in (\tilde{k}^*;+\infty) \) przyrosty owego kapitału są ujemne.

Rys. 2.2. Krzywa produktywności kapitału \(\Pi(\tilde{k}) \) i dochodzenie do długookresowej równowagi modelu wzrostu gospodarczego Solowa

Płynie stąd również wniosek, że jeśli analizowana gospodarka w momencie \(t = 0 \) charakteryzowała się zasobem kapitału na jednostkę efektywnej pracy \(\tilde{k}(0) \) równym \(\tilde{k}_0 \in (0;\tilde{k}^*) \), to w momencie \(t = 0 \) \(\tilde{k}(0) > 0 \). Oznacza to, iż w rozważanym tu przypadku gospodarka Solowa przesuwać się będzie, wraz z upływem czasu \(t \), w prawo po osi \(\tilde{k} \). Trwać to będzie aż do (skończonego lub nie) momentu \(t^* \), w którym \(\tilde{k}(t^*) = \tilde{k}^* \). Poczynając od momentu \(t^* \), przyrosty kapitału na jednostkę efektywnej pracy równe...
będą zeru (a więc dla każdego \(t \geq t^* \) \(\tilde{k}(t) = 0 \) i \(\tilde{k}'(t) = \tilde{k}^* \)). Gdyby zaś gospodarka star-\(\text{towała z } \tilde{k}_0 \in (\tilde{k}^*; +\infty) \), to w pewnym przedziale czasu \((0; t^*)\), przy czym moment \(t^* \) nie musi być momentem skończonym, przyrosty kapitału na jednostkę pracy \(\tilde{k} \) będą ujemne i gospodarka Solowa przesuszać się będzie po osi \(\tilde{k} \) na rysunku 2.2 w lewo. Poczynając zaś od momentu \(t^* \), przyrosty te będą równe zeru i gospodarka zatrzyma się przy kapitale na jednostkę efektywnej pracy równym \(\tilde{k}^* \) dla każdego \(t \in [0; +\infty) \). Natomiast w przypadku, w którym \(\tilde{k}_0 = \tilde{k}^* \), w każdym momencie \(t \in (0; +\infty) \) \(\tilde{k}(t) = 0 \) i analizowana gospodarka charakteryzuje się będąc kapitałem na jednostkę efektywnej pracy równym \(\tilde{k}^* \). Płynie stąd również bardziej ogólny wniosek, że bez względu na to, z jakiego dodatniego poziomu kapitału na jednostkę efektywnej pracy startuje gospodarka Solowa, to i tak dąży ona do wielkości równej \(\tilde{k}^* \). Dlatego też wielkość tę nazywać będziemy kapitałem na jednostkę efektywnej pracy w długookresowej równowadze Solowa.

Ponieważ techniczne uzbrojenie pracy \(k \) można zapisać jako \(k = \frac{K}{L} = \Lambda \frac{K}{L} = \Lambda \tilde{k} \), więc:

\[\forall t \in [0; +\infty) \quad \ln(k(t)) = \ln(\Lambda(t)) + \ln(\tilde{k}(t)). \]

Różniczkując powyższą zależność po czasie \(t \in [0; +\infty) \) oraz uwzględniając związek (2.6), z którego wynika, że \(\frac{\dot{\Lambda}}{\Lambda} = g \), dochodzimy do zależności:

\[\forall t \in [0; +\infty) \quad \frac{\dot{k}(t)}{k(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\tilde{k}(t)}{\tilde{k}(t)} = \Lambda(\tilde{k}'(t) = g + \frac{\dot{\tilde{k}}(t)}{\tilde{k}(t)}. \] (2.15)

Z równania (2.15) wynika, iż stopa wzrostu technicznego uzbrojenia pracy \(\frac{\dot{k}}{k} \) jest sumą stopy postępu technicznego w sensie Harroda \(g \) i stopy wzrostu jednostek efektywnej pracy \(\frac{\tilde{k}'}{k} \). Stąd zaś oraz z prowadzonych uprzednio rozważań wnioskujemy, że jeśli gospodarka jest w równowadze Solowa (czyli \(\tilde{k} = \tilde{k}^* \)), to \(\tilde{k} = 0 \) oraz \(\frac{\dot{k}}{k} = 0 \), co z kolei implikuje, że stopa wzrostu technicznego uzbrojenia pracy \(\frac{\dot{k}}{k} \) równa jest stopie harrodiańskiego postępu technicznego \(g \). Jeśli zaś gospodarka Solowa dąży do długookresowej równowagi z lewej [prawej] strony \(\tilde{k}^* \), czyli \(\tilde{k}_0 \in (0; \tilde{k}^*) \) \([\tilde{k}_0 \in (\tilde{k}^*; +\infty) \), to \(\tilde{k}_0 > 0 \) \(\left[\frac{\dot{k}}{k} < 0 \right] \) i \(\frac{\dot{k}}{k} > 0 \) \(\left[\frac{\dot{k}}{k} < 0 \right] \) i stopa wzrostu technicznego uzbrojenia pracy jest wówczas wyższa [niższa] od stopy postępu technicznego w sensie Harroda.
Wracając do kapitału na jednostkę efektywnej pracy w równowadze Solowa k^*, należy stwierdzić, iż jest ono rozwiązaniem równania Solowa (2.12) przy $k = 0$ oraz $k > 0$. Wynika stąd, iż k^* jest funkcją uwikłaną $k^* = k^*(s, \delta, g + n)$ będącą rozwiązaniem następującego równania⁴:

$$
\phi(k, s, \delta, g + n) = \frac{f(k)}{k} - \frac{\delta + g + n}{s} = \Pi(k) - \frac{\delta + g + n}{s} = 0
$$

(2.16)

względem $k > 0$. Z twierdzenia o pochodnej funkcji uwikłanej, równania (2.16) oraz właściwości funkcji $f(k)$ wynika, że zachodzą zależności:

$$
\frac{\partial k^*}{\partial s} = -\frac{\partial \phi}{\partial s} = \frac{\partial}{\partial s} \left(\Pi(k) - \frac{\delta + g + n}{s} \right) = -\frac{\partial}{\partial k} \left(\Pi(k) - \frac{\delta + g + n}{s} \right) = \frac{\Pi(k)}{s^2} - \frac{\delta + g + n}{s^2} \frac{d\Pi}{dk} > 0
$$

(2.17a)

(gdyż $\frac{\delta + g + n}{s^2} > 0$ oraz, zgodnie z nierównością (2.14c), $\frac{d\Pi}{dk} < 0$);

$$
\frac{\partial k^*}{\partial \delta} = -\frac{\partial \phi}{\partial \delta} = \frac{\partial}{\partial \delta} \left(\Pi(k) - \frac{\delta + g + n}{s} \right) = -\frac{\Pi(k)}{s} - \frac{1}{s} \frac{d\Pi}{dk} < 0
$$

(2.17b)

(bo $s > 0$ i $\frac{d\Pi}{dk} < 0$) i:

$$
\frac{\partial k^*}{\partial (g + n)} = -\frac{\partial \phi}{\partial (g + n)} = \frac{\partial}{\partial (g + n)} \left(\Pi(k) - \frac{\delta + g + n}{s} \right) = -\frac{\Pi(k)}{s} + \frac{1}{s} \frac{d\Pi}{dk} < 0.
$$

(2.17c)

Ze związków (2.17abc) wysnuć można następujące wnioski natury stricte ekonomicznej:

- Im wyższa jest stopa oszczędności/inwestycji s w gospodarce Solowa, tym wyższy jest kapitał na jednostkę efektywnej pracy w warunkach długookresowej równowagi owego modelu wzrostu gospodarczego.

- Natomiast im wyższe są stopa deprecjacji kapitału δ i/lub stopa wzrostu jednostek efektywnej pracy $g + n$, tym niższy jest zasób kapitału na jednostkę efektywnej pracy k^*.

⁴ Istnienie funkcji uwikłanej $k^* = k^*(s, \delta, g + n)$ wynika ze związków (2.13abc) oraz (2.14abc). Uzasadnienie tego pozostawiamy Czytelnikom.
Zależności zachodzące między stopą oszczędności/inwestycji s, stopą deprecjacji kapitału δ i stopą wzrostu jednostek efektywnej pracy $g + n$ a wielkością kapitału na jednostkę efektywnej pracy \tilde{k}^* w równowadze Solowa można zilustrować tak, jak ma to miejsce na rysunkach 2.3abc.

W celu interpretacji ekonomicznej rysunku 2.3a założmy, że przy stopie oszczędności/inwestycji $s \in (0;1)$ kapitał na jednostkę efektywnej pracy ukształtował się na poziomie \tilde{k}^*. Załóżmy również, iż sytuacja ta miała miejsce w pewnym przedziale czasu $[0; t_1]$⁵. Przyjmijmy też, że w momencie $t = t_1$ stopa oszczędności/inwestycji wzrosła w sposóbpermanentny do poziomu $s' > s$ (przy czym $s' < 1$). Wówczas, przy $s' > s$, zgodnie z równaniem Solowa (2.12), zachodzi związek:

$$
\forall t \in (t_1; t_2) \quad \tilde{k}(t) = s' f(k(t)) - (\delta + g + n)k(t) > 0. \quad (2.18a)
$$

Rys. 2.3a. Zmiana stopy oszczędności/inwestycji s a kapitał na jednostkę efektywnej pracy \tilde{k}^* w długookresowej równowadze Solowa

Oznacza to, że poczynając od momentu t_1, przyrosty kapitału na jednostkę efektywnej pracy \tilde{k} są dodatnie i gospodarka Solowa przesuwa się po osi \tilde{k} w prawą stronę. Przesunięcie to ma miejsce aż do (skończonego lub nie) momentu $t_2 > t_1$, w którym kapitał na jednostkę efektywnej pracy nie osiągnie wartości \tilde{k}^*. Poczynając od momentu t_2, w którym $\tilde{k} = \tilde{k}^*$, produktywność kapitału $\Pi(\tilde{k})$ zrównuje się z wielkością $\frac{\delta + g + n}{s'}$, co (zgodnie z zależnością (2.13b)) implikuje, że przyrosty kapitału na jednostkę efektywnej pracy \tilde{k} równe są zeru. Płynie stąd wniosek, że na skutek perma-

⁵ Implicite zakładamy tu, że gospodarka Solowa była w stanie równowagi już w momencie $t = 0$. Nie ma to jednak większego znaczenia ani dla prowadzonych dalej rozważań, ani dla wniosków zeń płynących.
nentnego wzrostu stopy oszczędności/inwestycji w momencie \(t_1 \) gospodarka Solowa przechodzi w przedziale czasu \((t_1,t_2)\) od kapitału na jednostkę efektywnej pracy wynoszącego \(\tilde{k}^* \) do wielkości równej \(\tilde{k}^{**} \). Gdyby stopa oszczędności/inwestycji spadła z \(s \) do \(s' > 0 \), przyrosty kapitału na jednostkę efektywnej pracy byłyby ujemne i gospodarka Solowa przesunęłaby się do punktu długookresowej równowagi o niższym od \(\tilde{k}^* \) kapitale na jednostkę efektywnej pracy. Uzasadnienie tego pozostawiamy Czytelnikom.

Jeśli w momencie \(t_1 \) stopa deprecjacji kapitału wzrośnie permanoentnie z \(\delta \) do \(\delta'<1 \), to, zgodnie z równaniem Solowa (2.12), zachodzi będzie związek:

\[
\forall t \in (t_1 ; t_2) \quad \tilde{k}(t) = sf(\tilde{k}(t)) - (\delta' + g + n)\tilde{k}(t) < 0. \quad (2.18b)
\]

Zależność (2.18b) implikuje, że w pewnym przedziale czasu \((t_1,t_2)\) przyrosty kapitału na jednostkę efektywnej pracy będą ujemne. W momencie \(t_2 \), w którym \(\tilde{k} = \tilde{k}^{**} \), przyrost ten równy będzie zeru, gdyż wówczas \(\Pi(\tilde{k}^{**}) = \frac{\delta' + g + n}{s} \). To zaś implikuje, że poczynając od momentu \(t_2 \), wielkość kapitału na jednostkę efektywnej pracy ustabilizuje się na poziomie \(\tilde{k} = \tilde{k}^{**} \) (rys. 2.3b).

![Rys. 2.3b. Zmiana stopy deprecjacji kapitału \(\delta \) a kapitał na jednostkę efektywnej pracy \(\tilde{k}^{**} \) w długookresowej równowadze Solowa](image)

W przypadku, w którym w momencie \(t_1 > 0 \) wzrośnie stopa wzrostu jednostek efektywnej pracy z \(g + n \) do \((g + n)' \), również przyrosty zasobu kapitału na jednostkę efektywnej pracy będą ujemne, gdyż:

\[
\forall t \in (t_1 ; t_2) \quad \tilde{k}(t) = sf(\tilde{k}(t)) - (\delta + (g + n)')\tilde{k}(t) < 0 \quad (2.18c)
\]

i gospodarka Solowa przesunie się w lewo po osi \(\tilde{k} \) z \(\tilde{k}^* \) do pewnego \(\tilde{k}^{**} \). Przypadek ten zilustrowany jest na rysunku 2.3c.
Rys. 2.3c. Zmiana stopy wzrostu jednostek efektywnej pracy \(g + n \) a kapitał na jednostkę efektywnej pracy \(\tilde{k}^* \) w długookresowej równowadze Solowa

Wstawiając funkcję uwikłaną \(\tilde{k}^* = \tilde{k}^* (s, \delta, g + n) \) do funkcji produktu na jednostkę efektywnej pracy (2.9), uzyskuje się produkt na jednostkę efektywnej pracy w długookresowej równowadze Solowa \(y^* \) dany wzorem:

\[
y^* = f(\tilde{k}^*) = f(\tilde{k}^* (s, \delta, g + n)).
\]
(2.19)

Ze związku (2.19) wyciągnąć można wniosek, iż produkt na jednostkę efektywnej pracy w długookresowej równowadze Solowa, podobnie jak kapitał na jednostkę efektywnej pracy w owej równowadze, zależy jest od stopy oszczędności/inwestycji \(s \), stopy deprecjacji kapitału \(\delta \) oraz od stopy wzrostu jednostek efektywnej pracy \(g + n \).

Co więcej, licząc pochodne cząstkowe równania (2.19), okazuje się, że spełnione są następujące zależności:

\[
\frac{\partial y^*}{\partial s} = \frac{df}{dk} \cdot \frac{\partial \tilde{k}^*}{\partial s} > 0
\]
(2.20a)

(gdyż z właściwości funkcji \(f \), danej równaniem (2.9), wynika, że \(\frac{df}{dk} > 0 \), zaś \(\frac{\partial \tilde{k}^*}{\partial s} > 0 \) na mocy związku (2.17a));

\[
\frac{\partial y^*}{\partial \delta} = \frac{df}{dk} \cdot \frac{\partial \tilde{k}^*}{\partial \delta} < 0
\]
(2.20b)

(bo \(\frac{\partial \tilde{k}^*}{\partial \delta} < 0 \), co wynika z nierówności (2.17b)) oraz:

\[
\frac{\partial y^*}{\partial (g + n)} = \frac{df}{dk} \cdot \frac{\partial \tilde{k}^*}{\partial (g + n)} < 0
\]
(2.20c)
(gdź, zgodnie z zależnością (2.17c), zachodzi nierówność: \(\frac{\partial k^*}{\partial (g + n)} < 0 \)). Ze zwią-
ków (2.20abc) wynika, że produkt na jednostkę efektywnej pracy w długookresowej różnowadzie Solowa \(\bar{y}^* \) (podobnie jak kapitał na jednostkę owej pracy) jest tym wyż-
szy, im wyższa jest stopa oszczędności/inwestycji s oraz im niższe są stopa deprecjacji kapitału \(\delta \) i stopa wzrostu jednostek efektywnej pracy \(g + n \).

Ponieważ wydajność pracy \(y \), rozumianą jako produkt \(Y \) na pracującego \(L \), można zapisać wzorem:

\[
\forall t \in [0;+\infty) \quad y(t) = \frac{Y(t)}{L(t)} = \Lambda(t) \frac{Y(t)}{\Lambda(t) L(t)} = \Lambda(t) \frac{\bar{y}(t)}{\bar{y}(t)} = \Lambda(t) \bar{y}(t),
\]

więc:

\[
\forall t \in [0;+\infty) \quad \ln(y(t)) = \ln(\Lambda(t)) + \ln(\bar{y}(t)).
\]

Różniczkując stronami powyższą zależność względem czasu \(t \in [0;+\infty) \) oraz uwzględniając równanie (2.6), okazuje się, iż:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{y}(t)}{y(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{\bar{y}}(t)}{\bar{y}(t)} = g + \frac{\dot{\bar{y}}(t)}{\bar{y}(t)}, \tag{2.21}
\]

Równanie (2.21) interpretuje się ekonomicznie w ten sposób, iż stopa wzrostu wydaj-
ności pracy \(\frac{\dot{y}}{y} \) jest sumą stopy postępu technicznego w sensie Harroda \(g \) oraz stopy

wzrostu jednostek efektywnej pracy \(\frac{\dot{\bar{y}}}{\bar{y}} \).

Jeśli zaś policzy się pochodną funkcji produkcji na jednostkę efektywnej pracy

względem czasu \(t \in [0;+\infty) \), to uzyska się związek:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{\bar{y}}(t)}{\bar{y}(t)} = \frac{\ddot{y}}{dk} \cdot \dot{k}(t) = \frac{\ddot{\bar{y}}}{dk} \cdot \dot{k}(t) \cdot \frac{\dot{k}(t) - k(t)}{k(t)}
\]

lub (po podzieleniu powyższej zależności przez \(\bar{y} > 0 \)):

\[
\forall t \in [0;+\infty) \quad \frac{\dot{\bar{y}}(t)}{\bar{y}(t)} = \frac{\ddot{y}}{dk} \cdot \frac{\dot{k}(t)}{\bar{y}(y)} \cdot \dot{k}(t) = \varepsilon_{yk} \cdot \frac{\dot{k}(t)}{k(t)}, \tag{2.22}
\]

gdzie \(\varepsilon_{yk} = \frac{\ddot{y}}{dk} \cdot \frac{\dot{k}}{\bar{y}} > 0 \) jest elastycznością strumienia produktu na jednostkę efektywnej

pracy względem zasobu kapitału na jednostkę owej pracy. Wstawiając równanie (2.22)
do zależności (2.21), dochodzi się do wzoru:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{y}(t)}{y(t)} = g + \frac{\dot{\bar{y}}(t)}{\bar{y}(t)} = g + \varepsilon_{yk} \cdot \frac{\dot{k}(t)}{k(t)}. \tag{2.23}
\]
Z równania (2.23) wynika, że jeśli stopa wzrostu zasobu kapitału na jednostkę efektywnej pracy \(\frac{\dot{k}}{k} \) jest dodatnia (ujemna), to stopa wzrostu wydajności pracy \(\frac{\dot{y}}{y} \) jest wyższa (niższa) od stopy harrodiańskiego postępu technicznego \(g \). Natomiast w przypadku, w którym \(\frac{\dot{k}}{k} = 0 \), wydajność pracy rośnie według stopy wzrostu równej \(g \).

Co więcej, z równań (2.15) i (2.23) oraz prowadzonych uprzednio rozważań płyną następujące wnioski dotyczące kształtowania się dynamiki technicznego uzbrojenia pracy i wydajności pracy w neoklasycznym modelu wzrostu Solowa:

- Jeśli wyjściowy kapitał na jednostkę efektywnej pracy \(\bar{k}_0 \in (0;\bar{k}^*) \), to w (skończonym lub nieskończonym) przedziale czasu, w którym gospodarka Solowa dochodzi do długookresowej równowagi, przyrosty kapitału na jednostkę efektywnej pracy \(\ddot{k} \) i stopy wzrostu owej zmiennej makroekonomicznej są dodatnie. To zaś (zgodnie z zależnościami (2.15) i (2.23))implikuje, że wówczas \(\frac{\dot{k}}{k} = g + \frac{\ddot{k}}{k} > g \) oraz \(\frac{\dot{y}}{y} = g + \varepsilon \frac{\ddot{k}}{k} > g \), czyli techniczne uzbrojenie pracy i wydajność pracy rosną według stóp wzrostu wyższych od stopy postępu technicznego w sensie Harroda.

- W przypadku, w którym \(\bar{k}_0 \in (\bar{k}^*;+\infty) \), zarówno \(\ddot{k} < 0 \), jak i \(\frac{\dot{k}}{k} < 0 \). Stąd zaś oraz z równań (2.15) i (2.23) płynie wniosek, że w tym przypadku techniczne uzbrojenie pracy i wydajność pracy rosną według stóp wzrostu niższych od stopy harrodiańskiego postępu technicznego.

- Gdy \(\ddot{k} = \bar{k}^* \), przyrosty i stopy wzrostu kapitału na jednostkę efektywnej pracy równe są zeru, co implikuje, że stopy wzrostu kapitału i produktu na pracującego równie są \(g \).

- Płynie stąd również bardziej ogólny wniosek, że jeżeli gospodarka Solowa zmierza, po osi \(\ddot{k} \) na rysunku 2.2, do wielkości \(\ddot{k}^* \) z lewej (prawej) strony, to \(\frac{\ddot{k}}{k} > 0 \) oraz \(\frac{\dot{k}}{k} > 0 \), zaś stopy wzrostu technicznego uzbrojenia pracy \(\frac{\dot{k}}{k} \) i wydajności pracy \(\frac{\dot{y}}{y} \) są wyższe (niższe) od stopy harrodiańskiego postępu technicznego \(g \). Jeśli zaś gospodarka Solowa znajduje się w stanie długookresowej równowagi (a zatem \(\ddot{k} = \ddot{k}^* \)), to stopy wzrostu kapitału i produktu na pracującego równe są stopie postępu technicznego w sensie Harroda. Oznacza to również, że gospodarka Solowa ma naturalne tendencje do dążenia do długookresowych stóp wzrostu owych zmiennych makroekonomicznych równej \(g \).

- Jeśli rośnie (maleje) stopa oszczędności/inwestycji \(s \), to w pewnym przedziale czasu \((t_1; t_2) \) rośnie (spada) kapitał na jednostkę efektywnej pracy. Oznacza to, iż we
wspomnianym przedziale czasu \(\frac{\dot{k}}{k} > 0 \) \(\left(\frac{\dot{k}}{k} < 0 \right) \) oraz \(\frac{k}{k} \) i \(\frac{\dot{y}}{y} \) są wyższe (niższe) od stopy harrodiańskiego postępu technicznego \(g \). Natomiast poczynając od momentu \(t_2 \), w którym \(\ddot{k} \) zrówna się z \(\ddot{k}^* \), stopy wzrostu \(\frac{k}{k} \) i \(\frac{\dot{y}}{y} \) stabilizują się na poziomie równym \(g \), gdyż wówczas \(\frac{\dot{k}}{k} = 0 \). Zilustrowane jest to na rysunku 2.46. Na rysunku tym w przedziale czasu \((0; t_1) \) wydajność pracy w gospodarce Solowa przesuwa się po ścieżce wzrostu \(P_1 \) odpowiadającej pewnej stopie oszczędności/inwestycji \(s \in (0; 1) \). Jeśli w momencie \(t_1 \) stopa oszczędności/inwestycji wzrośnie (spadnie) do \(s' < 1 \) \((s'' > 0) \), to w przedziale czasu \((t_1; t_2) \) stopy wzrostu wydajności pracy \(\frac{\dot{y}}{y} \) będą wyższe (niższe) od \(g \). To zaś prowadzić będzie do przechodzenia wydajności pracy \(y(t) \) na wyżej (niżej) położoną ścieżkę wzrostu gospodarczego \(P_2 \) \((P_3) \). W momencie \(t_2 \) stopa wzrostu wydajności pracy ustabilizuje się na poziomie równym stopie harrodiańskiego postępu technicznego i poczynając od tego momentu, gospodarka poruszać się będzie po ścieżce wzrostu \(P_2 \) \((P_3) \)7.

6 Ponieważ na rysunku 2.4 na osi pionowej odłożono \(\ln(y(t)) \), zatem nachylenia prostych opisujących zmiany \(y(t) \), względem czasu \(t \in [0; +\infty) \), tożsame są ze stopami wzrostu wydajności pracy \(y \).

Wynika to stąd, że nachylenia owych prostych dane są wzorem: \(\frac{d[\ln(y)]}{dt} \), zaś \(\frac{d[\ln(y)]}{dt} = \frac{1}{y} \frac{dy}{dt} = \frac{\dot{y}}{y} \).

7 Analogicznego trawersu na wyżej (niżej) położoną ścieżkę wzrostu gospodarczego dokona wówczas również techniczne uzbrojenie pracy.
2.4. RÓWNOWAGA SOLOWA PRZY FUNKCJI PRODUKCJI COBBA-DOUGLASA

Szczególnym przypadkiem modelu wzrostu gospodarczego Solowa jest model ze scharakteryzowaną w rozdziale pierwszym skryptu makroekonomiczną funkcją produkcji Cobba-Douglasa. Model ten można opisać za pomocą następujących równań:

\[
\forall t \in [0;+\infty) \quad Y(t) = (K(t))^\alpha (A(t)L(t))^{1-\alpha} = (K(t))^{\alpha} \left(\bar{L}(t)\right)^{1-\alpha}, \quad (2.24)
\]

gdzie \(\alpha \in (0;1)\), przy czym \(\alpha\) i \(1-\alpha\) to zarówno elastyczności produktu \(Y\) względem nakładów kapitału \(K\) i pracy \(L\), jak i (na gruncie marginalnej teorii podziału Clarka) udziały nakładów kapitału i pracy w produkcji, zaś \(\bar{L} = \Lambda L\) to zdefiniowane uprzednio jednostki efektywnej pracy.

\[
\forall t \in [0;+\infty) \quad \dot{K}(t) = sY(t) - \delta K(t), \quad (2.25)
\]

przy czym \(s\), \(\delta \in (0;1)\) interpretuje się tak, jak ma to miejsce w punktach 2.2–2.3 skryptu.

\[
\forall t \in [0;+\infty) \quad L(t) = L_0 e^{nt} \Rightarrow \frac{\dot{L}(t)}{L(t)} = n, \quad (2.26)
\]

gdzie \(L_0 > 0\) i \(n > 0\) to, podobnie jak poprzednio, liczba pracujących w momencie \(t = 0\) i stopa wzrostu liczby pracujących oraz:

\[
\forall t \in [0;+\infty) \quad \Lambda(t) = \Lambda_0 e^{gt}, \quad (2.27)
\]

gdzie \(\Lambda_0\) jest wyjściowym zasobem wiedzy, zaś \(g > 0\) to stopa harrodiańskiego postępu technicznego.

Równanie (2.24) charakteryzuje proces produkcyjny opisany przez makroekonomiczną funkcję produkcji Cobba-Douglasa. Z równania (2.25) wynika, iż przyrost zasobu kapitału rzeczowego \(K\) jest różnicą między inwestycjami (zdeterminowanymi przez oszczędności \(sY\)) a deprecjacją kapitału \(\delta K\). Zależności (2.26–2.27) implikują zaś, że liczba pracujących \(L\) i zasób wiedzy \(\Lambda\) rosną według stop wzrostu \(n\) oraz \(g\).

Dzieląc stronami funkcję produkcji Cobba-Douglasa (2.24) przez liczbę pracujących \(L\), dochodzi się do funkcji wydajności pracy postaci:
\[\forall t \in [0;+\infty) \quad y(t) = \frac{Y(t)}{L(t)} = \frac{(K(t)\Lambda(t)L(t))^{1-\alpha}}{(L(t))^{1-\alpha}} = \frac{(K(t))^{1-\alpha}}{L(t)} \left(\frac{\Lambda(t)L(t)}{L(t)}\right)^{1-\alpha} = \left(\frac{K(t)}{L(t)}\right)^{\alpha} \left(\frac{\Lambda(t)L(t)}{L(t)}\right)^{1-\alpha} = (\Lambda(t))^{1-\alpha} (k(t))^{\alpha} \]

lub, po uwzględnieniu związku (2.27):

\[\forall t \in [0;+\infty) \quad y(t) = \left(\Lambda_0 e^{rt}\right)^{1-\alpha} (k(t))^{\alpha} = \Lambda_0^{1-\alpha} e^{(1-\alpha)rt} (k(t))^{\alpha} = \Lambda e^{(1-\alpha)rt} (k(t))^{\alpha}, \quad (2.28) \]

gdzie \(\Lambda = \Lambda_0^{1-\alpha} > 0 \).

 Ponieważ techniczne uzbrojenie pracy opisane jest przez tożsamość: \(k = \frac{K}{L} \), więc, po zróżniczkowaniu powyższej zależności względem czasu \(t \in [0;+\infty) \), uzyskuje się równanie:

\[\forall t \in [0;+\infty) \quad \dot{k}(t) = \frac{\dot{K}(t)L(t) - K(t)\dot{L}(t)}{(L(t))^2} = \frac{\dot{K}(t)}{L(t)} - \frac{K(t)}{L(t)} \frac{\dot{L}(t)}{L(t)} = \frac{\dot{K}(t)}{L(t)} - k(t) \frac{\dot{L}(t)}{L(t)}. \quad (2.29) \]

Uwzględniając związki (2.25) i (2.26), równanie (2.29) zapisać można następująco:

\[\forall t \in [0;+\infty) \quad \dot{k}(t) = \frac{sY(t) - \delta K(t)}{L(t)} - k(t)n = s \frac{Y(t)}{L(t)} - \delta \frac{K(t)}{L(t)} - nk(t) = sy(t) - \delta k(t) - nk(t) = sy(t) - (\delta + n)k(t). \]

Wstawiając do powyższej zależności funkcję wydajności pracy (2.28), dochodzi się do równania różniczkowego Bernoulliego postaci:

\[\forall t \in [0;+\infty) \quad k(t) = s \Lambda e^{(1-\alpha)rt} (k(t))^{\alpha} - (\delta + n)(k(t)). \quad (2.30) \]

Całka, będąca rozwiązaniem równania różniczkowego (2.30), wyznacza ścieżkę wzrostu techniczego uzbrojenia pracy w rozważanej tu wersji modelu wzrostu gospodarczego Solowa. Ścieżka ta określa wartości technicznego uzbrojenia pracy \(k(t) \) w kolejnych momentach \(t \in [0;+\infty) \). Co więcej, wyznaczenie ścieżki wzrostu technicz- nego uzbrojenia pracy \(k(t) \) pozwoli również, po wykorzystaniu funkcji wydajności pracy (2.28), na określenie ścieżki wzrostu wydajności pracy \(y(t) \).

Mnożąc stronami równanie (2.30) przez \(k^{-\alpha} > 0 \), sprowadza się je do następującego równania różniczkowego:

\[\forall t \in [0;+\infty) \quad (k(t))^{-\alpha} \dot{k}(t) = s \Lambda e^{(1-\alpha)rt} - (\delta + n)(k(t))^{1-\alpha}. \quad (2.31) \]

Niech dane będzie podstawienie Bernoulliego postaci:

\[\forall t \in [0;+\infty) \quad v(t) = [k(t)]^{-\alpha}. \quad (2.32a) \]
Po zróżniczkiowaniu równania (2.32a) względem czasu \(t \in [0;+\infty) \) uzyskuje się związek:

\[
\forall t \in [0;+\infty) \quad \dot{v}(t) = (1 - \alpha)(k(t))^{-\alpha} \dot{k}(t),
\]
który implikuje zależność:

\[
\forall t \in [0;+\infty) \quad (k(t))^{-\alpha} \dot{k}(t) = \frac{\dot{v}(t)}{1 - \alpha}.
\] (2.32b)

Wstawiając związki (2.32ab) do równania różniczkowego (2.31), można je zapisać następująco:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{v}(t)}{1 - \alpha} = s \hat{\Lambda} e^{(1 - \alpha)g_1} - (\delta + n)v(t)
\]
lub:

\[
\forall t \in [0;+\infty) \quad \dot{v}(t) = (1 - \alpha)s \hat{\Lambda} e^{(1 - \alpha)g_1} - (1 - \alpha)(\delta + n)v(t).
\] (2.33)

Zależność (2.33) jest równaniem różniczkowym liniowym niejednorodnym względem \(v(t) \). Niech całka tego równania będzie iloczynem całki szczególnej \(v_S(t) = e^{-(1 - \alpha)(\delta + n)t} \) i nieznanej całki uzupełniającej \(v_D(t) \). Wówczas całkę tę można zapisać następująco:

\[
\forall t \in [0;+\infty) \quad v(t) = e^{-(1 - \alpha)(\delta + n)t}v_D(t),
\] (2.34a)
co implikuje związek:

\[
\forall t \in [0;+\infty) \quad \dot{v}(t) = -(1 - \alpha)(\delta + n)e^{-(1 - \alpha)(\delta + n)t}v_D(t) + e^{-(1 - \alpha)(\delta + n)t} \dot{v}_D(t).
\] (2.34b)

Po wstawieniu związków (2.34ab) do równania różniczkowego (2.33), można je zapisać wzorem:

\[
\forall t \in [0;+\infty) \quad -(1 - \alpha)(\delta + n)e^{-(1 - \alpha)(\delta + n)t}v_D(t) + e^{-(1 - \alpha)(\delta + n)t} \dot{v}_D(t) = (1 - \alpha)s \hat{\Lambda} e^{(1 - \alpha)g_1}
\]
lub:

\[
\forall t \in [0;+\infty) \quad e^{-(1 - \alpha)(\delta + n)t} \dot{v}_D(t) = (1 - \alpha)s \hat{\Lambda} e^{(1 - \alpha)g_1},
\]
skąd wynika, że:

\[
\forall t \in [0;+\infty) \quad \dot{v}_D(t) = (1 - \alpha)s \hat{\Lambda} e^{(1 - \alpha)(g + \delta + n)t}.
\]

Całkując powyższy związek względem czasu \(t \in [0;+\infty) \), uzyskuje się całkę uzupełniającą \(v_D(t) \) postaci:

\[
\forall t \in [0;+\infty) \quad v_D(t) = \int \dot{v}_D dt = (1 - \alpha)s \hat{\Lambda} \int e^{(1 - \alpha)(g + \delta + n)t} dt =
\]

\[
\frac{(1 - \alpha)s \hat{\Lambda}}{(1 - \alpha)(g + \delta + n)} e^{(1 - \alpha)(g + \delta + n)t} + F = \frac{s \hat{\Lambda}}{g + \delta + n} e^{(1 - \alpha)(g + \delta + n)t} + F,
\] (2.35)
gdzie $F \in \mathbb{R}$ jest stałą całkowania. Wstawiając całkę uzupełniającą (2.35) do związku (2.34a), uzyskuje się całą równania różniczkowego liniowego niejednorodnego (2.33) daną wzorem:

$$\forall t \in [0;+\infty) \quad v(t) = e^{-(1-a)(\delta+n)t} \left(\frac{s \hat{\Lambda}}{g + \delta + n} e^{(1-a)(g+\delta+n)t} + F \right) = \frac{s \hat{\Lambda}}{g + \delta + n} e^{(1-a)gt} + Fe^{-(1-a)(\delta+n)t}. \quad (2.36)$$

Ponieważ, na mocy podstawienia Bernoulliego (2.32a), $k(t) = [v(t)]^{1/(1-a)}$, zaś zasób technicznego uzbrojenia pracy $k(t)$ powinien być dodatni, zatem stałą całkowania F w równiach (2.35) i (2.36) należy dobrać tak, by (po pierwsze) w każdym momencie $t \in [0;+\infty)$ całość $k(t)$ i $v(t)$ przyjmowały wartości dodatnie oraz (po drugie), żeby wartość całki $k(t)$ w momencie $t = 0$ równa była pewnej stałą $k_0 > 0$ odpowiadającej wyjściowej wartości technicznego uzbrojenia pracy.

Całkę $v(t)$ daną równaniem (2.36) można zapisać wzorem:

$$\forall t \in [0;+\infty) \quad v(t) = \frac{s \hat{\Lambda}}{g + \delta + n} e^{(1-a)gt} + Fe^{-(1-a)(\delta+n)t} \left(\frac{s \hat{\Lambda}}{g + \delta + n} + Fe^{-(1-a)(g+\delta+n)t} \right)$$

lub:

$$\forall t \in [0;+\infty) \quad v(t) = e^{(1-a)gt} \left(\frac{s \hat{\Lambda}}{g + \delta + n} + Fe^{-(1-a)(g+\delta+n)t} \right) = e^{(1-a)gt} \cdot \hat{v}(t), \quad (2.37)$$

gdzie:

$$\forall t \in [0;+\infty) \quad \hat{v}(t) = \frac{s \hat{\Lambda}}{g + \delta + n} + Fe^{-(1-a)(g+\delta+n)t}. \quad (2.38)$$

Ponieważ wyrażenie $e^{(1-a)gt}$ jest dodatnie w każdym momencie $t \in [0;+\infty)$, zatem całka $v(t)$ będzie przyjmowała wartości dodatnie wtedy i tylko wtedy, gdy wszystkie wartości funkcji $\hat{v}(t)$ będą dodatnie. Co więcej, z podstawienia Bernoulliego (2.32a) oraz równań (2.37–2.38) wynika, iż w momencie $t = 0$ musi być spełniony związek:

$$k_0^{1-a} = [k(0)]^{1-a} = v(0) = e^0 \hat{v}(0) = \hat{v}(0) = \frac{s \hat{\Lambda}}{g + \delta + n} + Fe^0 = \frac{s \hat{\Lambda}}{g + \delta + n} + F > 0.$$

Z powyższej zależności wyciągnąć można wniosek, że stała całkowania spełniająca warunek $k(0) = k_0 > 0$ dana jest wzorem:

8 Czytelnikom pozostawiamy uzasadnienie tego, że całka $k(t)$ będzie przyjmowała wartości dodatnie wtedy i tylko wtedy, gdy również całka $v(t)$ będzie większa od zera w każdym momencie $t \in [0;+\infty)$.
\[F = k_0^{1-a} - \frac{s \Lambda}{g + \delta + n} \]

i wówczas \(k_0^{1-a} = v(0) = \hat{v}(0) > 0 \). Z zależności (2.39) wynika, że spełnione są związki:

\[k_0^{1-a} < \frac{s \Lambda}{g + \delta + n} \quad \Rightarrow \quad F < 0, \]

\[k_0^{1-a} = \frac{s \Lambda}{g + \delta + n} \quad \Rightarrow \quad F = 0 \]

oraz:

\[k_0^{1-a} > \frac{s \Lambda}{g + \delta + n} \quad \Rightarrow \quad F > 0. \]

Z równania (2.38) płynie zaś wniosek, że:

\[\forall t \in [0;+\infty) \quad \hat{v}(t) = \frac{d}{dt} \left(\frac{s \Lambda}{g + \delta + n} + Fe^{-(l-a)(g+\delta+n)t} \right) = \]

\[= -(l-a)(g+\delta+n)Fe^{-(l-a)(g+\delta+n)t}. \]

Ze związku (2.41) wyciągnąć można dwa następujące wnioski. Po pierwsze, jeśli stała całkowania \(F \) jest dodatnia (ujemna), to pochodna \(\hat{v} \) jest ujemna (dodatnia) i funkcja \(\hat{v} \) jest malejąca względem czasu \(t \in [0;+\infty) \). Po drugie, jeśli \(F = 0 \), to \(\hat{v} = 0 \) i w każdym momencie \(t \in [0;+\infty) \) wartości funkcji \(\hat{v}(t) \) równe są wartości owej funkcji w momencie \(t = 0 \).

Licząc zaś granicę funkcji \(\hat{v}(t) \) przy \(t \rightarrow +\infty \), okazuje się, iż:

\[\lim_{t \rightarrow +\infty} \hat{v}(t) = \lim_{t \rightarrow +\infty} \left(\frac{s \Lambda}{g + \delta + n} + Fe^{-(l-a)(g+\delta+n)t} \right) = \]

\[= \frac{s \Lambda}{g + \delta + n} + F \lim_{t \rightarrow +\infty} \left(e^{-(l-a)(g+\delta+n)t}\right) = \frac{s \Lambda}{g + \delta + n}. \]

Z prowadzonych tu rozważań oraz relacji (2.38) i (2.41–2.42), wynika co następuje:

- Jeżeli stała całkowania \(F = k_0^{1-a} - \frac{s \Lambda}{g + \delta + n} \) jest dodatnia (ujemna), to przy \(t \) zmieniającym się od zera do \(+\infty \) wartości funkcji \(\hat{v}(t) \) spadają (rosną) od \(k_0^{1-a} > 0 \) do \(\frac{s \Lambda}{g + \delta + n} > 0 \).
Jeśli zaś \(F = 0 \), to wartości funkcji \(\hat{v}(t) \) równe są \(\frac{s \hat{\Lambda}}{g + \delta + n} > 0 \) w każdym momencie \(t \in [0;+\infty) \).

Wynika stąd również, że przy \(F = k_0^{1-a} - \frac{s \hat{\Lambda}}{g + \delta + n} \) spełniona jest nierówność:

\[
\forall t \in [0;+\infty) \quad \hat{v}(t) = \frac{s \hat{\Lambda}}{g + \delta + n} + F e^{-(1-a)(g+\delta+n)t} > 0,
\]
która implikuje, że całki \(v(t) \) i \(k(t) \) przyjmują wówczas wyłącznie wartości dodatnie.

Dzieląc stronami równanie (2.30) przez techniczne uzbrojenie pracy \(k \), uzyskuje się związek:

\[
\forall t \in [0;+\infty) \quad g_k(t) = \frac{k(t)}{k(t)} = s \hat{\Lambda} e^{(1-a)gt} [k(t)]^{1-\alpha} - (\delta + n) = \frac{s \hat{\Lambda} e^{(1-a)gt}}{[k(t)]^{1-\alpha}} - (\delta + n),
\]
gdzie \(g_k(t) = \frac{\dot{k}(t)}{k(t)} \) to stopa wzrostu technicznego uzbrojenia pracy. Uwzględniając w powyższej zależności podstawienie Bernoulliego (2.32a), można ją zapisać następująco:

\[
\forall t \in [0;+\infty) \quad g_k(t) = \frac{s \hat{\Lambda} e^{(1-a)gt}}{v(t)} - (\delta + n) = \frac{s \hat{\Lambda} e^{(1-a)gt}}{v(t)} - (\delta + n)
\]
lub (po wykorzystaniu równania (2.36)):

\[
\forall t \in [0;+\infty) \quad g_k(t) = \frac{s \hat{\Lambda} e^{(1-a)gt}}{v(t)} - (\delta + n) = \frac{s \hat{\Lambda} e^{(1-a)gt}}{g + \delta + n} + F e^{-(1-a)(\delta+n)t}
\]
co implikuje, że:

\[
\forall t \in [0;+\infty) \quad g_k(t) = \frac{s \hat{\Lambda}}{g + \delta + n} - (\delta + n) = \frac{a}{b + F e^{-(1-a)bt}} - (\delta + n),
\]

gdzie \(a = s \hat{\Lambda} > 0 \), zaś \(b = g + \delta + n > 0 \). Równanie (2.43) wyznacza ścieżkę wzrostu stopy wzrostu technicznego uzbrojenia pracy. Analizując ów związek, okazuje się, że:
• Pochodna g_k po t dana jest wzorem:

$$
\forall t \in [0;+\infty) \quad \dot{g}_k(t) = \frac{d}{dt} \left(\frac{a}{b + \text{Fe}^{-(1-\alpha)bt}} - (\delta + n) \right) =
$$

$$
= - \frac{a[(1-\alpha)b][\text{Fe}^{-(1-\alpha)bt}]}{(a/b + \text{Fe}^{-(1-\alpha)bt})^2} = \frac{(1-\alpha)ab\text{Fe}^{-(1-\alpha)bt}}{(a/b + \text{Fe}^{-(1-\alpha)bt})^2},
$$

a stąd (po uwzględnieniu tego, że $a = s\hat{A}$ i $b = g + \delta + n$):

$$
\forall t \in [0;+\infty) \quad \dot{g}_k(t) = \frac{(1-\alpha)s\hat{A}(g + \delta + n)\text{Fe}^{-(1-\alpha)bt}}{(g + \delta + n) + \text{Fe}^{-(1-\alpha)(g+\delta+n)t}}.
$$

(2.44a)

Z równania (2.44a) płyną trzy następujące wnioski. Po pierwsze, jeśli $k_0^{1-\alpha} < \frac{s\hat{A}}{g + \delta + n}$, to $F < 0$ i $\dot{g}_k < 0$. Oznacza, że wówczas (wraz z upływem czasu) stopa wzrostu technicznego uzbrojenia pracy są coraz niższe. Po drugie, przy $k_0^{1-\alpha} = \frac{s\hat{A}}{g + \delta + n}$ stała całkowania F równa jest zeru, $\dot{g}_k = 0$ i stopa wzrostu technicznego uzbrojenia pracy nie ulega zmianom w czasie. Po trzecie, przy $k_0^{1-\alpha} > \frac{s\hat{A}}{g + \delta + n}$ stała $F > 0$, skąd wynika, iż $\dot{g}_k > 0$ i stopy wzrostu analizowanej tu zmiennej makroekonomicznej są coraz wyższe.

- Licząc zaś granicę, przy $t \rightarrow +\infty$, z wyrażenia (2.43) okazuje się, że dla każdego $F > -\frac{s\hat{A}}{g + \delta + n}$ zachodzi związek:

$$
g_k^* = \lim_{t \rightarrow +\infty} [g_k(t)] = \lim_{t \rightarrow +\infty} \left(\frac{s\hat{A}}{g + \delta + n} + \text{Fe}^{-(1-\alpha)(g+\delta+n)t} \right)
$$

$$
= \frac{s\hat{A}}{g + \delta + n} \cdot \text{lim}_{t \rightarrow +\infty} \left(e^{-(1-\alpha)(g+\delta+n)t} \right)
$$

(2.44b)

Z równania (2.44b) płynie wniosek, że (bez względu na wyjściowy poziom technicznego uzbrojenia pracy $k_0 > 0$) długoookresowa stopa wzrostu tej zmiennej makroekonomicznej $g_k^* = \lim_{t \rightarrow +\infty} [g_k(t)]$ dąży do stopy harrodiańskiego postępu technicznego g.

Logarytmując stronami (logarytmem naturalnym) funkcję wydajności pracy (2.28), dochodzi się do równania:

$$\forall t \in [0;+\infty) \quad \ln(y(t)) = \ln(\hat{\Lambda}) + (1-\alpha)gt + \alpha \ln(k(t)).$$

Różniczkując zaś powyższą zależność względem czasu $t \in [0;+\infty)$, pamiętając o tym, że wartość wyrażenia $\hat{\Lambda} = \Lambda_0^{1-\alpha}$ nie ulega zmianom w czasie, okazuje się, iż:

$$\forall t \in [0;+\infty) \quad g_y(t) \equiv \frac{\dot{y}(t)}{y(t)} = (1-\alpha)g + \alpha \frac{\dot{k}(t)}{k(t)} = (1-\alpha)g + \alpha g_k(t), \quad (2.45)$$

gdzie $g_y(t) = \frac{\dot{y}(t)}{y(t)}$ jest stopą wzrostu wydajności pracy y. Równanie (2.45) wyznacza ścieżkę wzrostu stopę wzrostu wydajności pracy g_y uzależniając ją od ścieżki wzrostu stopy wzrostu technicznego uzbrojenia pracy g_k. Z równania (2.45) oraz zależności (2.44ab) wynika, że spełnione są związki:

$$\forall t \in [0;+\infty) \quad \ddot{g}_y(t) = \alpha \ddot{g}_k(t) = \alpha \frac{(1-\alpha)s\hat{\Lambda}(g+\delta+n)Fe^{-(1-\alpha)bt}}{\left(\frac{s\hat{\Lambda}}{g+\delta+n} + Fe^{-(1-\alpha)(g+\delta+n)t}\right)^2} \quad (2.46a)$$

oraz:

$$g^*_y = \lim_{t \to +\infty} [g_y(t)] = (1-\alpha)g + \alpha \lim_{t \to +\infty} [g_k(t)] = (1-\alpha)g + g = g, \quad (2.46b)$$

gdzie $g^*_y = \lim_{t \to +\infty} [g_y(t)]$ jest długookresową stopą wzrostu wydajności pracy y. Ze związków (2.46ab) płyną trzy następujące wnioski:

- Jeśli stała $F = k_0^{1-\alpha} - \frac{s\hat{\Lambda}}{g+\delta+n}$ jest dodatnia (ujemna), to pochodna stopy wzrostu wydajności pracy g_y po czasie $t \in [0;+\infty)$ jest dodatnia (ujemna), co z kolei implikuje, że stopy wzrostu wydajności pracy g_y są wraz z upływem czasu coraz wyższe (niższe).

- Przy $F = k_0^{1-\alpha} - \frac{s\hat{\Lambda}}{g+\delta+n} = 0$ pochodna $\dot{g}_y = \alpha \frac{(1-\alpha)s\hat{\Lambda}(g+\delta+n)Fe^{-(1-\alpha)bt}}{\left(\frac{s\hat{\Lambda}}{g+\delta+n} + Fe^{-(1-\alpha)(g+\delta+n)t}\right)^2}$ równa jest zeru, skąd wynika, że stopy wzrostu analizowanej tu zmiennej makroekonomicznej, podobnie jak stopy wzrostu technicznego uzbrojenia pracy k, nie ulegają zmianom w czasie.
Ponieważ, zgodnie z równaniem (2.46b),
\[g_y^* = \lim_{t \to +\infty} [g_y(t)] = g, \]
zatem długo-okresowa stopa wzrostu wydajności pracy \(g_y^* \) przy każdym \(k_0 > 0 \), podobnie jak stopa wzrostu technicznego uzbrojenia pracy \(g_k \) w warunkach długookresowej równowagi rozważanego tu modelu wzrostu gospodarczego, dąży do stopy wzrostu \(g \) równej stopie postępu technicznego w sensie Harroda.

Dzieląc stronami funkcję produkcji Cobba-Douglasa (2.24) przez jednostki efektywnej pracy \(\bar{L} \), dochodzi się do funkcji produkcji na jednostkę efektywnej pracy postaci:

\[\forall t \in [0;+\infty) \quad \tilde{y}(t) = \frac{Y(t)}{\bar{L}(t)} = \frac{(K(t))\left(\bar{L}(t)\right)^{1-a}}{\left(\bar{L}(t)\right)^{1-a} = \left(\frac{K(t)}{\bar{L}(t)}\right)^{1-a}} = \left(\tilde{k}(t)\right)^{1-a} \tag{2.47} \]

Wstawiając równanie (2.47) do równania Solowa (2.11), uzyskuje się następujące równanie różniczkowe:

\[\forall t \in [0;+\infty) \quad \tilde{k}(t) = s\left(\tilde{k}(t)\right)^{a} - (\delta + g + n)\tilde{k}(t). \tag{2.48} \]

Związek (2.48) jest równaniem Solowa w analizowanym tu modelu wzrostu gospodarczego. Co więcej, ponieważ z prowadzonych w punkcie 2.3 skryptu rozważań wynika, iż gospodarka Solowa znajduje się w stanie długookresowej równowagi wówczas, gdy \(\tilde{k} = 0 \) i \(\tilde{k} > 0 \), zatem dodatnie rozwiązanie równania:

\[\forall t \in [0;+\infty) \quad s\left(\tilde{k}(t)\right)^{a} - (\delta + g + n)\tilde{k}(t) = 0 \tag{2.49} \]

względem \(\tilde{k} \) wyznaczało będzie kapitał na jednostkę efektywnej pracy \(\tilde{k}^* \) w długookresowej równowadze Solowa z funkcją produkcji Cobba-Douglasa.

Z równania (2.49) wynika, iż \(\tilde{k}^* > 0 \) spełnia równanie:

\[s\left(\tilde{k}^*\right)^a = (\delta + g + n)\tilde{k}^*, \]

a stąd:

\[\left(\tilde{k}^*\right)^{-a} = \frac{s}{\delta + g + n}, \]

czyli:

\[\tilde{k}^* = \left(\frac{s}{\delta + g + n}\right)^{\frac{1}{1-a}} \tag{2.50a} \]

lub:

\[\ln(\tilde{k}^*) = \frac{1}{1-a} \ln\left(\frac{s}{\delta + g + n}\right) = \frac{1}{1-a} \left(\ln(s) - \ln(\delta + g + n)\right). \tag{2.50b} \]

Równania (2.50ab) wyznaczają zasób kapitału na jednostkę efektywnej pracy w długookresowej równowadze modelu Solowa z funkcją produkcji Cobba-Douglasa. Wsta-
wiając \(\widetilde{k}^* \) z równania (2.50a) do funkcji produkcji na jednostkę efektywnej pracy (2.47), uzyskuje się strumień produktu na jednostkę owej pracy dany wzorem:

\[
\widetilde{y}^* = (\widetilde{k}^*)^{\alpha} = \left(\frac{s}{\delta + g + n} \right)^{\alpha \left(1 - \alpha \right)}
\]
(2.51a)

bądź też:

\[
\ln(\widetilde{y}^*) = \frac{\alpha}{1 - \alpha} \ln \left(\frac{s}{\delta + g + n} \right) = \frac{\alpha}{1 - \alpha} \left(\ln(s) - \ln(\delta + g + n) \right).
\]
(2.51b)

Z równań (2.50ab) oraz (2.51ab) wynika, co następuje:

- Kapitał i produkt na jednostkę efektywnej pracy w modelu Solowa z funkcją produkcji Cobba-Douglasa zależne są od: stopy oszczędności/inwestycji \(s \), stopy deprecjacji kapitału \(\delta \), stopy wzrostu jednostek efektywnej pracy \(g + n \) oraz od udziału nakładów kapitału w produkcji, równego elastyczności \(\alpha \) produkcji \(Y \) względem nakładów kapitału \(K \).
- Ponieważ:

\[
\frac{\partial \ln(\widetilde{k}^*)}{\partial s} = \frac{\partial}{\partial s} \left(\frac{1}{1 - \alpha} \left(\ln(s) - \ln(\delta + g + n) \right) \right) = \frac{1}{s \left(1 - \alpha \right)} > 0
\]

oraz:

\[
\frac{\partial \ln(\widetilde{y}^*)}{\partial s} = \frac{\partial}{\partial s} \left(\frac{\alpha}{1 - \alpha} \left(\ln(s) - \ln(\delta + g + n) \right) \right) = \frac{\alpha}{s \left(1 - \alpha \right)} > 0,
\]

zatem również pochodne cząstkowe \(\frac{\partial \widetilde{k}^*}{\partial s} \) i \(\frac{\partial \widetilde{y}^*}{\partial s} \) są dodatnie. Płynie stąd wniosek, iż im wyższa jest stopa oszczędności/inwestycji \(s \), tym wyższe są zasób kapitału i strumień produktu na jednostkę efektywnej pracy w długookresowej równowadze tej wersji modelu wzrostu gospodarczego Solowa.

- Wysokiej stopie deprecjacji kapitału \(\delta \) lub wysokiej stopie wzrostu jednostek efektywnej pracy \(g + n \) towarzyszy zaś zarówno niski kapitał \(\widetilde{k}^* \), jak i produkt \(\widetilde{y}^* \).

Wynika to stąd, że spełnione są następujące związki:

\[
\frac{\partial \ln(\widetilde{k}^*)}{\partial \delta} = \frac{\partial}{\partial \delta} \left(\frac{1}{1 - \alpha} \left(\ln(s) - \ln(\delta + g + n) \right) \right) = -\frac{1}{s \left(1 - \alpha \right) \delta + g + n} < 0,
\]

Wykorzystujemy tu twierdzenie o tym, że jeśli \(\ln(y) = \phi(x) \) (gdzie \(\phi \) jest różniczkowalną funkcją zmiennej \(x \in \mathbb{R} \)) oraz pochodna \(\frac{d \ln(y)}{dx} \) jest dodatnia/ujemna, to również pochodna \(\frac{dy}{dx} \) jest dodatnia/ujemna. Dzieje się tak dlatego, iż z zależności \(\ln(y) = \phi(x) \) wynika związek: \(y = e^{\phi(x)} \), a stąd \(\frac{dy}{dx} = \frac{d\phi(x)}{dx} e^{\phi(x)} = \frac{d\ln(y)}{dx} e^{\phi(x)} \), co oznacza, że pochodne \(\frac{d \ln(y)}{dx} \) i \(\frac{dy}{dx} \) są tego samego znaku (gdyż dla każdego \(x \in \mathbb{R} e^{\phi(x)} > 0 \)). Właściwość ta często wykorzystywana będzie również w prowadzonych dalej analizach.
Różniczkując równanie (2.50b) względem udziału nakładów kapitału w produkcie (czyli α), okazuje się, że:

\[
\frac{\partial \ln(\tilde{y}^*)}{\partial \delta} = \frac{\partial}{\partial \delta} \left(-\frac{\alpha}{1 - \alpha} (\ln(s) - \ln(\delta + g + n)) \right) = -\frac{\alpha}{(1 - \alpha)(\delta + g + n)} < 0,
\]

\[
\frac{\partial \ln(\tilde{k}^*)}{\partial (g + n)} = \frac{\partial}{\partial (g + n)} \left(\frac{1}{1 - \alpha} (\ln(s) - \ln(\delta + g + n)) \right) = -\frac{1}{(1 - \alpha)(\delta + g + n)} < 0
\]

oraz:

\[
\frac{\partial \ln(\tilde{y}^*)}{\partial (g + n)} = \frac{\partial}{\partial (g + n)} \left(-\frac{\alpha}{1 - \alpha} (\ln(s) - \ln(\delta + g + n)) \right) = -\frac{\alpha}{(1 - \alpha)(\delta + g + n)} < 0.
\]

Ponieważ:

\[
\ln\left(\frac{s}{\delta + g + n} \right) > 0 \iff \frac{s}{\delta + g + n} > e^0 = 1,
\]

\[
\left(\ln\left(\frac{s}{\delta + g + n} \right) < 0 \iff \frac{s}{\delta + g + n} < 1 \right),
\]

więc jeśli iloraz \(\frac{s}{\delta + g + n} \) będzie większy (mniejszy) od jedności, to pochodna cząstkowa \(\frac{\partial \ln(\tilde{k}^*)}{\partial \alpha} \) będzie dodatnia (ujemna) wtedy i tylko wtedy, gdy wyrażenie \(\ln\left(\frac{s}{\delta + g + n} \right) \) będzie dodatnie (ujemne). Ponieważ:

\[
\frac{\partial \ln(\tilde{k}^*)}{\partial \alpha} = \frac{\partial}{\partial \alpha} \left(-\frac{1}{1 - \alpha} \ln\left(\frac{s}{\delta + g + n} \right) \right) = \frac{1}{(1 - \alpha)^2} \ln\left(\frac{s}{\delta + g + n} \right).
\]

Natomiast przy \(\frac{s}{\delta + g + n} = 1 \) zarówno wyrażenie \(\ln\left(\frac{s}{\delta + g + n} \right) \), jak i pochodna \(\frac{\partial \ln(\tilde{k}^*)}{\partial \alpha} \) równe są zeru, skąd płynie wniosek, iż wówczas udział nakładów kapitału w produkcie nie oddziałuje na \(\tilde{k}^* \).

Podobnie, ponieważ:
\[
\frac{\partial \ln(y^*)}{\partial \alpha} = \frac{\partial}{\partial \alpha}\left(\frac{\alpha}{1-\alpha} \ln\left(\frac{s}{\delta + g + n}\right)\right) = \frac{1-\alpha - \alpha \cdot (-1)}{(1-\alpha)^2} \ln\left(\frac{s}{\delta + g + n}\right) = \frac{1}{(1-\alpha)^2} \ln\left(\frac{s}{\delta + g + n}\right),
\]

więc jeśli \(\frac{s}{\delta + g + n} > 1\) \(\left(\frac{s}{\delta + g + n} < 1\right)\), to \(\frac{\partial \ln(y^*)}{\partial \alpha} > 0\) \(\left(\frac{\partial \ln(y^*)}{\partial \alpha} < 0\right)\), zaś przy \(\frac{s}{\delta + g + n} = 1\) pochodna cząstkowa \(\frac{\partial \ln(y^*)}{\partial \alpha}\) równa jest zeronu. Interpretację ekonomiczną powyższych zależności pozostawiamy Czytelnikom.

2.5. RÓWNOWAGA SOLOWA PRZY FUNKCJI PRODUKCJI CES

W punkcie 2.4 skryptu rozważany był nieoklasyczny model wzrostu gospodarczego Solowa z funkcją produkcji Cobba-Douglasa i egzogenicznym postępem technicznym w sensie Harroda. W punkcie 2.5 analizować zaś będziemy ów model wzrostu gospodarczego przy scharakteryzowanej w rozdziale pierwszym funkcji produkcji CES i stopie harrodiańskiego postępu technicznego. Dlatego też w prowadzonych dalej rozważaniach przyjmuję się następujące założenia:

1. Proces produkcyjny w gospodarce w każdym momencie \(t \in [0;+\infty)\) opisany jest przez funkcję produkcji CES daną wzorem:

\[
Y(t) = \left[u(K(t))^{-\psi} + (1-\upsilon)(\Lambda(t)L(t))^{-\psi}\right]^{1/\psi} = \left[u(K(t))^{-\psi} + (1-\upsilon)(\tilde{L}(t))^{-\psi}\right]^{1/\psi}, \tag{2.52}
\]

gdzie \(Y, K, \tilde{L} = \Lambda L > 0\) oraz \(\upsilon \in (0;1)\) i \(\psi \in (0;+\infty)\) interpretuje się tak, jak miało to miejsce w rozdziale pierwszym.

2. Przyrost zasobu kapitału rzeczowego \(\tilde{K}\) jest różnicą między oszczędnościami/inwestycjami \(sY\) a deprecjacją kapitału \(\delta K\), gdzie \(s \in (0;1)\) oraz \(\delta \in (0;1)\) interpretuje się ekonomicznie tak jak uprzednio. Płynie stąd wniosek, że przyrost ów opisuje równanie (2.25).

3. Zasoby wiedzy \(\Lambda\) i pracy \(L\) rosną według dodatnich stóp równych (odpowiednio) \(g\) i \(n\). Płynie stąd wniosek, że w każdym momencie \(t \in [0;+\infty)\) spełniona jest zależność:

\[
\tilde{L}(t) \equiv \Lambda(t) \cdot L(t) = \Lambda_0 \cdot L_0 e^{(g+n)t} \Rightarrow \frac{\dot{\tilde{L}}(t)}{\tilde{L}(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{L}(t)}{L(t)} = g + n, \tag{2.53}
\]

gdzie \(\Lambda_0 > 0\) i \(L_0 > 0\) to (odpowiednio) zasób wiedzy i liczba pracujących w momencie \(t = 0\).
Dzieląc stronami makroekonomiczną funkcję produkcji CES (2.52) przez jednostki efektywnej pracy \(\tilde{L} > 0 \), uzyskuje się związek:

\[
\forall t \in [0;+\infty) \quad \ddot{\tilde{y}}(t) = \frac{Y(t)}{\tilde{L}(t)} = \frac{\left[u(K(t))^{-\psi} + (1 - u)(\tilde{L}(t))^{-\psi} \right]^{-1/\psi}}{\tilde{L}} = \\
= \left[\frac{u(K(t))^{-\psi} + (1 - u)(\tilde{L}(t))^{-\psi}}{\tilde{L}^{-\psi}} \right]^{-1/\psi} = \left[u\left(\frac{K(t)}{\tilde{L}(t)} \right)^{-\psi} + (1 - u) \right]^{-1/\psi},
\]

a stąd:

\[
\forall t \in [0;+\infty) \quad \ddot{\tilde{y}}(t) = \left[u\left(\frac{\tilde{k}(t)}{\tilde{L}(t)} \right)^{-\psi} + (1 - u) \right]^{-1/\psi},
\]

(2.54)

gdzie \(\ddot{\tilde{y}} = \frac{Y}{L} \) oraz \(\ddot{\tilde{k}} \equiv \frac{K}{\tilde{L}} \) to, podobnie jak poprzednio, strumień produktu i zasób kapitału na jednostkę efektywnej pracy.

Ponieważ \(\ddot{\tilde{k}} \equiv \frac{K}{\tilde{L}} \), więc, po zróżniczkowaniu powyższej tożsamości względem czasu \(t \in [0;+\infty) \), okazuje się, iż zachodzi zależność:

\[
\forall t \in [0;+\infty) \quad \dddot{\tilde{k}}(t) = \frac{\tilde{K}(t)\tilde{L}(t) - \tilde{K}(t)\dot{\tilde{L}}(t)}{(\tilde{L}(t))^2} = \frac{\dot{\tilde{k}}(t)}{\tilde{L}(t)} = \frac{\tilde{K}(t) - \dot{\tilde{L}}(t)}{\tilde{L}(t)} = \frac{\dot{\tilde{k}}(t)}{\tilde{L}(t)} \cdot \frac{\tilde{L}(t)}{\tilde{L}(t)}.
\]

Wstając do powyższego związku \(\dddot{\tilde{k}} = sY - \delta K \) z równania (2.25) oraz \(\frac{\tilde{L}}{L} = g + n \) z zależności (2.53), okazuje się, że:

\[
\forall t \in [0;+\infty) \quad \dddot{\tilde{k}}(t) = \frac{\tilde{K}(t)}{\tilde{L}(t)} - \frac{\tilde{K}(t)}{\tilde{L}(t)} \cdot \frac{\dot{\tilde{L}}(t)}{\tilde{L}(t)} = \frac{sY(t) - \delta K(t)}{\tilde{L}(t)} - (g + n)\ddot{\tilde{k}}(t) = \\
= s\frac{Y(t)}{L(t)} - \delta \frac{K(t)}{L(t)} - (g + n)\ddot{\tilde{k}}(t) = s\tilde{y}(t) - (\delta + g + n)\ddot{\tilde{k}}(t).
\]

Stąd oraz ze związku (2.54) dochodzi się zaś do następującego równania różniczkowego:

\[
\forall t \in [0;+\infty) \quad \dddot{\tilde{k}}(t) = s\tilde{y}(t) - (\delta + n)\ddot{\tilde{k}}(t) = s\left[u\left(\frac{\tilde{k}(t)}{\tilde{L}(t)} \right)^{-\psi} + (1 - u) \right]^{-1/\psi} - (\delta + g + n)\ddot{\tilde{k}}(t).
\]

(2.55)

Równanie różniczkowe (2.55) jest szczególnym przypadkiem równania Solowa (2.12). Z równania tego wyciągnąć można wniosek, że:
\[\forall t \in [0;+\infty) \quad \tilde{k}(t) > 0 \quad \Leftrightarrow \quad s \left[u \tilde{k}(t)^\psi + (1-u) \right]^{-1/\psi} - (\delta + g + n)\tilde{k}(t) > 0 \quad \Leftrightarrow \]

\[\Leftrightarrow \quad s \left[u \tilde{k}(t)^\psi + (1-u) \right]^{-1/\psi} > (\delta + g + n)\tilde{k}(t), \]

co implikuje zależność:

\[\forall t \in [0;+\infty) \quad \tilde{k}(t) > 0 \quad \Leftrightarrow \quad \frac{s}{\delta + g + n} \left[u \tilde{k}(t)^\psi + (1-u) \right]^{1/\psi} \tilde{k}(t) = \]

\[= \left[u \tilde{k}(t)^\psi \tilde{k}(t)^\psi + (1-u)\tilde{k}(t)^\psi \right]^{1/\psi} = \left[u + (1-u)\tilde{k}(t)^\psi \right]^{1/\psi} \]

lub:

\[\forall t \in [0;+\infty) \quad \tilde{k}(t) > 0 \quad \Leftrightarrow \quad \left(\frac{s}{\delta + g + n} \right)^\psi > u + (1-u)\tilde{k}(t)^\psi \quad \Leftrightarrow \quad \frac{s}{\delta + g + n} \left(\frac{1}{1-u} \right)^\psi \tilde{k}(t), \]

co, przy dodatkowym założeniu, że\(^{10}\) \(\left(\frac{s}{\delta + g + n} \right)^\psi > u \), prowadzi do związku:

\[\forall t \in [0;+\infty) \quad \tilde{k}(t) > 0 \quad \Leftrightarrow \quad \tilde{k}(t) < \left(\frac{s}{\delta + g + n} \left(\frac{1}{1-u} \right)^\psi - u \right)^{1/\psi}. \quad (2.56a) \]

Rozumując analogicznie (co pozostawiamy Czytelnikom), można pokazać, iż spełnione są zależności:

\[\forall t \in [0;+\infty) \quad \tilde{k}(t) = 0 \quad \Leftrightarrow \quad \tilde{k}(t) = \left(\frac{s}{\delta + g + n} \left(\frac{1}{1-u} \right)^\psi - u \right)^{1/\psi}. \quad (2.56b) \]

oraz:

\[^{10} \text{Nierówność } \left(\frac{s}{\delta + g + n} \right)^\psi > u \text{ nie ma bezpośredniej interpretacji ekonomicznej.} \]
Ze związków (2.56abc) płyną następujące wnioski:

- Jeśli kapitał na jednostkę efektywnej pracy w momencie $t = 0$, czyli
 $$\tilde{k}(0) = \tilde{k}_0 > 0,$$
 jest wyższy (niższy) od wielkości
 $$\left(\frac{s}{\delta + g + n} \right)^\psi \frac{1}{\psi} \frac{1}{1 - \psi},$$
 to zarówno w momencie $t = 0$, jak i w pewnym przedziale czasu $(0; t^*)$, gdzie moment t^* jest momentem skończonym lub nieskończonym, przyrosty kapitału na jednostkę efektywnej pracy \tilde{k} są ujemne (dodatnie) i gospodarka Solowa dąży do zasobu

 $$\tilde{k}^* = \left(\frac{s}{\delta + g + n} \right)^\psi \frac{1}{\psi} \frac{1}{1 - \psi},$$

 przy którym $\tilde{k} = 0$.

- Jeśli zaś w momencie $t = 0$: $\tilde{k}(0) = \tilde{k}_0 = \left(\frac{s}{\delta + g + n} \right)^\psi \frac{1}{\psi} \frac{1}{1 - \psi}$, to dla każdego

 $t \in [0; +\infty)$ zachodzi równość: $\tilde{k}(t) = \left(\frac{s}{\delta + g + n} \right)^\psi \frac{1}{\psi} \frac{1}{1 - \psi}$.

- Ponieważ w każdym momencie $t \in [0; +\infty)$ zachodzi związek:

 $$\tilde{k}(t) = \frac{K(t)}{\Lambda(t) L(t)} = \frac{k(t)}{\Lambda(t)},$$

gdzie $k(t) = \frac{K(t)}{L(t)}$ to zasób technicznego uzbrojenia pracy w momencie t, zatem

(w szczególności) również $\tilde{k}_0 = \tilde{k}(0) = \frac{k(0)}{\Lambda(0)} = \frac{k_0}{\Lambda_0}$, przy czym k_0 i $\Lambda_0 > 0$ to zasoby technicznego uzbrojenia pracy i wiedzy w momencie $t = 0$. Stąd zaś wynika, że spełnione są zależności:
Ze związków (2.57abc) oraz prowadzonych uprzednio rozważań wyciągnąć można dwa następujące wnioski. Po pierwsze, jeśli wyjściowe techniczne uzbrojenie pracy \(k_0 \) jest wyższe (niższe) od \(\Lambda_0 \), to w przedziale czasu \(t \in [0; t^*] \) przyrosty kapitału na jednostkę efektywnej pracy \(\dot{k} \) są ujemne (dodatnie). Po drugie, przy \(k_0 = \Lambda_0 \) przyrosty te są równe zeru w każdym momencie \(t \in [0; +\infty) \). Stąd zaś oraz z równania (2.15), z którego wynika, że \(\dot{k}/k = g + \dot{k}/k \) (gdzie \(g \) jest stopą harrodiańskiego postępu technicznego), wyciągnąć można wniosek, iż przy \(k_0 \) wyższym (niższym) od \(\Lambda_0 \) stopy wzrostu technicznego
uzbrojenia pracy \(\frac{\dot{k}}{k} \) są niższe (wyższe) od stopy postępu technicznego w sensie Harro-da g. Natomiast przy \(k_0 = \Lambda_0 \left(\frac{s}{\delta + g + n} \right)^\psi \left(1 - \nu \right)^\nu \) stopy te równe są stopie harro-diańskiego postępu technicznego.

Ponieważ, bez względu na wyjściową wielkość kapitału na jednostkę efektywnej pracy \(\tilde{k}(0) = \tilde{k}_0 > 0 \), kapitał ten dąży do wielkości:

\[
\tilde{k}^* = \left(\frac{s}{\delta + g + n} \right)^\psi \left(1 - \nu \right)^\nu \left(\frac{\delta + g + n}{s} \right)^{-\psi} \left(\frac{1 - \nu}{\delta + g + n} \right)^{-\nu},
\]

(2.58)

zatem zasób \(\tilde{k}^* \) można traktować jako kapitał na jednostkę efektywnej pracy w równowadze modelu Solowa z funkcją produkcji CES. Z równania (2.58) wyciągnąć można następujące wnioski:

- Kapitał na jednostkę efektywnej pracy \(\tilde{k}^* \) w długookresowej równowadze tej wersji modelu wzrostu gospodarczego Solowa zależny jest m.in. od stopy oszczędności/inwestycji \(s \), stopy deprecjacji kapitału \(\delta \) oraz stopy wzrostu liczby pracujących \(n \).

- Ponieważ pochodna cząstkowa:

\[
\frac{\partial \tilde{k}^*}{\partial s} = \frac{\partial}{\partial s} \left(\left(\frac{s}{\delta + g + n} \right)^\psi \left(1 - \nu \right)^\nu \left(\frac{\delta + g + n}{s} \right)^{-\psi} \left(\frac{1 - \nu}{\delta + g + n} \right)^{-\nu} \right) = \frac{1}{\psi} \left(\frac{s}{\delta + g + n} \right)^{\psi - 1} \left(1 - \nu \right)^{-\psi} \cdot \frac{\psi \cdot \left(\frac{s}{\delta + g + n} \right)^{-\psi - 1}}{\delta + g + n}.
\]

przyjmuje wartości dodatnie, zatem wysokiej stopie oszczędności/inwestycji odpowia-da wysoki zasób kapitału na jednostkę efektywnej pracy w długookresowej równowa-dze Solowa.

- Im wyższe są zaś stopa deprecjacji kapitału \(\delta \) lub stopa wzrostu liczby pracują-cych \(n \), tym niższą wartość przyjmuje \(\tilde{k}^* \), co wynika stąd, że:
\[
\frac{\partial \tilde{k}^\ast}{\partial \delta} = \frac{\partial}{\partial \delta} \left[\frac{\left(\frac{s}{(\delta + g + n)} \right)^\psi - \nu}{1 - \nu} \right] = \frac{1}{\psi} \cdot \left(\frac{s}{(\delta + g + n)} \right)^\psi - \nu \frac{1}{1 - \nu} \\
\psi \cdot \left(\frac{s}{(\delta + g + n)} \right)^{\psi - 1} \cdot \frac{-1}{(\delta + g + n)^2} < 0
\]

oraz:

\[
\frac{\partial \tilde{k}^\ast}{\partial n} = \frac{\partial}{\partial n} \left[\frac{\left(\frac{s}{(\delta + g + n)} \right)^\psi - \nu}{1 - \nu} \right] = \frac{1}{\psi} \cdot \left(\frac{s}{(\delta + g + n)} \right)^\psi - \nu \frac{1}{1 - \nu} \\
\psi \cdot \left(\frac{s}{(\delta + g + n)} \right)^{\psi - 1} \cdot \frac{-1}{(\delta + g + n)^2} < 0.
\]

- Z powyższych analiz oraz tego, że (przy \(t \to +\infty \)) stopa wzrostu technicznego uzbrojenia pracy \(\frac{k}{k} \) dąży do stopy postępu technicznego w sensie Harroda \(g \), płyną następujące wnioski. Po pierwsze, im wyższa jest stopa oszczędności/inwestycji \(s \) w gospodarce Solowa z funkcją produkcji CES, tym wyżej położona jest długookresowa ścieżka wzrostu technicznego uzbrojenia pracy. Po drugie, wysokiej stopie depresji kapitału \(\delta \) lub wysokiej stopie wzrostu liczby pracujących \(n \) odpowiada nisko położona ścieżka technicznego uzbrojenia pracy w długookresowej równowadze Solowa.

Licząc pochodną równania (2.54) względem czasu \(t \in [0;+\infty) \), okazuje się, że:

\[
\forall t \in [0;+\infty) \quad \dot{y}(t) = \frac{d}{dt} \left[u^\left[k(t) \right]^\psi + (1 - \nu) \right]^{-1/\psi} \cdot \tilde{k}(t) = \\
= -\frac{1}{\psi} \cdot u^\left[\tilde{k}(t) \right]^{\psi - 1} \cdot (1 - \nu)^{-1/\psi - 1} \cdot (-\psi) \cdot u \cdot \left[\tilde{k}(t) \right]^{\psi - 1} \cdot \dot{k}(t),
\]

a stąd:

\[
\forall t \in [0;+\infty) \quad \dot{y}(t) = \left[u^\left[\tilde{k}(t) \right]^{\psi} + (1 - \nu) \right]^{-1/\psi - 1} \cdot u \cdot \left[\tilde{k}(t) \right]^{\psi - 1} \cdot \dot{k}(t). \quad (2.59)
\]

Z równania (2.59) oraz prowadzonych wcześniej rozważań wynika, co następuje:
Jeśli wyjściowy kapitał na pracującego k_0 jest wyższy od

$$\Lambda_0 \left(\frac{\frac{s}{\delta + g + n} - \nu}{1 - \nu} \right)$$

to przyrosty kapitału na jednostkę efektywnej pracy \hat{k} i produktu na jednostkę owej pracy \hat{y} są ujemne aż do momentu t^* (skończonego lub nie), w którym $\tilde{k} = \tilde{k}^* = \left(\frac{\frac{s}{\delta + g + n} - \nu}{1 - \nu} \right)^{\frac{1}{\psi}}$.

W przypadku, w którym $k_0 = \Lambda_0 \left(\frac{\frac{s}{\delta + g + n} - \nu}{1 - \nu} \right)$, przyrosty analizowanych tu zmiennych makroekonomicznych są równe zeron w każdym momencie $t \in [0;+\infty)$.

Natomiast wówczas, gdy $k_0 < \Lambda_0 \left(\frac{\frac{s}{\delta + g + n} - \nu}{1 - \nu} \right)$, zarówno \hat{k}, jak i \hat{y} przyjmują wartości dodatnie w przedziale czasu $[0;t^*)$.

Stąd zaś oraz z równania (2.21), które implikuje, że $\frac{\hat{y}}{\hat{y}} = g + \frac{\hat{y}}{\hat{y}}$, wyciągnąć można wniosek, że jeśli k_0 jest wyższe (niższe) od $\Lambda_0 \left(\frac{\frac{s}{\delta + g + n} - \nu}{1 - \nu} \right)$, to stopa wzrostu wydajności pracy $\frac{\hat{y}}{\hat{y}}$ jest niższa (wyższa) od stopy harrodiańskiego postępu technicznego g. Natomiast przy $k_0 = \Lambda_0 \left(\frac{\frac{s}{\delta + g + n} - \nu}{1 - \nu} \right)$ stopa wzrostu produktu na pracującego równa jest stopie postępu technicznego w sensie Harroda.
Wstawiając zaś kapitał na jednostkę efektywnej pracy, dany równaniem (2.58), do zależności (2.54), uzyskuje się produkt na jednostkę efektywnej pracy \(\tilde{y}^* \) w warunkach długookresowej równowagi rozważanego tu modelu wzrostu gospodarczego postaci:

\[
\tilde{y}^* = \left[v \left(\frac{s}{\delta + g + n} \right)^{-\psi} + (1 - \psi) \right]^{-1/\psi} = v \cdot \left(\frac{\left(\frac{s}{\delta + g + n} \right)^{-\psi} - 1 - \psi}{1 - \psi} \right) + (1 - \psi)
\]

\[
= \left[\frac{v(1 - \psi)}{\left(\frac{s}{\delta + g + n} \right)^{\psi} - 1 - \psi} + (1 - \psi) \right]^{-1/\psi} = \left[\frac{v(1 - \psi) + \left(\frac{s}{\delta + g + n} \right)^{\psi} (1 - \psi) - \psi(1 - \psi)}{\left(\frac{s}{\delta + g + n} \right)^{\psi} - 1 - \psi} \right]^{-1/\psi},
\]

co implikuje, że:

\[
\tilde{y}^* = \left[\left(\frac{s}{\delta + g + n} \right)^{\psi} - 1 - \psi \right]^{-1/\psi} \quad (2.60a)
\]

lub:

\[
\ln(\tilde{y}^*) = \frac{1}{\psi} \ln \left[\left(\frac{s}{\delta + g + n} \right)^{\psi} - 1 - \psi \right] = \frac{1}{\psi} \ln \left[\left(\frac{s}{\delta + g + n} \right)^{\psi} - 1 - \psi \right] \quad (2.60b)
\]

\[
\ln \left[\left(\frac{s}{\delta + g + n} \right)^{\psi} - 1 - \psi \right] - \psi \ln \left(\frac{s}{\delta + g + n} \right) - \ln(1 - \psi)
\]

Z równań (4.55ab) płyną następujące wnioski:

- Strumień produktu na jednostkę efektywnej pracy \(\tilde{y}^* \) w tej wersji modelu wzrostu gospodarczego Solowa zdeterminowany jest m.in. przez stopę oszczędności/inwestycji \(s \), stopę deprecjacji kapitału \(\delta \) oraz stopę wzrostu liczby pracujących \(n \).

- Ponieważ przy \(\left(\frac{s}{\delta + g + n} \right)^{\psi} > 1 \), pochodna cząstkowa:
przyjmuje wartości dodatnie, zatem im wyższa jest stopa oszczędności/inwestycji w gospodarce, tym wyższy jest strumień produktu na jednostkę efektywnej pracy.

- Im wyższa jest stopa deprecjacji kapitału δ lub stopa wzrostu liczby pracujących n, tym niższy jest rozważany tu strumień produktu. Wynika to stąd, iż:
PODSUMOWANIE

Prowadzone w rozdziale drugim analizy można podsumować następująco:

I. W modelu wzrostu gospodarczego Solowa zakłada się, że proces produkcyjny opisany jest przez scharakteryzowaną w rozdziale pierwszym skryptu funkcję produkcji z postępow technicznym w sensie Harroda. Ponadto przyjmuje się, iż przyrost zasobu kapitału równy jest różnicy między inwestycjami (zdeterminowanymi przez oszczędności) a deprecjacją kapitału, zaś zasoby pracy i wiedzy rosną według pewnych, dodatnich, egzogenicznych stóp wzrostu.

II. Z powyższych założeń wynika równanie Solowa. Równanie to interpretuje się ekonomicznie w ten sposób, iż przyrost zasobu kapitału na jednostkę efektywnej pracy stanowi różnicę między oszczędnościami/inwestycjami na jednostkę owej pracy a ubytkiem kapitału na jednostkę efektywnej pracy, który to ubytek wynika zarówno z deprecji kapitału, jak i ze wzrostu jednostek efektywnej pracy. Ozna- cza to również, że jeśli oszczędności/inwestycje na jednostkę efektywnej pracy są wyższe (niższe) od ubytku kapitału na jednostkę owej pracy, to przyrosty kapitału na jednostkę efektywnej pracy są dodatnie (ujemne).

III. Równanie Solowa i właściwości neoklasycznej funkcji produkcji implikują, że bez względu na wyjściowy, dodatni poziom kapitału na jednostkę efektywnej pracy gospodarka Solowa dąży do pewnych, stałych wartości zasobu kapitału i strumienia produktu na jednostkę owej pracy. Wielkości te wyznaczają długookresową równowagę modelu wzrostu gospodarczego Solowa.

IV. Jeśli w okresie, w którym gospodarka Solowa dąży do długookresowej równowagi, przyrosty kapitału i produktu na jednostkę efektywnej pracy są dodatnie (ujemne), to stopy wzrostu technicznego uzbrojenia pracy (kapitału na pracującego) i wydaj-
ności pracy (produkto na pracującego) są wyższe (niższe) od stopy harrodiańskiego postępu technicznego. Jeśli zaś gospodarka Solowa znajduje się w stanie długo-okresowej równowagi, to stopy wzrostu technicznego uzbrojenia pracy i wydajności pracy równe są stopie postępu technicznego w sensie Harroda.

V. Z prowadzonych w rozdziale drugim rozważań wynika również, że zasób kapitału i strumień produktu na jednostkę efektywnej pracy w równowadze Solowa są tym wyższe, im wyższa jest stopa oszczędności/inwestycji oraz im niższe są stopa deprecjacji kapitału i stopa wzrostu jednostek efektywnej pracy. Dlatego też, im wyższa jest stopa oszczędności/inwestycji oraz im niższe są stopa deprecjacji kapitału i stopa wzrostu liczby pracujących, tym wyżej położone są długookresowe ścieżki wzrostu wydajności pracy oraz technicznego uzbrojenia pracy.

VI. Wnioski te znajdują swoje potwierdzenie również wówczas, gdy analizuje się neo-klasyczny model wzrostu gospodarczego Solowa ze scharakteryzowanymi w rozdziale pierwszym funkcjami produkcji Cobba-Douglasa i CES.
Rozdział trzeci

MODEL WZROSTU MANKIWA-ROMERA-WEILA
I JEGO ROZSZERZENIA

3.1. WPROWADZENIE

Celem analiz prowadzonych w rozdziale trzecim skryptu jest więc:

I. Scharakteryzowanie założeń modelu wzrostu gospodarczego Mankiwa-Romera-Weila.

II. Wyznaczenie równowagi owego modelu wzrostu gospodarczego oraz czynników określających tę równowagę.

III. Rozważenie wpływu m.in. zmiany stóp inwestycji w zasoby kapitału rzeczowego i ludzkiego na długookresową równowagę Mankiwa-Romera-Weila oraz położenie długookresowej ścieżki wzrostu gospodarczego.

IV. Wyznaczenie równowagi Mankiwa-Romera-Weila i czynników ją determinujących wówczas, gdy proces produkcyjny w gospodarce opisany jest przez funkcję produkcji CES.

V. Przedstawienie założeń N-kapitałowego modelu wzrostu gospodarczego Nonnemana-Vanhoudta.

VI. Wyznaczenie długookresowej równowagi owego modelu wzrostu gospodarczego.
3.2. ZAŁOŻENIA MODELU MANKIWA-ROMERA-WEILA

W modelu wzrostu gospodarczego Mankiwa-Romera-Weila czyni się następujące założenia:

1. Proces produkcyjny w każdym momencie \(t \in [0;+\infty) \) opisany jest przez rozszerzoną funkcję produkcji Cobba-Douglasta, daną wzorem:

\[
Y(t) = (K(t))^\alpha (H(t))^\beta (\Lambda(t)L(t))^{1-\alpha-\beta} = [K(t)]^\alpha [H(t)]^\beta [\Lambda(t)L(t)]^{1-\alpha-\beta},
\]

gdzie \(Y, K \) oraz \(\tilde{L} = \Lambda L \geq 0 \) interpretuje się ekonomicznie tak, jak ma to miejsce w rozdziale drugim skryptu, zaś \(H \geq 0 \) jest łącznym zasobem kapitału ludzkiego w gospodarce Mankiwa-Romera-Weila. Przez zasób kapitału ludzkiego w rozważanym tu modelu wzrostu gospodarczego rozumie się wiedzę i umiejętności wszystkich pracujących w gospodarce, która to wiedza i umiejętności wykorzystywane są w procesach produkcyjnych. Natomiast parametry \(\alpha, \beta \) oraz \(1-\alpha-\beta \) (przy czym \(\alpha, \beta \) i \(\alpha + \beta \in (0;1) \)), podobnie jak parametry \(\alpha \) i \(1-\alpha \) przy funkcji produkcji (2.24), można interpretować ekonomicznie na dwa sposoby. Po pierwsze, parametry te są elastycznościami strumienia wytworzonego produktu \(Y \) względem (odpowiednio) zasobów kapitału rzeczowego \(K \), ludzkiego \(H \) oraz jednostek efektywnej pracy \(\tilde{L} \). Po drugie, parametry \(\alpha, \beta \) oraz \(1-\alpha-\beta \) interpretuje się również, na gruncie marginalnej teorii podziału Clarka, jako udziały nakładów kapitału rzeczowego, kapitału ludzkiego i jednostek efektywnej pracy w produkcji\(^1\).

2. Przyrost zasobu kapitału rzeczowego \(\dot{K} \) (ludzkiego \(\dot{H} \)) równy jest różnicy między inwestycjami w kapitał rzeczowy \(s_K Y \) (ludzki \(s_H Y \)) a deprecjacją kapitału rzeczowego \(\delta_K K \) (ludzkiego \(\delta_H H \))\(^2\). Oznacza to, że:

\[
\forall t \in [0;+\infty) \quad \dot{K}(t) = s_K Y(t) - \delta_K K(t)
\]

oraz:

\[
\forall t \in [0;+\infty) \quad \dot{H}(t) = s_H Y(t) - \delta_H H(t),
\]

gdzie \(s_K \) i \(s_H \) to stopy inwestycji w kapitał rzeczowy i ludzki (rozumiane jako udziały inwestycji w owe zasoby w produkcie \(Y \)), zaś \(\delta_K \) oraz \(\delta_H \) są stopami deprecjacji tych czynników produkcji. O stopach \(s_K \), \(s_H \), \(\delta_K \) i \(\delta_H \) zakłada się również, że należą one do przedziału \((0;1) \) oraz \(s_K + s_H \in (0;1) \) i mają charakter zmiennych egzogenicznych w rozważanym tu modelu wzrostu gospodarczego. Ekonomiczne uzasadnienie wspomnianych restrykcji nakładanych na parametry \(s_K \), \(s_H \), \(\delta_K \) oraz \(\delta_H \) pozostawiamy Czytelnikom\(^3\).

\(^1\) Uzasadnienie przedstawionych tu interpretacji ekonomicznej parametrów \(\alpha, \beta \) oraz \(1-\alpha-\beta \) pozostawiamy Czytelnikom.

\(^2\) Deprecjacja kapitału ludzkiego jest (przede wszystkim) rezultatem odchodzenia z zasobu pracujących starszych, najbardziej doświadczonych pracowników wraz z ich umiejętnościami (czyli zgromadzonym zasobem kapitału ludzkiego).

\(^3\) Jeśli inwestycje w kapitał rzeczowy stanowią \(s_K \)-tą część wytworzonego produktu, inwestycje w kapitał ludzki \(s_H \)-tą część tegoż produktu, to na konsumpcję pozostaje część produktu równa
3. Liczba pracujących L i zasób wiedzy Λ, który nie jest związany z kapitałem ludzkim, podobnie jak ma to miejsce w analizowanym w rozdziale drugim skryptu modelu wzrostu gospodarczego Solowa, rosną według dodatnich, egzogenicznych stóp równych n oraz g (n jest stopą wzrostu liczby pracujących, zaś g stopą harrodiańskiego postępu technicznego\(^4\)). Można to formalnie zapisać następująco:

$$\forall t \in [0;+\infty) \quad \frac{\dot{L}(t)}{L(t)} = n$$ \hspace{1cm} (3.3a)

i:

$$\forall t \in [0;+\infty) \quad \frac{\dot{\Lambda}(t)}{\Lambda(t)} = g.$$ \hspace{1cm} (3.3b)

Ponieważ jednostki efektywnej pracy \tilde{L} tożsamościowo równe są ΛL, zatem stopa wzrostu owych jednostek $\frac{\dot{\tilde{L}}}{\tilde{L}}$ dana jest wzorem:

$$\forall t \in [0;+\infty) \quad \frac{\dot{\tilde{L}}(t)}{\tilde{L}(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{L}(t)}{L(t)}.$$ \hspace{1cm} (3.3ab)

Stąd zaś oraz z równań (3.3ab) wynika, że zachodzi związek:

$$\forall t \in [0;+\infty) \quad \frac{\dot{\tilde{L}}(t)}{\tilde{L}(t)} = g + n.$$ \hspace{1cm} (3.4)

Związek (3.4), podobnie jak równanie (2.7) w modelu Solowa, interpretuje się ekonomicznie w ten sposób, że stopa wzrostu jednostek efektywnej pracy $\frac{\dot{\tilde{L}}}{\tilde{L}}$ równa jest sumie stopy wzrostu liczby pracujących n i stopy postępu technicznego w sensie Harroda g.

Zależności zachodzące między zasobami i strumieniami w modelu wzrostu gospodarczego Mankiwa-Romera-Weila można zilustrować tak, jak ma to miejsce na rysunku 3.1.

\(^4\) Stopę harrodiańskiego postępu technicznego w modelu wzrostu Mankiwa-Romera-Weila można utożsмяć ze skutkami nauki przez doświadczenie (learning by doing).

\(^1\) $1 - s_K - s_H$. Płynie stąd wniosek, że konsumpcja C w gospodarce Mankiwa-Romera-Weila równa jest $\left(1 - s_K - s_H \right)Y$.

\(^2\) Stopę harrodiańskiego postępu technicznego w modelu wzrostu Mankiwa-Romera-Weila można utożsмяć ze skutkami nauki przez doświadczenie (learning by doing).
Z rysunku 3.1 wynika, że zasoby K, H oraz \tilde{L} determinują wielkość wytworzonego strumienia produktu Y. Produkt ów rozkłada się na inwestycje $I = (s_K + s_H)Y$ oraz konsumpcję $C = (1 - s_K - s_H)Y$. Inwestycje w kapitał rzeczowy s_KY (ludzki s_HY) powiększają ów zasób kapitału. Ponadto, zarówno kapitał rzeczowy K, jak i kapitał ludzki H ulegają deprecjacji według stóp deprecjacji równych (odpowiednio) δ_K oraz δ_H. Nato-miast jednostki efektywnej pracy rosną według egzogenicznej stopy wzrostu równej $g + n$.

3.3. RÓWNOWAGA MANKIWA-ROMERA-WEILA

Zdefiniujmy teraz przez:

\[\forall t \in [0;+\infty) \quad \tilde{k}(t) = \frac{K(t)}{\tilde{L}(t)}, \quad (3.5a) \]

\[\forall t \in [0;+\infty) \quad \tilde{h}(t) = \frac{H(t)}{\tilde{L}(t)}, \quad (3.5b) \]

oraz:

\[\forall t \in [0;+\infty) \quad \tilde{y}(t) = \frac{Y(t)}{\tilde{L}(t)} \quad (3.5c) \]
zasoby kapitału rzeczowego K i ludzkiego H oraz strumień produktu Y przypadające na jednostkę efektywnej pracy \tilde{L}. Dzieląc stronami funkcję produkcji (3.1) przez jednostki efektywnej pracy \tilde{L}, uzyskuje się związek:

$$\forall t \in [0;+\infty) \quad \frac{Y(t)}{\tilde{L}(t)} = \frac{(K(t))^a (H(t))^b (\tilde{L}_t(t))^{1-a-b}}{\tilde{L}(t)} = \frac{(K(t))^a (H(t))^b (\tilde{L}_t(t))^{1-a-b}}{(\tilde{L}_t(t))^{1-a-b}} = \left(\frac{K(t)}{\tilde{L}(t)}\right)^a \left(\frac{H(t)}{\tilde{L}(t)}\right)^b,$$

a stąd oraz z równań $(3.5abc)$ wynika, iż:

$$\forall t \in [0;+\infty) \quad \tilde{y}(t) = \left(\tilde{k}(t)\right)^a \left(\tilde{h}(t)\right)^b. \quad (3.6)$$

Równanie (3.6) opisuje relacje zachodzące między nakładami kapitału rzeczowego \tilde{k} i ludzkiego \tilde{h} na jednostkę efektywnej pracy a wielkością produktu \tilde{y} przypadającego na jednostkę owej pracy. Z równania tego płynie m.in. wniosek, że im wyższe są nakłady \tilde{k} i \tilde{h}, tym wyższy jest strumień produktu \tilde{y}. Dzieje się tak dlatego, że dla każdego $\tilde{k} > 0$ i $\tilde{h} > 0$ zachodzi związek:

$$\frac{\partial \tilde{y}}{\partial \tilde{k}} = \frac{\partial}{\partial \tilde{k}} \left(\tilde{k}\tilde{h}\right) = \alpha \tilde{k}^{a-1} \tilde{h}^b > 0$$

oraz (analogicznie):

$$\frac{\partial \tilde{y}}{\partial \tilde{h}} = \beta \tilde{k}^a \tilde{h}^{\beta-1} > 0.$$

Różniczkując równania $(3.5ab)$ względem czasu $t \in [0;+\infty)$, dochodzi się do związków:

$$\forall t \in [0;+\infty) \quad \dot{\tilde{k}}(t) = \frac{K(t)\tilde{L}(t) - K(t)\tilde{L}(t)}{[\tilde{L}(t)]^2} = \frac{\dot{K}(t)}{\tilde{L}(t)} - \frac{K(t)}{\tilde{L}(t)} \cdot \frac{\tilde{L}(t)}{\tilde{L}(t)}$$

oraz (analogicznie):

$$\forall t \in [0;+\infty) \quad \dot{\tilde{h}}(t) = \frac{H(t)}{\tilde{L}(t)} - \frac{H(t)}{\tilde{L}(t)} \cdot \frac{\tilde{L}(t)}{\tilde{L}(t)}.$$

Wstawiając do powyższych równań zależności $(3.2ab), (3.5abc)$ oraz (3.4), uzyskuje się związek:

$$\forall t \in [0;+\infty) \quad \dot{\tilde{k}}(t) = \frac{s_k Y(t) - \delta_k K(t) - \tilde{k}(t) \cdot (g + n)}{\tilde{L}(t)} = s_k \tilde{y}(t) - \delta_k \tilde{k}(t) - (g + n)\tilde{k}(t) = s_k \tilde{y}(t) - (\delta_k + g + n)\tilde{k}(t) \quad (3.7a)$$
i (podobnie):
\[\forall t \in [0;+\infty) \quad \dot{\tilde{h}}(t) = s_H \tilde{y}(t) - \left(\delta_H + g + n \right) \tilde{h}(t). \] (3.7b)

Równania różniczkowe (3.7ab) stanowią rozszerzenie analizowanego w rozdziale drugim równania Solowa (2.11). Z równań tych płynie wniosek, że przyrost zasobu kapitału rzeczowego \(\dot{k} \) (ludzkiego \(\dot{h} \)) na jednostkę efektywnej pracy stanowi różnicę między inwestycjami \(s_K \tilde{y} \) (\(s_H \tilde{y} \)) w kapitał rzeczowy (ludzki), które przypadają na jednostkę efektywnej pracy, a ubytkiem \(\left(\delta_K + g + n \right) \dot{k} \left(\delta_H + g + n \right) \tilde{h} \) kapitału rzeczowego (ludzkiego) na jednostkę efektywnej pracy. Ubytek ów, podobnie jak ma to miejsce w przypadku równania Solowa (2.11), wynika zaś zarówno z deprecjacji kapitału rzeczowego \(\delta_K \dot{k} \) (ludzkiego \(\delta_H \tilde{h} \)), jak i ze wzrostu jednostek efektywnej pracy \((g + n) \dot{k} \left(g + n \tilde{h} \right) \).

Wstawiając do równań (3.7ab) związek (3.6), uzyskuje się następujący układ równań różniczkowych:
\[\begin{align*}
\dot{k}(t) &= s_K \left(\dot{k}(t) \right)^a \left(\tilde{h}(t) \right)^b - \left(\delta_K + g + n \right) \dot{k}(t), \\
\dot{h}(t) &= s_H \left(\dot{k}(t) \right)^a \left(\tilde{h}(t) \right)^b - \left(\delta_H + g + n \right) \tilde{h}(t).
\end{align*} \] (3.8)

Równania układu równań różniczkowych (3.8) stanowią tzw. równania ruchu modelu wzrostu gospodarczego Mankiwa-Romera-Weila. Równania te opisują przyrosty zasobów kapitału rzeczowego \(\dot{k} \) i ludzkiego \(\dot{h} \) na jednostkę efektywnej pracy w zależności od bieżących wartości owych zasobów \(\dot{k} \) oraz \(\dot{h} \), stóp inwestycji w kapitał rzeczowy \(s_K \) i ludzki \(s_H \), stóp deprecjacji analizowanych tu zasobów \(\delta_K \) i \(\delta_H \), stopy wzrostu jednostek efektywnej pracy \(g + n \) oraz elastyczności \(\alpha \) i \(\beta \) funkcji produkcji (3.1).

Analizując układ równań różniczkowych (3.8), wygodnie jest się posłużyć jego diagramem (portretem) fazowym. W tym celu należy wpierw wyznaczyć krzywe podziału owego układu równań różniczkowych. Z pierwszego z równań układu (3.8) wynika, że w każdym momencie \(t \in [0;+\infty) \) zachodzi związek:
\[\dot{k}(t) \geq 0 \iff s_K \left(\dot{k}(t) \right)^a \left(\tilde{h}(t) \right)^b - \left(\delta_K + g + n \right) \dot{k}(t) \geq 0 \iff s_K \left(\dot{k}(t) \right)^a \left(\tilde{h}(t) \right)^b \geq \left(\delta_K + g + n \right) \dot{k}(t), \]
co jest równoznaczne z tym, że:
\[\left(\dot{k}(t) \right)^{1-a} \leq \frac{s_K \left(\tilde{h}(t) \right)^b}{\delta_K + g + n} \iff \dot{k}(t) \leq \left(\frac{s_K \left(\tilde{h}(t) \right)^b}{\delta_K + g + n} \right)^{1/(1-a)} \left(\tilde{h}(t) \right)^{b/(1-a)}, \]

czyli:
\[\forall t \in [0;+\infty) \quad \dot{k}(t) \geq 0 \iff \dot{k}(t) \leq \left(\frac{s_K \left(\tilde{h}(t) \right)^b}{\delta_K + g + n} \right)^{1/(1-a)} \left(\tilde{h}(t) \right)^{b/(1-a)}, \] (3.9a)

\[^5 \] Diagram fazowy jest graficzną ilustracją układu równań różniczkowych. Wykorzystanie diagramów fazowych w analizie układów równań różniczkowych omówione jest np. w punkcie 18.5 podręcznika Chianga (1994).
oraz (analogicznie):

\[\forall t \in [0; +\infty) \quad \tilde{k}(t) \leq 0 \iff \tilde{k}(t) \geq \left(\frac{S_K}{\delta_K + g + n} \right)^{1/(1-\alpha)} \cdot \left(\tilde{h}(t) \right)^{\beta/(1-\alpha)}. \quad (3.9b) \]

Ze związków (3.9ab) płyną następujące wnioski:

- Jeśli kapitał rzeczowy na jednostkę efektywnej pracy \(\tilde{k} \) jest niższy (wyższy) od \(\left(\frac{S_K}{\delta_K + g + n} \right)^{1/(1-\alpha)} \cdot \tilde{h}^{\beta/(1-\alpha)} \), to przyrosty owego zasobu \(\tilde{k} \) są dodatnie (ujemne).

- W przypadku, w którym \(\tilde{k} = \left(\frac{S_K}{\delta_K + g + n} \right)^{1/(1-\alpha)} \cdot \tilde{h}^{\beta/(1-\alpha)} \), przyrosty zasobu kapitału rzeczowego na jednostkę efektywnej pracy równe są zeru. Płynie stąd wniosek, że krzywa podziału \(\tilde{k} = 0 \) dana jest wzorem 6:

\[\tilde{k} \bigg|_{\tilde{k}=0} = \left(\frac{S_K}{\delta_K + g + n} \right)^{1/(1-\alpha)} \cdot \tilde{h}^{\beta/(1-\alpha)}. \quad (3.10) \]

Z równania krzywej podziału (3.10) płynie wniosek, że:

\[\tilde{h} = 0 \Rightarrow \left. \frac{d \tilde{k}}{d \tilde{h}} \right|_{\tilde{k}=0} = \left(\frac{S_K}{\delta_K + g + n} \right)^{1/(1-\alpha)} \cdot \frac{\beta}{1-\alpha} \cdot \tilde{h}^{\beta/(1-\alpha)-1} > 0, \quad (3.11a) \]

\[\frac{d^2 \tilde{k}}{d \tilde{h}^2} \bigg|_{\tilde{k}=0} = \frac{d^2}{d \tilde{h}^2} \left(\frac{S_K}{\delta_K + g + n} \right)^{1/(1-\alpha)} \cdot \left(\frac{\beta}{1-\alpha} \right) \left(\tilde{h} \right)^{\frac{1-\alpha-\beta}{1-\alpha}-1} < 0 \quad (3.11b) \]

oraz:

6 Przez krzywą podziału \(\tilde{k} = 0 \) rozumiane będą dalej wszystkie kombinacje \((\tilde{k}, \tilde{h}) \), przy czym \(\tilde{k} \geq 0 \ i \ \tilde{h} \geq 0 \), przy których \(\tilde{k} = 0 \). Analogicznie definiowana będzie krzywa podziału \(\tilde{h} = 0 \).
Z zależności (3.11abcd) wynika, co następuje:

- Ze związku (3.1a) płynie wniosek, że krzywa podziału \(\tilde{k} = 0 \) wychodzi z początku układu współrzędnych, w którym na osi poziomej odkłada się zmienną \(\tilde{h} \), zaś na osi pionowej – zmienną \(\tilde{k} \).

- Ponieważ \(\frac{\partial \tilde{k}}{\partial \tilde{h}} \bigg|_{\tilde{k}=0} > 0 \) oraz \(\frac{\partial^2 \tilde{k}}{\partial \tilde{h}^2} \bigg|_{\tilde{k}=0} < 0 \), zatem krzywa podziału \(\tilde{k} = 0 \) jest dodatnio nachylona oraz wklęsła wyglądem osi \(\tilde{h} \) we wspomnianym tu układzie współrzędnych.

- Równanie (3.11d) prowadzi do wniosku, że jeśli \(\tilde{h} \to +\infty \), to również \(\tilde{k} \bigg|_{\tilde{k}=0} \to +\infty \).

Co więcej, z zależności (3.9ab), (3.10) oraz (3.11abcd) wynika, że krzywą podziału \(\tilde{k} = 0 \) oraz składowe trajektorii (zaznaczone strzałkami) układu równań (3.8) można zilustrować tak, jak ma to miejsce na rysunku 3.2.

\[\lim_{\tilde{h} \to +\infty} \left(\tilde{k}(\tilde{h}) \bigg|_{\tilde{k}=0} \right) = \lim_{\tilde{h} \to +\infty} \left(\left(\frac{s_k}{\delta_k + g + n} \right)^{1/(1-\alpha)} \cdot \tilde{h}^{\beta/(1-\alpha)} \right) = \left(\frac{s_k}{\delta_k + g + n} \right)^{1/(1-\alpha)} \cdot \lim_{\tilde{h} \to +\infty} \tilde{h}^{\beta/(1-\alpha)} = +\infty. \]

(3.11d)

\[\begin{align*}
\text{Rys. 3.2. Krzywa podziału } \tilde{k} = 0 \text{ oraz składowe trajektorii układu równań (3.8)}
\end{align*} \]

Z drugiego z równań układu równań różniczkowych (3.8) wynika, że\(^7\):

\(^7\) Wyprowadzenie zależności (3.12ab), przez analogię do związków (3.9ab), pozostawiamy Czytelnikom.
\[\tilde{h} \geq 0 \iff \tilde{h} \leq \left(\frac{s_H}{\delta_H + g + n} \right)^{1/(1-\beta)} \cdot \tilde{k}^{\alpha/(1-\beta)} \] (3.12a)
oraz:
\[\tilde{h} \leq 0 \iff \tilde{h} \geq \left(\frac{s_H}{\delta_H + g + n} \right)^{1/(1-\beta)} \cdot \tilde{k}^{\alpha/(1-\beta)}. \] (3.12b)

Ponieważ związki (3.12ab) są analogiczne do zależności (3.9ab), zatem również ich interpretacja jest analogiczna do interpretacji owych związków. Dlatego też, po pierwsze, jeśli zasób kapitału ludzkiego na jednostkę efektywnej pracy \(\tilde{h} \) jest wyższy (niższy) od \(\left(\frac{s_H}{\delta_H + g + n} \right)^{1/(1-\beta)} \cdot \tilde{k}^{\alpha/(1-\beta)} \), to przyrost owego zasobu \(\tilde{h} \) jest ujemny (dodatni), oraz, po drugie, krzywa podziału \(\tilde{h} = 0 \) dana jest wzorem:
\[\tilde{h}(\tilde{k})_{\tilde{h}=0} = \left(\frac{s_H}{\delta_H + g + n} \right)^{1/(1-\beta)} \cdot \tilde{k}^{\alpha/(1-\beta)}. \] (3.13)

Równanie (3.13) implikuje następujące związki:
\[\tilde{k} = 0 \Rightarrow \tilde{h}_{\tilde{h}=0} = 0, \] (3.14a)
\[\frac{d\tilde{h}}{dk}\bigg|_{\tilde{h}=0} = \left(\frac{s_H}{\delta_H + g + n} \right)^{1/(1-\beta)} \cdot \frac{\alpha}{1-\beta} \cdot \left(\tilde{k} \right)^{-\frac{1-\alpha-\beta}{1-\beta}} > 0, \] (3.14b)
\[\frac{d^2\tilde{h}}{dk^2}\bigg|_{\tilde{h}=0} = -\left(\frac{s_H}{\delta_H + g + n} \right)^{1/(1-\beta)} \cdot \frac{\alpha}{1-\beta} \cdot \frac{1-\alpha-\beta}{1-\beta} \cdot \left(\tilde{k} \right)^{-\frac{1-\alpha-\beta}{1-\beta}-1} < 0 \] (3.14c)
oraz:
\[\lim_{\tilde{k} \to +\infty} \left(\tilde{h}(\tilde{k})_{\tilde{h}=0} \right) = \lim_{\tilde{k} \to +\infty} \left(\frac{s_H}{\delta_H + g + n} \right)^{1/(1-\beta)} \cdot \tilde{k}^{\alpha/(1-\beta)} = +\infty. \] (3.14d)

Ponieważ zależności (3.14abcd) są analogiczne do związków (3.11abcd), więc ich interpretację pozostawiamy Czytelnikom (powinni oni jednak pamiętać, że to, iż \(\frac{d\tilde{h}}{dk}\bigg|_{\tilde{h}=0} > 0 \) i \(\frac{d^2\tilde{h}}{dk^2}\bigg|_{\tilde{h}=0} < 0 \), implikuje, że krzywa podziału \(\tilde{h} = 0 \) jest wklęsła względem osi \(\tilde{k} \), a nie względem \(\tilde{h} \)). Krzywa podziału \(\tilde{h} = 0 \) wynikająca z prowadzonych tu rozważań zilustrowana jest na rysunku 3.3.
Z rysunków 3.2 i 3.3 płynie wniosek, że diagram fazowy układu równań różniczkowych (3.8) przedstawia się tak, jak ma to miejsce na rysunku 3.4 (na diagramie tym strzałkami zaznaczono trajektorie analizowanego układu równań różniczkowych).

Z rysunku 3.4 wynika, że diagram fazowy układu równań (3.8) jest diagramem z węzłem stabilnym. Płynie stąd wniosek, że przy $t \to +\infty$ zasoby kapitału rzeczowego \tilde{k} i ludzkiego \tilde{h} na jednostkę efektywnej pracy dążą do wielkości równych (odpowiednio) \tilde{k}^* oraz \tilde{h}^* na rysunku 3.4. Oznacza to, że:
\[\tilde{k}^* = \lim_{t \to +\infty} \tilde{k}(t) \]

i:

\[\tilde{h}^* = \lim_{t \to +\infty} \tilde{h}(t). \]

Wielkości \(\tilde{k}^* \) i \(\tilde{h}^* \) wyznaczają zasoby kapitału rzeczowego i ludzkiego na jednostkę efektywnej pracy w warunkach długookresowej równowagi modelu wzrostu gospodarczego Mankiwa-Romera-Weila.

Zasoby kapitału rzeczowego \(\tilde{k} \) i ludzkiego \(\tilde{h} \) na jednostkę efektywnej pracy można zapisać następująco:

\[\forall t \in [0;+\infty) \quad \tilde{k}(t) = \frac{K(t)}{\Lambda(t)L(t)} = \frac{K(t)}{\Lambda(t)} = \frac{K(t)}{\Lambda(t)L(t)} \equiv \frac{k(t)}{\Lambda(t)} \]

i:

\[\forall t \in [0;+\infty) \quad \tilde{h}(t) = \frac{H(t)}{\Lambda(t)L(t)} = \frac{H(t)}{\Lambda(t)} = \frac{H(t)}{\Lambda(t)L(t)} \equiv \frac{h(t)}{\Lambda(t)}, \]

dzie \(k \equiv \frac{K}{L} \) oraz \(h \equiv \frac{H}{L} \) to (odpowiednio) zasób technicznego uzbrojenia pracy (kapitału rzeczowego na pracującego) oraz zasób kapitału ludzkiego na pracującego. Z powyższych zależności płynie wniosek, że spełnione są związki:

\[\forall t \in [0;+\infty) \quad k(t) = \Lambda(t)\tilde{k}(t) \quad (3.15a) \]

i:

\[\forall t \in [0;+\infty) \quad h(t) = \Lambda(t)\tilde{h}(t). \quad (3.15b) \]

Logarytmując stronami równania (3.15ab) oraz różniczkując uzyskane związki względem czasu \(t \in [0;+\infty) \), uzyskuje się równania:

\[\forall t \in [0;+\infty) \quad \frac{\dot{k}(t)}{k(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{\tilde{k}}(t)}{\tilde{k}(t)} \]

i:

\[\forall t \in [0;+\infty) \quad \frac{\dot{h}(t)}{h(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{\tilde{h}}(t)}{\tilde{h}(t)} \]

lub, po uwzględnieniu założenia, że \(\frac{\dot{\Lambda}}{\Lambda} = g \):

\[\forall t \in [0;+\infty) \quad \frac{\dot{k}(t)}{k(t)} = g + \frac{\dot{\tilde{k}}(t)}{\tilde{k}(t)} \quad (3.16a) \]

oraz:
\[\forall t \in [0; +\infty) \quad \frac{\dot{h}(t)}{h(t)} = g + \frac{\dot{\tilde{h}}(t)}{\tilde{h}(t)}. \]
(3.16b)

Z równań (3.16ab) oraz zilustrowanego na rysunku 3.4 diagramu fazowego płyną następujące wnioski:

- Jeśli gospodarka Mankiwa-Romera-Weila porusza się po trajektorii skierowanej na północny wschód, to zarówno przyrost zasobu kapitału rzeczowego \(\tilde{k} \), jak i ludzkiego \(\tilde{h} \) na jednostkę efektywnej pracy są dodatnie. To z kolei implikuje, że wówczas \(\frac{\dot{k}}{k} > 0 \) oraz \(\frac{\dot{h}}{h} > 0 \), skąd – zgodnie z równaniami (3.16ab) – wynika, iż stopy wzrostu technicznego uzbrojenia pracy \(\frac{\dot{k}}{k} \) i kapitału ludzkiego na pracującego \(\frac{\dot{h}}{h} \) są wyższe od stopy harrodiańskiego postępu technicznego (równej \(g \)).

- Gdyby zaś gospodarka Mankiwa-Romera-Weila poruszała się po trajektorii zmierzającej na południowy zachód, to \(\tilde{k} < 0 \), \(\tilde{h} < 0 \), \(\frac{\dot{k}}{k} < 0 \) oraz \(\frac{\dot{h}}{h} < 0 \), co prowadzi do wniosku, że w analizowanym tu przypadku stopy wzrostu technicznego uzbrojenia pracy \(\frac{\dot{k}}{k} \) i kapitału ludzkiego na pracującego \(\frac{\dot{h}}{h} \) są niższe od stopy postępu technicznego w sensie Harroda.

- W sytuacji, w której rozważana gospodarka znajduje się na trajektorii skierowanej na południowy wschód, zachodzą związki:

\[\tilde{h}(t) > 0 \Rightarrow \frac{\dot{h}(t)}{h(t)} > 0 \]

oraz:

\[\tilde{k}(t) < 0 \Rightarrow \frac{\dot{k}(t)}{k(t)} < 0 \]

i spełnione są nierówności: \(\frac{\dot{h}}{h} > g \) oraz \(\frac{\dot{k}}{k} < g \).

- Natomiast przypadek, w którym gospodarka Mankiwa-Romera-Weila porusza się po trajektorii zmierzającej na północny zachód, prowadzi do wniosku, że wówczas:

\[\tilde{h}(t) < 0 \Rightarrow \frac{\dot{h}(t)}{h(t)} < 0 \Rightarrow \frac{\dot{h}(t)}{h(t)} < g \]

i:

\[\tilde{k}(t) > 0 \Rightarrow \frac{\dot{k}(t)}{k(t)} > 0 \Rightarrow \frac{\dot{k}(t)}{k(t)} > g. \]
Jeśli zaś rozważana tu gospodarka znajduje się w punkcie długookresowej równowagi \((\tilde{k}^*, \tilde{h}^*)\), to \(\tilde{k} = 0\) i \(\tilde{h} = 0\), co implikuje, że \(\frac{\tilde{k}}{k} = 0\) oraz \(\frac{\tilde{h}}{h} = 0\). Stąd zaś oraz z równań (3.16ab) płynie wniosek, iż w warunkach długookresowej równowagi Mankiwa-Romera-Weila stopy wzrostu technicznego uzbrojenia pracy \(\frac{k}{k}\) i kapitału ludzkiego na pracującego \(\frac{h}{h}\) równe są stopie harrodiańskiego postępu technicznego.

Ponieważ kombinacja \((\tilde{k}^*, \tilde{h}^*)\), wyznaczająca długookresową równowagę gospodarki Mankiwa-Romera-Weila, leży w punkcie przecięcia krzywych podziału \(\tilde{k} = 0\) oraz \(\tilde{h} = 0\), zatem jest ona rozwiązaniem układu równań (3.8) przy \(\tilde{k} = 0\) i \(\tilde{h} = 0\). Dlatego też kombinacja ta jest rozwiązaniem następującego układu równań:

\[
\begin{align*}
\frac{s_k}{k} \tilde{k}^a \tilde{h}^\beta - (\delta_k + g + n)\tilde{k} &= 0 \\
\frac{s_h}{h} \tilde{k}^a \tilde{h}^\beta - (\delta_h + g + n)\tilde{h} &= 0
\end{align*}
\] (3.17)

Układ równań (3.17) można również zapisać następująco\(^8\):

\[
\begin{align*}
\frac{s_k}{k} \tilde{k}^a \tilde{h}^\beta &= (\delta_k + g + n)\tilde{k} \\
\frac{s_h}{h} \tilde{k}^a \tilde{h}^\beta &= (\delta_h + g + n)\tilde{h}
\end{align*}
\]

lub:

\[
\begin{align*}
\tilde{k}^{1-a} \tilde{h}^{-\beta} &= \frac{s_k}{\delta_k + g + n} \\
\tilde{h}^{-a} \tilde{h}^{1-\beta} &= \frac{s_h}{\delta_h + g + n}
\end{align*}
\]

bądź, po zlogarytmowaniu każdego z powyższych równań logarytmem naturalnym:

\[
\begin{align*}
(1-\alpha)\ln(\tilde{k}) - \beta \ln(\tilde{h}) &= \ln\left(\frac{s_k}{\delta_k + g + n}\right) \\
-\alpha \ln(\tilde{k}) + (1-\beta)\ln(\tilde{h}) &= \ln\left(\frac{s_h}{\delta_h + g + n}\right)
\end{align*}
\]

czy też w postaci macierzowej (względem \(\ln(\tilde{k})\) i \(\ln(\tilde{h})\)):

\(^8\) Układ równań (3.17) posiada również rozwiązanie trywialne \(\tilde{k} = \frac{K}{L} = 0\) i \(\tilde{h} = \frac{H}{L} = 0\). Rozwiązanie to będzie jednak pomijane w prowadzonych dalej rozważaniach, gdyż wyznacza stan gospodarki, w którym zarówno zasób kapitału rzeczowego K, jak i ludzkiego H równy jest zeru.
Układ równań (3.18) można rozwiązać, korzystając np. z twierdzenia Cramera. Kolejne wyznaczniki Cramera owego układu równań dane są wzorami:

\[
W = \begin{vmatrix}
1-\alpha & -\beta \\
-\alpha & 1-\beta
\end{vmatrix} = (1-\alpha)(1-\beta) - \alpha\beta = 1 - \alpha - \beta + \alpha\beta = 1 - \alpha - \beta,
\]

\[
W_K = \begin{vmatrix}
\ln\left(\frac{s_k}{\delta_k + g + n}\right) & -\beta \\
\ln\left(\frac{s_h}{\delta_h + g + n}\right) & 1-\beta
\end{vmatrix} = (1-\beta)\ln\left(\frac{s_k}{\delta_k + g + n}\right) + \beta\ln\left(\frac{s_h}{\delta_h + g + n}\right)
\]

oraz:

\[
W_H = \begin{vmatrix}
1-\alpha & \ln\left(\frac{s_k}{\delta_k + g + n}\right) \\
-\alpha & \ln\left(\frac{s_h}{\delta_h + g + n}\right)
\end{vmatrix} = (1-\alpha)\ln\left(\frac{s_h}{\delta_h + g + n}\right) + \alpha\ln\left(\frac{s_k}{\delta_k + g + n}\right).
\]

Z równań (3.19abc) płynie wniosek, że zasoby \(\tilde{k}^*\) i \(\tilde{h}^*\) w warunkach długookresowej równowagi Mankiwa-Romera-Weila spełniają następujące związki:

\[
\ln(\tilde{k}^*) = \frac{W_K}{W} = \frac{(1-\beta)\ln\left(\frac{s_k}{\delta_k + g + n}\right) + \beta\ln\left(\frac{s_h}{\delta_h + g + n}\right)}{1 - \alpha - \beta} = \frac{1-\beta}{1 - \alpha - \beta} \ln\left(\frac{s_k}{\delta_k + g + n}\right) + \frac{\beta}{1 - \alpha - \beta} \ln\left(\frac{s_h}{\delta_h + g + n}\right).
\]

i:

\[
\ln(\tilde{h}^*) = \frac{W_H}{W} = \frac{(1-\alpha)\ln\left(\frac{s_h}{\delta_h + g + n}\right) + \alpha\ln\left(\frac{s_k}{\delta_k + g + n}\right)}{1 - \alpha - \beta} = \frac{1-\alpha}{1 - \alpha - \beta} \ln\left(\frac{s_h}{\delta_h + g + n}\right) + \frac{\alpha}{1 - \alpha - \beta} \ln\left(\frac{s_k}{\delta_k + g + n}\right).
\]

Z równań (3.20ab) płyną następujące wnioski:

- Ponieważ:
\[
\frac{\partial \ln(\tilde{k}^*)}{\partial s_K} = \frac{\partial}{\partial s_K} \left(\frac{1-\beta}{1-\alpha-\beta} \ln \left(\frac{s_K}{\delta_K + g + n} \right) + \frac{\beta}{1-\alpha-\beta} \ln \left(\frac{s_H}{\delta_H + g + n} \right) \right) = \\
= \frac{1-\beta}{1-\alpha-\beta} \frac{\partial}{\partial s_K} \left(\ln \left(\frac{s_K}{\delta_K + g + n} \right) \right) = \frac{1-\beta}{1-\alpha-\beta} \cdot \frac{\delta_K + g + n}{s_K} \cdot \frac{1}{\delta_K + g + n} = \\
= \frac{1-\beta}{(1-\alpha-\beta)s_K} > 0
\]

oraz:
\[
\frac{\partial \ln(\tilde{h}^*)}{\partial s_K} = \frac{\partial}{\partial s_K} \left(\frac{1-\alpha}{1-\alpha-\beta} \ln \left(\frac{s_H}{\delta_K + g + n} \right) + \frac{\beta}{1-\alpha-\beta} \ln \left(\frac{s_K}{\delta_K + g + n} \right) \right) = \\
= \frac{\alpha}{1-\alpha-\beta} \frac{\partial}{\partial s_K} \left(\ln \left(\frac{s_K}{\delta_K + g + n} \right) \right) = \frac{\alpha}{1-\alpha-\beta} \cdot \frac{\delta_K + g + n}{s_K} \cdot \frac{1}{\delta_K + g + n} = \\
= \frac{\alpha}{(1-\alpha-\beta)s_K} > 0,
\]

więc im wyższa jest stopa inwestycji w kapitał rzeczowy \(s_K\), tym wyższe są zasoby kapitału rzeczowego \(\tilde{k}^*\) i ludzkiego \(\tilde{h}^*\) na jednostkę efektywnej pracy w długookresowej równowadze modelu wzrostu Mankiwa-Romera-Weila.

- Podobnie, stąd, że:
\[
\frac{\partial \ln(\tilde{k}^*)}{\partial s_H} = \frac{\partial}{\partial s_H} \left(\frac{1-\beta}{1-\alpha-\beta} \ln \left(\frac{s_K}{\delta_K + g + n} \right) + \frac{\beta}{1-\alpha-\beta} \ln \left(\frac{s_H}{\delta_H + g + n} \right) \right) = \\
= \frac{\beta}{(1-\alpha-\beta)s_H} > 0
\]

i:
\[
\frac{\partial \ln(\tilde{h}^*)}{\partial s_H} = \frac{\partial}{\partial s_H} \left(\frac{1-\alpha}{1-\alpha-\beta} \ln \left(\frac{s_H}{\delta_K + g + n} \right) + \frac{\alpha}{1-\alpha-\beta} \ln \left(\frac{s_K}{\delta_K + g + n} \right) \right) = \\
= \frac{1-\alpha}{(1-\alpha-\beta)s_H} > 0,
\]

można wnosić, iż wysokiej stopie inwestycji w kapitał ludzki \(s_H\) odpowiadają wysokie wartości zasobów \(\tilde{k}^*\) i \(\tilde{h}^*\).

- Licząc pochodne cząstkowe równań (3.20ab) względem stopy deprecjacji kapitału rzeczowego \(\delta_K\), okazuje się, że:
\[
\frac{\partial \ln(\tilde{k}^*)}{\partial \delta_K} = \frac{\partial}{\partial \delta_K} \left(\frac{1-\beta}{1-\alpha-\beta} \ln \left(\frac{s_K}{\delta_K + g + n} \right) + \frac{\beta}{1-\alpha-\beta} \ln \left(\frac{s_H}{\delta_H + g + n} \right) \right) = \\
\]
\[
\frac{1 - \beta}{1 - \alpha - \beta} \frac{\partial}{\partial \delta_K} \left(\ln \left(\frac{s_K}{\delta_K + g + n} \right) \right) = \frac{1 - \beta}{1 - \alpha - \beta} \cdot \frac{\delta_K + g + n}{s_K} \cdot \frac{-s_K}{(\delta_K + g + n)^2} = \frac{1 - \beta}{(1 - \alpha - \beta)(\delta_K + g + n)} < 0
\]

oraz:
\[
\frac{\partial}{\partial \delta_K} \left(\ln \left(\frac{s_K}{\delta_K + g + n} \right) \right) = \frac{\alpha}{1 - \alpha - \beta} \cdot \frac{\delta_K + g + n}{s_K} \cdot \frac{-s_K}{(\delta_K + g + n)^2} = \frac{\alpha}{(1 - \alpha - \beta)(\delta_K + g + n)} < 0,
\]

skąd płynie wniosek, iż im wyższa jest stopa deprecjacji kapitału rzeczowego, tym niższe są zasoby kapitału rzeczowego i ludzkiego na jednostkę efektywnej pracy w długookresowej równowadze Mankiwa-Romera-Weila.

- Podobnie, stąd, że:
\[
\frac{\partial}{\partial \delta_H} \left(\ln \left(\frac{s_H}{\delta_H + g + n} \right) \right) = \frac{\beta}{1 - \alpha - \beta} \cdot \frac{\delta_H + g + n}{s_H} \cdot \frac{-s_H}{(\delta_H + g + n)^2} = \frac{\beta}{(1 - \alpha - \beta)(\delta_H + g + n)} < 0
\]

i:
\[
\frac{\partial}{\partial \delta_H} \left(\ln \left(\frac{s_K}{\delta_K + g + n} \right) \right) = \frac{\alpha}{1 - \alpha - \beta} \cdot \frac{\delta_K + g + n}{s_K} \cdot \frac{-s_K}{(\delta_K + g + n)^2} = \frac{\alpha}{(1 - \alpha - \beta)(\delta_K + g + n)} < 0,
\]

wynika, że wysokiej stopie deprecjacji kapitału ludzkiego odpowiadają niskie wartości \(\tilde{k}^* \) i \(\tilde{h}^* \).

- Co więcej, im wyższa jest stopa wzrostu liczby pracujących n, tym niższe są zasoby \(\tilde{k} \) i \(\tilde{h} \) w długookresowej równowadze gospodarki Mankiwa-Romera-Weila. Wynika to stąd, iż:
\[
\frac{\partial}{\partial n} \left(\ln \left(\frac{s_K}{\delta_K + g + n} \right) \right) = \frac{1 - \beta}{1 - \alpha - \beta} \cdot \frac{\delta_K + g + n}{s_K} \cdot \frac{-s_K}{(\delta_K + g + n)^2} = \frac{1 - \beta}{(1 - \alpha - \beta)(\delta_K + g + n)} < 0
\]

\[
\frac{\partial}{\partial n} \left(\ln \left(\frac{s_H}{\delta_H + g + n} \right) \right) = \frac{\beta}{1 - \alpha - \beta} \cdot \frac{\delta_H + g + n}{s_H} \cdot \frac{-s_H}{(\delta_H + g + n)^2} = \frac{\beta}{(1 - \alpha - \beta)(\delta_H + g + n)} < 0
\]
oraz (analogicznie):
\[\frac{\partial \ln \left(\tilde{h}^{*} \right)}{\partial n} = - \frac{1 - \alpha}{(1 - \alpha - \beta)(\delta_{K} + g + n)} - \frac{\alpha}{(1 - \alpha - \beta)(\delta_{H} + g + n)} < 0. \]

Z funkcji produktu na jednostkę efektywnej pracy (3.6) wynika, że spełniony jest związek:
\[\forall t \in [0;+\infty) \quad \ln(\tilde{y}(t)) = \alpha \ln(\tilde{k}(t)) + \beta \ln(\tilde{h}(t)) \] (3.21a)
lub, po zróżnicowaniu względem czasu \(t \in [0;+\infty) \):
\[\forall t \in [0;+\infty) \quad \frac{\dot{\tilde{y}}(t)}{\tilde{y}(t)} = \alpha \frac{\dot{\tilde{k}}(t)}{\tilde{k}(t)} + \beta \frac{\dot{\tilde{h}}(t)}{\tilde{h}(t)} . \] (3.21b)

Związek (3.21b) interpretuje się ekonomicznie w ten sposób, że stopa wzrostu produktu na jednostkę efektywnej pracy \(\frac{\dot{\tilde{y}}}{\tilde{y}} \) jest sumą stóp wzrostu zasobu kapitału rzeczowego \(\frac{\dot{\tilde{k}}}{\tilde{k}} \) i ludzkiego \(\frac{\dot{\tilde{h}}}{\tilde{h}} \) (na jednostkę efektywnej pracy) ważonych elastycznościami \(\alpha \) oraz \(\beta \).

Jeśli przez \(\tilde{y}^{*} \) oznacza się produkt na jednostkę efektywnej pracy w warunkach długookresowej równowagi Mankiwa-Romera-Weila, to równanie (3.21a) można zapisać następująco:
\[\ln(\tilde{y}^{*}) = \alpha \ln(\tilde{k}^{*}) + \beta \ln(\tilde{h}^{*}) . \]

Stąd zaś oraz z równań (3.20ab) wynika, iż produkt \(\tilde{y}^{*} \) spełnia zależność:
\[\ln(\tilde{y}^{*}) = \alpha \left(\frac{1 - \beta}{1 - \alpha - \beta} \ln \left(\frac{s_{K}}{\delta_{K} + g + n} \right) + \beta \frac{s_{H}}{1 - \alpha - \beta} \ln \left(\frac{s_{H}}{\delta_{H} + g + n} \right) \right) + \]
\[+ \beta \left(\frac{1 - \alpha}{1 - \alpha - \beta} \ln \left(\frac{s_{H}}{\delta_{H} + g + n} \right) + \alpha \frac{s_{K}}{1 - \alpha - \beta} \ln \left(\frac{s_{K}}{\delta_{K} + g + n} \right) \right) = \frac{(1 - \beta)\alpha + \alpha\beta}{1 - \alpha - \beta} \ln \left(\frac{s_{K}}{\delta_{K} + g + n} \right) + \]
\[+ \frac{\alpha\beta + (1 - \alpha)\beta}{1 - \alpha - \beta} \ln \left(\frac{s_{H}}{\delta_{H} + g + n} \right) \]
lub:
\[\ln(\tilde{y}^{*}) = \frac{\alpha}{1 - \alpha - \beta} \ln \left(\frac{s_{K}}{\delta_{K} + g + n} \right) + \beta \frac{s_{H}}{1 - \alpha - \beta} \ln \left(\frac{s_{H}}{\delta_{H} + g + n} \right) . \] (3.22)

Z równania (3.22) wyciągnąć można następujące wnioski natury ekonomicznej:
Produkt na jednostkę efektywnej pracy w długookresowej równowadze modelu Mankiwa-Romera-Weila, podobnie jak zasoby kapitału rzeczonego \(\tilde{k}^* \) i ludzkiego \(\tilde{h}^* \) na jednostkę efektywnej pracy, zależy m.in. od stóp inwestycji \(s_K \) i \(s_H \), stóp deprecjacji \(\delta_K \) i \(\delta_H \) oraz stopy wzrostu liczby pracujących \(n \).

- Różniczkując związek (3.22) względem stóp inwestycji \(s_K \) oraz \(s_H \), okazuje się, iż:

\[
\frac{\partial \ln(y^*)}{\partial s_K} = \frac{\partial}{\partial s_K} \left(\frac{\alpha}{1 - \alpha - \beta} \ln \left(\frac{s_K}{\delta_K + g + n} \right) + \frac{\beta}{1 - \alpha - \beta} \ln \left(\frac{s_H}{\delta_H + g + n} \right) \right) = \\
= \frac{\alpha}{1 - \alpha - \beta} \cdot \frac{\partial}{\partial s_K} \left(\ln \left(\frac{s_K}{\delta_K + g + n} \right) \right) = \frac{\alpha}{1 - \alpha - \beta} \cdot \frac{s_K}{\delta_K + g + n} \cdot \frac{\delta_K + g + n}{s_K} \cdot \frac{1}{\delta_K + g + n} = \\
= \frac{\alpha}{(1 - \alpha - \beta) s_K} > 0
\]

i (analogicznie):

\[
\frac{\partial \ln(y^*)}{\partial s_H} = \frac{\beta}{(1 - \alpha - \beta) s_H} > 0,
\]

co implikuje, że im wyższe są analizowane tu stopy inwestycji, tym wyższy jest produkt na jednostkę efektywnej pracy w długookresowej równowadze Mankiwa-Romera-Weila.

- Produkt ów jest również tym wyższy, im niższe są stopy deprecjacji zasobu kapitału rzeczonego (\(\delta_K \)) i ludzkiego (\(\delta_H \)). Wynika to stąd, iż:

\[
\frac{\partial \ln(y^*)}{\partial \delta_K} = \frac{\partial}{\partial \delta_K} \left(\frac{\alpha}{1 - \alpha - \beta} \ln \left(\frac{s_K}{\delta_K + g + n} \right) + \frac{\beta}{1 - \alpha - \beta} \ln \left(\frac{s_H}{\delta_H + g + n} \right) \right) = \\
= \frac{\alpha}{1 - \alpha - \beta} \cdot \frac{\partial}{\partial \delta_K} \left(\ln \left(\frac{s_K}{\delta_K + g + n} \right) \right) = \frac{\alpha}{1 - \alpha - \beta} \cdot \frac{s_K}{\delta_K + g + n} \cdot \frac{-s_K}{\delta_K + g + n}^2 = \\
= -\frac{\alpha}{(1 - \alpha - \beta) (\delta_K + g + n)} < 0
\]

oraz:

\[
\frac{\partial \ln(y^*)}{\partial \delta_K} = -\frac{\beta}{(1 - \alpha - \beta) (\delta_H + g + n)} < 0.
\]

- Ponieważ:

\[
\frac{\partial \ln(y^*)}{\partial n} = \frac{\partial}{\partial n} \left(\frac{\alpha}{1 - \alpha - \beta} \ln \left(\frac{s_K}{\delta_K + g + n} \right) + \frac{\beta}{1 - \alpha - \beta} \ln \left(\frac{s_H}{\delta_H + g + n} \right) \right) = \\
= \frac{\alpha}{1 - \alpha - \beta} \cdot \frac{\partial}{\partial n} \left(\ln \left(\frac{s_K}{\delta_K + g + n} \right) \right) + \frac{\beta}{1 - \alpha - \beta} \cdot \frac{\partial}{\partial n} \left(\ln \left(\frac{s_H}{\delta_H + g + n} \right) \right) =
\]

\[
= \frac{\alpha}{1 - \alpha - \beta} \cdot \frac{\partial}{\partial n} \left(\ln \left(\frac{s_K}{\delta_K + g + n} \right) \right) + \frac{\beta}{1 - \alpha - \beta} \cdot \frac{\partial}{\partial n} \left(\ln \left(\frac{s_H}{\delta_H + g + n} \right) \right)
\]

zatem im wyższa jest stopa wzrostu liczby pracujących w gospodarce Mankiwa-Romera-Weila, tym niższy jest produkt na jednostkę efektywnej pracy w warunkach długookresowej równowagi owej gospodarki. Rozważmy teraz wpływ zmian stopy inwestycji w zasób kapitału rzeczowego na położenie długookresowej ścieżki wzrostu wydajności pracy \(y = \frac{Y}{L} \), technicznego uzbrojenia pracy \(k = \frac{K}{L} \) oraz kapitału ludzkiego na pracującego \(h = \frac{H}{L} \). Załóżmy, że gospodarka Mankiwa-Romera-Weila już w momencie \(t = 0 \) znajdowała się w długookresowej równowadze. Oznacza to, iż w momencie \(t = 0 \) gospodarka ta znajdowała się w punkcie przecięcia krzywych podziału na rysunku 3.4. Stąd zaś wynika, że zarówno przyrosty, jak i stopy wzrostu zasobów kapitału rzeczowego \(\tilde{k} \) i ludzkiego \(\tilde{h} \) na jednostkę efektywnej pracy były równe zeru. Jeśli zaś \(\frac{\tilde{k}}{k} = \frac{\tilde{h}}{h} = 0 \), to – zgodnie z zależnością (3.21b) – również stopa wzrostu produktu na jednostkę efektywnej pracy \(\frac{\tilde{y}}{y} \) równa była zero. Z tego, że \(\frac{\tilde{k}}{k} = \frac{\tilde{h}}{h} = 0 \), oraz z równań (3.16ab) wynika, iż:

\[
\frac{\dot{k}(t)}{k(t)} = \frac{\dot{h}(t)}{h(t)} = g,
\]

a zatem wówczas techniczne uzbrojenie pracy \(k \) i kapitał ludzki na pracującego \(h \) rosły według stopy harrodiańskiego postępu technicznego \(g \).

Co więcej, ponieważ produkt na jednostkę efektywnej pracy można zapisać wzorem:

\[
\forall t \in [0;+\infty) \quad \tilde{y}(t) = \frac{Y(t)}{\Lambda(t)} = \frac{Y(t)}{L(t)} = \frac{Y(t)}{\Lambda(t)L(t)} = \frac{Y(t)}{\Lambda(t)} = \frac{Y(t)}{\Lambda(t)} ,
\]

więc wydajność pracy w każdym momencie \(t \in [0;+\infty) \) określa związek:

\[
y(t) = \Lambda(t)\tilde{y}(t).
\]

Logarytmując stronnami i różniczkując po czasie \(t \in [0;+\infty) \) powyższe równanie oraz uwzględniając założenie, że \(\frac{\dot{\Lambda}}{\Lambda} = g \), dochodzi się do zależności:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{y}(t)}{y(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\tilde{y}(t)}{y(t)} = g + \frac{\tilde{y}(t)}{y(t)}.
\]
Z równania (3.23) wynika, że stopa wzrostu wydajności pracy \(\frac{\dot{y}}{y} \) jest sumą stopy postępu technicznego w sensie Harroda \(g \) i stopy wzrostu produktu na jednostkę efektywnej pracy \(\frac{\dot{y}}{y} \). Dlatego też jeśli w momencie \(t = 0 \) gospodarka Mankiwa-Romera-Weila znajduje się w stanie długookresowej równowagi, czyli m.in. \(\frac{\dot{y}}{y} = 0 \), to stopa wzrostu wydajności pracy \(\frac{\dot{y}}{y} \), podobnie jak stopy wzrostu technicznego uzbrojenia pracy \(\frac{\dot{k}}{k} \) i kapitału ludzkiego na pracującego \(\frac{\dot{h}}{h} \), równa jest stopie postępu technicznego w sensie Harroda.

\[\begin{align*}
\ln[y(t)], \ln[k(t)] \\
\text{Rys. 3.5a. Przechodzenie gospodarki Mankiwa-Romera-Weila na wyżej położone ścieżki wzrostu wydajności pracy } y \text{ i technicznego uzbrojenia pracy } k \text{ pod wpływem wzrostu stopy inwestycji w kapitał rzeczowy}
\end{align*} \]

\[\begin{align*}
\ln[h(t)] \\
\text{Rys. 3.5b. Przechodzenie gospodarki Mankiwa-Romera-Weila na wyżej położoną ścieżkę wzrostu kapitału ludzkiego na pracującego } h \text{ pod wpływem wzrostu stopy inwestycji w kapitał rzeczowy}
\end{align*} \]
Załóżmy również, że w przedziale czasu \((0; t_1)\) stopy inwestycji \(s_K\), \(s_H\), stopy depre-

cjacji \(\delta_K\) i \(\delta_H\) oraz stopa wzrostu jednostek efektywnej pracy \(g + n\) nie zmieniały się. Wówczas w analizowanym tu przedziale gospodarka Mankiwa-Romera-Weila znajdo-

wała się w punkcie przecięcia krzywych podziału \(k = 0\) oraz \(h = 0\) i stopy wzrostu wydajności pracy, technicznego uzbrojenia pracy i kapitału ludzkiego na pracującego równie były g. Stąd zaś wynika, że wydajność pracy \(y(t)\), techniczne uzbrojenie pracy \(k(t)\) i kapitał ludzki na pracującego \(h(t)\) poruszały się w przedziale czasu \((0; t_1)\) po ścieżkach wzrostu \(P'_y, P'_k\) i \(P'_h\) na rysunkach 3.5ab.9

Przyjmijmy również, że w momencie \(t_1 > 0\) stopa inwestycji w kapitał rzeczowy wzrosła z \(s_K\) do \(s_K' < 1\). Wówczas krzywa podziału \(k = 0\) na rysunku 3.6 przesunęła się do góry z położenia 0A do 0B. Przesunięcie to wynikało stąd, iż krzywa ta dana jest wzorem:

\[
\tilde{k}(\tilde{h})_{k=0} = \left(\frac{s_K}{\delta_K + g + n}\right)^{1/(1-\alpha)} \cdot \tilde{h}^{\beta/(1-\alpha)},
\]

a zatem jeśli rośnie \(s_K\), to przy danej wartości \(\tilde{h}\) rośnie również zasób \(\tilde{k}\), przy którym \(\tilde{k} = 0\). Jeśli zaś krzywa podziału \(\tilde{k} = 0\) przesunęła się z położenia 0A do 0B, to punkt przecięcia krzywej podziału \(\tilde{h} = 0\) z krzywą 0A jest punktem, w którym \(\tilde{h} = 0\) oraz \(\tilde{k} > 0\). Dlatego też gospodarka Mankiwa-Romera-Weila porusza się po trajektorii T na rysunku 3.6, która początkowo (tj. w momencie \(t_1\)) skierowana jest na północ, następnie zaś na północny wschód. Trajektoria ta, prędzej czy później, dojdzie do punktu przecięcia krzywej podziału \(\tilde{h} = 0\) z krzywą \(\tilde{k} = 0\), którą przy stopie inwestycji \(s_K' > s_K\) wyznacza krzywa 0B. Po osiągnięciu punktu przecięcia krzywej \(\tilde{h} = 0\) z krzywą 0B przyrosta zasobów kapitału rzeczowego i ludzkiego na jednostkę efektywnej pracy (czyli \(\tilde{k}\) i \(\tilde{h}\)) równe będą zeru.

9 Należy tu zwrócić uwagę, iż rysunki 3.5ab (podobnie jak ma to miejsce w przypadku rysunku 2.4 w rozdziale drugim) przedstawione są w skali logarytmicznej. Dlatego też nachylenia prostych ilustrujących \(\ln(y), \ln(k)\) oraz \(\ln(h)\) wyznaczają stopy wzrostu tych zmiennych. Ścieżki wzrostu technicznego uzbrojenia pracy na rysunku 3.5a i dalszych znajdują się zaś nad ścieżkami wzrostu wydajno-

ości pracy dlatego, iż w realnie funkcjonujących gospodarkach współczynniki kapitałochłonności (będące ilorazami kapitału rzeczowego i produktu lub, co na jedno wychodzi, technicznego uzbroje-

nia pracy i wydajności pracy) są wyższe od jedności, czyli \(k > y\), a stąd \(\ln(k) > \ln(y)\).
Jeśli przejście ze starego punktu równowagi (punktu przecięcia krzywej podziału \(\tilde{\dot{h}} = 0 \) z krzywą 0A) do nowego punktu równowagi (przecięcia krzywej \(\tilde{\dot{h}} = 0 \) z 0B) po trajektorii T na rysunku 3.6 odbywa się w przedziale czasu \((t_1; t_2)\), gdzie \(t_2 \) nie musi być momentem skończonym, to:

\[
\forall t \in (t_1; t_2) \quad \tilde{\dot{k}}(t) > 0 \land \tilde{\dot{h}}(t) > 0.
\]

Jeśli zaś w przedziale czasu \((t_1; t_2)\) przyrosty zasobów kapitału rzeczowego i ludzkiego na jednostkę efektywnej pracy są dodatnie, to również stopy wzrostu owych zmien-
nych, czyli \(\frac{\tilde{\dot{k}}}{k} \) oraz \(\frac{\tilde{\dot{h}}}{h} \), są większe od zera. To z kolei, zgodnie z równaniem (3.21b),
implikuje, że stopa wzrostu produktu na jednostkę efektywnej pracy \(\frac{\tilde{\dot{y}}}{\tilde{y}} = \alpha \frac{\tilde{\dot{k}}}{k} + \beta \frac{\tilde{\dot{h}}}{h} \)
jest dodatnia. Płynie stąd wniosek, że dla każdego \(t \in (t_1; t_2) \) spełnione są nierówności:

\[
\frac{\tilde{\dot{k}}(t)}{k(t)} > 0, \quad \frac{\tilde{\dot{h}}(t)}{h(t)} > 0, \quad \frac{\tilde{\dot{y}}(t)}{\tilde{y}(t)} > 0.
\]

Stąd zaś oraz z równań (3.16ab) i (3.23) wyciągnąć można wniosek, iż:

\[
\forall t \in (t_1; t_2) \quad \frac{\dot{k}(t)}{k(t)} > g, \quad \frac{\dot{h}(t)}{h(t)} > g, \quad \frac{\dot{y}(t)}{y(t)} > g.
\]

Ponieważ w przedziale czasu \((t_1; t_2)\) stopy wzrostu wydajności pracy, technicznego uzbrojenia pracy i kapitału ludzkiego na pracującego będą wyższe od stopy harrodian-
skiego postępu technicznego, dlatego też rozważane tu zmienne makroekonomiczne opuszczają ścieżki wzrostu \(P_1^y, P_1^k \) (na rys. 3.5a) oraz \(P_1^h \) (na rys. 3.5b) i wspinać się będą do ścieżek wzrostu \(P_2^y, P_2^k \) i \(P_2^h \).
Poczynając od momentu (skończonego lub nie) \(t_2 \), w którym gospodarka Mankiwa-Romera-Weila dojdzie do punktu przecięcia krzywej podziału \(\tilde{h} = 0 \) z krzywą podziału \(0B \), przyrosty i stopy wzrostu zasobów kapitału rzeczonego i ludzkiego na jednostkę efektywnej pracy staną się równe zeru. Również stopa wzrostu produktu na jednostkę efektywnej pracy \(\frac{\dot{y}}{y} = \frac{k}{k} + \frac{\tilde{h}}{h} \) równa będzie zzeru. To zaś, zgodnie ze związanymi (3.16ab) i (3.23), implikuje, że:

\[
\forall t \in (t_2; +\infty) \quad \frac{\dot{k}(t)}{k(t)} = \frac{\dot{h}(t)}{h(t)} = \frac{\dot{y}(t)}{y(t)} = g.
\]

Dlatego też w każdym momencie \(t > t_2 \) stopy wzrostu \(\frac{\dot{y}}{y} \), \(\frac{\dot{k}}{k} \) oraz \(\frac{\dot{h}}{h} \) ustabilizują się na poziomie równym stopie postępu technicznego w sensie Harroda \(g \), zaś wydajność pracy \(y \), techniczne uzbrojenie pracy \(k \) i kapitał ludzki na pracującego \(h \) poruszają się po ścieżkach wzrostu \(P_2^y \), \(P_2^k \) (na rys. 3.5a) i \(P_2^h \) (na rys. 3.5b) równoległych do wyjściowych ścieżek wzrostu owych zmiennych makroekonomicznych.

Płynie stąd wniosek, że jeśli w gospodarce Mankiwa-Romera-Weila rośnie stopa inwestycji w kapitał rzeczowy \(s_k \), to (po pierwsze) punkt długookresowej równowagi owej gospodarki na diagramie fazowym układu równań (3.8) przesuwa się w kierunku północno-wschodnim, (po drugie) rosną zasoby \(\tilde{k}^* \), \(\tilde{h}^* \) i strumień \(\tilde{y}^* \) oraz (po trzecie) gospodarka Mankiwa-Romera-Weila wychodzi na wyżej położone ścieżki wzrostu wydajności pracy \(y \), technicznego uzbrojenia pracy \(k \) i kapitału ludzkiego na pracującego \(h \).

Gdyby wzrosła stopa inwestycji w kapitał ludzki \(s_h \), to:

- Krzywa podziału \(\tilde{k} = 0 \) układu równań ruchu różniczkowych (3.8) przesunęłaby się na wschód.
- Punkt równowagi gospodarki Mankiwa-Romera-Weila przesunąłby się na północny wschód.
- Wzrosłyby zasoby \(\tilde{k}^* \) i \(\tilde{h}^* \) oraz strumień \(\tilde{y}^* \).
- W okresie przejściowym (tj. w przedziale czasu, w którym gospodarka Mankiwa-Romera-Weila przechodziła od starego do nowego punktu równowagi) stopy wzrostu \(\frac{\dot{y}}{y} \), \(\frac{\dot{k}}{k} \) i \(\frac{\dot{h}}{h} \) byłyby wyższe od \(g \).
- Po osiągnięciu nowego punktu długookresowej równowagi stopy wzrostu wydajności pracy, technicznego uzbrojenia pracy oraz kapitału ludzkiego na pracującego ustabilizowałyby się na poziomie równym stopie harrodiańskiego postępu technicznego, zaś ścieżki wzrostu \(y \), \(k \) i \(h \) byłyby wyżej położone i równoległe do wyjściowych ścieżek wzrostu owych zmiennych makroekonomicznych.

Rozumując analogicznie, okazuje się, że jeśli w momencie \(t = 0 \) gospodarka Mankiwa-Romera-Weila znajduje się w stanie długookresowej równowagi (czyli w punkcie

10 Uzasadnienie prezentowanych tu też pozostawiamy Czytelnikom.
przecięcia krzywej podziału \(\ddot{k} = 0 \) z krzywą podziału \(\ddot{h} = 0 \), którą ilustruje krzywa OA na rys. 3.7), to w przedziale czasu \([0; t_1]\) wydajność pracy \(y \), techniczne uzbrojenie pracy \(k \) i kapitał ludzki na pracującego \(h \) poruszają się po ściężkach wzrostu \(P_i^y, P_i^k \) (na rys. 3.8a) oraz \(P_i^h \) (na rys. 3.8b), gdyż stopy wzrostu analizowanych tu zmiennych makroekonomicznych równe są stopie harrodiańskiego postępu technicznego. Jeśli w momencie \(t_1 > 0 \) wzrośnie stopa deprecjacji kapitału ludzkiego \(\delta_H \), to położenie krzywej podziału \(\ddot{k} = 0 \) nie ulegnie zmianie (gdyż krzywą tę opisuje równanie \(\ddot{k}(\ddot{h})_{\ddot{k}=0} = \left(\frac{s_K}{\delta_K + g + n} \right)^{1/(1-\alpha)} \cdot \ddot{h}^{\beta/(1-\alpha)} \), w którym nie występuje \(\delta_H \)), zaś krzywa podziału \(\ddot{h} = 0 \) (dana równaniem \(\ddot{h}(\ddot{k})_{\ddot{h}=0} = \left(\frac{s_H}{\delta_H + g + n} \right)^{1/(1-\gamma)} \cdot \ddot{k}^{\alpha/(1-\gamma)} \) przesunie się z położenia 0A do 0B\(^{11}\). Wówczas gospodarka Mankiwa-Romera-Weila zacznie się poruszać na rysunku 3.7 po trajektorii T, skierowanej na południowy zachód, do nowego punktu długookresowej równowagi. Nowym punktem owej równowagi będzie punkt przecięcia krzywej podziału \(\ddot{k} = 0 \) z krzywą podziału 0B. W przedziale czasu, w którym rozważana gospodarka przesuwać się będzie ze starego do nowego punktu równowagi, przyrosty oraz stopy wzrostu \(\ddot{k}, \ddot{h} \) oraz \(\ddot{y} \) będą ujemne. Dlatego też w okresie przejściowym stopy wzrostu \(\frac{\ddot{k}}{k}, \frac{\ddot{h}}{h} \) i \(\frac{\ddot{y}}{y} \) będą niższe od stopy harrodiańskiego postępu technicznego \(g \), a wydajność pracy, techniczne uzbrojenie pracy oraz kapitał ludzki na pracującego zejdą ze ściężek wzrostu \(P_i^y, P_i^k \) i \(P_i^h \).

Rys. 3.7. Przesunięcie punktu równowagi modelu wzrostu Mankiwa-Romera-Weila na skutek wzrostu stopy deprecjacji kapitału ludzkiego

\(^{11}\) Uzasadnienie tego pozostawiamy Czytelnikom.
Jeśli w (skończonym lub nie) momencie \(t_2 > t_1 \) gospodarka Mankiwa-Romera-Weila dojdzie do punktu przecięcia krzywej podziału \(\tilde{k} = 0 \) z krzywą OB (na rys.3.7), to poczynając od momentu \(t_2 \), \(\tilde{k} = \tilde{h} = \tilde{y} = 0 \), \(\frac{\tilde{k}}{k} = \frac{\tilde{h}}{h} = \frac{\tilde{y}}{y} = 0 \) i (zgodnie z równami (3.16ab) oraz (3.23)) stopy wzrostu wydajności pracy \(\frac{\hat{y}}{y} \), technicznego uzbrojenia pracy \(\frac{\hat{k}}{k} \) i kapitału ludzkiego na pracującego \(\frac{\hat{h}}{h} \) ponownie równe będą g. Dlatego też analizowane tu zmienne makroekonomiczne poruszać się będą wówczas po ścieżkach wzrostu \(P^y_2, P^k_2 \) (na rys. 3.8a) oraz \(P^h_2 \) (na rys. 3.8b) równoległych do wyjściowych ścieżek wzrostu tych zmieniennych makroekonomicznych.
Gdyby zaś wzrosła stopa deprecjacji kapitału rzeczowego \(\delta_K \), to wystąpiłby proces analogiczny do opisanego uprzednio i gospodarka Mankiwa-Romera-Weila przesunęłaby się na niżej położone ścieżki wzrostu gospodarczego.

Płynie stąd bardziej ogólny wniosek, iż jeśli rośnie jedna ze stóp deprecjacji kapitału, to wystąpiłby proces analogiczny do opisanego uprzednio i gospodarka Mankiwa-Romera-Weila przesunęłaby się na niżiej położone ścieżki wzrostu gospodarczego.

Załóżmy teraz, że w momencie \(t = 0 \) gospodarka Mankiwa-Romera-Weila znajduje się w stanie długookresowej równowagi. Krzywą podziału \(\tilde{k} = 0 \) ilustruje krzywa 0C na rysunku 3.9, zaś krzywa podziału \(\tilde{h} = 0 \) odpowiada krzywej 0A na owym rysunku. Przyjmijmy też, że w przedziale czasu \([0;\tilde{t}_1)\) wartości zmiennych \(s_K, s_H, \delta_K, \delta_H, g \) oraz \(n \) nie ulegają zmianom. Oznacza to, że we wspomnianym tu przedziale czasu punktem równowagi analizowanego modelu wzrostu gospodarczego jest punkt przecięcia krzywych podziału 0A i 0C. Stopy wzrostu wydajności pracy, technicznego uzbrojenia pracy i kapitału ludzkiego na pracującego równe są wówczas stopie postępu technicznego w sensie Harroda, zaś zmienne te poruszają się po ścieżkach wzrostu \(P_1^y \), \(P_1^k \) (na rys. 3.8a) oraz \(P_1^h \) (na rys. 3.8b).

![Rys. 3.9. Przesunięcie punktu równowagi modelu wzrostu Mankiwa-Romera-Weila na skutek wzrostu stopy wzrostu liczby pracujących](image)

Jeśli w momencie \(\tilde{t}_1 > 0 \) wzrośnie stopa wzrostu liczby pracujących \(n \), to – zgodnie z równaniami (3.10) i (3.13) – krzywe podziału \(\tilde{k} = 0 \) i \(\tilde{h} = 0 \) przesuną się (odpowiednio) do położenia 0D oraz 0B. Gospodarka Mankiwa-Romera-Weila zacznie się wówczas poruszać po trajektorii T na rysunku 3.9 z punktu przecięcia krzywych 0A i 0C do punktu przecięcia nowych krzywych podziału 0B oraz 0D. W okresie przejściowym, czyli w pewnym przedziale czasu \([\tilde{t}_1;\tilde{t}_2)\), przyrosty i stopy wzrostu \(\frac{\tilde{k}}{k}, \frac{\tilde{h}}{h} \) i \(\frac{\tilde{y}}{y} \) będą ujemne, skąd wynika, że stopy wzrostu \(\frac{k}{k}, \frac{h}{h} \) i \(\frac{y}{y} \) będą niższe od stopy harrodiańskiego postępu technicznego g. Płynie stąd wniosek, że w przedziale czasu...
(t₁,t₂) zmienne y, k oraz h zjeżdżą ze ścieżek wzrostu P₁⁺, P₁⁻ i P₁⁺, zmierzając w kierunku ścieżek P₂⁺, P₂⁻ i P₂⁺. W momencie t₂ (i w każdym następnym) analizowana tu gospodarka osiągnie nowy punkt długookresowej równowagi (punkt przecięcia krzywych podziału 0B i 0D na rys. 3.9), co implikuje, że wówczas \(\tilde{k} = \hat{h} = \hat{y} = 0 \) oraz
\[
\frac{\dot{k}}{k} = \frac{\hat{h}}{h} = \frac{\hat{y}}{y} = g.
\]
Dlatego też poczynając od momentu t₂, ścieżkami wzrostu wydajności pracy, technicznego uzupełnienia pracy oraz kapitału ludzkiego na pracującego będą ścieżki P₂⁺, P₂⁻ i P₂⁺ na rysunkach 3.8ab. Płynie stąd wniosek, że jeśli w gospodarce Mankiwa-Romera-Weila rośnie stopa wzrostu liczby pracujących, to gospodarka ta przesuwa się na niższej położone ścieżki wzrostu długookresowych zmiennych makroekonomicznych.

3.4. RÓWNOWAGA MANKIWA-ROMERA-WEILA PRZY FUNKCJI PRODUKCJI CES

W punktach 3.2–3.3 skryptu analizowaliśmy oryginalny model wzrostu gospodarczego Mankiwa-Romera-Weila, tj. model z rozszerzoną funkcją produkcji Cobb-Douglasa (3.1). W punkcie 3.4 rozważamy modyfikację tego modelu, czyli model, w którym (podobnie jak w oryginalnym modelu Mankiwa-Romera-Weila) obok akumulacji kapitału rzeczowego występuje również akumulacja kapitału ludzkiego, ale proces produkcyjny opisany jest przez funkcję produkcji typu CES. Model ów jest więc rozszerzeniem modelu Solowa z punktu 2.4 skryptu.

W prowadzonych dalej rozważaniach przyjmuje się następujące założenia:

1. Proces produkcyjny opisany jest przez rozszerzoną funkcję produkcji CES daną wzorem (por. też równanie (1.28c)):
\[
\forall t \in [0;+\infty) \quad Y(t) = F(K(t), H(t), \tilde{L}(t)) = \\
= \left[u_K(K(t))^{-\psi} + u_H(H(t))^{-\psi} + (1 - u_K - u_H)(\tilde{L}(t))^{-\psi} \right]^{-1/\psi} = (3.24) \\
= \left[u_K(K(t))^{-\psi} + u_H(H(t))^{-\psi} + (1 - u_K - u_H)(\Lambda(t)L(t))^{-\psi} \right]^{-1/\psi},
\]
dzięci K, H, Λ, L ≥ 0 interpretuje się tak, jak ma to miejsce w punkcie 3.2 skryptu (co oznacza m.in., że \(\tilde{L} \equiv \Lambda L \) to jednostki efektywnej pracy), parametr \(\psi \in (0;+\infty) \) ma tę samą interpretację jak w rozdziale pierwszym, zaś \(u_K, u_H \) oraz \(u_K + u_H \in (0;1) \). Parametry \(u_K \) i \(u_H \) w równaniu (3.24) interpretuje się analogicznie do parametru \(\psi \) w funkcji produkcji CES (1.10).

2. Przyrosty zasobów kapitału rzeczowego \(\tilde{K} \) i ludzkiego \(\tilde{H} \) opisane są przez równania różniczkowe (3.2ab).

3. Liczba pracujących L rośnie według stopy wzrostu \(n > 0 \), stopa wzrostu zasobu wiedzy Λ równa jest zaś \(g > 0 \). Dlatego też zasób efektywnej pracy \(\tilde{L} \equiv \Lambda L \) rośnie według stopy wzrostu równej \(g + n \).
Wstawiając funkcję produkcji (3.24) do równań (3.2ab), dochodzi się do następującego układu równań różniczkowych:

\[
\begin{align*}
\dot{K}(t) &= s_K \left[\nu_K (K(t))^{-\psi} + \nu_H (H(t))^{-\psi} + (1 - \nu_K - \nu_H)(\tilde{L}(t))^{-\psi} \right]^{1/\psi} - \delta_K K(t) \\
\dot{H}(t) &= s_H \left[\nu_K (K(t))^{-\psi} + \nu_H (H(t))^{-\psi} + (1 - \nu_K - \nu_H)(\tilde{L}(t))^{-\psi} \right]^{1/\psi} - \delta_H H(t)
\end{align*}
\]

lub po podzieleniu każdego z powyższych równań przez jednostki efektywnej pracy \(\tilde{L}:\)

\[
\begin{align*}
\frac{\dot{K}(t)}{\tilde{L}(t)} &= s_K \left[\nu_K (K(t))^{-\psi} + \nu_H (H(t))^{-\psi} + (1 - \nu_K - \nu_H)(\tilde{L}(t))^{-\psi} \right]^{1/\psi} - \delta_K \frac{K(t)}{\tilde{L}(t)} \\
\frac{\dot{H}(t)}{\tilde{L}(t)} &= s_H \left[\nu_K (K(t))^{-\psi} + \nu_H (H(t))^{-\psi} + (1 - \nu_K - \nu_H)(\tilde{L}(t))^{-\psi} \right]^{1/\psi} - \delta_H \frac{H(t)}{\tilde{L}(t)}
\end{align*}
\] (3.25)

Ponieważ:

\[
\forall t \in [0;+\infty) \quad \frac{\left[\nu_K (K(t))^{-\psi} + \nu_H (H(t))^{-\psi} + (1 - \nu_K - \nu_H)(\tilde{L}(t))^{-\psi} \right]^{1/\psi}}{\tilde{L}(t)} =
\]

\[
= \left[\nu_K (K(t))^{-\psi} + \nu_H (H(t))^{-\psi} + (1 - \nu_K - \nu_H)(\tilde{L}(t))^{-\psi} \right]^{1/\psi} =
\]

\[
= \nu_K \left(\frac{K(t)}{\tilde{L}(t)} \right)^{-\psi} + \nu_H \left(\frac{H(t)}{\tilde{L}(t)} \right)^{-\psi} + (1 - \nu_K - \nu_H)\right]^{1/\psi} =
\]

\[
= \nu_K \left(\tilde{k}(t) \right)^{-\psi} + \nu_H \left(\tilde{h}(t) \right)^{-\psi} + (1 - \nu_K - \nu_H)\right]^{1/\psi},
\]

gdyż \(\tilde{k} = \frac{K}{\tilde{L}} \) i \(\tilde{h} = \frac{H}{\tilde{L}} \), zatem układ równań różniczkowych (3.25) można także zapisać następująco:

\[
\begin{align*}
\frac{\dot{K}(t)}{\tilde{L}(t)} &= s_K \left[\nu_K \tilde{k}(t)^{-\psi} + \nu_H \tilde{h}(t)^{-\psi} + (1 - \nu_K - \nu_H) \right]^{1/\psi} - \delta_K \tilde{k}(t) \\
\frac{\dot{H}(t)}{\tilde{L}(t)} &= s_H \left[\nu_K \tilde{k}(t)^{-\psi} + \nu_H \tilde{h}(t)^{-\psi} + (1 - \nu_K - \nu_H) \right]^{1/\psi} - \delta_H \tilde{h}(t)
\end{align*}
\] (3.26)

Zasoby kapitału rzeczowego \(K\) i ludzkiego \(H\) dane są wzorami:
\[\forall t \in [0;+\infty) \quad K(t) = \tilde{k}(t) \cdot \tilde{L}(t) \]
oraz:
\[\forall t \in [0;+\infty) \quad H(t) = \tilde{h}(t) \cdot \tilde{L}(t), \]
zatem, po zróżniczkowaniu powyższych równań względem czasu \(t \in [0;+\infty) \), uzyskuje się zależności:
\[\forall t \in [0;+\infty) \quad \dot{K}(t) = \tilde{k}(t)\tilde{L}(t) + \tilde{k}(t)\dot{\tilde{L}}(t) \]
i:
\[\forall t \in [0;+\infty) \quad \dot{H}(t) = \tilde{h}(t)\tilde{L}(t) + \tilde{h}(t)\dot{\tilde{L}}(t) \]
lub:
\[\forall t \in [0;+\infty) \quad \frac{\dot{K}(t)}{\tilde{L}(t)} = \tilde{k}(t) + \tilde{k}(t)\frac{\dot{\tilde{L}}(t)}{\tilde{L}(t)} \]
(3.27a)
oraz:
\[\forall t \in [0;+\infty) \quad \frac{\dot{H}(t)}{\tilde{L}(t)} = \tilde{h}(t) + \tilde{h}(t)\frac{\dot{\tilde{L}}(t)}{\tilde{L}(t)} \]
(3.27b)
Wstawiając do równań (3.27ab) stopę wzrostu jednostek efektywnej pracy \(\frac{\dot{L}}{L} \), równą \(g + n \), można je zapisać następująco:
\[\forall t \in [0;+\infty) \quad \frac{\dot{K}(t)}{\tilde{L}(t)} = \tilde{k}(t) + (g + n)\tilde{k}(t) \]
i:
\[\forall t \in [0;+\infty) \quad \frac{\dot{H}(t)}{\tilde{L}(t)} = \tilde{h}(t) + (g + n)\tilde{h}(t). \]
Stąd zaś oraz z układu równań (3.26) wynika, że w każdym momencie \(t \in [0;+\infty) \) spełnione są związki:
\[\tilde{k}(t) + (g + n)\tilde{k}(t) = s_K \left[v_K \left(\tilde{k}(t) \right)^{-\psi} + v_H \left(\tilde{h}(t) \right)^{-\psi} + (1 - v_K - v_H) \right]^{-1/\psi} - \delta_K \tilde{k}(t) \]
\[\tilde{h}(t) + (g + n)\tilde{h}(t) = s_H \left[v_K \left(\tilde{k}(t) \right)^{-\psi} + v_H \left(\tilde{h}(t) \right)^{-\psi} + (1 - v_K - v_H) \right]^{-1/\psi} - \delta_H \tilde{h}(t), \]
które implikują następujący układ równań różniczkowych:
\begin{align*}
\dot{k}(t) &= s_K \left[u_K \left(\dot{k}(t) \right)^\psi + u_H \left(\dot{h}(t) \right)^\psi + (1 - u_K - u_H) \right]^{-1/\psi} - \left(\delta_K + g + n \right) \dot{k}(t) \\
\dot{h}(t) &= s_H \left[u_K \left(\dot{k}(t) \right)^\psi + u_H \left(\dot{h}(t) \right)^\psi + (1 - u_K - u_H) \right]^{-1/\psi} - \left(\delta_H + g + n \right) \dot{h}(t)
\end{align*}

(3.28)

Układ równań różniczkowych (3.28) wyznacza układ równań ruchu modelu wzrostu gospodarczego Mankiwa-Romera-Weila z funkcją produkcji CES. Układ ów jest analogiczny do układu równań (3.8) z oryginalnego modelu wzrostu Mankiwa-Romera-Weila. Kolejne równania owego układu równań opisują przyrosty zasobów kapitału rzeczowego \(\tilde{k} \) i ludzkiego \(\tilde{h} \) na jednostkę efektywnej pracy w zależności od wartości tych zasobów (czyli \(\tilde{k} \) i \(\tilde{h} \)), stóp ich deprecjacji \(\delta_K \) oraz \(\delta_H \), stóp inwestycji z kapitałem rzeczowym (\(s_K \)) i ludzkim (\(s_H \)), stopy wzrostu jednostek efektywnej pracy \(g + n \) oraz parametrów \(u_K, u_H \) i \(\psi \) funkcji produkcji CES.

Z pierwszego z równań układu (3.28) płynie wniosek, że\(^{12}\):

\begin{align*}
\forall t \in [0;+\infty) \quad \dot{k}(t) > 0 &\iff \\
&\iff s_K \left[u_K \left(\dot{k}(t) \right)^\psi + u_H \left(\dot{h}(t) \right)^\psi + (1 - u_K - u_H) \right]^{-1/\psi} > \left(\delta_K + g + n \right) \dot{k}(t) \\
&\iff \frac{s_K}{\delta_K + g + n} > \left[u_K \left(\dot{k}(t) \right)^\psi + u_H \left(\dot{h}(t) \right)^\psi + (1 - u_K - u_H) \right]^{1/\psi} \dot{k}(t) \\
&\iff \left(\frac{s_K}{\delta_K + g + n} \right)^\psi > u_K + \left[u_H \tilde{h}^{-\psi} + (1 - u_K - u_H) \right] \left(\dot{k}(t) \right)^\psi \\
&\iff \left(\dot{k}(t) \right)^\psi < \frac{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - u_K}{u_H \tilde{h}^{-\psi} + 1 - u_K - u_H} \iff \tilde{k}(t) < \frac{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - u_K}{u_H \tilde{h}^{-\psi} + 1 - u_K - u_H},
\end{align*}

czyli:

\(^{12}\) Przyjmuję tu dodatkowe założenie, że spełniona jest nierówność \(\left(\frac{s_K}{\delta_K + g + n} \right)^\psi > u_K \), która nie ma bezpośredniej interpretacji ekonomicznej.
\[
\forall t \in [0;+\infty) \quad \tilde{k}(t) > 0 \iff \tilde{k} < \left(\frac{\nu_H \tilde{h}^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K} \right)^{-1/\psi}
\]

(3.29a)

Postępując analogicznie, uzyskuje się związki:

\[
\forall t \in [0;+\infty) \quad \tilde{k}(t) < 0 \iff \tilde{k}(t) > \left(\frac{\nu_H \tilde{h}^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K} \right)^{-1/\psi}
\]

(3.29b)

oraz:

\[
\tilde{k}(h)\big|_{\tilde{k}=0} = \left(\frac{\nu_H \tilde{h}^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K} \right)^{-1/\psi}
\]

(3.29c)

Równanie (3.29c) wyznacza krzywą podziału \(\tilde{k} = 0 \) diagramu fazowego układu równań różniczkowych (3.28). Z równania owej krzywej oraz z zależności (3.29ab) wyciągnąć można wniosek, że w układzie współrzędnych, w którym na osi poziomej odkłada się \(\tilde{h} \), zaś na osi pionowej \(\tilde{k} \), poniżej (powyżej) krzywej podziału \(\tilde{k} = 0 \) przyrosty kapitału rzeczowego na jednostkę efektywnej pracy \(\tilde{k} \) są dodatnie (ujemne).

Z równania (3.29c) wynika również, że:

\[
\lim_{\tilde{h} \to 0^+} \left(\tilde{k}(h)\big|_{\tilde{k}=0} \right) = \lim_{\tilde{h} \to 0^+} \left(\frac{\nu_H \tilde{h}^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K} \right)^{-1/\psi} \left(\frac{\nu_H}{\tilde{h}^{\psi} + 1 - \nu_K - \nu_H} \right)^{1/\psi} = 0,
\]

(3.30a)
\[
\lim_{h \to +\infty} \left(\tilde{k}(h) \right)_{k=0} = \lim_{h \to +\infty} \left(\frac{\nu_H h^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K} \right)^{-1/\psi} = \\
= \lim_{h \to +\infty} \left[\left(\frac{\nu_H h^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K} \right)^{1/\psi} \right] > 0, \tag{3.30b}
\]

\[
\left. \frac{d\tilde{k}}{dh} \right|_{k=0} = \frac{d}{dh} \left[\left(\frac{\nu_H h^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K} \right)^{-1/\psi} \right] = \\
= -\frac{1}{\psi} \cdot \left(\frac{\nu_H h^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K} \right)^{-1/\psi-1} \cdot \frac{-\psi \nu_H h^{-\psi-1}}{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K} = \tag{3.30c}
\]

oraz:

\[
\frac{d^2 \tilde{k}}{dh^2} \bigg|_{k=0} = \frac{d}{dh} \left(\frac{d\tilde{k}}{dh} \bigg|_{k=0} \right) = \frac{d}{dh} \left[\left(\frac{\nu_H h^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K} \right)^{-1/\psi-1} \right] = \\
= \frac{\nu_H}{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K} \cdot \frac{d}{dh} \left[\left(\frac{\nu_H h^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K} \right)^{-\psi+1/\psi} \right] = \frac{\nu_H}{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K}.
\]
czyli:

\[
\frac{d^2\tilde{r}}{d\tilde{h}^2} \bigg|_{\tilde{k}=0} = -\frac{\nu_H \cdot (\psi + 1) \left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K}{\nu_H \tilde{h}^{-\psi} + 1 - \nu_H - \nu_K} \left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K \right) \cdot \tilde{h}^{-\psi - 1} \cdot \left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K \right) \cdot (\psi + 1) \cdot \tilde{h}^{-\psi - 2} \]

(3.30d)

Z zależności (3.30abcd) płyną następujące wnioski:

- Krzywa podziału \(\tilde{k} = 0 \) wychodzi z początku układu współrzędnych i ma asymptotę poziomą równą \(\frac{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K}{1 - \nu_K - \nu_H} > 0 \), gdyż przy \(\tilde{h} \to +\infty \)

\[
\tilde{k}_{\tilde{k}=0} \to \left(\frac{\left(\frac{s_K}{\delta_K + g + n} \right)^\psi - \nu_K}{1 - \nu_K - \nu_H} \right)^{1/\psi}
\]

- Krzywa ta jest dodatnio nachylona (gdyż \(\frac{d\tilde{k}}{d\tilde{h}} \bigg|_{\tilde{k}=0} > 0 \)) i wklęsła względem osi \(\tilde{h} \) (bo \(\frac{d^2\tilde{k}}{d\tilde{h}^2} \bigg|_{\tilde{k}=0} > 0 \)).

Krzywa podziału \(\tilde{k} = 0 \) zilustrowana jest na rysunku 3.10.
Natomiast z drugiego równania układu równań różniczkowych (3.28) wyciągnąć można wniosek, że spełnione są następujące związki:\[13:\]

\[\begin{align*}
\hat{h} > 0 & \iff \hat{h} < \frac{\nu_k \hat{k}^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_H}{\delta_H + g + n} \right)^\psi - \nu_H}^{-1/\psi}, \\
\hat{h} < 0 & \iff \hat{h} > \frac{\nu_k \hat{k}^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_H}{\delta_H + g + n} \right)^\psi - \nu_H}^{-1/\psi}
\end{align*} \] (3.31a, 3.31b)

i:\[\hat{h} (\hat{k}) \big|_{\hat{k}=0} = \frac{\nu_k \hat{k}^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_H}{\delta_H + g + n} \right)^\psi - \nu_H}^{-1/\psi} \] (3.31c)

oraz:

\[\text{Wyprowadzenie zależności (3.31abc) i (3.32abcd), przez analogię do związków (3.29abc) oraz (3.30abcd), pozostawiamy Czytelnikom. Do wyprowadzenia owych zależności niezbędne jest przyjęcie dodatkowego założenia, że } \left(\frac{s_H}{\delta_H + g + n} \right)^\psi > \nu_H. \]
\[
\lim_{k \to 0^+} \left(\frac{\bar{h}(k)}{\bar{h}_0} \right) = \lim_{h \to 0^+} \left(\frac{\nu_k \bar{k}^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_H}{\delta_H + g + n} \right)^\psi - \nu_H} \right)^{-1/\psi} = 0, \tag{3.32a}
\]

\[
\lim_{k \to +\infty} \left(\frac{\bar{h}(k)}{\bar{h}_0} \right) = \lim_{h \to +\infty} \left(\frac{\nu_k \bar{k}^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_H}{\delta_H + g + n} \right)^\psi - \nu_H} \right)^{-1/\psi} = \left(\frac{s_H}{\delta_H + g + n} \right)^{1/\psi} + \nu_H > 0, \tag{3.32b}
\]

\[
\frac{d\bar{h}}{dk} \bigg|_{\bar{h}_0} = \frac{\nu_k \bar{k}^{-\psi} + 1 - \nu_K - \nu_H}{\left(\frac{s_H}{\delta_H + g + n} \right)^\psi - \nu_H} \cdot \frac{\nu_k \bar{k}^{-\psi - 1}}{\left(\frac{s_H}{\delta_H + g + n} \right)^\psi - \nu_H} > 0 \tag{3.32c}
\]

i:

\[
\frac{d^2\bar{h}}{dk^2} \bigg|_{\bar{h}_0} = -\frac{\nu_k \cdot (\psi + 1)}{\left(\frac{s_H}{\delta_H + g + n} \right)^\psi - \nu_H} \cdot \frac{\nu_k \bar{k}^{-\psi + 1} - \nu_H - \nu_K}{\left(\frac{s_H}{\delta_H + g + n} \right)^\psi - \nu_H} \cdot \bar{k}^{-\psi - 1} \cdot \left(\frac{\left(\frac{s_H}{\delta_H + g + n} \right)^\psi - \nu_H}{\psi \cdot (\nu_k \bar{k}^{-\psi} + 1 - \nu_H - \nu_K) + \frac{1}{k}} \right) < 0. \tag{3.32d}
\]

Ze związków (3.31abc) oraz (3.32abcd) wynika, że krzywą podziału \(\bar{h} = 0 \) diagramu fazowego modelu Mankiwa-Romera-Weila z funkcją produkcji CES można zilustrować tak, jak ma to miejsce na rysunku 3.11.
Diagram fazowy układu równań różniczkowych (3.28) przedstawiony jest na rysunku 3.12.

Ze zilustrowanego na rysunku 3.12 diagramu fazowego modelu wzrostu gospodarczego Mankiwa-Romera-Weila z funkcją produkcji CES wyciągnąć można wniosek, że model ten posiada stabilne położenie długookresowej równowagi, oznaczane dalej przez \((\tilde{k}^*, \tilde{h}^*)\), leżące w punkcie przecięcia krzywych podziału \(\tilde{k} = 0\) i \(\tilde{h} = 0\).
Oznacza to, że długookresowa równowaga rozważanej tu gospodarki Mankiwa-Romera-Weila jest rozwiązaniem układu równań (3.28) przy \(\tilde{k} = 0 \) oraz \(\tilde{h} = 0 \). Dlatego też punkt ten musi być rozwiązaniem następującego układu równań:

\[
0 = s_K \left[u_K \tilde{k}^{-\psi} + u_H \tilde{h}^{-\psi} + (1 - u_K - u_H) \right]^{-1/\psi} - (\delta_K + g + n) \tilde{k} \\
0 = s_H \left[u_K \tilde{k}^{-\psi} + u_H \tilde{h}^{-\psi} + (1 - u_K - u_H) \right]^{-1/\psi} - (\delta_H + g + n) \tilde{h}
\]

lub\(^{14}\):

\[
\frac{\tilde{k}}{\left[u_K \tilde{k}^{-\psi} + u_H \tilde{h}^{-\psi} + (1 - u_K + u_H) \right]^{1/\psi}} = \frac{s_K}{\delta_K + g + n} \\
\frac{\tilde{h}}{\left[u_K \tilde{k}^{-\psi} + u_H \tilde{h}^{-\psi} + (1 - u_K + u_H) \right]^{1/\psi}} = \frac{s_H}{\delta_H + g + n}
\]

coz kolei implikuje:

\[
\frac{\tilde{k}^\psi}{\frac{u_K}{k^\psi} + \frac{u_H}{h^\psi} + 1 - u_K - u_H} = \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \\
\frac{\tilde{h}^\psi}{\frac{u_K}{k^\psi} + \frac{u_H}{h^\psi} + 1 - u_K + u_H} = \left(\frac{s_H}{\delta_H + g + n} \right)^\psi
\]

a stąd:

\[
\tilde{k}^\psi - \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \left(\frac{u_K}{\tilde{k}^\psi} + \frac{u_H}{\tilde{h}^\psi} + 1 - u_K - u_H \right) = 0 \\
\tilde{h}^\psi - \left(\frac{s_H}{\delta_H + g + n} \right)^\psi \left(\frac{u_K}{\tilde{k}^\psi} + \frac{u_H}{\tilde{h}^\psi} + 1 - u_K + u_H \right) = 0
\]

czyli:

\[
\phi_K \left(\tilde{k}, \tilde{h}, s_K, s_H, \delta_K, \delta_H, g, n, u_K, u_H, \psi \right) = 0 \\
\phi_H \left(\tilde{k}, \tilde{h}, s_K, s_H, \delta_K, \delta_H, g, n, u_K, u_H, \psi \right) = 0
\]

(3.33)

gdzie:

\(^{14}\) Z prowadzonych tu rozważań wynika, że zachodzi nierówność:

\[u_K \tilde{k}^{-\psi} + u_H \tilde{h}^{-\psi} + (1 - u_K + u_H) = \frac{u_K}{k^\psi} + \frac{u_H}{h^\psi} + 1 - u_K + u_H > 0. \]

Uzasadnienie tego faktu pozostawiamy Czytelnikom.
\[
\phi_k(\tilde{k}, \tilde{h}, s_K, s_H, \delta_K, \delta_H, g, n, u_K, u_H, \psi) = \tilde{k}^\psi \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \left(\frac{u_K}{\tilde{k}^\psi} + \frac{u_H}{\tilde{h}^\psi} + 1 - u_K - u_H \right) = (3.34a)
\]

oraz:
\[
\phi_H(\tilde{k}, \tilde{h}, s_K, s_H, \delta_K, \delta_H, g, n, u_K, u_H, \psi) = \tilde{h}^\psi \left(\frac{s_H}{\delta_H + g + n} \right)^\psi \left(\frac{u_K}{\tilde{k}^\psi} + \frac{u_H}{\tilde{h}^\psi} + 1 - u_K - u_H \right) = (3.34b)
\]

Układ równań (3.33) będzie posiadał rozwiązanie wtedy i tylko wtedy, gdy jego jacobiano (wyznacznik Jacobiego) \(J \) dany wzorem:
\[
J = \begin{vmatrix}
\frac{\partial \phi_K}{\partial \tilde{k}} & \frac{\partial \phi_K}{\partial \tilde{h}} \\
\frac{\partial \phi_H}{\partial \tilde{k}} & \frac{\partial \phi_H}{\partial \tilde{h}} \\
\end{vmatrix} (3.35)
\]

będzie różny od zera. Licząc pochodne cząstkowe funkcji \(\phi_k \) i \(\phi_H \), danych równaniami (3.34ab), względem \(\tilde{k} \) oraz \(\tilde{h} \), okazuje się, iż opisane są one przez następujące związki:
\[
\frac{\partial \phi_K}{\partial \tilde{k}} = \frac{\partial}{\partial \tilde{k}} \left(\tilde{k}^\psi \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \left(\frac{u_K}{\tilde{k}^\psi} + \frac{u_H}{\tilde{h}^\psi} + 1 - u_K - u_H \right) \right) = \\
= \frac{\partial}{\partial \tilde{k}} \left(\tilde{k}^\psi \right) \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \frac{\partial}{\partial \tilde{k}} \left(\frac{u_K}{\tilde{k}^\psi} + \frac{u_H}{\tilde{h}^\psi} + 1 - u_K - u_H \right) = (3.36a)
\]
\[
= \psi \tilde{k}^{\psi-1} - \left(\frac{s_K}{\delta_K + g + n} \right)^\psi (-\psi) u_K \tilde{k}^{-\psi-1} = \psi \left[\tilde{k}^{\psi-1} + \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \frac{u_K}{\tilde{k}^{\psi+1}} \right] > 0,
\]

oraz (analogicznie):
\[
\frac{\partial \phi_K}{\partial \tilde{h}} = \frac{\partial}{\partial \tilde{h}} \left(\tilde{h}^\psi \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \left(\frac{u_K}{\tilde{k}^\psi} + \frac{u_H}{\tilde{h}^\psi} + 1 - u_K - u_H \right) \right) = \\
= \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \frac{\partial}{\partial \tilde{h}} \left(\frac{u_K}{\tilde{k}^\psi} + \frac{u_H}{\tilde{h}^\psi} + 1 - u_K - u_H \right) = \left(\frac{s_K}{\delta_K + g + n} \right)^\psi u_H \tilde{h}^{-\psi-1} < 0 (3.36b)
\]

oraz (analogicznie):
\[
\frac{\partial \phi_H}{\partial \tilde{k}} = \frac{\partial}{\partial \tilde{k}} \left(\tilde{k}^\psi \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \left(\frac{u_K}{\tilde{k}^\psi} + \frac{u_H}{\tilde{h}^\psi} + 1 - u_K - u_H \right) \right) = \\
= \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \frac{\partial}{\partial \tilde{k}} \left(\frac{u_K}{\tilde{k}^\psi} + \frac{u_H}{\tilde{h}^\psi} + 1 - u_K - u_H \right) = \left(\frac{s_K}{\delta_K + g + n} \right)^\psi u_K \tilde{k}^{-\psi-1} < 0 (3.36c)
\]
i:
\[
\frac{\partial \phi_H}{\partial h} = \frac{\partial}{\partial h} \left(\tilde{h}^\psi - \left(\frac{s_H}{\delta_H + g + n} \right)^\psi \left(\frac{U_K}{k^\psi} + \frac{U_H}{h^\psi} + 1 - U_K - U_H \right) \right) = \\
= \psi \left[\tilde{h}^{\psi-1} + \left(\frac{s_H}{\delta_H + g + n} \right)^\psi \frac{U_H}{h^{\psi+1}} \right] > 0.
\]

Ze związków (3.36abcd) wynika, iż jakobian (3.35) dany jest wzorem:

\[
J = \left| \begin{array}{c}
\psi \left[\tilde{k}^{\psi-1} + \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \frac{U_K}{\tilde{k}^{\psi+1}} \right] - \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \psi U_H \tilde{h}^{\psi-1} \\
- \left(\frac{s_H}{\delta_H + g + n} \right)^\psi \psi U_K \tilde{k}^{\psi-1} \psi \left[\tilde{h}^{\psi-1} + \left(\frac{s_H}{\delta_H + g + n} \right)^\psi \frac{U_H}{h^{\psi+1}} \right] \\
= \psi^2 \left(\tilde{k}^{\psi-1} + \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \frac{U_K}{\tilde{k}^{\psi+1}} \right) \cdot \left(\tilde{h}^{\psi-1} + \left(\frac{s_H}{\delta_H + g + n} \right)^\psi \frac{U_H}{h^{\psi+1}} \right) + \\
- \psi^2 U_K U_H \left(\tilde{k} \right)^{\psi-1} \left(\frac{s_K s_H}{(\delta_K + g + n)(\delta_H + g + n)} \right)^\psi = \\
= \psi^2 \left[\left(\tilde{k} \right)^{\psi-1} + \left(\frac{s_H}{\delta_H + g + n} \right)^\psi \frac{U_H}{\tilde{k}^{\psi+1}} + \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \frac{U_K}{\tilde{k}^{\psi+1}} \right] + \\
+ \left(\frac{s_K s_H}{(\delta_K + g + n)(\delta_H + g + n)} \right)^\psi \frac{U_K}{\left(\tilde{k} \right)^{\psi+1}} - \left(\frac{s_K s_H}{(\delta_K + g + n)(\delta_H + g + n)} \right)^\psi \frac{U_K}{\left(\tilde{k} \right)^{\psi+1}} \right|,
\]

co oznacza, że dla każdego \(\tilde{k} > 0 \) i \(\tilde{h} > 0 \) jakobian:

\[
J = \psi^2 \left[\left(\tilde{k} \right)^{\psi-1} + \left(\frac{s_H}{\delta_H + g + n} \right)^\psi \frac{U_H}{\tilde{k}^{\psi+1}} + \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \frac{U_K}{\tilde{k}^{\psi+1}} \right] (3.37)
\]

przyjmuje wartości dodatnie. Zatem istnieją pewne (jawne lub uwikłane) funkcje \(\tilde{k}^* = k (s_K, s_H, \delta_K, \delta_H, g, n, U_K, U_H, \psi) \) i \(\tilde{h}^* = h (s_K, s_H, \delta_K, \delta_H, g, n, U_K, U_H, \psi) \), które są rozwiązaniem układu równań (3.33). Funkcje te wyznaczają równowagę modelu wzrostu gospodarczego Mankiwa-Romera-Weila z funkcją produkcji CES przy pewnych, zadanych egzogenicznie, wartościach \(s_K, s_H, \delta_K, \delta_H, g, n, U_K, U_H \) oraz \(\psi \).

Płyną stąd m.in. następujące wnioski:

- Zasoby kapitału rzeczowego \(\tilde{k}^* \) i ludzkiego \(\tilde{h}^* \) w długookresowej równowadze Mankiwa-Romera-Weila z funkcją produkcji CES (podobnie, jak ma to miejsce
w oryginalnym modelu Mankiwa-Romera-Weila) zależne są m.in. od stóp inwestycji \(s_K, s_H \), stóp deprecjacji \(\delta_K, \delta_H \) oraz stopy wzrostu liczby pracujących \(n \).

- Ponieważ pochodne cząstkowe \(\widetilde{k}^* \) i \(\widetilde{h}^* \) względem stopy inwestycji w kapitał rzeczowy \(s_K \) (czyli \(\frac{\partial \widetilde{k}^*}{\partial s_K} \) oraz \(\frac{\partial \widetilde{h}^*}{\partial s_K} \)) są rozwiązaniem następującego układu równań:

\[
\begin{bmatrix}
\frac{\partial \phi_K}{\partial k} & \frac{\partial \phi_K}{\partial h} \\
\frac{\partial \phi_H}{\partial k} & \frac{\partial \phi_H}{\partial h}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \widetilde{k}^*}{\partial s_K} \\
\frac{\partial \widetilde{h}^*}{\partial s_K}
\end{bmatrix}
= \begin{bmatrix}
- \frac{\partial \phi_K}{\partial s_K} \\
- \frac{\partial \phi_H}{\partial s_K}
\end{bmatrix}
\]

więc, korzystając z twierdzenia Cramer a i wzoru (3.35):

\[
\frac{\partial \widetilde{k}^*}{\partial s_K} = \frac{\left| \begin{array}{cc}
- \frac{\partial \phi_K}{\partial s_K} & \frac{\partial \phi_K}{\partial h} \\
\frac{\partial \phi_H}{\partial s_K} & \frac{\partial \phi_H}{\partial h}
\end{array} \right|}{\left| \begin{array}{cc}
\frac{\partial \phi_K}{\partial k} & \frac{\partial \phi_K}{\partial h} \\
\frac{\partial \phi_H}{\partial k} & \frac{\partial \phi_H}{\partial h}
\end{array} \right|} = \frac{- \frac{\partial \phi_K}{\partial s_K} \cdot \frac{\partial \phi_H}{\partial h} + \frac{\partial \phi_K}{\partial h} \cdot \frac{\partial \phi_H}{\partial s_K}}{J}
\]
(3.38a)

oraz:

\[
\frac{\partial \widetilde{h}^*}{\partial s_K} = \frac{\left| \begin{array}{cc}
\frac{\partial \phi_K}{\partial k} & - \frac{\partial \phi_K}{\partial s_K} \\
\frac{\partial \phi_H}{\partial k} & - \frac{\partial \phi_H}{\partial s_K}
\end{array} \right|}{\left| \begin{array}{cc}
\frac{\partial \phi_K}{\partial k} & \frac{\partial \phi_K}{\partial h} \\
\frac{\partial \phi_H}{\partial k} & \frac{\partial \phi_H}{\partial h}
\end{array} \right|} = \frac{- \frac{\partial \phi_K}{\partial k} \cdot \frac{\partial \phi_H}{\partial s_K} + \frac{\partial \phi_K}{\partial s_K} \cdot \frac{\partial \phi_H}{\partial k}}{J}
\]
(3.38b)

Ponieważ jakobian \(J \) jest dodatni, zatem znaki pochodnych cząstkowych \(\frac{\partial \widetilde{k}^*}{\partial s_K} \) oraz \(\frac{\partial \widetilde{h}^*}{\partial s_K} \) w równaniach (3.38ab) zależne są (odpowiednio) od znaków wyrażeń

\[- \frac{\partial \phi_K}{\partial s_K} \cdot \frac{\partial \phi_H}{\partial h} + \frac{\partial \phi_K}{\partial h} \cdot \frac{\partial \phi_H}{\partial s_K} \text{ i } - \frac{\partial \phi_K}{\partial k} \cdot \frac{\partial \phi_H}{\partial s_K} + \frac{\partial \phi_K}{\partial s_K} \cdot \frac{\partial \phi_H}{\partial k}. \]

Różniczkując równania (3.34ab) względem stopy inwestycji w kapitał rzeczowy \(s_K \), okazuje się, że:

\[
\frac{\partial \phi_K}{\partial s_K} = \frac{\partial}{\partial s_K} \left[\frac{\widetilde{k}^*}{s_K} - \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \left(\frac{v_K}{\frac{\widetilde{k}^*}{s_K}} + \frac{v_H}{\frac{\widetilde{h}^*}{s_K}} + 1 - v_K - v_H \right) \right]
\]
\[
\begin{align*}
&= -\frac{\partial}{\partial s_K} \left[\left(\frac{s_K}{\delta_K + g + n} \right)^\psi \left(\frac{u_K}{k^\psi} + \frac{u_H}{h^\psi} + 1 - u_K - u_H \right) \right] = \\
&= -\psi \left(\frac{s_K}{\delta_K + g + n} \right)^{\psi-1} \left(\frac{u_K}{k^\psi} + \frac{u_H}{h^\psi} + 1 - u_K - u_H \right) < 0
\end{align*}
\]

oraz:
\[
\frac{\partial \phi_H}{\partial s_K} = \frac{\partial}{\partial s_K} \left[\tilde{h}^\psi - \left(\frac{s_H}{\delta_H + g + n} \right)^\psi \left(\frac{u_K}{k^\psi} + \frac{u_H}{h^\psi} + 1 - u_K + u_H \right) \right] = 0.
\]

Stąd zaś wynika, iż dla każdego \(\tilde{k}, \tilde{h} > 0 \) spełnione są nierówności:
\[
-\frac{\partial \phi_K}{\partial s_K} \cdot \frac{\partial \phi_H}{\partial \tilde{h}} + \frac{\partial \phi_K}{\partial \tilde{h}} \cdot \frac{\partial \phi_H}{\partial s_K} = -\frac{\partial \phi_K}{\partial s_K} \cdot \frac{\partial \phi_H}{\partial \tilde{h}} > 0
\]
i:
\[
-\frac{\partial \phi_K}{\partial \tilde{k}} \cdot \frac{\partial \phi_H}{\partial s_K} + \frac{\partial \phi_K}{\partial s_K} \cdot \frac{\partial \phi_H}{\partial \tilde{k}} = \frac{\partial \phi_K}{\partial s_K} \cdot \frac{\partial \phi_H}{\partial \tilde{k}} > 0,
\]
co przy dodatnim jakobianie \(J \) sprawia, że pochodne cząstkowe \(\frac{\partial \tilde{k}^*}{\partial s_K} \) oraz \(\frac{\partial \tilde{h}^*}{\partial s_K} \) są dodatnie. Dlatego też w tej wersji modelu wzrostu gospodarczego Mankiwa-Romera-Weila, podobnie jak w jego wersji oryginalnej, im wyższa jest stopa inwestycji w kapitał rzeczowy \(s_K \), tym wyższe są zasoby \(\tilde{k}^* \) oraz \(\tilde{h}^* \) i wyżej położone są długo-okresowe ścieżki wzrostu technicznego uzbrojenia pracy \(k = \frac{K}{L} \) oraz kapitału ludzkiego na pracującego \(h = \frac{H}{L} \).

- Rozumując analogicznie, okazuje się, iż pochodne cząstkowe \(\frac{\partial \tilde{k}^*}{\partial s_H} \) i \(\frac{\partial \tilde{h}^*}{\partial s_H} \) są rozwiązaniem układu równań:
\[
\begin{bmatrix}
\frac{\partial \phi_K}{\partial \tilde{k}} & \frac{\partial \phi_K}{\partial \tilde{h}} \\
\frac{\partial \phi_H}{\partial \tilde{k}} & \frac{\partial \phi_H}{\partial \tilde{h}}
\end{bmatrix}
\begin{bmatrix}
\tilde{k}^* \\
\tilde{h}^*
\end{bmatrix}
= \begin{bmatrix}
-\frac{\partial \phi_K}{\partial s_H} \\
-\frac{\partial \phi_H}{\partial s_H}
\end{bmatrix}.
\]

Rozwiązanie owego układu równań wyznaczają związki:
o.raz:

\[
\begin{align*}
\tilde{k}^* &= \left[\frac{\partial \phi_K}{\partial s_H} \right] \left[\frac{\partial \phi_K}{\partial \tilde{k}} \right] = -\frac{\partial \phi_K}{\partial s_H} \cdot \frac{\partial \phi_K}{\partial \tilde{k}} + \frac{\partial \phi_K}{\partial \tilde{k}} \cdot \frac{\partial \phi_K}{\partial \tilde{s}_H} \\
\tilde{h}^* &= \left[\frac{\partial \phi_K}{\partial s_H} \right] \left[\frac{\partial \phi_K}{\partial \tilde{h}} \right] = -\frac{\partial \phi_K}{\partial \tilde{k}} \cdot \frac{\partial \phi_K}{\partial \tilde{s}_H} + \frac{\partial \phi_K}{\partial \tilde{k}} \cdot \frac{\partial \phi_K}{\partial \tilde{h}}.
\end{align*}
\]

(3.39a)

(3.39b)

Ponieważ:

\[
\frac{\partial \phi_K}{\partial s_H} = \frac{\partial}{\partial s_H} \left[\tilde{k}^\psi - \left(\frac{s_K}{s_K + \eta + n} \right)^\psi \left(\frac{u_K}{k^\psi} + \frac{u_H}{h^\psi} + 1 - u_K - u_H \right) \right] = 0
\]

(3.40a)

i:

\[
\frac{\partial \phi_H}{\partial s_H} = \frac{\partial}{\partial s_H} \left[\tilde{h}^\psi - \left(\frac{s_H}{s_H + \eta + n} \right)^\psi \left(\frac{u_K}{k^\psi} + \frac{u_H}{h^\psi} + 1 - u_K + u_H \right) \right] = 0
\]

(3.40b)

zatem pochodną cząstkową \(\frac{\partial \tilde{k}^*}{\partial s_H} \), daną równaniem (3.39a), można zapisać jako:

\[
\frac{\partial \tilde{k}^*}{\partial s_H} = \frac{\partial \phi_K}{\partial \tilde{k}} \cdot \frac{\partial \phi_H}{\partial \tilde{s}_H}.
\]

Z tego, iż pochodne cząstkowe \(\frac{\partial \phi_K}{\partial \tilde{k}} \) oraz \(\frac{\partial \phi_H}{\partial \tilde{s}_H} \) są ujemne, zaś jakobian \(J \) – dodatni, wnosimy, że pochodna cząstkowa \(\frac{\partial \tilde{k}^*}{\partial s_H} \) jest dodatnia. Co więcej, z zależności (3.40a) wynika, iż pochodna (3.39b) sprowadza się do związku:
\[
\frac{\partial \tilde{h}^*}{\partial s_H} = -\frac{\partial \Phi_K}{\partial k} \cdot \frac{\partial \Phi_H}{\partial s_H} / J.
\]

Ponieważ z prowadzonych uprzednio analiz wynika, iż \(\frac{\partial \Phi_K}{\partial k} > 0 \), \(\frac{\partial \Phi_H}{\partial s_H} < 0 \) oraz \(J > 0 \), więc również pochodna cząstkowa \(\frac{\partial \tilde{h}^*}{\partial s_H} \) jest dodatnia. Płynie stąd wniosek, iż wysokiej stopie inwestycji \(s_H \) w kapitał ludzki odpowiadają wysokie wartości \(\tilde{k}^* \) i \(\tilde{h}^* \) oraz wysoko położone długookresowe ścieżki wzrostu technicznego uzbrojenia pracy i kapitału ludzkiego na pracującego.

- Pochodne cząstkowe \(\tilde{k}^* \) i \(\tilde{h}^* \) względem stóp deprecjacji \(\delta_k \) oraz \(\delta_H \) są rozwiązaniami następujących układów równań:

\[
\begin{bmatrix}
\frac{\partial \Phi_K}{\partial k} & \frac{\partial \Phi_K}{\partial \tilde{h}} \\
\frac{\partial \Phi_H}{\partial k} & \frac{\partial \Phi_H}{\partial \tilde{h}}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \tilde{k}^*}{\partial \delta_k} \\
\frac{\partial \tilde{h}^*}{\partial \delta_H}
\end{bmatrix} = \begin{bmatrix}
-\frac{\partial \Phi_K}{\partial \delta_k} \\
-\frac{\partial \Phi_H}{\partial \delta_H}
\end{bmatrix}.
\]

(3.41a)

i:

\[
\begin{bmatrix}
\frac{\partial \Phi_K}{\partial k} & \frac{\partial \Phi_K}{\partial \tilde{h}} \\
\frac{\partial \Phi_H}{\partial k} & \frac{\partial \Phi_H}{\partial \tilde{h}}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \tilde{k}^*}{\partial \delta_H} \\
\frac{\partial \tilde{h}^*}{\partial \delta_H}
\end{bmatrix} = \begin{bmatrix}
-\frac{\partial \Phi_K}{\partial \delta_H} \\
-\frac{\partial \Phi_H}{\partial \delta_H}
\end{bmatrix}.
\]

(3.41b)

Ze związków (3.41ab) oraz wyznaczników Cramera wynika, iż pochodne te można zapisać wzorami:

\[
\frac{\partial \tilde{k}^*}{\partial \delta_k} = \frac{\begin{vmatrix}
\frac{\partial \Phi_K}{\partial k} & \frac{\partial \Phi_K}{\partial \tilde{h}} \\
\frac{\partial \Phi_H}{\partial k} & \frac{\partial \Phi_H}{\partial \tilde{h}}
\end{vmatrix}}{\begin{vmatrix}
\frac{\partial \Phi_K}{\partial \tilde{h}} & \frac{\partial \Phi_K}{\partial h} \\
\frac{\partial \Phi_H}{\partial \tilde{h}} & \frac{\partial \Phi_H}{\partial h}
\end{vmatrix} / J} = \frac{\partial \Phi_K}{\partial \delta_k} \cdot \frac{\partial \Phi_H}{\partial \tilde{h}} + \frac{\partial \Phi_K}{\partial \tilde{h}} \cdot \frac{\partial \Phi_H}{\partial \delta_k}.
\]

(3.42a)
oraz:

\[
\frac{\partial \tilde{h}^*}{\partial \delta_k} = \frac{\begin{vmatrix}
-\frac{\partial \phi_K}{\partial \delta_k} & \frac{\partial \phi_K}{\partial \delta_h} \\
-\frac{\partial \phi_H}{\partial \delta_k} & \frac{\partial \phi_H}{\partial \delta_h}
\end{vmatrix}}{J} = -\frac{\partial \phi_K}{\partial \delta_k} \cdot \frac{\partial \phi_H}{\partial \delta_h} + \frac{\partial \phi_K}{\partial \delta_k} \cdot \frac{\partial \phi_H}{\partial \delta_h},
\]

(3.42b)

oraz:

\[
\frac{\partial \tilde{k}^*}{\partial \delta_H} = \frac{\begin{vmatrix}
-\frac{\partial \phi_K}{\partial \delta_k} & \frac{\partial \phi_K}{\partial \delta_h} \\
-\frac{\partial \phi_H}{\partial \delta_k} & \frac{\partial \phi_H}{\partial \delta_h}
\end{vmatrix}}{J} = -\frac{\partial \phi_K}{\partial \delta_k} \cdot \frac{\partial \phi_H}{\partial \delta_h} + \frac{\partial \phi_K}{\partial \delta_k} \cdot \frac{\partial \phi_H}{\partial \delta_h},
\]

(3.42c)

oraz:

\[
\frac{\partial \tilde{h}^*}{\partial \delta_H} = \frac{\begin{vmatrix}
-\frac{\partial \phi_K}{\partial \delta_k} & \frac{\partial \phi_K}{\partial \delta_h} \\
-\frac{\partial \phi_H}{\partial \delta_k} & \frac{\partial \phi_H}{\partial \delta_h}
\end{vmatrix}}{J} = -\frac{\partial \phi_K}{\partial \delta_k} \cdot \frac{\partial \phi_H}{\partial \delta_h} + \frac{\partial \phi_K}{\partial \delta_k} \cdot \frac{\partial \phi_H}{\partial \delta_h},
\]

(3.42d)

Ponieważ pochodne cząstkowe \(\frac{\partial \phi_K}{\partial \delta_k}\) i \(\frac{\partial \phi_H}{\partial \delta_k}\) można zapisać następująco:

\[
\frac{\partial \phi_K}{\partial \delta_k} = \frac{\partial}{\partial \delta_k} \left[k^\psi - \left(\frac{s_K}{\delta_k + g + n} \right)^{\psi} \left(\frac{\nu_K}{\tilde{k}^\psi} + \frac{\nu_H}{\tilde{h}^\psi} + 1 - \nu_K - \nu_H \right) \right] =
\]

\[
= -\psi \left(\frac{s_K}{\delta_k + g + n} \right)^{\psi-1} \cdot \left(\frac{\nu_K}{\tilde{k}^\psi} + \frac{\nu_H}{\tilde{h}^\psi} + 1 - \nu_K - \nu_H \right) \cdot \frac{-s_K}{(\delta_k + g + n)^2} =
\]

\[
= \psi \left(\frac{s_K}{\delta_k + g + n} \right)^{\psi-1} \cdot \left(\frac{\nu_K}{\tilde{k}^\psi} + \frac{\nu_H}{\tilde{h}^\psi} + 1 - \nu_K - \nu_H \right) \cdot \frac{s_K}{(\delta_k + g + n)^2} > 0
\]

oraz:
zatem pochodne (3.42ab) sprowadzają się do zależności:

\[
\frac{\partial \Phi_H}{\partial \delta_K} = \frac{\partial}{\partial \delta_K} \left[\tilde{h}^\psi \left(\frac{s_H}{\delta_H + g + n} \right)^\psi \left(\frac{u_K}{k^\psi} + \frac{u_H}{h^\psi} + 1 - u_K + u_H \right) \right] = 0,
\]

Wyrażenia \(\frac{\partial \Phi_K}{\partial \delta_K}, \frac{\partial \Phi_H}{\partial \delta_K} \) oraz jakobian J są dodatnie, więc pochoda \(\frac{\partial \Phi_K}{\partial \delta_K} \) (opisana przez równanie (3.43a)) jest ujemna. Stąd zaś, że \(\frac{\partial \Phi_K}{\partial \delta_K} > 0 \), \(\frac{\partial \Phi_H}{\partial \delta_K} < 0 \), wynika, iż również pochodna cząstkowa (3.43b) przyjmuje wartości(182,589),(571,700) jejne. Rozumując analogicznie, można pokazać (co pozostawiamy Czytelnikom), że także pochodne cząstkowe (3.42cd) są ujemne. Płynie stąd bardziej ogólny wniosek, że w modelu wzrostu gospodarczego Mankiwa-Romera-Weila z funkcją produkcji CES, podobnie jak ma to miejsce w oryginalnym modelu Mankiwa-Romera-Weila, wysokim stopom deprecjacji zasobów kapitału rzeczowego \((\delta_K) \) i ludzkiego \((\delta_H) \) odpowiadają niskie wartości \(\tilde{k}^\ast \) i \(\tilde{h}^\ast \) oraz nisko położone ścieżki wzrostu kapitału rzeczowego i ludzkiego na pracującego.

- Pochodne cząstkowe \(\tilde{k}^\ast \) i \(\tilde{h}^\ast \) po stopie wzrostu liczby pracujących \(n \) są rozwiązaniem układu równań postaci:

\[
\begin{bmatrix}
\frac{\partial \Phi_K}{\partial \delta_K} & \frac{\partial \Phi_K}{\partial \delta_H} \\
\frac{\partial \Phi_H}{\partial \delta_K} & \frac{\partial \Phi_H}{\partial \delta_H}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \tilde{k}^\ast}{\partial n} \\
\frac{\partial \tilde{h}^\ast}{\partial n}
\end{bmatrix}
= \begin{bmatrix}
-\frac{\partial \Phi_K}{\partial \delta_K} \\
-\frac{\partial \Phi_H}{\partial \delta_K}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \Phi_K}{\partial \delta_H} \\
\frac{\partial \Phi_H}{\partial \delta_H}
\end{bmatrix}
\]

Płynie stąd wniosek, że pochodne te można również zapisać następująco:

\[
\frac{\partial \tilde{k}^\ast}{\partial n} = \frac{\partial \Phi_K}{\partial \delta_K} \cdot \frac{\partial \Phi_H}{\partial \delta_H} - \frac{\partial \Phi_K}{\partial \delta_H} \cdot \frac{\partial \Phi_H}{\partial \delta_K} + \frac{\partial \Phi_K}{\partial \delta_K} \cdot \frac{\partial \Phi_H}{\partial \delta_H} + \frac{\partial \Phi_K}{\partial \delta_K} \cdot \frac{\partial \Phi_H}{\partial \delta_H} \]

\[
(3.44a)
\]

\[
\frac{\partial \tilde{k}^\ast}{\partial \delta_K} = \frac{\partial \Phi_K}{\partial \delta_K} \cdot \frac{\partial \Phi_H}{\partial \delta_K} - \frac{\partial \Phi_K}{\partial \delta_K} \cdot \frac{\partial \Phi_H}{\partial \delta_K} + \frac{\partial \Phi_K}{\partial \delta_K} \cdot \frac{\partial \Phi_H}{\partial \delta_K} + \frac{\partial \Phi_K}{\partial \delta_K} \cdot \frac{\partial \Phi_H}{\partial \delta_K} \]

\[
(3.44b)
\]
oraz:

\[
\frac{\partial h^*}{\partial n} = \begin{vmatrix}
\frac{\partial \phi_K}{\partial k} & -\frac{\partial \phi_K}{\partial n} & \frac{\partial \phi_K}{\partial h} \\
\frac{\partial \phi_H}{\partial k} & -\frac{\partial \phi_H}{\partial n} & \frac{\partial \phi_H}{\partial h} \\
\frac{\partial \phi_K}{\partial k} & \frac{\partial \phi_H}{\partial k} & \frac{\partial \phi_K}{\partial h}
\end{vmatrix} = -\frac{\partial \phi_K \cdot \frac{\partial \phi_H}{\partial k} + \frac{\partial \phi_K}{\partial n} \cdot \frac{\partial \phi_H}{\partial h}}{J}.
\]

(3.44b)

Różniczkując równania (3.34ab) względem \(n\), okazuje się, iż:

\[
\frac{\partial \phi_K}{\partial n} = \frac{\partial}{\partial n} \left[\tilde{k}^\psi - \left(\frac{s_K}{\delta_K + g + n} \right)^\psi \left(\frac{\nu_K}{k^\psi} + \frac{\nu_H}{h^\psi} + 1 - \nu_K - \nu_H \right) \right] =
\]

\[
= -\nu \cdot \left(\frac{s_K}{\delta_K + g + n} \right)^{\psi-1} \cdot \left(\frac{\nu_K}{k^\psi} + \frac{\nu_H}{h^\psi} + 1 - \nu_K - \nu_H \right) \cdot \frac{-s_K}{(\delta_K + g + n)^2} =
\]

\[
= \nu \cdot \left(\frac{s_K}{\delta_K + g + n} \right)^{\psi-1} \cdot \left(\frac{\nu_K}{k^\psi} + \frac{\nu_H}{h^\psi} + 1 - \nu_K - \nu_H \right) \cdot \frac{s_K}{(\delta_K + g + n)^2} > 0
\]

i (analogicznie):

\[
\frac{\partial \phi_H}{\partial n} = \nu \cdot \left(\frac{s_H}{\delta_H + g + n} \right)^{\psi-1} \cdot \left(\frac{\nu_K}{k^\psi} + \frac{\nu_H}{h^\psi} + 1 - \nu_K - \nu_H \right) \cdot \frac{s_H}{(\delta_H + g + n)^2} > 0.
\]

Stąd zaś wynika, że wyrażenie \(-\frac{\partial \phi_K}{\partial n} \cdot \frac{\partial \phi_H}{\partial h} + \frac{\partial \phi_K}{\partial n} \cdot \frac{\partial \phi_H}{\partial h}\) jest ujemne, co w połączeniu z tym, iż jakobian \(J\) jest dodatni, implikuje, że pochodna cząstkowa (3.44a) jest ujemna. Podobnie, ponieważ \(-\frac{\partial \phi_K}{\partial k} \cdot \frac{\partial \phi_H}{\partial k} + \frac{\partial \phi_K}{\partial n} \cdot \frac{\partial \phi_H}{\partial n} < 0\) i \(J > 0\), więc również pochodna (3.44b) jest mniejsza od zera. Dlatego też im wyższa jest stopa wzrostu liczby pracujących \(n\), tym niższe są zasoby kapitału rzeczonego i ludzkiego na jednostkę efektywnej pracy w równowadze Mankiwa-Romera-Weila z funkcją produkcji CES (czyli \(\tilde{k}^*\) i \(\tilde{h}^*\)) oraz niżej położone są długookresowe ścieżki wzrostu technicznego uzbrojenia pracy i kapitału ludzkiego na pracującego.

Dzieląc stronami funkcję produkcji CES (3.24) przez jednostki efektywnej pracy \(\bar{L}\), uzyskuje się następującą zależność:

\[
\forall t \in [0; +\infty) \quad \bar{y}(t) = \frac{Y(t)}{\bar{L}(t)} = \left[\frac{\nu_K (K(t))^\psi + \nu_H (H(t))^\psi + (1 - \nu_K - \nu_H) (\bar{L}(t))^\psi}{\bar{L}(t)} \right]^{-1/\psi}
\]
\[
\left(\frac{v_k(K(t))^{-\psi} + v_H(H(t))^{-\psi} + (1 - v_k - v_H)(L(t))^{-\psi}}{(L(t))^{-\psi}} \right)^{-1/\psi} = \left(\frac{v_k(K(t))^{-\psi} + v_H(H(t))^{-\psi} + 1 - v_k - v_H}{(L(t))^{-\psi}} \right)^{-1/\psi},
\]
a stąd, po uwzględnieniu tego, że \(\tilde{k} = \frac{K}{L} \) oraz \(\tilde{h} = \frac{H}{L} \), dochodzi się do związku:

\[
\forall t \in [0;+\infty) \quad \tilde{y}(t) = \left[v_k(\tilde{k}(t))^{-\psi} + v_H(\tilde{h}(t))^{-\psi} + 1 - v_k - v_H \right]^{-1/\psi}. \quad (3.45)
\]

Równanie (3.45) opisuje relacje, które zachodzą między nakładami kapitału rzeczowego \(\tilde{k} \) i ludzkiego \(\tilde{h} \) na jednostkę efektywnej pracy a strumieniem produktu \(\tilde{y} \) na jednostkę owej pracy. Z równania (3.45) wynika, że dla każdego \(\tilde{k} > 0 \) oraz \(\tilde{h} > 0 \):

\[
\frac{\partial \tilde{y}}{\partial \tilde{k}} = \frac{\partial}{\partial \tilde{k}} \left(\left[v_k(\tilde{k})^{-\psi} + v_H(\tilde{h})^{-\psi} + 1 - v_k - v_H \right]^{-1/\psi} \right) =
\]

\[
= -\frac{1}{\psi} \left[v_k(\tilde{k})^{-\psi} + v_H(\tilde{h})^{-\psi} + 1 - v_k - v_H \right]^{-1/\psi - 1} \cdot (-v_k \cdot \psi) \cdot \tilde{k}^{-\psi - 1},
\]
czyli:

\[
\frac{\partial \tilde{y}}{\partial \tilde{k}} = \left[v_k(\tilde{k})^{-\psi} + v_H(\tilde{h})^{-\psi} + 1 - v_k - v_H \right]^{-1/\psi - 1} \cdot v_k \cdot \tilde{k}^{-\psi - 1} > 0 \quad (3.46a)
\]

i (analogicznie):

\[
\frac{\partial \tilde{y}}{\partial \tilde{h}} = \left[v_k(\tilde{k})^{-\psi} + v_H(\tilde{h})^{-\psi} + 1 - v_k - v_H \right]^{-1/\psi - 1} \cdot v_H \cdot \tilde{h}^{-\psi - 1} > 0. \quad (3.46b)
\]

Jeśli gospodarka Mankiwa-Romera-Weila z funkcją produkcji CES znajduje się w stanie długookresowej równowagi (czyli wówczas, gdy \(\tilde{k} = \tilde{k}^* \) oraz \(\tilde{h} = \tilde{h}^* \)), to – zgodnie z równaniem (3.45) – produkt na jednostkę efektywnej pracy w owej równowadze (oznaczany przez \(\tilde{y}^* \)) można zapisać wzorem:

\[
\tilde{y}^* = f(\tilde{k}^*, \tilde{h}^*), \quad (3.47)
\]

gdzie:

\[
\forall \tilde{k}, \tilde{h} > 0 \quad f(\tilde{k}, \tilde{h}) = \left[v_k(\tilde{k})^{-\psi} + v_H(\tilde{h})^{-\psi} + 1 - v_k - v_H \right]^{-1/\psi}.
\]

Ponieważ z prowadzonych uprzednio rozważań wynika, że zasoby \(\tilde{k}^* \) i \(\tilde{h}^* \) są funkcjami m.in. \(s_k, s_h, \delta_k, \delta_h \) oraz \(n \), zatem również strumień \(\tilde{y}^* \) jest funkcją wspomnianych tu zmiennych makroekonomicznych. Co więcej, uwzględniając związki (3.46ab)
oraz (3.47) i różniczkując \(\ddot{y}^* \) względem \(s_K \) i \(s_H \), okazuje się, iż pochodne te opisane są przez zależności:

\[
\frac{\partial \dot{y}^*}{\partial s_K} = \frac{\partial \dot{h}^*}{\partial k_{\dot{K}}^{k=\dot{k}}} \cdot \frac{\partial \dot{K}^*}{\partial k_{\dot{K}}^{k=\dot{k}}} + \frac{\partial \dot{h}^*}{\partial h_{\dot{h}}^{h=\dot{h}}} \cdot \frac{\partial \dot{H}^*}{\partial s_K} = \frac{\partial \dot{y}^*}{\partial k_{\dot{K}}^{k=\dot{k}}} \cdot \frac{\partial \dot{K}^*}{\partial k_{\dot{K}}^{k=\dot{k}}} + \frac{\partial \dot{y}^*}{\partial h_{\dot{h}}^{h=\dot{h}}} \cdot \frac{\partial \dot{H}^*}{\partial s_K} \tag{3.48a}
\]

oraz:

\[
\frac{\partial \dot{y}^*}{\partial s_H} = \frac{\partial \dot{h}^*}{\partial k_{\dot{K}}^{k=\dot{k}}} \cdot \frac{\partial \dot{K}^*}{\partial s_H} + \frac{\partial \dot{h}^*}{\partial h_{\dot{h}}^{h=\dot{h}}} \cdot \frac{\partial \dot{H}^*}{\partial s_H} = \frac{\partial \dot{y}^*}{\partial k_{\dot{K}}^{k=\dot{k}}} \cdot \frac{\partial \dot{K}^*}{\partial s_H} + \frac{\partial \dot{y}^*}{\partial h_{\dot{h}}^{h=\dot{h}}} \cdot \frac{\partial \dot{H}^*}{\partial s_H} \tag{3.48b}
\]

 Ponieważ wyrażenia \(\frac{\partial \dot{y}^*}{\partial k_{\dot{K}}^{k=\dot{k}}} \), \(\frac{\partial \dot{y}^*}{\partial h_{\dot{h}}^{h=\dot{h}}} \), \(\frac{\partial \dot{K}^*}{\partial s_K} \), \(\frac{\partial \dot{H}^*}{\partial s_H} \) są dodatnie, więc również pochodne cząstkowe (3.48ab) produktu na jednostkę efektywnej pracy (w równowadze rozważanej tu wersji modelu wzrostu Mankiwa-Romera-Weila) względem stóp inwestycji \(s_K \) oraz \(s_H \) są dodatnie. Oznacza to, że im wyższe są stopy \(s_K \) i/lub \(s_H \), tym wyższy jest produkt \(\ddot{y}^* \) i wyżej położona jest długookresowa ścieżka wzrostu wydajności pracy \(y = \frac{Y}{L} \).

Rozumując analogicznie, można pokazać, że:

\[
\frac{\partial \dot{y}^*}{\partial k_{\dot{K}}^{k=\dot{k}}} = \frac{\partial \dot{h}^*}{\partial k_{\dot{K}}^{k=\dot{k}}} \cdot \frac{\partial \dot{K}^*}{\partial s_K} + \frac{\partial \dot{h}^*}{\partial h_{\dot{h}}^{h=\dot{h}}} \cdot \frac{\partial \dot{H}^*}{\partial s_K} < 0, \tag{3.48c}
\]

\[
\frac{\partial \dot{y}^*}{\partial s_H} = \frac{\partial \dot{h}^*}{\partial k_{\dot{K}}^{k=\dot{k}}} \cdot \frac{\partial \dot{K}^*}{\partial s_H} + \frac{\partial \dot{h}^*}{\partial h_{\dot{h}}^{h=\dot{h}}} \cdot \frac{\partial \dot{H}^*}{\partial s_H} < 0 \tag{3.48d}
\]

i:

\[
\frac{\partial \dot{y}^*}{\partial n} = \frac{\partial \dot{h}^*}{\partial k_{\dot{K}}^{k=\dot{k}}} \cdot \frac{\partial \dot{K}^*}{\partial n} + \frac{\partial \dot{h}^*}{\partial h_{\dot{h}}^{h=\dot{h}}} \cdot \frac{\partial \dot{H}^*}{\partial n} < 0. \tag{3.48e}
\]

Wyprowadzenie oraz interpretację ekonomiczną związków (3.48cde) pozostawiamy Czytelnikom.

3.5. RÓWNOWAGA N-KAPITAŁOWEGO MODELU WZROSTU NONNENAMA-VANHOUDTA\(^{15}\)

Model wzrostu gospodarczego Nonnemana-Vanhoudta stanowi rozszerzenie modelu wzrostu Mankiwa-Romera-Weila (a, tym samym, również modelu Solowa) na przypadek, w którym w gospodarce wykorzystywana jest do wytworzenia strumienia pro-

\(^{15}\) Rozszerzenie prezentowanego w punkcie 3.5 modelu wzrostu gospodarczego znaleźć można w opracowaniu Dykasa, Sulimy, Tokarskiego (2008).
duktu skończona liczba N zasobów oraz jednostki efektywnej pracy. W modelu tym przyjmuje się następujące założenia

1. Proces produkcyjny opisany jest przez (N + 1)-czynnikową funkcję produkcji Cobba-Douglasa daną wzorem:

\[Y(t) = \prod_{i=1}^{N} (K_i(t))^{a_i} (\Lambda(t)L(t))^{1-\sum_{i=1}^{N} a_i} = \prod_{i=1}^{N} (K_i(t))^{a_i} (L(t))^{1-\sum_{i=1}^{N} a_i}, \]

gdzie Y jest strumieniem wytworzonego produktu, \(K_i \) (dla każdego \(i = 1, 2, ..., N \)) to nakłady i-tego zasobu kapitału, zaś \(\widetilde{L} = \Lambda L \) interpretuje się tak, jak poprzednio. O parametrach \(\alpha_1, \alpha_2, ..., \alpha_N \) zakłada się, iż zarówno każdy z nich, jak i ich suma należą do przedziału \((0;1)\). Parametry te (podobnie jak parametry \(\alpha \) i \(\beta \) w modelu Mankiwa-Romera-Weila) to zarówno elastyczności produktu Y względem nakładów kolejnych zasobów kapitału \(K_1, K_2, ..., K_N \), jak i udziałów tych nakładów kapitału w produkcji (uzasadnienie tego pozostawiamy Czytelnikom).

2. Przyrosty kolejnych zasobów kapitału \(K_i \) (dla \(i = 1, 2, ..., N \)) stanowią różnicę między inwestycjami \(s_i Y \) w owe zasoby kapitału a ich deprecjacją \(\delta_i K \) (gdzie \(s_i \) to stopa inwestycji w i-ty zasób kapitału, zaś \(\delta_i \) to stopa jego deprecjacji). Oznacza to, iż:

\[\forall t \in [0;+\infty) \land \forall i = 1, 2, ..., N \quad K_i(t) = s_i Y(t) - \delta_i K_i(t). \]

O stopach inwestycji \(s_i \) oraz stopach deprecjacji \(\delta_i \) zakłada się, że \(s_1, s_2, ..., s_N, \sum_{i=1}^{N} s_i \in (0;1) \) oraz \(\delta_1, \delta_2, ..., \delta_N \in (0;1) \).

3. Liczba pracujących \(L \) rośnie według danej egzogenicznie stopy wzrostu \(n \) (a więc \(\dfrac{\dot{L}}{L} = n > 0 \)), natomiast zasób wiedzy \(\Lambda \) według stopy harrodiańskiego postępu technicznego \(g \) (czyli \(\dfrac{\dot{\Lambda}}{\Lambda} = g \)). Oznacza to, iż jednostki efektywnej pracy \(\widetilde{L} \) rosną według stopy wzrostu równej \(g + n \), co wynika stąd, iż (por. też równanie (3.4)):

16 Czytelnicy powinni samodzielnie uzasadnić to, że założenia modelu Nonnemana-Vanhoudta stanowią uogólnienie założeń rozważanego w punkcie 3.2 skryptu modelu wzrostu Mankiwa-Romera-Weila z funkcją produkcji Cobba-Douglasa.

17 Z przyjętych tu założeń wynika, że łączne inwestycje \(I \) w N zasobów kapitałów w gospodarce Nonnemana-Vanhoudta równe są:

\[I = \sum_{i=1}^{N} I_i = \sum_{i=1}^{N} s_i Y, \]

zaś konsumpcję \(C \) można zapisać wzorem:

\[C = Y - I = Y - \sum_{i=1}^{N} I_i = Y - \sum_{i=1}^{N} s_i Y = \left(1 - \sum_{i=1}^{N} s_i\right)Y. \]
\[
\forall t \in [0;+\infty) \quad \frac{\tilde{L}(t)}{L(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\tilde{L}(t)}{L(t)} = g + n. \tag{3.51}
\]

Oznaczmy teraz przez:
\[
\forall t \in [0;+\infty) \quad \tilde{y}(t) = \frac{Y(t)}{\tilde{L}(t)} \tag{3.52a}
\]
oraz:
\[
\forall t \in [0;+\infty) \land \forall i = 1, 2, \ldots, N \quad \tilde{k}_i(t) \equiv \frac{K_i(t)}{\tilde{L}(t)} \tag{3.52b}
\]

produkt na jednostkę efektywnej pracy \((\tilde{y})\) oraz i-ty (dla każdego \(i = 1, 2, \ldots, N\)) zasób kapitału na jednostkę efektywnej pracy \((\tilde{k}_i)\).

Dzieląc stronami funkcję produkcji \((3.49)\) przez jednostki efektywnej pracy \(\tilde{L}\), otrzymujemy:
\[
\forall t \in [0;+\infty) \quad \frac{Y(t)}{L(t)} = \prod_{i=1}^{N} \left(K_i(t) \right)^{a_i} \left(\tilde{L}(t) \right)^{1-\sum_{i=1}^{N} a_i} = \frac{\prod_{i=1}^{N} \left(K_i(t) \right)^{a_i} \left(\tilde{L}(t) \right)^{1-\sum_{i=1}^{N} a_i}}{\prod_{i=1}^{N} \left(L(t) \right)^{a_i} \left(\tilde{L}(t) \right)^{1-\sum_{i=1}^{N} a_i}} = \prod_{i=1}^{N} \left(\frac{K_i(t)}{\tilde{L}(t)} \right)^{a_i}
\]
lub, po uwzględnieniu związków \((3.52ab)\):
\[
\forall t \in [0;+\infty) \quad \tilde{y}(t) = \prod_{i=1}^{N} \left(\tilde{k}_i(t) \right)^{a_i}. \tag{3.53}
\]

Równanie \((3.53)\) wyznacza funkcję produkcji na jednostkę efektywnej pracy w modelu Nonneman-Vanhoultta, która jest rozszerzeniem funkcji \((3.6)\) w modelu Mankiwa-Romera-Weila. Z równania tego wynika, iż wielkość produkcji na jednostkę efektywnej pracy \(\tilde{y}\) jest tym wyższa, im wyższe są kolejne nakłady zasobów kapitału na jednostkę efektywnej pracy, czyli \(\tilde{k}_1, \tilde{k}_2, \ldots, \tilde{k}_N\), gdyż:
\[
\forall i = 1, 2, \ldots, N \quad \frac{\partial \tilde{y}}{\partial \tilde{k}_i} = \frac{\partial}{\partial \tilde{k}_i} \left(\prod_{j=1}^{N} \tilde{k}_j^{a_j} \right) = \alpha_i \tilde{k}_i^{a_i-1} \prod_{j=1 \land j \neq i}^{N} \tilde{k}_j^{a_j} > 0.
\]

Różniczkując równania \((3.52b)\) względem czasu \(t \in [0;+\infty)\), okazuje się, że zachodzą związki:
\[
\forall t \in [0;+\infty) \land \forall i = 1, 2, \ldots, N \quad \dot{\tilde{k}}_i(t) = \frac{\tilde{K}_i(t)\tilde{L}(t) - K_i(t)\tilde{L}(t)}{(\tilde{L}(t))^2},
\]
czyli:
\[\forall t \in [0;+\infty) \land \forall i = 1, 2, \ldots, N \quad \dot{\tilde{k}}_i(t) = \frac{\hat{K}_i(t)}{\tilde{L}(t)} - \frac{K_i(t)}{\hat{L}(t)} \cdot \frac{\hat{\tilde{L}}(t)}{\tilde{L}(t)}. \tag{3.54} \]

Wstawiając do zależności (3.54) związki (3.50) i (3.51), uzyskuje się:

\[\forall t \in [0;+\infty) \land \forall i = 1, 2, \ldots, N \quad \dot{\tilde{k}}_i(t) = \frac{s_i Y(t) - \delta_i K_i(t)}{\tilde{L}(t)} - (g + n) \frac{K_i(t)}{\tilde{L}(t)} = s_i \frac{Y(t)}{\tilde{L}(t)} - (g + \delta_i + n) \frac{K_i(t)}{\tilde{L}(t)} \]

lub, po uwzględnieniu równań (3.52ab):

\[\forall t \in [0;+\infty) \land \forall i = 1, 2, \ldots, N \quad \dot{\tilde{k}}_i(t) = s_i \tilde{y}(t) - (\delta_i + g + n) \tilde{k}_i(t). \tag{3.55} \]

Równania (3.55) interpretuje się ekonomicznie w ten sposób, że przyrost i-tego (dla \(i = 1, 2, \ldots, N \)) zasobu kapitału na jednostkę efektywnej pracy \(\left(\tilde{k}_i \right) \) jest różnicą między inwestycjami \((s, \tilde{y}) \) w ów zasób kapitału na jednostkę efektywnej pracy a jego ubytkiem \((\delta_i + g + n)\tilde{k}_i \), który wynika z deprecjacji tego kapitału \(\delta_i \tilde{k}_i \) oraz ze wzrostu jednostek efektywnej pracy \((g + n)\tilde{k}_i \). Równania te stanowią zatem uogólnienie równań (3.7ab) z modelu Mankiwa-Romera-Weila z punktu 3.2 skryptu.

Wstawiając funkcję (3.53) do równań (3.55), uzyskuje się następujący układ równań różniczkowych (równań ruchu) modelu Nonnemana-Vanhoudta:

\[\forall t \in [0;+\infty) \land \forall i = 1, 2, \ldots, N \quad \dot{\tilde{k}}_i(t) = s_i \prod_{j=1}^{N} \tilde{k}_j(t)^{a_j} - (\delta_i + g + n)\tilde{k}_i(t) \tag{3.56} \]

lub, po podzieleniu każdego z powyższych równań przez \(\tilde{k}_i > 0 \):

\[\forall t \in [0;+\infty) \land \forall i = 1, 2, \ldots, N \quad \tilde{g}_i(t) = s_i \prod_{j=1}^{j \neq i} \tilde{k}_j(t)^{a_j} - (\delta_i + g + n), \tag{3.57} \]

gdzie \(\tilde{g}_i = \frac{s_i}{\tilde{k}_i} \) (dla każdego \(i = 1, 2, \ldots, N \)) to stopa wzrostu i-tego zasobu kapitału przypadającego na jednostkę efektywnej pracy.

Aby gospodarka Nonnemana-Vanhoudta znajdowała się w stanie wzrostu równomiernego, muszą istnieć stałe w czasie stopy wzrostu kolejnych analizowanych tu zasobów kapitału na jednostkę efektywnej pracy. Oznaczając przez \(\tilde{g}_i^* = \tilde{g}_i(t) \), owe stopy wzrostu równania (3.57) można zapisać następująco:
\[\forall t \in [0;+\infty) \land \forall i = 1, 2, \ldots, N \quad \tilde{g}_i^* = s_i \left(\tilde{k}_i(t) \right)^{a_i-1} \prod_{j=1; j \neq i}^{N} \left(\tilde{k}_j(t) \right)^{a_j} - (\delta_i + g + n), \]
a stąd:

\[\forall t \in [0;+\infty) \land \forall i = 1, 2, \ldots, N \quad \frac{\tilde{g}_i^* + \delta_i + g + n}{s_i} = \left(\tilde{k}_i(t) \right)^{a_i-1} \prod_{j=1; j \neq i}^{N} \left(\tilde{k}_j(t) \right)^{a_j}. \]

(3.58)

Jeśli zlogarytmujemy stronami równania (3.58), to okaże się, iż zachodzą związki:

\[\forall t \in [0;+\infty) \land \forall i = 1, 2, \ldots, N \quad \ln \left(\frac{\tilde{g}_i^* + \delta_i + g + n}{s_i} \right) = - (1 - \alpha_i) \ln \left(\tilde{k}_i(t) \right) + \sum_{j=1; j \neq i}^{N} \left(\alpha_j \ln \left(\tilde{k}_j(t) \right) \right) \]
bądź, po zróżniczkowaniu względem czasu \(t \in [0;+\infty) \):

\[\forall t \in [0;+\infty) \land \forall i = 1, 2, \ldots, N \quad 0 = -(1 - \alpha_i) \frac{\dot{\tilde{k}}_i(t)}{\tilde{k}_i(t)} + \sum_{j=1; j \neq i}^{N} \left(\alpha_j \frac{\dot{\tilde{k}}_j(t)}{\tilde{k}_j(t)} \right) \]
lub, po podstawieniu za \(\frac{\dot{\tilde{k}}_i(t)}{\tilde{k}_i(t)} \) stóp wzrostu \(\tilde{g}_i^* \) (dla każdego \(i = 1, 2, \ldots, N \)):

\[\forall i = 1, 2, \ldots, N \quad -(1 - \alpha_i) \tilde{g}_i^* + \sum_{j=1; j \neq i}^{N} \left(\alpha_j \tilde{g}_j^* \right) = 0, \]
czyli:

\[\begin{aligned}
(1 - \alpha_1) \tilde{g}_1^* - \alpha_2 \tilde{g}_2^* - \ldots - \alpha_N \tilde{g}_N^* &= 0 \\
- \alpha_1 \tilde{g}_1^* + (1 - \alpha_2) \tilde{g}_2^* - \ldots - \alpha_N \tilde{g}_N^* &= 0 \\
- \alpha_1 \tilde{g}_1^* - \alpha_2 \tilde{g}_2^* - \ldots + (1 - \alpha_N) \tilde{g}_N^* &= 0
\end{aligned} \]

Powyższy układ równań można również zapisać w postaci macierzowej następująco:

\[\begin{bmatrix}
1 - \alpha_1 & -\alpha_2 & -\alpha_N \\
-\alpha_1 & 1 - \alpha_2 & -\alpha_N \\
-\alpha_1 & -\alpha_2 & \ldots & 1 - \alpha_N
\end{bmatrix} \begin{bmatrix}
\tilde{g}_1^* \\
\tilde{g}_2^* \\
\tilde{g}_N^*
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}. \]

(3.59)

Aby istniały stopy wzrostu \(\tilde{g}_1^* \), \(\tilde{g}_2^* \), ..., \(\tilde{g}_N^* \) zapewniające istnienie wzrostu równomier- nego, układ równań (3.59) musi mieć rozwiązanie. Układ ten zaś będzie miał rozwiązanie wtedy i tylko wtedy, gdy macierz

\[\begin{bmatrix}
1 - \alpha_1 & -\alpha_2 & -\alpha_N \\
-\alpha_1 & 1 - \alpha_2 & \ldots & 1 - \alpha_N \\
-\alpha_1 & -\alpha_2 & \ldots & 1 - \alpha_N
\end{bmatrix} \]
będzie nieosó-
bliwa. To zaś tożsamościowe jest z tym, iż wyznacznik \(W \) tej macierzy jest różny od zera. Wyznacznik ten można zapisać następująco:

\[
W = \begin{vmatrix}
1 - \alpha_1 & -\alpha_2 & \ldots & -\alpha_N \\
-\alpha_1 & 1 - \alpha_2 & \ldots & -\alpha_N \\
\vdots & \vdots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \ldots & 1 - \alpha_N
\end{vmatrix}.
\]

Odejmując od pierwszego, drugiego, \ldots, \((N - 1)\)-szego wiersza wyznacznika \(W \) wiersz \(N \)-ty, wyznacznik ten można zapisać następująco:

\[
W = \begin{vmatrix}
1 & 0 & \ldots & -1 \\
0 & 1 & \ldots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \ldots & 1 - \alpha_N
\end{vmatrix}.
\]

Dodając teraz do \(N \)-tej kolumny wyznacznika \(W \) wszystkie pozostałe kolumny, okazuje się, że:

\[
W = \begin{vmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
\vdots & \vdots & \vdots \\
-\alpha_1 & -\alpha_2 & 1 - \sum_{i=1}^{N} \alpha_i
\end{vmatrix} = 1 - \sum_{i=1}^{N} \alpha_i \in (0;1).
\] (3.60)

Ze związku (3.60) wynika, że układ równań (3.59) posiada dokładnie jedno rozwiązanie, co oznacza, iż istnieją stopy wzrostu \(\tilde{g}_1^* \), \(\tilde{g}_2^* \), \ldots, \(\tilde{g}_N^* \) gwarantujące istnienie wzrostu równomiernego w modelu Nonnemana-Vanhoudtta. Stopy te są rozwiązaniem układu równań (3.59). Układ ów można zaś rozwiązać, korzystając z metody wyznaczników Cramera. Kolejne wyznaczniki Cramera układu równań (3.59) dane są wzorami:

\[
\forall i = 1, 2, \ldots, N \quad W_i = \begin{vmatrix}
1 - \alpha_1 & -\alpha_2 & \ldots & -\alpha_i & 0 & -\alpha_{i+1} & \ldots & -\alpha_N \\
-\alpha_1 & 1 - \alpha_2 & \ldots & -\alpha_i & 0 & -\alpha_{i+1} & \ldots & -\alpha_N \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \ldots & 1 - \alpha_i & 0 & -\alpha_{i+1} & \ldots & -\alpha_N \\
-\alpha_1 & -\alpha_2 & \ldots & -\alpha_i & 0 & 1 - \alpha_{i+1} & \ldots & -\alpha_N \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \ldots & -\alpha_i & 0 & -\alpha_{i+1} & \ldots & 1 - \alpha_N
\end{vmatrix} = 0,
\]

a stąd:

\[
\forall i = 1, 2, \ldots, N \quad \tilde{g}_i^* = \frac{W_i}{W} = 0.
\] (3.61)

Logarytmując stronami równanie (3.53), okazuje się, że:
\[\forall t \in [0;+\infty) \quad \ln(\tilde{y}(t)) = \sum_{i=1}^{N} (\alpha_i \ln(\tilde{k}_i(t))) \]
a stąd, po różniczkowaniu względem czasu \(t \in [0;+\infty) \):

\[\forall t \in [0;+\infty) \quad \frac{\tilde{y}(t)}{\tilde{y}(t)} = \sum_{i=1}^{N} \left(\frac{\tilde{k}_i(t)}{k_i(t)} \right) \alpha_i \]
lub, po podstawieniach \(\tilde{g}_i = \frac{\tilde{k}_i}{k_i} \) (dla każdego \(i = 1, 2, ..., N \)) oraz \(\tilde{g}_y = \tilde{y} \) (gdzie \(\tilde{g}_y \) jest stopą wzrostu produktu na jednostkę efektywnej pracy):

\[\forall t \in [0;+\infty) \quad \tilde{g}_y(t) = \sum_{i=1}^{N} (\alpha_i \tilde{g}_i(t)). \quad (3.62) \]

W warunkach wzrostu równomiernego gospodarki Nonnemana-Vanhoudta, zgodnie z równaniami (3.60), stopy wzrostu kolejnych zasobów kapitału \(\tilde{g}_i^* \) (dla każdego \(i = 1, 2, ..., N \)) równe są zeru, a stąd oraz z równania (3.62) wynika, iż:

\[\tilde{g}_y^* = 0, \quad (3.63) \]

gdzie \(\tilde{g}_y^* \) jest stopą wzrostu strumienia produktu na jednostkę efektywnej pracy w warunkach wzrostu równomiernego.

Równania (3.52ab), po uwzględnieniu tego, że \(\tilde{L} = \Lambda L \), można zapisać następująco:

\[\forall t \in [0;+\infty) \quad \tilde{y}(t) = \frac{Y(t)}{\tilde{L}(t)} = \frac{Y(t)}{\Lambda(t) L(t)} = \frac{y(t)}{\Lambda(t)} \]
oraz:

\[\forall t \in [0;+\infty) \land \forall i = 1, 2, ..., N \quad \tilde{k}_i(t) = \frac{K_i(t)}{\tilde{L}(t)} = \frac{K_i(t)}{\Lambda(t) L(t)} = \frac{k_i(t)}{\Lambda(t)}, \]

gdzie \(y = \frac{Y}{L} \) to wydajność pracy, zaś \(k_i = \frac{K_i}{L} \) to zasób i-tego kapitału na pracującego (dla każdego \(i = 1, 2, ..., N \)). Powyższe równania zapisać można również następująco:

\[\forall t \in [0;+\infty) \quad y(t) = \Lambda(t) \tilde{y}(t) \quad (3.64a) \]
i:

\[\forall t \in [0;+\infty) \land \forall i = 1, 2, ..., N \quad k_i(t) = \Lambda(t) \tilde{k}_i(t). \quad (3.64b) \]

Logarytmując stronami i różniczkując względem czasu \(t \in [0;+\infty) \) związki (3.64ab), uzyskuje się zależności:
\[\forall t \in [0;+\infty) \quad g_y(t) = \frac{\dot{y}(t)}{\gamma(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{\gamma}(t)}{\gamma(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \tilde{g}_y(t), \]

gdzie \(g_y \) to stopa wzrostu wydajności pracy oraz:

\[\forall t \in [0;+\infty) \quad g_i(t) = \frac{\dot{k}_i(t)}{k_i(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{\gamma}(t)}{\gamma(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \tilde{g}_i(t), \]

przy czym \(g_i \) (dla każdego \(i = 1, 2, ..., N \)) jest stopą wzrostu i-tego zasobu kapitału na pracującego. Uwzględniając zaś w powyższych równaniach założenie, że \(\frac{\dot{\Lambda}}{\Lambda} = g \), można je zapisać wzorami:

\[\forall t \in [0;+\infty) \quad g_y(t) = g + \tilde{g}_y(t) \quad (3.65a) \]

i:

\[\forall t \in [0;+\infty) \quad g_i(t) = g + \tilde{g}_i(t). \quad (3.65b) \]

Z równań (3.65ab) oraz tego, iż w warunkach wzrostu równomiernego \(\tilde{g}_y = \tilde{g}_1 = \tilde{g}_2 = ... = \tilde{g}_N = 0 \), wynika, że wówczas stopy wzrostu wydajności pracy \(g_y \) oraz kolejnych zasobów kapitału na pracującego \((g_1, g_2, ..., g_N) \) równe są (podobnie jak ma to miejsce w modelach Solowa oraz Mankiwa-Romera-Weila) stopie harrodian- skiego postępu technicznego \(g \).

Co więcej, ponieważ w warunkach wzrostu równomiernego \(\tilde{g}_i = \tilde{g}_1 = \tilde{g}_2 = ... = \tilde{g}_N = 0 \), zatem \(\tilde{k}_i = \tilde{k}_1 = \tilde{k}_2 = ... = \tilde{k}_N = 0 \) (gdzie \(\tilde{k}_i \) dla \(i = 1, 2, ..., N \) to zasób i-tego kapitału na jednostkę efektywnej pracy w warunkach wzrostu równomiernego gospodarki Nonneman-Vanhoudta). Wówczas równania (3.66a) można zapisać następująco:

\[\forall i = 1, 2, ..., N \quad 0 = s_i \prod_{j=1}^{N} (\tilde{k}_j^*)^{a_j} \left(\delta_i + g + n \right) \tilde{k}_i^*. \]

Powyższe równania zapisać można również za pomocą związków:

\[\forall i = 1, 2, ..., N \quad 0 = s_i \left(\tilde{k}_i^* \right)^{a_i-1} \prod_{j=1; j \neq i}^{N} \left(\tilde{k}_j^* \right)^{a_j} - \left(\delta_i + g + n \right), \]

a stąd:

\[\forall i = 1, 2, ..., N \quad \left(\tilde{k}_i^* \right)^{-\alpha_i} \prod_{j=1; j \neq i}^{N} \left(\tilde{k}_j^* \right)^{-a_j} = \frac{s_i}{\delta_i + g + n}. \quad (3.66) \]

Ponieważ prawe strony równań (3.66) są dodatnie, zatem również lewe strony tych równań muszą być dodatnie. Płynie stąd wniosek, iż równania te można zlogarytmować stronami i zapisać następująco:

\[\forall i = 1, 2, ..., N \quad (1 - \alpha_i) \ln(\tilde{k}_i^*) - \sum_{j=1; j \neq i}^{N} \left(\alpha_j \ln(\tilde{k}_j^*) \right) = \Psi_i, \]
gdzie \(\Psi_i = \ln \left(\frac{s_i}{\delta_i + g + n} \right) \) (dla każdego \(i = 1, 2, \ldots, N \)). Powyższe równania implikują układ równań postaci:

\[
\begin{align*}
(1 - \alpha_1) \ln(\tilde{k}_1^*) - \alpha_2 \ln(\tilde{k}_2^*) - \cdots - \alpha_N \ln(\tilde{k}_N^*) &= \Psi_1 \\
- \alpha_1 \ln(\tilde{k}_1^*) + (1 - \alpha_2) \ln(\tilde{k}_2^*) - \cdots - \alpha_N \ln(\tilde{k}_N^*) &= \Psi_2 \\
&\vdots \\
- \alpha_1 \ln(\tilde{k}_1^*) - \alpha_2 \ln(\tilde{k}_2^*) - \cdots + (1 - \alpha_N) \ln(\tilde{k}_N^*) &= \Psi_N
\end{align*}
\] (3.67)

Odejmując od pierwszego, drugiego, ..., \((N - 1)\)-szego równania układu równań (3.67) równanie \(N\)-te, uzyskuje się związki:

\[
\forall i = 1, 2, \ldots, N - 1 \quad \ln(\tilde{k}_i^*) - \ln(\tilde{k}_N^*) = \Psi_i - \Psi_N
\]

lub:

\[
\forall i = 1, 2, \ldots, N - 1 \quad \ln(\tilde{k}_i^*) = \ln(\tilde{k}_N^*) + \Psi_i - \Psi_N.
\] (3.68)

Ponieważ ostatnie z równań układu (3.67) można zapisać następująco:

\[
- \sum_{i=1}^{N-1} (\alpha_i \ln(\tilde{k}_i^*)) + (1 - \alpha_N) \ln(\tilde{k}_N^*) = \Psi_N,
\]

więc stąd oraz z równań (3.68) wynika, iż zachodzi związek:

\[
- \sum_{i=1}^{N-1} (\alpha_i \Psi_i) + \Psi_N \sum_{i=1}^{N-1} \alpha_i + (1 - \sum_{i=1}^{N} \alpha_i) \ln(\tilde{k}_N^*) = \Psi_N,
\]

który implikuje, że:

\[
- \sum_{i=1}^{N-1} (\alpha_i \Psi_i) + \Psi_N \sum_{i=1}^{N-1} \alpha_i + \left(1 - \sum_{i=1}^{N} \alpha_i \right) \ln(\tilde{k}_N^*) = \Psi_N,
\]

i dalej:

\[
\left(1 - \sum_{i=1}^{N} \alpha_i \right) \ln(\tilde{k}_N^*) = \left(1 - \sum_{i=1}^{N-1} \alpha_i \right) \Psi_N + \sum_{i=1}^{N-1} (\alpha_i \Psi_i),
\]

czyli:

\[
\ln(\tilde{k}_N^*) = \frac{\left(1 - \sum_{i=1}^{N-1} \alpha_i \right) \Psi_N + \sum_{i=1}^{N-1} (\alpha_i \Psi_i)}{1 - \sum_{i=1}^{N} \alpha_i}.
\] (3.69)

Po wstawieniu równania (3.69) do związków (3.68) otrzymujemy:
\[
\forall i = 1, 2, ..., N - 1 \quad \ln(k_i^*) = \frac{(1 - \sum_{j=1}^{N-1} \alpha_j) \Psi_N + \sum_{j=1}^{N-1} (\alpha_j \Psi_j)}{1 - \sum_{j=1}^{N-1} \alpha_j} + \Psi_i - \Psi_N =
\]

\[
= \frac{(1 - \sum_{j=1}^{N-1} \alpha_j) \Psi_N + \sum_{j=1}^{N-1} (\alpha_j \Psi_j) + (1 - \sum_{j=1}^{N} \alpha_j) \Psi_i - (1 - \sum_{j=1}^{N} \alpha_j) \Psi_N}{1 - \sum_{j=1}^{N} \alpha_j},
\]

czyli:

\[
\forall i = 1, 2, ..., N - 1 \quad \ln(k_i^*) = \frac{(1 - \sum_{j=1; j\neq i}^{N} \alpha_j) \Psi_i + \sum_{j=1; j\neq i}^{N} (\alpha_j \Psi_j)}{1 - \sum_{j=1}^{N} \alpha_j},
\]

a stąd oraz z równania (3.69) wynika, iż:

\[
\forall i = 1, 2, ..., N \quad \ln(k_i^*) = \frac{(1 - \sum_{j=1; j\neq i}^{N} \alpha_j) \Psi_i + \sum_{j=1; j\neq i}^{N} (\alpha_j \Psi_j)}{1 - \sum_{j=1}^{N} \alpha_j},
\]

bądź, po uwzględnieniu podstawień \(\Psi_i = \ln\left(\frac{s_i}{\delta_i + g + n}\right) \) (dla \(i = 1, 2, ..., N \)):

\[
\forall i = 1, 2, ..., N \quad \ln(k_i^*) = \frac{(1 - \sum_{j=1; j\neq i}^{N} \alpha_j) \ln\left(\frac{s_i}{\delta_i + g + n}\right) + \sum_{j=1; j\neq i}^{N} (\alpha_j \ln\left(\frac{s_j}{\delta_j + g + n}\right))}{1 - \sum_{j=1}^{N} \alpha_j}.
\]

(3.70)

Z równań (3.70) wynika, co następuje\(^{18}\):

- Kolejne zasoby kapitału na jednostkę efektywnej pracy (\(k_i^* \) dla \(i = 1, 2, ..., N \)) w warunkach wzrostu równomiernego gospodarki Nonnemana-Vanhoudta zależne są

\(^{18}\) Czytelnicy powinni samodzielnie uzasadnić to, iż przedstawione tu wnioski są uogólnieniem wniosków płynących z równań (3.20ab) w modelu Mankiwa-Romera-Weila z funkcją produkcji Cobba-Douglassa.
m.in. od stop w inwestycji s_i w owe zasoby, stop deprecjacji δ_i tych zasobów kapitału oraz od stopy wzrostu liczby pracujących n.

- Ponieważ:

$$\forall i = 1, 2, ..., N \quad \frac{\partial \ln(k_i^*)}{\partial s_i} = \frac{\partial}{\partial s_i} \left[\left(1 - \sum_{j=1; j \neq i}^{N} \alpha_j \right) \ln \left(\frac{s_i}{\delta_i + g + n} \right) + \sum_{j=1, j \neq i}^{N} \alpha_j \ln \left(\frac{s_{i}}{\delta_{i} + g + n} \right) \right]$$

$$= \frac{\partial}{\partial s_i} \left[\frac{\left(1 - \sum_{j=1; j \neq i}^{N} \alpha_j \right) \ln \left(\frac{s_i}{\delta_i + g + n} \right)}{1 - \sum_{j=1}^{N} \alpha_j} \right] = \frac{1 - \sum_{j=1}^{N} \alpha_j}{1 - \sum_{j=1}^{N} \alpha_j} \frac{\partial}{\partial s_i} \left[\ln \left(\frac{s_i}{\delta_i + g + n} \right) \right]$$

$$= \frac{1 - \sum_{j=1; j \neq i}^{N} \alpha_j}{1 - \sum_{j=1}^{N} \alpha_j} \left[\ln(s_i) - \ln(\delta_i + g + n) \right] = \frac{1 - \sum_{j=1; j \neq i}^{N} \alpha_j}{1 - \sum_{j=1}^{N} \alpha_j} s_i > 0 ,$$

więc im wyższa jest stopa inwestycji s_i w i-ty zasób kapitału (dla każdego $i = 1, 2, ..., N$), tym wyższy jest i-ty zasób kapitału na jednostkę efektywnej pracy w równowadze analizowanego tu modelu wzrostu gospodarczego.

- Stąd, iż:

$$\forall i, j = 1, 2, ..., N \land j \neq i \quad \frac{\partial \ln(k^*_i)}{\partial s_j} =$$

$$= \frac{\partial}{\partial s_j} \left[\left(1 - \sum_{m=1; m \neq i}^{N} \alpha_m \right) \ln \left(\frac{s_i}{\delta_i + g + n} \right) + \sum_{m=1; m \neq i}^{N} \alpha_m \ln \left(\frac{s_m}{\delta_m + g + n} \right) \right]$$

$$= \frac{\partial}{\partial s_j} \left[\frac{\sum_{m=1; m \neq i}^{N} \left(\alpha_m \ln \left(\frac{s_m}{\delta_m + g + n} \right) \right)}{1 - \sum_{m=1}^{N} \alpha_m} \right] = \frac{\partial}{\partial s_j} \left[\frac{\alpha_j \ln \left(\frac{s_j}{\delta_j + g + n} \right)}{1 - \sum_{m=1}^{N} \alpha_m} \right]$$

$$= \frac{\alpha_j}{1 - \sum_{m=1}^{N} \alpha_m} \frac{\partial}{\partial s_j} \left[\ln(s_j) - \ln(\delta_j + g + n) \right] = \frac{\alpha_j}{1 - \sum_{m=1}^{N} \alpha_m} s_j > 0 ,$$
Płynie wniosek, że wysokim stopom inwestycji w j-te zasoby kapitału (dla każdego \(j \neq i \)) towarzyszy wysoki zasób i-tego kapitału na jednostkę efektywnej pracy w warunkach wzrostu równomiernego w modelu wzrostu Nonnemana-Vanhoudta.

- Różniczkując równania (3.70) względem \(\delta_i \), okazuje się, że:

\[
\forall i = 1, 2, \ldots, N \quad \frac{\partial \ln(k^*_i)}{\partial \delta_i} = \left[\left(1 - \sum_{j=1; j \neq i}^N \alpha_j \right) \ln \left(\frac{s_i}{\delta_i + g + n} \right) + \sum_{j=1; j \neq i}^N \left(\alpha_j \ln \left(\frac{s_j}{\delta_j + g + n} \right) \right) \right] \frac{1}{1 - \sum_{j=1}^N \alpha_j}
\]

\[
= \frac{\partial}{\partial \delta_i} \left[\left(1 - \sum_{j=1; j \neq i}^N \alpha_j \right) \ln \left(\frac{s_i}{\delta_i + g + n} \right) \right] = \frac{1}{1 - \sum_{j=1}^N \alpha_j} \frac{\partial}{\partial \delta_i} \ln \left(\frac{s_i}{\delta_i + g + n} \right)
\]

\[
= \frac{1 - \sum_{j=1; j \neq i}^N \alpha_j}{1 - \sum_{j=1}^N \alpha_j} \left(\ln(s_i) - \ln(\delta_i + g + n) \right) = \frac{1 - \sum_{j=1; j \neq i}^N \alpha_j}{1 - \sum_{j=1}^N \alpha_j} \frac{\partial}{\partial \delta_i} \ln(\delta_i + g + n)
\]

\[
= - \frac{1 - \sum_{j=1; j \neq i}^N \alpha_j}{\left(1 - \sum_{j=1}^N \alpha_j \right) (\delta_i + g + n)} < 0,
\]

co oznacza, iż wysokiej stopie deprecjacji i-tego zasobu kapitału odpowiada niski zasób owego kapitału na jednostkę efektywnej pracy w warunkach wzrostu równomiernego w analizowanym modelu wzrostu gospodarczego.

- Podobnie, to, że:

\[
\forall i, j = 1, 2, \ldots, N \land j \neq i
\]

\[
\frac{\partial \ln(k^*_i)}{\partial \delta_j} = \left[\left(1 - \sum_{m=1; m \neq i}^N \alpha_m \right) \ln \left(\frac{s_i}{\delta_i + g + n} \right) + \sum_{m=1; m \neq i}^N \left(\alpha_m \ln \left(\frac{s_m}{\delta_m + g + n} \right) \right) \right] \frac{1}{1 - \sum_{m=1}^N \alpha_m}
\]
prowadzi do wniosku, iż wysokiej stopie deprecjacji j-tego zasobu kapitału (dla kaźdego j = 1, 2, ..., N) towarzyszy niski zasób i-tego (dla każdego i ≠ j) kapitału na jednostkę efektywnej pracy w warunkach wzrostu równomiernego gospodarki Nonnemana-Vanhoudta.

- Im wyższa jest zaś stopa wzrostu liczby pracujących n w rozważanym w tej części skryptu modelu wzrostu gospodarczego, tym niższe są wielkości każdego z zasobów kapitału na jednostkę efektywnej pracy. Wynika to stąd, iż, na mocy równania (3.70), zachodzi związek:

\[
\forall i = 1, 2, \ldots, N \quad \frac{\partial \ln (k^*_i)}{\partial n} = \frac{1}{1 - \sum_{j=1}^{N} \alpha_j} \left[\sum_{j=1, j \neq i}^{N} \alpha_j \ln \left(\frac{s_j}{\delta_j + g + n} \right) + \sum_{j=1, j \neq i}^{N} \alpha_j \ln \left(\frac{s_j}{\delta_j + g + n} \right) \right]
\]

\[
= \frac{1}{1 - \sum_{j=1}^{N} \alpha_j} \left[\sum_{j=1, j \neq i}^{N} \alpha_j \ln \left(\frac{s_j}{\delta_j + g + n} \right) + \sum_{j=1, j \neq i}^{N} \alpha_j \ln \left(\frac{s_j}{\delta_j + g + n} \right) \right] = \frac{1}{1 - \sum_{j=1}^{N} \alpha_j} \left[\sum_{j=1, j \neq i}^{N} \alpha_j \frac{-s_j}{(\delta_j + g + n)^2} + \sum_{j=1, j \neq i}^{N} \alpha_j \frac{-s_j}{(\delta_j + g + n)^2} \right] < 0.
\]

- Z prowadzonych tu rozważań wynika więc, że (analogicznie jak ma to miejsce w modelu wzrostu gospodarczego Mankiwa-Romera-Weila) wysokim stopom inwestycji \(s_1, s_2, \ldots, s_N\), niskim stopom deprecjacji \(\delta_1, \delta_2, \ldots, \delta_N\) oraz niskiej stopie wzrostu
liczby pracujących n odpowiadają wysoko położone ścieżki wzrostu kolejnych zasobów kapitału na pracującego k_1, k_2, ..., k_N w warunkach wzrostu równomiernego gospodarki Nonnemana-Vanhoudta.

Logarytmując stronami równanie (3.53), uzyskuje się związek:

$$\forall t \in [0; +\infty) \quad \ln(\tilde{y}(t)) = \sum_{i=1}^{N} \left(\alpha_i \ln(\tilde{k}_i(t)) \right)$$

lub, w warunkach wzrostu równomiernego:

$$\ln(\tilde{y}^*) = \sum_{i=1}^{N} \left(\alpha_i \ln(\tilde{k}_i^*) \right), \quad (3.71)$$

gdzie \tilde{y}^* jest strumieniem produktu na jednostkę efektywnej pracy w warunkach wzrostu równomiernego gospodarki Nonnemana-Vanhoudta. Wstawiając związki (3.70) do zależności (3.71), uzyskuje się równanie:

$$\ln(\tilde{y}^*) = \sum_{i=1}^{N} \alpha_i \left[\left(1 - \sum_{j=1, j\neq i}^{N} \alpha_j \right) \ln \left(\frac{s_i}{\delta_i + g + n} \right) + \sum_{j=1, j\neq i}^{N} \left(\alpha_j \ln \left(\frac{s_j}{\delta_j + g + n} \right) \right) \right] = \frac{1}{1 - \sum_{j=1}^{N} \alpha_j} \sum_{i=1}^{N} \left[\left(1 - \sum_{j=1, j\neq i}^{N} \alpha_j \right) \ln \left(\frac{s_i}{\delta_i + g + n} \right) + \sum_{j=1, j\neq i}^{N} \left(\alpha_j \ln \left(\frac{s_j}{\delta_j + g + n} \right) \right) \right] =$$

$$= \frac{1}{1 - \sum_{j=1}^{N} \alpha_j} \alpha_1 \left(1 - \sum_{j=2}^{N} \alpha_j \right) \ln \left(\frac{s_1}{\delta_1 + g + n} \right) + \alpha_1 \sum_{j=2}^{N} \left(\alpha_j \ln \left(\frac{s_j}{\delta_j + g + n} \right) \right) +$$

$$+ \alpha_2 \left(1 - \sum_{j=1, j\neq 2}^{N} \alpha_j \right) \ln \left(\frac{s_2}{\delta_2 + g + n} \right) + \alpha_2 \sum_{j=1, j\neq 2}^{N} \left(\alpha_j \ln \left(\frac{s_j}{\delta_j + g + n} \right) \right) + \ldots +$$

$$+ \alpha_N \left(1 - \sum_{j=1}^{N-1} \alpha_N \right) \ln \left(\frac{s_N}{\delta_N + g + n} \right) + \alpha_N \sum_{j=1}^{N-1} \left(\alpha_j \ln \left(\frac{s_j}{\delta_j + g + n} \right) \right],$$

a stąd:

$$\ln(\tilde{y}^*) = \frac{\sum_{i=1}^{N} \left(\alpha_i \ln \left(\frac{s_i}{\delta_i + g + n} \right) \right)}{1 - \sum_{i=1}^{N} \alpha_i}. \quad (3.72)$$
Z równania (3.72) wynika, co następuje:

- Produkt na jednostkę efektywnej pracy \(\bar{y}^* \) w warunkach wzrostu równomożności gospodarki Nonnemana-Vanhoudta zależy jest m.in. od stopień inwestycji \(s_1, s_2, ..., s_N \), stopień deprecjacji \(\delta_1, \delta_2, ..., \delta_N \) oraz stopy wzrostu liczby pracujących \(n \).
- Ze związku (3.72) wynika również, że:

\[
\forall i = 1, 2, ..., N \quad \frac{\partial [\ln(\bar{y}^*)]}{\partial s_i} = \frac{\partial}{\partial s_i} \left[\sum_{j=1}^{N} \frac{\alpha_j \ln \left(\frac{s_j}{\delta_j + g + n} \right)}{1 - \sum_{j=1}^{N} \alpha_j} \right] = \frac{\alpha_i}{\left(1 - \sum_{j=1}^{N} \alpha_j\right)s_i} > 0
\]

(3.73a)

\[
\forall i = 1, 2, ..., N \quad \frac{\partial [\ln(\bar{y}^*)]}{\partial \delta_i} = \frac{\partial}{\partial \delta_i} \left[\sum_{j=1}^{N} \frac{\alpha_j \ln \left(\frac{s_j}{\delta_j + g + n} \right)}{1 - \sum_{j=1}^{N} \alpha_j} \right] = \frac{-\alpha_i}{\left(1 - \sum_{j=1}^{N} \alpha_j\right)(\delta_i + g + n)} < 0
\]

(3.73b)

oraz:

\[
\frac{\partial [\ln(\bar{y}^*)]}{\partial n} = \frac{\partial}{\partial n} \left[\sum_{i=1}^{N} \frac{\alpha_i \ln \left(\frac{s_i}{\delta_i + g + n} \right)}{1 - \sum_{i=1}^{N} \alpha_i} \right] = -\sum_{i=1}^{N} \frac{\alpha_i}{\left(\delta_i + g + n\right)} < 0.
\]

(3.73c)

Interpretację ekonomiczną zależności (3.73abc), które są analogiczne do odpowiednich pochodnych cząstkowych równania (3.70), pozostawiamy Czytelnikom.

3.6. PODSUMOWANIE

Prowadzone w rozdziale trzecim rozważań można podsumować następująco:

I. Model wzrostu gospodarczego Mankiwa-Romera-Weila jest rozszerzeniem neo-klasycznego modelu wzrostu gospodarczego Solowa. Rozszerzenie to polega na tym, że (po pierwsze) do argumentów funkcji produkcji Cobb-Douglasa włączono się nakłady kapitału ludzkiego oraz (po drugie) endogenizuje się proces akumulacji kapitału ludzkiego.

II. W modelu Mankiwa-Romera-Weila przyjmuje się założenie, że przyrost zasobu kapitału ludzkiego, analogicznie do przyrostu zasobu kapitału rzeczowego w mo-
delu Solowa, jest różnicą między inwestycjami w ów kapitał a jego deprecjacją. Deprecjacja kapitału ludzkiego może zaś wynikać np. z odchodzenia z zasobów siły roboczej starszych, bardziej doświadczonych pracowników.

III. Równania ruchu modelu wzrostu gospodarczego Mankiwa-Romera-Weila interpretuje się ekonomicznie w ten sposób, iż przyrost zasobu kapitału rzeczowego (ludzkiego) na jednostkę efektywnej pracy równy jest różnicy między inwestycjami w kapitał rzeczowy (ludzki) na jednostkę efektywnej pracy a ubezkiem owego kapitału, który wynika z deprecjacji kapitału rzeczowego (ludzkiego) oraz ze wzrostu jednostek efektywnej pracy. Płynie stąd wniosek, że równania ruchu modelu Mankiwa-Romera-Weila są rozszerzeniem analizowanego w rozdziale drugim skryptu równania Solowa.

IV. Z diagramu fazowego układu równań ruchu modelu wzrostu Mankiwa-Romera-Weila wynika, iż istnieje pewna kombinacja zasobów kapitału rzeczowego \tilde{k}^* i ludzkiego \tilde{h}^* na jednostkę efektywnej pracy, do której dąży gospodarka Mankiwa-Romera-Weila bez względu na wyjściowe wartości owych zasobów. To zaś, w połączeniu z wykorzystywany w oryginalnym modelu Mankiwa-Romera-Weila funkcją produkcji typu Cobba-Douglasa, implikuje, że również produkt na jednostkę efektywnej pracy dąży do pewnej ustalonej wartości \tilde{y}^*. Wielkości \tilde{k}^*, \tilde{h}^* oraz \tilde{y}^*, do których dąży gospodarka Mankiwa-Romera-Weila, nazywane są zasobamikapitału rzeczowego i ludzkiego oraz strumieniem produktu na jednostkę efektywnej pracy w długookresowej równowadze owego modelu wzrostu gospodarczego.

V. Wartości zasobów kapitału rzeczowego i ludzkiego oraz strumienia produktu na jednostkę efektywnej pracy w długookresowej równowadze Mankiwa-Romera-Weila zależą są m.in. od stop inwestycji w kapitał rzeczowy i ludzki, stop deprecjacji tych zasobów oraz stopy wzrostu liczby pracujących. Im wyższe są stopy inwestycji, tym wyższe są wartości nakładów kapitału rzeczowego i ludzkiego oraz strumienia produktu na jednostkę efektywnej pracy w warunkach długookresowej równowagi modelu wzrostu gospodarczego Mankiwa-Romera-Weila. Im wyższe zaś są stopy deprecjacji uwzględnianych w modelu Mankiwa-Romera-Weila zasobów kapitału lub im wyższa jest stopa wzrostu liczby pracujących, tym niższe są wartości \tilde{k}^*, \tilde{h}^* oraz \tilde{y}^*.

VI. W warunkach długookresowej równowagi gospodarki Mankiwa-Romera-Weila wydajność pracy, techniczne udrożnienie pracy i kapitał ludzki na pracującego rosną według stopy wzrostu równą stopień harrodiańskiego postępu technicznego. Ścieżki wzrostu zaś owych zmiennych makroekonomicznych są tym wyżej położone, im wyższe są stopy inwestycji w zasoby kapitału rzeczowego i ludzkiego, im niższe stopy deprecjacji owych zasobów oraz im niższa jest stopa wzrostu liczby pracujących. Wnioski te są analogiczne do odpowiednich wniosków płynących z modelu wzrostu gospodarczego Solowa.

VII. Model wzrostu Mankiwa-Romera-Weila można również rozwiązać wówczas, gdy proces produkcyjny w gospodarce opisany jest przez funkcję produkcji CES. Podstawowe wnioski, płynące z tak skonstruowanego modelu wzrostu gospodarczego, są zbliżone z wnioskami, które uzyskuje się na gruncie oryginalnego
modelu wzrostu Mankiwa-Romera-Weila (tj. modelu z funkcją produkcji Cobba-Douglasa).

VIII. Rozszerzeniem oryginalnego modelu wzrostu gospodarczego Mankiwa-Romera-Weila (tj. modelu Mankiwa-Romera-Weila z funkcją produkcji Cobba-Douglasa) jest N-kapitałowy model wzrostu Nonnemana-Vanhoudta. Model ten jest uogólnieniem modelu Mankiwa-Romera-Weila (a tym samym również modelu wzrostu gospodarczego Solowa) w tym sensie, iż w modelu Nonnemana-Vanhoudta na proces produkcyjny oddziałuje, poza nakładami efektywnej pracy, również skończona liczba N zasobów kapitału.

IX. Wnioski z modelu wzrostu Mankiwa-Romera-Weila można również (w znacznej mierze) uogólnić na N-kapitałowy model wzrostu gospodarczego Nonnemana-Vanhoudta.
Rozdział czwarty

MODEL Z ENDOGENICZNĄ AKUMULACJĄ WIEDZY

4.1. WPROWADZENIE

Celem rozważań prowadzonych w rozdziale czwartym skryptu jest:

I. Sformułowanie założeń modelu wzrostu gospodarczego, w którym (podobnie jak w modelu Solowa) produkcja uzależniona jest od nakładów kapitału rzeczowego, pracy i wiedzy naukowo-technicznej, jednak (w przeciwieństwie do analizowanego w rozdziale drugim modelu wzrostu) endogenizuje się proces akumulacji wiedzy naukowo-technicznej.

II. Wyprowadzenie równań ruchu oraz skonstruowanie diagramu fazowego modelu z endogeniczną akumulacją wiedzy.

III. Określenie warunków, w których rozważany model wzrostu gospodarczego wyznacza stabilną, długookresową równowagę gospodarki.

IV. Sformułowanie wniosków wynikających z rozwiązania modelu z endogeniczną akumulacją wiedzy naukowo-technicznej w warunkach stabilnej, długookresowej równowagi.

4.2. ZAŁOŻENIA MODELU

W prowadzonych w rozdziale czwartym skryptu rozważaniach czyni się następujące założenia dotyczące funkcjonowania gospodarki:

1. Proces produkcyjny opisany jest przez funkcję produkcji Cobba-Douglasa daną następującym wzorem:

 \[Y(t) = (K(t))^{\alpha} (\Lambda(t)L(t))^{1-\alpha}, \]

 gdzie \(Y \) jest strumieniem wytworzonego produktu, \(K_Y > 0 \) to zasób kapitału rzeczowego, który wykorzystywany jest w sektorze produkcji konwencjonalnych dóbr i usług, \(L_Y > 0 \) jest zasobem pracy wykorzystywanym w owym sektorze, zaś \(\Lambda \) jest dostępnym zasobem wiedzy naukowo-technicznej, którego przyrost ma charakter postępu technicznego w sensie Harroda. Parametry \(\alpha \) oraz \(1-\alpha \in (0;1) \) to elastyczności produktu \(Y \) względem nakładów kapitału \(K_Y \) oraz pracy \(L_Y \), co Czytelnicy powinni uzasadnić samodzielnie.

2. Przyrost zasobu wiedzy \(\Lambda \) opisany jest przez następujące równanie różniczkowe:
\[
\forall t \in [0;+\infty) \quad \dot{\Lambda}(t) = \left(\Lambda(t) \right)^{\phi} \left(K_{\Lambda}(t) \right)^{\beta} \left(L_{\Lambda}(t) \right)^{1-\beta}, \tag{4.2}
\]
gdzie \(K_{\Lambda} > 0 \) i \(L_{\Lambda} > 0 \) to (odpowiednio) zasoby kapitału rzeczowego oraz pracy, które zaangażowane są w sektorze tworzącym nową wiedzę. Parametry \(\phi, \beta \) i \(1-\beta \in (0;1) \) są elastycznościami przyrostu wiedzy \(\dot{\Lambda} \) względem wiedzy \(\Lambda \), nakładów kapitału \(K_{\Lambda} \) oraz pracy \(L_{\Lambda} \) wykorzystywanych w sektorze wiedzy. Wynika to stąd, iż:

\[
\varepsilon_{\Lambda K_{\Lambda}} = \frac{\partial \dot{\Lambda}}{\partial K_{\Lambda}} \cdot \frac{\Lambda}{\dot{\Lambda}} = \frac{\partial}{\partial K_{\Lambda}} \left(\Lambda^{\phi} K_{\Lambda}^{\beta} L_{\Lambda}^{1-\beta} \right) \cdot \frac{\Lambda}{\Lambda^{\phi} K_{\Lambda}^{\beta} L_{\Lambda}^{1-\beta}} = \phi \Lambda^{\phi-1} K_{\Lambda}^{\beta} L_{\Lambda}^{1-\beta} \quad \frac{1}{\Lambda^{\phi-1} K_{\Lambda}^{\beta} L_{\Lambda}^{1-\beta}} = \phi
\]
oraz (analogicznie):

\[
\varepsilon_{\Lambda L_{\Lambda}} = \frac{\partial \dot{\Lambda}}{\partial L_{\Lambda}} \cdot \frac{L_{\Lambda}}{\dot{\Lambda}} = 1-\beta.
\]

Płynie stąd również wniosek, że parametr \(\beta \) w analizowanym tu modelu wzrostu gospodarczego nie można utożsamiać z (oznaczaną również przez \(\beta \)) elastycznością produktu względem nakładów kapitału ludzkiego w modelu Mankiwa-Romera-Weila.

3. Przyrost zasobu kapitału rzeczowego \(K \) w całej gospodarce, podobnie jak ma to miejsce w modelu wzrostu gospodarczego Solowa, jest różnicą między oszczędnościami/inwestycjami \(sY \) (gdzie \(s \in (0;1) \)) i stopą deprecjacji kapitału \(\delta K \) (przy czym stopa deprecjacji kapitału \(\delta \in (0;1) \)). Dlatego też zachodzi następujące równanie różniczkowe:

\[
\forall t \in [0;+\infty) \quad \dot{K}(t) = sY(t) - \delta K(t). \tag{4.3}
\]

4. Liczba pracujących \(L \) rośnie według dodatniej, egzogenicznej stopy wzrostu \(n \). Zatem spełniony jest związek:

\[
\forall t \in [0;+\infty) \quad L(t) = L_0 e^{nt} \quad \Rightarrow \quad \frac{\dot{L}(t)}{L(t)} = n, \tag{4.4}
\]
gdzie \(L_0 > 0 \) jest liczbą pracujących w momencie \(t = 0 \).

5. W każdym momencie \(t \in [0;+\infty) \) kapitał rzeczowy dzielony jest na kapitał wykorzystywany w sferze produkcji konwencjonalnych dóbr i usług oraz w sferze wytwarzania nowej wiedzy w stosunku \(\frac{r_K}{1-r_K} \), gdzie \(r_K \in (0;1) \) jest odsetkiem kapitału kierowanym do sektora konwencjonalnego, zaś \(1-r_K \) to odsetek owego kapitału kierowany do sektora wiedzy. Oznacza to, iż zachodzą równania:

\[
\forall t \in [0;+\infty) \quad K_Y(t) = r_K K(t) \tag{4.5a}
\]
oraz:

\[
\forall t \in [0;+\infty) \quad K_A(t) = (1-r_K) K(t). \tag{4.5b}
\]
Współczynniki r_K oraz $1-r_K$, podobnie jak współczynniki s, n oraz δ w modelu wzrostu Solowa, traktuje się jako długookresowe zmienne egzogeniczne w rozważanym tu modelu wzrostu gospodarczego.

6. Liczba pracujących również dzielona jest między sektor konwencjonalny i sektor wytwarzający nową wiedzę w relacji $\frac{r_L}{1-r_L}$, gdzie $r_L \in (0;1)$. Założenie to można formalnie zapisać następująco:

$$\forall t \in [0;+\infty) \quad L_Y(t) = r_L L(t) \quad (4.6a)$$

oraz:

$$\forall t \in [0;+\infty) \quad L_A(t) = (1-r_L) L(t) \quad (4.6b)$$

Parametry r_L i $1-r_L$ w równaniach (4.6ab) interpretuje się ekonomicznie analogicznie do parametrów r_K i $1-r_K$ w równaniu (4.5ab) i traktuje się je jako długookresowe zmienne egzogeniczne.

4.3. RÓWNOWAGA MODELU

Korzystając z przedstawionych w punkcie 4.2 skryptu założeń, wyznaczmy równowagę analizowanego modelu wzrostu gospodarczego z endogeniczną akumulacją wiedzy naukowo-technicznej. Wstawiając równania (4.5a) oraz (4.6a) do funkcji produkcji (4.1), można ją zapisać następująco:

$$\forall t \in [0;+\infty) \quad Y(t) = (r_K K_Y(t))^a \left(\Lambda(t) L(t) \right)^{1-a} = r_K^a r_L^{1-a} \left(K(t) \right)^a \left(\Lambda(t) L(t) \right)^{1-a}$$

lub:

$$\forall t \in [0;+\infty) \quad Y(t) = c_Y \left(K(t) \right)^a \left(\Lambda(t) L(t) \right)^{1-a} \quad (4.7)$$

dzie $c_Y = r_K^a r_L^{1-a} > 0$. Z równań (4.3) oraz (4.7) wynika zaś, że spełniony jest związek:

$$\forall t \in [0;+\infty) \quad \dot{K}(t) = sc_Y \left(K(t) \right)^{a-1} \left(\Lambda(t) L(t) \right)^{1-a} - \delta K(t) \quad (4.8)$$

Dzieląc powyższe równanie przez zasób kapitału $K > 0$, dochodzi się do zależności:

$$\forall t \in [0;+\infty) \quad \frac{\dot{K}(t)}{K(t)} = sc_Y \left(K(t) \right)^{a-1} \left(\Lambda(t) L(t) \right)^{1-a} - \delta$$

która implikuje równanie różniczkowe:

$$\forall t \in [0;+\infty) \quad \frac{\dot{K}(t)}{K(t)} + \delta = sc_Y \left(\frac{L(t)}{K(t)} \right)^{1-a}$$

lub:

$$\forall t \in [0;+\infty) \quad G_K(t) + \delta = sc_Y \left(\frac{L(t)}{K(t)} \right)^{1-a} \quad (4.8)$$
gdzie \(G_K = \frac{\dot{K}}{K} \) jest stopą wzrostu zasobu kapitału rzeczowego. Ponieważ dla każdego \(\Lambda, K, L > 0 \) prawą stronę równania (4.8) przyjmuje wartości dodatnie, zatem również lewa strona tegoż równania musi być dodatnia. Płynie stąd wniosek, iż w każdym momencie \(t \in [0;+\infty) \) stopa wzrostu kapitału \(G_K \) musi być wyższa od \(-\delta\).

Logarytmując stronami (logarytmem naturalnym) związek (4.8), dochodzi się do relacji:

\[
\forall t \in [0;+\infty) \quad \ln(G_K(t) + \delta) = \ln(sc_Y) + (1 - \alpha)\left[\ln(\Lambda(t)) + \ln(L(t)) - \ln(K(t))\right],
\]

a stąd, po zróżniczowaniu powyższego równania względem czasu \(t \in [0;+\infty) \), uzyskujemy zależność:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t) + \delta} = \left(1 - \alpha\right)\left(\frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{L}(t)}{L(t)} - \frac{\dot{K}(t)}{K(t)}\right) = \left(1 - \alpha\right)\left(\frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{L}(t)}{L(t)} - G_K(t)\right).
\]

Oznaczając przez \(G_A = \frac{\dot{\Lambda}}{\Lambda} \) stopę wzrostu wiedzy naukowo-technicznej oraz uwzględniając związek (4.4), powyższe równanie różniczkowe można również zapisać wzorem:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t) + \delta} = (1 - \alpha)(G_A(t) + n - G_K(t)). \tag{4.9}
\]

Równanie (4.9) jest pierwszym równaniem ruchu analizowanego tu modelu wzrostu gospodarczego.

Z równania tego płyną dwa następujące wnioski:

- Przyrost stopy wzrostu kapitału rzeczowego \(\dot{G}_K \) jest tym wyższy, im wyższa jest stopa wzrostu zasobu wiedzy \(G_A \) oraz stopa wzrostu liczby pracujących \(n \).

- Na przyrost stopy wzrostu kapitału \(\dot{G}_K \) wpływa również stopa wzrostu owego zasobu, czyli \(G_K \). Nie można jednak a priori określić kierunku oddziaływania \(G_K \) na \(\dot{G}_K \). Wynika to stąd, iż równanie (4.9) można również zapisać następująco:

\[
\forall t \in [0;+\infty) \quad \dot{G}_K(t) = (1 - \alpha)(G_K(t) + \delta)(G_A(t) + n - G_K(t)),
\]

co oznacza, iż przy ustalonej wartości stopy wzrostu wiedzy \(G_A \) przyrost stopy wzrostu kapitału \(\dot{G}_K \) jest funkcją kwadratową \(G_K \).

Po wstawieniu związków (4.5b) i (4.6b) do zależności (4.2) przyrost wiedzy \(\dot{\Lambda} \) w każdym momencie \(t \in [0;+\infty) \) można zapisać wzorem:

\[
\dot{\Lambda}(t) = (\Lambda(t))^\beta (1 - r_K)K(t)^\beta (1 - r_L)L(t)^{1-\beta} = (1 - r_K)^\beta (1 - r_L)^{1-\beta} (\Lambda(t))^\beta (K(t))^\beta (L(t))^{1-\beta}.
\]

lub, po podstawieniu \(c_A = (1 - r_K)^\beta (1 - r_L)^{1-\beta} > 0 \):

\[
\forall t \in [0;+\infty) \quad \dot{\Lambda}(t) = c_A (\Lambda(t))^\beta (K(t))^\beta (L(t))^{1-\beta}. \tag{4.10}
\]
Dzieląc stronami równanie (4.10) przez dodatni zasób wiedzy Λ, sprowadza się je do związku:

$$\forall t \in [0;+\infty) \quad G_\Lambda(t) = \frac{\dot{\Lambda}(t)}{\Lambda(t)} = c_\Lambda(\varphi)(K(t))^\beta(L(t))^{1-\beta}. \quad (4.11)$$

Dla każdego Λ, K, L > 0 prawa strona zależności (4.11) jest dodatnia. Dlatego też stopa wzrostu wiedzy G_Λ, występująca po lewej stronie owego związku, musi być także dodatnia w każdym momencie $t \in [0;+\infty)$. Logarytmując zaś stronami równanie (4.11), dochodzi się do wzoru:

$$\forall t \in [0;+\infty) \quad \ln(G_\Lambda(t)) = \ln(c_\Lambda) - (1-\phi)\ln(\Lambda(t)) + \beta \ln(K(t)) + (1-\beta)\ln(L(t)).$$

Różniczkując powyższą zależność względem czasu $t \in [0;+\infty)$, okazuje się, że:

$$\forall t \in [0;+\infty) \quad \frac{\dot{G}_\Lambda(t)}{G_\Lambda(t)} = -(1-\phi)\frac{\dot{\Lambda}(t)}{\Lambda(t)} + \beta \frac{\dot{K}(t)}{K(t)} + (1-\beta)\frac{\dot{L}(t)}{L(t)} =$$

lub, po uwzględnieniu tego, że zgodnie z równaniem (4.4) $\frac{\dot{L}}{L} = n$:

$$\forall t \in [0;+\infty) \quad \frac{\dot{G}_\Lambda(t)}{G_\Lambda(t)} = (1-\beta)n - (1-\phi)G_\Lambda(t) + \beta G_K(t). \quad (4.12)$$

Równanie różniczkowe (4.12) stanowi drugie z równań ruchu rozważanego w rozdziale czwartym modelu wzrostu gospodarczego.

Z równania (4.12) oraz z faktu, że w każdym momencie $t \in [0;+\infty)$ stopa wzrostu wiedzy G_Λ jest dodatnia, wynika, co następuje:

- Przyrost stopy wzrostu wiedzy \dot{G}_Λ zależy od stopy wzrostu owej wiedzy G_Λ, stopy wzrostu liczby pracujących n oraz od stopy wzrostu zasobu kapitału rzeczowego G_K.

- Im wyższe są stopy wzrostu klasycznych czynników produkcji (czyli liczby pracujących i kapitału rzeczonego), tym wyższe są przyrosty stopy wzrostu wiedzy.

- Natomiast wysokiej stopie wzrostu wiedzy towarzyszą niskie przyrosty owej zmiennej makroekonomicznej.

Równania ruchu (4.9) i (4.12) tworzą następujący układ równań różniczkowych:

$$\begin{align*}
\frac{\dot{G}_K(t)}{G_K(t) + \delta} &= (1-\alpha)(n + G_\Lambda(t) - G_K(t)) \\
\frac{\dot{G}_\Lambda(t)}{G_\Lambda(t)} &= (1-\beta)n - (1-\phi)G_\Lambda(t) + \beta G_K(t).
\end{align*} \quad (4.13)$$

W celu analizy powyższego układu równań różniczkowych za pomocą jego diagramu fazowego należy wpierw wyznaczyć równania linii podziału kolejnych równań owego układu. Z pierwszego z równań układu (4.13) wynika, że:
\[\dot{G}_K(t) \geq 0 \iff G_A(t) + n - G_K(t) \geq 0 \iff G_K(t) \leq n + G_A(t), \]
a stąd:
\[\dot{G}_K(t) \geq 0 \iff G_K(t) \leq n + G_A(t) \tag{4.14a} \]
oraz (analogicznie):
\[\dot{G}_K(t) \leq 0 \iff G_K(t) \geq n + G_A(t). \tag{4.14b} \]
Ze związków (4.14ab) wynika, iż linię podziału \(\dot{G}_K = 0 \) układu równań różniczkowych (4.13) można zapisać następująco:
\[G_K(G_A)_{|G_K=0} = n + G_A. \tag{4.15} \]
Z zależności (4.14ab) i (4.15) płyną następujące wnioski:
- Poniżej (powyżej) linii podziału \(\dot{G}_K = 0 \), w układzie współrzędnych, w którym na osi poziomej odkłada się stopę wzrostu wiedzy \(G_A \), natomiast na pionowej – stopę wzrostu kapitału \(G_K \), przyrosty \(\dot{G}_K \) stopy wzrostu zasobu kapitału rzeczowego są dodatnie (ujemne).
- Gdyby stopa wzrostu wiedzy była równa zero, to stopa wzrostu kapitału (przy której \(\dot{G}_K = 0 \)) równa byłaby stopie wzrostu liczby pracujących \(n \).
- Ponieważ:
\[\left. \frac{dG_K}{dG_A} \right|_{\dot{G}_K=0} = 1, \tag{4.16} \]
zatem nachylenie linii podziału \(\dot{G}_K = 0 \) równe jest 45°.
Linia podziału opisana równaniem (4.15) zilustrowana jest na rysunku 4.1.
Ponieważ w każdym momencie \(t \in [0;+\infty) \) stopa wzrostu wiedzy \(G_A \) musi być dodatnia, więc z drugiego z równań różniczkowych układu (4.13) wyciągnąć można wniosek, iż:

\[
\dot{G}_A(t) \geq 0 \iff (1-\beta)n - (1-\phi)G_A(t) + \beta G_K(t) \geq 0,
\]
co jest równoznaczne z tym, że:

\[
\beta G_K(t) \geq -(1-\beta)n + (1-\phi)G_A(t),
\]
a stąd:

\[
\dot{G}_A(t) \geq 0 \iff G_K(t) \geq \frac{1-\beta}{\beta}n + \frac{1-\phi}{\beta}G_A(t) \quad (4.17a)
\]
oraz (rozumując analogicznie):

\[
\dot{G}_A(t) \leq 0 \iff G_K(t) \leq \frac{1-\beta}{\beta}n + \frac{1-\phi}{\beta}G_A(t). \quad (4.17b)
\]

Z powyższych zależności wynika, że drugą z rozważanych tu linii podziału, czyli linię podziału \(G_A = 0 \), opisuje równanie:

\[
G_K(G_A)|_{\dot{G}_A=0} = -\frac{1-\beta}{\beta}n + \frac{1-\phi}{\beta}G_A. \quad (4.18)
\]

Zależności (4.17ab) oraz (4.18) prowadzą do następujących wniosków:
- Powyżej (poniżej) linii podziału \(\dot{G}_A = 0 \), w tym samym układzie współrzędnych jak poprzednio przyrosty stopy wzrostu wiedzy są dodatnie (ujemne).
- W przypadku, w którym stopa wzrostu wiedzy \(G_A \) równa byłaby zeru, stopa wzrostu zasobu kapitału, przy której zachodzi równość \(\dot{G}_A = 0 \), powinna wynosić \(-\frac{1-\beta}{\beta}n\).
- Gdyby stopa wzrostu kapitału \(G_K \) równała się zeru, to stopa wzrostu wiedzy, przy której nie występują przyrosty owej stopy wzrostu, musiałaby być równa \(\frac{1-\beta}{1-\phi}n \).

Z powyższego wynika, że:

\[
G_K(G_A)|_{\dot{G}_A=0} = 0 \iff \frac{1-\phi}{\beta}G_A = \frac{1-\beta}{\beta}n \iff G_A = \frac{1-\beta}{1-\phi}n > 0.
\]

- Tangens nachylenia linii podziału \(\dot{G}_A = 0 \) (względem osi \(G_A \)) określony jest przez zależność:

\[
\frac{dG_K}{dG_A}|_{G_A=0} = \frac{d}{dG_A}\left(-\frac{1-\beta}{\beta}n + \frac{1-\phi}{\beta}G_A\right) = \frac{1-\phi}{\beta} > 0. \quad (4.19)
\]

Tangens ten równy jest tangensowi kąta \(\phi_A \) na rysunku 4.2.
Linia podziału (4.18) przedstawiona jest na rysunku 4.2.
Rozważając diagram fazowy układu równań różniczkowych (4.13), należy rozpatrzyć trzy następujące przypadki:

I. Sytuację, w której \(\tan(\phi_A) < 1 \), która ma miejsce wtedy i tylko wtedy, gdy \(1 - \phi < \beta \).

II. Przypadek, w którym \(\tan(\phi_A) = 1 \). Przypadek ten występuje wówczas, gdy zachodzi równość: \(1 - \phi = \beta \).

III. Sytuację mającą miejsce wówczas, gdy kąt \(\phi_A \) jest większy niż 45°. Przypadek ten ma miejsce wtedy i tylko wtedy, gdy \(\beta < 1 - \phi \).

Jeśli wystąpi pierwszy z wymienionych tu przypadków, to linie podziału \(\dot{G}_K = 0 \) i \(\dot{G}_A = 0 \) nie przetną się przy \(G_K > -\delta \) i \(G_A > 0 \), zaś diagram fazowy układu równań różniczkowych (4.13) wyglądałby tak, jak to zilustrowano na rysunku 4.3.

Rys. 4.2. Linia podziału \(\dot{G}_A = 0 \) układu równań różniczkowych (4.13)

Rys. 4.3. Diagram fazowy układu równań różniczkowych (4.13) przy \(\phi_A < 45° \)
Z przedstawionego na rysunku 4.3 diagramu fazowego analizowanego układu równań różniczkowych wynika, iż bez względu na wyjściowe stopy wzrostu zasobów kapitału \(G_K(0) > -\delta \) i wiedzy \(G_A(0) > 0 \) stopy wzrostu tych zmiennych makroekonomicznych, przy \(t \to +\infty \), dążą do \(+\infty \). Przypadek ten jest nieadekwatny do funkcjonujących gospodarek i dlatego zostanie pominięty w prowadzonych dalej rozważaniach.

Jeśli kąt \(\phi_A \) równy jest \(45^\circ \), czyli występuje drugi ze wspomnianych uprzednio przypadków, to linie podziału \(\dot{G}_K = 0 \) i \(\dot{G}_A = 0 \) są do siebie równoległe, a diagram fazowy analizowanego układu równań różniczkowych wygląda tak, jak ma to miejsce na rysunku 4.4. Z analizy owego diagramu fazowego wynika, że również w tym przypadku, bez względu na wyjściowe wartości stóp wzrostu \(G_K(0) > -\delta \) i \(G_A(0) > 0 \), długookresowe stopy wzrostu zasobu kapitału \(G_K \) i wiedzy \(G_A \) uciekają do \(+\infty \). Zatem również ten przypadek nie będzie dalej analizowany jako nieadekwatny do rzeczywistości.

\[
\frac{\dot{G}_K}{G_A} = \tan \phi_A
\]

Rys. 4.4. Diagram fazowy układu równań różniczkowych (4.13) przy \(\phi_A = 45^\circ \)

Jeśli natomiast występuje trzeci możliwe przypadek, tj. sytuacja, w której \(\tan(\phi_A) > 1 \), to istnieje pewna kombinacja stóp wzrostu \((G_K^*, G_A^*) \), gdzie \(G_K^* > -\delta \) oraz \(G_A^* > 0 \), przy której linie podziału \(\dot{G}_K = 0 \) i \(\dot{G}_A = 0 \) układu równań różniczkowych (4.13) się przecinają. Wówczas diagram fazowy analizowanego układu równań różniczkowych wygląda tak, jak to ma miejsce na rysunku 4.5.

Z rysunku 4.5 wynika, iż przy \(\tan(\phi_A) > 1 \) rozważany diagram fazowy jest diagramem z węzłem stabilnym. Implikuje to, iż bez względu na wyjściowe stopy wzrostu zasobu kapitału \(G_K(0) > -\delta \) i zasobu wiedzy \(G_A(0) > 0 \) stopy te, najpóźniej przy \(t \to +\infty \), dążą do wielkości wyznaczonych przez punkt przecięcia analizowanych tu linii podziału. Dlatego też wówczas:

\[
G_K^* = \lim_{t \to +\infty} G_K(t)
\]
oraz:

\[
G^*_\Lambda = \lim_{t \to \infty} G_\Lambda(t),
\]

gdzie \((G^*_K, G^*_\Lambda)\) jest rozwiązaniem układu równań (4.13) przy \(\dot{G}_K = 0\) i \(\dot{G}_\Lambda = 0\).

Płynie stąd również wniosek, że analizowany tu model wzrostu gospodarczego ma interpretowalne ekonomicznie rozwiązanie wówczas, gdy \(1 - \phi > \beta\), co jest równoznaczne z tym, że spełniona jest nierówność: \(1 - \beta > \phi\). Oznacza to, że rozważany model wzrostu z endogeniczną akumulacją wiedzy jest interpretowalny ekonomicznie wtedy i tylko wtedy, gdy elastyczność \(\phi\) przyrostu wiedzy względem poziomu wiedzy jest niższa od elastyczności \(1 - \beta\) przyrostu wiedzy względem nakładów pracy zaangażowanych w sektorze wytwarzającym ową wiedzę.

Jeśli \(\dot{G}_K = 0\) i \(\dot{G}_\Lambda = 0\), to układ równań (4.13) można zapisać następująco:

\[
\begin{align*}
0 &= (1 - \alpha)(n + G^*_\Lambda - G^*_K) \\
0 &= (1 - \beta)n - (1 - \phi)G^*_\Lambda + \beta G^*_K
\end{align*}
\]

a stąd:

\[
\begin{align*}
G^*_K - G^*_\Lambda &= n \\
- \beta G^*_K + (1 - \phi)G^*_\Lambda &= (1 - \beta)n
\end{align*}
\]

lub w postaci macierzowej:

\[
\begin{bmatrix}
1 & -1 \\
-\beta & 1 - \phi
\end{bmatrix}
\begin{bmatrix}
G^*_K \\
G^*_\Lambda
\end{bmatrix}
= n
\begin{bmatrix}
1 \\
1 - \beta
\end{bmatrix}
\]

(4.20)
Rozwiązanie układu równań (4.20) będzie wyznaczało punkt przecięcia linii podziału \(\hat{G}_K = 0 \) i \(\hat{G}_\Lambda = 0 \) diagramu fazowego na rysunku 4.5, który (ekonomicznie rzecz biorąc) określał będzie długookresowe stopy wzrostu zasobu kapitału rzeczowego \(G_K^* \) oraz zasobu wiedzy \(G_\Lambda^* \). Kolejne wyznaczniki Cramera układu równań (4.20) dane są wzorami:

\[
W = \begin{vmatrix} 1 & -1 \\ -\beta & 1-\phi \end{vmatrix} = 1-\phi-\beta > 0
\]
(4.21a)

(gdyż przy \(\phi_\Lambda > 45^\circ \) zachodzi: \(\beta < 1 - \phi \)),

\[
W_K = \begin{vmatrix} n & -1 \\ (1-\beta)n & 1-\phi \end{vmatrix} = (1-\phi)n + (1-\beta)n = (2-\beta-\phi)n > 0
\]
(4.21b)

oraz:

\[
W_\Lambda = \begin{vmatrix} 1 & n \\ -\beta & (1-\beta)n \end{vmatrix} = (1-\beta)n + \beta n = n.
\]
(4.21c)

Z równań (4.21abc) i twierdzenia Cramera wynika, że długookresowe stopy wzrostu kapitału \(G_K^* \) i wiedzy \(G_\Lambda^* \) w analizowanym tu modelu wzrostu gospodarczego dane są następującymi wzorami:

\[
G_K^* = \frac{W_K}{W} = \frac{2-\beta-\phi}{1-\beta-\phi} n
\]
(4.22a)

i:

\[
G_\Lambda^* = \frac{W_\Lambda}{W} = \frac{n}{1-\beta-\phi}.
\]
(4.22b)

Związki (4.22ab) prowadzą do następujących wniosków natury ekonomicznej:

- Zarówno długookresowa stopa wzrostu zasobu kapitału rzeczowego \(G_K^* \), jak i długookresowa stopa wzrostu wiedzy naukowo-technicznej \(G_\Lambda^* \) zależne są od stopy wzrostu liczby pracujących \(n \), elastyczności \(\phi \) przyrostu wiedzy \(\Lambda \) względem zasobu wiedzy \(\Lambda \) oraz od elastyczności \(\beta \) przyrostu wiedzy \(\Lambda \) względem kapitału \(K_\Lambda \), który wykorzystywany jest w sektorze gospodarki tworzącym nową wiedzę.

- Ponieważ:

\[
\frac{\partial G_K^*}{\partial n} = \frac{\partial}{\partial n} \left(\frac{2-\beta-\phi}{1-\beta-\phi} n \right) = \frac{2-\beta-\phi}{1-\beta-\phi} > 0
\]

i:

\[
\frac{\partial G_\Lambda^*}{\partial n} = \frac{\partial}{\partial n} \left(\frac{n}{1-\beta-\phi} \right) = \frac{1}{1-\beta-\phi} > 0
\]

więc wysokiej stopie wzrostu liczby pracujących odpowiadają wysokie stopy wzrostu zasobu kapitału i zasobu wiedzy przy \(t \to +\infty \).
• Rozważane tu stopy wzrostu są również tym wyższe, im wyższa jest elastyczność $β$ funkcji przyrostu wiedzy (4.2). Wynika to stąd, że:

$$
\frac{∂G^*_K}{∂β} = \frac{∂}{∂β} \left(2 - β - φ \right) \frac{n}{1 - β - φ} = -\frac{(1 - β - φ) - (2 - β - φ) \cdot (-1)}{(1 - β - φ)^2} \ln =
$$

$$
= -1 + β + φ + 2 - β - φ \frac{n}{(1 - β - φ)^2} > 0
$$
oraz:

$$
\frac{∂G^*_Λ}{∂β} = \frac{∂}{∂β} \left(\frac{n}{1 - β - φ} \right) = \frac{n}{(1 - β - φ)^2} > 0
$$

• Podobnie, z tego, że:

$$
\frac{∂G^*_K}{∂φ} = \frac{n}{(1 - β - φ)^2} > 0
$$
i:

$$
\frac{∂G^*_Λ}{∂φ} = \frac{n}{(1 - β - φ)^2} > 0
$$

pływne wniosek, iż im wyższa jest elastyczność $φ$ przyrostu wiedzy względem jej poziomu, tym wyższe są długookresowe stopy wzrostu kapitału i wiedzy.

Logarytmując funkcję produkcji (4.7), można ją zapisać następująco:

$$
∀t ∈ [0;+∞) \ln(Y(t)) = \ln(c_Y) + α \cdot \ln(K(t)) + (1 - α) \cdot (\ln(Λ(t)) + \ln(L(t))).
$$

Różniczkując zaś powyższy związek względem czasu $t ∈ [0;+∞)$ oraz uwzględniając założenie, że $\frac{L}{L} = n$, uzyskuje się równanie:

$$
∀t ∈ [0;+∞) \frac{\dot{Y}(t)}{Y(t)} = α \frac{\dot{K}(t)}{K(t)} + (1 - α) \left(\frac{\dot{Λ}(t)}{Λ(t)} + \frac{\dot{L}(t)}{L(t)} \right) = αG_k(t) + (1 - α)(G_Λ(t) + n)
$$
lub, oznaczając przez $G_Y = \frac{Y}{Y}$ stopę wzrostu produktu Y:

$$
∀t ∈ [0;+∞) \quad G_Y(t) = αG_k(t) + (1 - α)(G_Λ(t) + n).
$$

Równanie (4.23) opisuje relacje zachodzące między stopą wzrostu produktu G_Y a stopami wzrostu kapitału (G_K), wiedzy ($G_Λ$) i liczby pracujących (n) w każdym momencie $t ∈ [0;+∞)$. Licząc granicę (przy $t → +∞$) z $G_Y(t)$, okazuje się, że:

$$
G^*_Y = \lim_{t → +∞} G_Y(t) = α \lim_{t → +∞} G_k(t) + (1 - α) \left(\lim_{t → +∞} G_Λ(t) + n \right) = αG^*_k + (1 - α)(G^*_Λ + n).
$$

(4.24)
gdzie G_Y^* jest długookresową stopą wzrostu strumienia produktu. Wstawiając do równania (4.24) związkii (4.22ab), dochodzimy do zależności:

$$
G_Y^* = \alpha \frac{2-\beta-\phi}{1-\beta-\phi} n + (1-\alpha) \frac{n}{1-\beta-\phi} + n = \frac{2-\beta-\phi}{1-\beta-\phi} n + (1-\alpha) \frac{n}{1-\beta-\phi} n = \frac{2-\beta-\phi}{1-\beta-\phi} n,
$$

która (zgodnie z równaniem (4.22a)) implikuje, że $G_Y^* = G_K^*$. Oznacza to, iż w analizowanym tu modelu wzrostu gospodarczego strumieni produktu rośnie w długim okresie według tej samej stopy wzrostu co zasób kapitału.

Ponieważ w każdym momencie $t \in [0;+\infty)$ techniczne uzbrojenie pracy k i wydajność pracy y zapisać można następująco:

$$
k(t) = \frac{K(t)}{L(t)}
$$

i:

$$
y(t) = \frac{Y(t)}{L(t)},
$$

zatem, po zlogarytmowaniu stronami i zróżniczkowaniu względem czasu $t \in [0;+\infty)$ powyższych zależności oraz uwzględnieniu tego, iż $\frac{K}{L} = n$, uzyskuje się związki:

$$
\forall t \in [0;+\infty) \quad g_k(t) = \frac{\dot{k}(t)}{k(t)} = \frac{\dot{K}(t)}{K(t)} - \frac{\dot{L}(t)}{L(t)} = G_K(t) - n, \quad (4.25a)
$$

i:

$$
\forall t \in [0;+\infty) \quad g_y(t) = \frac{\dot{y}(t)}{y(t)} = \frac{\dot{Y}(t)}{Y(t)} - \frac{\dot{L}(t)}{L(t)} = G_Y(t) - n, \quad (4.25b)
$$

gdzie g_k oraz g_y to (odpowiednio) stopy wzrostu technicznego uzbrojenia pracy i wydajności pracy. Licząc granice, przy $t \to +\infty$, z równań (4.25ab), dochodzi się do zależności:

$$
g_k^* = \lim_{t \to +\infty} g_k(t) = \lim_{t \to +\infty} G_K(t) - n = G_K^* - n, \quad (4.26a)
$$
oczas:

$$
g_y^* = \lim_{t \to +\infty} g_y(t) = \lim_{t \to +\infty} G_Y(t) - n = G_Y^* - n, \quad (4.26b)
$$

gdzie przez g_k^* i g_y^* rozumie się długookresowe stopy wzrostu technicznego uzbrojenia pracy i wydajności pracy. Wstawiając do równań (4.26ab) $G_K^* = G_Y^* = \frac{2-\beta-\phi}{1-\beta-\phi} n$, okazuje się, iż:
czyli:

\[g_k = g_y = \frac{2 - \beta - \phi}{1 - \beta - \phi} n - n = \frac{2 - \beta - \phi - (1 - \beta - \phi)}{1 - \beta - \phi} n = \frac{2 - \beta - \phi - 1 + \beta + \phi}{1 - \beta - \phi} n \]

Z równań (4.22b) oraz (4.27) wynika, że w długim okresie techniczne uzbrojenie pracy i wydajność pracy w analizowanym w rozdziale czwartym skryptyu modelu wzrostu gospodarczego rosną według tej samej stopy wzrostu co zasób wiedzy naukowo-technicznej. Dlatego też interpretację ekonomiczną związku (4.27) pozostawiamy Czytelnikom.

4.4. PODSUMOWANIE

Prowadzone w rozdziale czwartym rozważania można podsumować następująco:

I. W analizowanym w tym rozdziale modelu wzrostu gospodarczego wyróżnia się w gospodarce dwa sektory. Są to: sektor wytwarzający konwencjonalne dobra i usługi (konsumpcyjne i inwestycyjne) oraz sektor, który zajmuje się jedynie wytwarzaniem nowej wiedzy naukowo-technicznej wykorzystywanej w procesach produkcyjnych.

II. Produkcja sektora wytwarzającego konwencjonalne dobra i usługi zależna jest zarówno od istniejącego zasobu wiedzy w gospodarce, jak i od nakładów kapitału i pracy kierowanych do sektora konwencjonalnego. Natomiast przyrost wiedzy zdeterminowany jest przez poziom istniejącej wiedzy oraz przez nakłady kapitału i pracy wykorzystywane w sektorze kreującym nową wiedzę.

III. W prowadzonych w rozdziale czwartym skryptu analizach, podobnie jak ma to miejsce w neoklasycznym modelu wzrostu gospodarczego Solowa, czyni się również założenia, że przyrost zasobu kapitału stanowi różnicę między oszczędnościami/inwestycjami a deprecjacją kapitału, zaś liczba pracujących rośnie według pewnej egzogenicznej stopy wzrostu. Przyjmuje się także, co nie ma swego odpowiednika w modelu wzrostu gospodarczego Solowa, że nakłady kapitału i pracy dzielone są między sektor wytwarzający konwencjonalne dobra i usługi oraz sektor generujący wiedzę wedle pewnych, stałych w czasie proporcji.

IV. Z przyjętych w modelu założeń wynika układ równań ruchu względem stóp wzrostu zasobów kapitału rzeczowego i wiedzy (będącym nieliniowym układem równań różniczkowych). Układów charakteryzuje się stabilną długookresową równowagą (związaną z istnieniem węzła stabilnego jego diagramu fazowego) wtedy i tylko wtedy, gdy elastyczność przyrostu wiedzy względem jej poziomu jest mniejsza od elastyczności przyrostu wiedzy względem nakładów pracy wykorzystywanych w sektorze wiedzy. Jeśli zaś wspomniany tu warunek nie zachodzi, to rozważana gospodarka charakteryzuje się dążącymi do +∞ stopami wzrostu zasobów kapitału i wiedzy oraz (implicite) strumieniem produktu.

V. Jeśli jednak istnieje stabilna równowaga rozważanego w rozdziale czwartym modelu wzrostu gospodarczego, to (po pierwsze) stopa wzrostu strumienia produktu
równa jest stopie wzrostu zasobu kapitału, (po drugie) stopy wzrostu produktu, kapitału i wiedzy są tym wyższe, im wyższa jest stopa wzrostu liczby pracujących, (po trzecie) stopy te są również tym wyższe, im wyższe są elastyczności przyrostu wiedzy względem jej nakładów i nakładów kapitału wykorzystywanych w sektorze wiedzy, oraz (po czwarte) stopy wzrostu technicznego uzbrojenia pracy i wydajności pracy równe są stopie wzrostu wiedzy.
Rozdział piąty

ZŁOTE REGUŁY AKUMULACJI KAPITAŁU

5.1. WPROWADZENIE

W rozdziałach drugim, trzecim i (w pewnej mierze) w czwartym skrypcie analizowaliśmy wpływ stopy (lub stóp) inwestycji na położenie długookresowych ścieżek wzrostu takich zmiennych makroekonomicznych, jak wydajność pracy, techniczne uzbrojenie pracy i kapitał ludzki na pracującego. W prowadzonych tam rozważaniach abstrahowaliśmy jednak od wpływu stop (lub stopy) inwestycji na położenie długookresowej ścieżki wzrostu konsumpcji na pracującego. Dlatego też w rozdziale piątym, na gruncie złotych reguł akumulacji Edmunda S. Phelps, podejmiemy rozważania dotyczące wpływu stopy lub stóp inwestycji na położenie długookresowej ścieżki wzrostu konsumpcji na pracującego.

Celem analiz podjętych w rozdziale piątym jest więc:

I. Zdefiniowanie złotych reguł akumulacji kapitału Phelps.

II. Wyznaczenie złotych reguł akumulacji kapitału na gruncie jednokapitałowego modelu wzrostu gospodarczego Solowa z funkcją produkcji Cobba-Douglasa.

III. Wyznaczenie owych reguł w dwukapitałowym modelu wzrostu Mankiwa-Romera-Weila.

IV. Uogólnienie złotych reguł akumulacji na N-kapitałowy model wzrostu gospodarczego Nonnemana-Vanhoudta.

5.2. ZŁOTE REGUŁY AKUMULACJI W RÓWNOWADZE SOLOWA

Z prowadzonych w rozdziale drugim skryptu analiz wyciągnąć można m.in. wniosek, iż im wyższa jest stopa oszczędności/inwestycji w modelu wzrostu gospodarczego Solowa (z funkcją produkcji Cobba-Douglasa), tym wyżej położona jest długookresowa ścieżka wzrostu wydajności pracy. Wynika to stąd, iż produkt na jednostkę efektywnej pracy w długookresowej równowadze owego modelu wzrostu gospodarczego można zapisać następująco (por. równanie (2.51a)):

$$\tilde{y}^* = \left(\frac{s}{\delta + g + n} \right)^{\frac{\alpha}{1-\alpha}},$$ \hspace{1cm} (5.1)
gdzie γ^* to produkt na jednostkę efektywnej pracy w równowadze Solowa, $s \in (0;1)$ jest stopą oszczędności/inwestycji, $\delta \in (0;1)$ to stopa deprecjacji kapitału, $g + n > 0$ jest stopą wzrostu jednostek efektywnej pracy (będącą sumą stopy harrodiańskiego postępu technicznego g i stopy wzrostu liczby pracujących n), zaś $\alpha \in (0;1)$ jest elastycznością produktu względem nakładów kapitału lub, na gruncie marginalnej teorii podziału Clarka, udział nakładów kapitału w produkcji. Z równania (5.1) wyciągnąć można wniosek, iż:

$$\frac{\partial \gamma^*}{\partial s} = \frac{\partial}{\partial s} \left(\frac{s}{\delta + g + n} \right)^{\alpha \beta - 1} \cdot \frac{1}{\delta + g + n} > 0,$$

co implikuje, że im wyższa jest stopa oszczędności/inwestycji s, tym wyższy jest produkt na jednostkę efektywnej pracy γ^* w równowadze Solowa i (tym samym) wyżej położona jest długookresowa ścieżka wzrostu produktu na pracującego (czyli wydajności pracy).

Ponieważ stopa oszczędności/inwestycji s może należeć do przedziału $(0;1)$, więc długookresowa ścieżka wzrostu wydajności pracy będzie, przy pozostałych warunkach niezmiennych, najwyżej położona wówczas, gdy stopa ta będzie zbieżna do jedności z lewej strony (a zatem gdy $s \to 1^{-}$). Pojawia się jednak pytanie, czy wysokie położenie długookresowej ścieżki wzrostu wydajności pracy jest równoznaczne z wysokim położeniem długookresowej ścieżki wzrostu konsumpcji na pracującego $c^* = \frac{C^*}{L}$ (gdzie C^* jest wielkością konsumpcji w długookresowej równowadze Solowa)?

Konsumpcję C w skali całej gospodarki można zdefiniować jako różnicę między wytworzonym produktem Y a poczynionymi w gospodarce oszczędnościami/inwestycjami sY. Dlatego też:

$$\forall t \in [0;+\infty) \quad C(t) = (1-s)Y(t). \quad (5.2)$$

Dzieląc stronami równanie (5.2) przez jednostki efektywnej pracy $L \equiv \Lambda L > 0$, uzyskuje się, związek:

$$\forall t \in [0;+\infty) \quad \frac{C(t)}{L(t)} = (1-s)\frac{Y(t)}{L(t)}$$

lub:

$$\forall t \in [0;+\infty) \quad \tilde{c}(t) = (1-s)\tilde{y}(t), \quad (5.3)$$

gdzie $\tilde{c} = \frac{C}{L}$ jest konsumpcją na jednostkę efektywnej pracy, zaś $\tilde{y} = \frac{Y}{L}$ to, podobnie jak w poprzednich rozdziałach, produkt na jednostkę efektywnej pracy. Równanie (5.3) w warunkach długookresowej równowagi modelu Solowa można zapisać następująco:

$$\tilde{c}^* = (1-s)\tilde{y}^*, \quad (5.4)$$

gdzie zmienne z gwiazdkami oznaczają wartości konsumpcji i produkcji na jednostkę efektywnej pracy w długookresowej równowadze.
Z równania (5.4) wynika, iż konsumpcja na jednostkę efektywnej pracy w równowadze Solowa jest tym wyższa, im wyższy jest udział konsumpcji w produkcji (równy $1 - s$) oraz im wyższy jest produkt na jednostkę efektywnej pracy \bar{y}^*. Dlatego też im wyższe wartości przyjmują $1 - s$ oraz \bar{y}^*, tym wyżej położona jest długookresowa ścieżka wzrostu konsumpcji na pracującego $c^* = \frac{C^*}{L}$.

Wstawiając zaś równanie (5.1) do zależności (5.4), dochodzi się do związku:

$$\tilde{c}^* = (1 - s) \left(\frac{s}{\delta + g + n}\right)^{\frac{\alpha}{1 - \alpha}} \cdot (5.5)$$

Z równania (5.5) wynika, że wzrost stopy oszczędności/inwestycji s prowadzi do wzrostu produktu na pracującego $\bar{y}^* = \left(\frac{s}{\delta + g + n}\right)^{\frac{\alpha}{1 - \alpha}}$ oraz spadku udziału konsumpcji w produkcji (równego $1 - s$). Dlatego też wzrost ów może prowadzić zarówno do wzrostu, jak i do spadku konsumpcji na jednostkę efektywnej pracy w długookresowej równowadze Solowa (czyli wzrostu lub spadku \tilde{c}^*). To zaś może prowadzić tak do podniesienia, jak również do obniżenia położenia ścieżki wzrostu konsumpcji na pracującego c^* w długim okresie.

Problem ten stał się podstawą do sformułowania w 1961 roku przez Phelps czasu złotych reguł akumulacji kapitału. Przez złotą regułę akumulacji rozumie się taką stopę oszczędności/inwestycji s, która maksymalizuje konsumpcję na jednostkę efektywnej pracy w długookresowej równowadze gospodarki. Oznacza to także, że złotą regułę akumulacji Phelps jest taka stopa oszczędności, przy której gospodarka Solowa wchodzi na najwyższej położoną, długookresową ścieżkę wzrostu konsumpcji na pracującego.

Z powszechnych tu rozważań płynie więc wniosek, iż wyznaczenie złotej reguły akumulacji w modelu Solowa z funkcją produkcji Cobb-Douglasa prowadzi się do maksymalizacji konsumpcji na jednostkę efektywnej pracy w długookresowej równowadze, danej równaniem (5.5), względem stopy oszczędności/inwestycji $s \in (0;1)$.

Z równania (5.5) wynika, iż:

$$\lim_{s \to 0^+} \tilde{c}^* = \lim_{s \to 0^+} (1 - s) \left(\frac{s}{\delta + g + n}\right)^{\frac{\alpha}{1 - \alpha}} = 0 \quad (5.6a)$$

(bo wówczas $\bar{y}^* = \left(\frac{s}{\delta + g + n}\right)^{\frac{\alpha}{1 - \alpha}} \to 0^+$) oraz:

$$\lim_{s \to 1^-} \tilde{c}^* = \lim_{s \to 1^-} (1 - s) \left(\frac{s}{\delta + g + n}\right)^{\frac{\alpha}{1 - \alpha}} = 0 \quad (5.6b)$$

(gdyż w tym przypadku $(1 - s) \to 0^+$).
Z równań (5.6ab) wynika, co następuje:

- Jeśli w długim okresie stopa oszczędności/inwestycji jest bardzo niska (czyli \(s \to 0^+ \)), to również oszczędności/inwestycje \(sY \) są zbliżone do zera. To zaś oznacza, że przyrosty kapitału \(\dot{K} = sY - \delta K \) dają do \(-\delta K\). Jeśli zaś w każdym momencie \(t \in [0;+\infty) \) \(\dot{K}(t) \approx -\delta K(t) \), to przy \(t \to +\infty \) zasób kapitału rzeczowego \(K \) zmierza do zera. Stąd zaś wynika, iż przy funkcji produkcji Cobba-Douglasa postaci \(Y = K^a(\Lambda L)^{1-a} \) strumień produktu \(Y \) również zmierza do zera, gdyż nakłady kapitału rzeczowego \(K \) są niezbędne do wytworzenia jakiegokolwiek strumienia produktu \(Y \). Zbieżność do zera produkcji implikuje zaś zbieżność do zera zarówno konsumpcji w skali całej gospodarki, czyli \(C = (1-s)Y \), jak również konsumpcji na pracującego, a więc \(c = (1-s)y \).

- Natomiast w przypadku, w którym w długim okresie \(s \to 1^- \), produkt na jednostkę efektywnej pracy \(\check{Y}^* = \left(\frac{s}{\delta + g + n} \right)^{1-a} \), co prawda, osiąga maksymalną, możliwą wartość (przy czym jest to wielkość skończona), ale udział konsumpcji w produkcji \(1-s \) jest zbliżony do zera. Stąd zaś płynnie wniosek, że wówczas konsumpcja na jednostkę efektywnej pracy \(\check{c}^* = (1-s)\check{y}^* \) dąży do zera, co sprowadza na dół długookresową ścieżkę wzrostu konsumpcji na pracującego.

Logarytmując stronami równanie (5.5) przy \(s \in (0;1) \), okazuje się, iż spełniony jest związek:

\[
\ln(\check{c}^*) = \ln(1-s) + \frac{\alpha}{1-\alpha} \ln \left(\frac{s}{\delta + g + n} \right) = \ln(1-s) + \frac{\alpha}{1-\alpha} \left[\ln(s) - \ln(\delta + g + n) \right],
\]

a stąd:

\[
\ln(\check{c}^*) = \ln(1-s) + \frac{\alpha}{1-\alpha} \ln(s) - \frac{\alpha}{1-\alpha} \ln(\delta + g + n). \tag{5.7}
\]

Różniczkując równanie (5.7) względem stopy oszczędności/inwestycji \(s \), uzyskuje się zależność:

\[
\frac{\partial \ln(\check{c}^*)}{\partial s} = \frac{\partial}{\partial s} \left(\ln(1-s) + \frac{\alpha}{1-\alpha} \ln(s) - \frac{\alpha}{1-\alpha} \ln(\delta + g + n) \right) =
\]

\[
= \frac{\partial}{\partial s} (\ln(1-s)) + \frac{\alpha}{1-\alpha} \frac{\partial}{\partial s} (\ln(s)) = -\frac{1}{1-s} + \frac{\alpha}{1-\alpha} \frac{s}{(1-s)} =
\]

\[
= \frac{\alpha(1-s) - (1-\alpha)s}{(1-\alpha)(1-s)s} = \frac{\alpha - as + as}{(1-\alpha)(1-s)s},
\]

czyli:

\[
\frac{\partial \ln(\check{c}^*)}{\partial s} = \frac{\alpha - s}{(1-\alpha)(1-s)s}. \tag{5.8}
\]
Z równania (5.8) oraz stąd, iż \(s \in (0;1) \) i \(\alpha \in (0;1) \), wynika, że:

\[
\frac{\partial \ln(c^*)}{\partial s} > 0 \iff \alpha - s > 0 \iff s < \alpha
\]
(5.9a)

oraz (analogicznie):

\[
\frac{\partial \ln(c^*)}{\partial s} = 0 \iff s = \alpha
\]
(5.9b)

i:

\[
\frac{\partial \ln(c^*)}{\partial s} < 0 \iff s > \alpha.
\]
(5.9c)

Ze związków (5.9abc) płyną trzy następujące wnioski. Po pierwsze, jeśli stopa oszczędności/inwestycji s rośnie w przedziale \((0;\alpha)\), to konsumpcja na jednostkę efektywnej pracy \(c^* \) rośnie wraz ze wzrostem owej stopy. Po drugie, przy \(s = \alpha \) długookresowa konsumpcja na jednostkę efektywnej pracy osiąga swoje maksimum względem stopy oszczędności/inwestycji. Po trzecie, w przedziale \((\alpha;1)\) wzrost stopy oszczędności/inwestycji prowadzi do spadku konsumpcji na jednostkę efektywnej pracy w równowadze Solowa. Wnioski te prowadzą do stwierdzenia, że złotą regułą akumulacji kapitału Phelpsa jest stopa oszczędności/inwestycji s równa udziałowi nakładów kapitału w produkcie \(\alpha \), gdyż wówczas długookresowa konsumpcja na jednostkę efektywnej pracy \(c^* \) osiąga maksymalną możliwą wartość, co oznacza, iż w długim okresie konsumpcja na pracującego \(c^* \) wychodzi na najwyższej położoną ścieżkę wzrostu gospodarczego.

5.3. ZŁOTE REGUŁY AKUMULACJI W RÓWNOWADZE MANKIWA-ROMERA-WEILA

Złotą regułę akumulacji Phelpsa można również wyznaczyć w dwukapitałowej gospodarce Mankiwa-Romera-Weila. Na gruncie tego modelu wzrostu gospodarczego złotą regułę akumulacji definiuje się jako taką kombinację stóp inwestycji w zasób kapitału rzeczowego \(s_K \) i ludzkiego \(s_H \), która wyprowadza gospodarkę Mankiwa-Romera-Weila na najwyższej położoną, długookresową ścieżkę konsumpcji na pracującego.

Ponieważ w modelu wzrostu Mankiwa-Romera-Weila konsumpcję \(C \) można zapaść jako różnicę między produkcją \(Y \) a sumą inwestycji w kapitał rzeczowy \(s_K Y \) i ludzki \(s_H Y \), zatem w każdym momencie \(t \in [0;+\infty) \) zachodzi związek:

\[
C(t) = (1 - s_K - s_H)Y(t).
\]
(5.10)

Dzieląc równanie (5.10) przez jednostki efektywnej pracy \(\tilde{L} > \tilde{y}(t) \), uzyskuje się:

\[
\forall t \in [0;+\infty) \quad \tilde{c}(t) = (1 - s_K - s_H)\tilde{y},
\]
(5.11)
gdzie \(\tilde{c} = \frac{C}{L} \) i \(\tilde{y} = \frac{Y}{L} \), to (podobnie jak w modelu analizowanym w punkcie 5.2 skryptu) strumienie konsumpcji i produkcji na jednostkę efektywnej pracy. Co więcej, korzystając z równania (5.11), konsumpcję na jednostkę efektywnej pracy \(\tilde{c}^* \) w warunkach długookresowej równowagi Mankiwa-Romera-Weila można zapisać wzorem:

\[
\tilde{c}^* = \left(1 - s_K - s_H \right) \cdot \tilde{y}^*,
\]

gdzie \(\tilde{y}^* \) jest długookresowym produktem na jednostkę efektywnej pracy równym

\[
\left(\frac{s_K}{\delta_K + g + n} \right)^{1-\alpha-\beta} \cdot \left(\frac{s_H}{\delta_H + g + n} \right)^{1-\alpha-\beta} \quad \text{(por. równanie (3.22) w rozdziale trzecim skryptu).}
\]

Dlatego też konsumpcję \(\tilde{c} \) można zapisać następująco:

\[
\tilde{c} = \left(1 - s_K - s_H \right) \cdot \left(\frac{s_K}{\delta_K + g + n} \right)^{1-\alpha-\beta} \cdot \left(\frac{s_H}{\delta_H + g + n} \right)^{1-\alpha-\beta}.
\] (5.12)

Z prowadzonych w rozdziale trzecim analiz wynika, że im wyższa jest produkcja na jednostkę efektywnej pracy \(\tilde{y}^* \) w długookresowej równowadze Mankiwa-Romera-Weila, tym wyżej położona jest długookresowa ścieżka wzrostu wydajności pracy (czyli produktu na pracującego). Rozumując analogicznie, co pozostawiamy Czytelnikom, można uzasadnić, iż wysokim wartościom konsumpcji na jednostkę efektywnej pracy \(\tilde{c}^* \) odpowiadają wysoko położone długookresowe ścieżki wzrostu konsumpcji na pracującego \(c^* \). Dlatego też wyznaczenie złotej reguły akumulacji kapitału na gruncie modelu wzrostu gospodarczego Mankiwa-Romera-Weila sprowadza się do maksymalizacji konsumpcji \(\tilde{c}^* \) względem stóp inwestycji \(s_K \) i \(s_H \) przy \(s_K, s_H \in (0;1) \) oraz \(s_K + s_H \in (0;1) \).

Licząc granice przy \(s_K \to 0^+ \), \(s_H \to 0^+ \) oraz \((s_K + s_H) \to 1^- \) z konsumpcji \(\tilde{c}^* \) danej równaniem (5.12), otrzymuje się następujące związki:

\[
\lim_{s_K \to 0^*} \tilde{c}^* = \lim_{s_K \to 0^*} \left(1 - s_K - s_H \right) \cdot \left(\frac{s_K}{\delta_K + g + n} \right)^{1-\alpha-\beta} \cdot \left(\frac{s_H}{\delta_H + g + n} \right)^{1-\alpha-\beta} \]

\[
= \left(\frac{s_H}{\delta_H + g + n} \right)^{1-\alpha-\beta} \cdot \lim_{s_K \to 0^*} \left(1 - s_K - s_H \right) \cdot \left(\frac{s_K}{\delta_K + g + n} \right)^{1-\alpha-\beta} = 0,
\] (5.13a)

\[
\lim_{s_H \to 0^*} \tilde{c}^* = \lim_{s_H \to 0^*} \left(1 - s_K - s_H \right) \cdot \left(\frac{s_K}{\delta_K + g + n} \right)^{1-\alpha-\beta} \cdot \left(\frac{s_H}{\delta_H + g + n} \right)^{1-\alpha-\beta} \]

\[
= \left(\frac{s_K}{\delta_K + g + n} \right)^{1-\alpha-\beta} \cdot \lim_{s_H \to 0^*} \left(1 - s_K - s_H \right) \cdot \left(\frac{s_H}{\delta_H + g + n} \right)^{1-\alpha-\beta} = 0
\] (5.13b)
oraz:
\[
\lim_{(s_K + s_H) \to 1^-} \tilde{c}^* = \lim_{s_H \to 0^+} \left(1 - s_K - s_H\right) \cdot \left(\frac{s_K}{\delta_K + g + n}\right)^{\alpha \frac{1}{1-\alpha-\beta}} \cdot \left(\frac{s_H}{\delta_H + g + n}\right)^{\beta \frac{1}{1-\alpha-\beta}} = 0.
\]

(5.13c)

Z policzonych granic (5.13abc) płyną następujące wnioski:

- Jeśli stopa inwestycji \(s_K \) w kapitał rzeczowy jest zbieżna do zera, to konsumpcja na jednostkę efektywnej pracy \(\tilde{c}^* \) w długookresowej równowadze gospodarki Mankiwa-Romera-Weila także dąży do zera. Tym samym również konsumpcja na pracującego zbieżna jest do zera. Dzieje się tak dlatego, iż jeśli w długim okresie \(s_K \to 0^+ \), to przyrosty kapitału rzecowego \(K = s_K Y - \delta_K K \) równe są w przybliżeniu \(-\delta_K K \), co implikuje, że \(\frac{K}{K} \approx -\delta_K \) i \(K(t) \to 0 \). Zbieżność do zera kapitału rzecowego \(K \) prowadzi do zbieżności do zera produktu \(Y \) w gospodarce Mankiwa-Romera-Weila, co wynika stąd, iż jeśli \(\delta_H \to 0^+ \), to również kapitał rzeczowy \(K \) zbęduje do zera. Zbieżność do zera kapitału \(K \) prowadzi do zbieżności do zera produktu \(Y \) w gospodarce Mankiwa-Romera-Weila, co wynika stąd, iż jeśli \(\delta_H \to 0^+ \), to również konsumpcja \(C = (1 - s_K - s_H) Y \) i konsumpcja na pracującego \(c = \frac{C}{L} \) zbęduje do zera.

- Podobnie, przy: \(s_H \to 0^+ \) spełnione są związki: \(\frac{H}{H} \approx -\delta_H \), \(H(t) \to 0 \), \(Y(t) \to 0 \), \(C(t) \to 0 \) oraz \(c(t) = \frac{C(t)}{L(t)} \to 0 \).

- Natomiast w przypadku, w którym \((s_K + s_H) \to 1^- \), udział konsumpcji w produkcji \(1 - s_K - s_H \) zbęduje do zera. To zaś implikuje, iż zarówno konsumpcja na jednostkę efektywnej pracy, jak i konsumpcja na pracującego dąży wówczas do zera.

- Płynie stąd bardziej ogólny wniosek, że skrajne kombinacje stóp inwestycji, tj. kombinacje, przy których \(s_K \to 0^+ \), \(s_H \to 0^+ \) lub \((s_K + s_H) \to 1^- \), prowadzą do tego, że w długim okresie strumienie konsumpcji w gospodarce Mankiwa-Romera-Weila sądzą do zera.

Ponieważ dla dowolnej kombinacji stóp inwestycji \(s_K \) i \(s_H \) spełniającej warunki \(s_K, s_H, (s_K + s_H) \in (0;1) \), konsumpcja \(\tilde{c}^* = (1 - s_K - s_H) \cdot \left(\frac{s_K}{\delta_K + g + n}\right)^{\alpha \frac{1}{1-\alpha-\beta}} \cdot \left(\frac{s_H}{\delta_H + g + n}\right)^{\beta \frac{1}{1-\alpha-\beta}} \) przyjmuje wartości dodatnie, zatem maksymalizacja funkcji \(\tilde{c}^* (s_K, s_H) \), względem \(s_K \) oraz \(s_H \), tożsama jest z maksymalizacją funkcji \(V(s_K, s_H) \) danej wzorem:

\[
V(s_K, s_H) = \ln(\tilde{c}^* (s_K, s_H)) = \ln \left(1 - s_K - s_H\right) \cdot \left(\frac{s_K}{\delta_K + g + n}\right)^{\alpha \frac{1}{1-\alpha-\beta}} \cdot \left(\frac{s_H}{\delta_H + g + n}\right)^{\beta \frac{1}{1-\alpha-\beta}}.
\]
\[
\ln(1-s_K-s_H) + \frac{\alpha}{1-\alpha-\beta} \ln\left(\frac{s_K}{\delta_K + g + n}\right) + \frac{\beta}{1-\alpha-\beta} \ln\left(\frac{s_H}{\delta_H + g + n}\right) =
\]

\[
= \ln(1-s_K-s_H) + \frac{\alpha}{1-\alpha-\beta} (\ln(s_K) - \ln(\delta_K + g + n)) + \frac{\beta}{1-\alpha-\beta} (\ln(s_H) - \ln(\delta_H + g + n)),
\]

a stąd:

\[
V(s_K, s_H) = \ln(1-s_K-s_H) + \frac{\alpha}{1-\alpha-\beta} \ln(s_K) + \frac{\beta}{1-\alpha-\beta} \ln(s_H) +
\]

\[
- \frac{\alpha}{1-\alpha-\beta} \ln(\delta_K + g + n) - \frac{\beta}{1-\alpha-\beta} \ln(\delta_H + g + n).
\]

(5.14)

Warunki konieczne maksymalizacji funkcji \(V \), danej równaniem (5.14), określone są wzorami:

\[
\frac{\partial V}{\partial s_K} = 0 \quad (5.15a)
\]

oraz:

\[
\frac{\partial V}{\partial s_H} = 0 \quad (5.15b)
\]

zaś warunek dostateczny sprowadza się do tego, że w punkcie stacjonarnym funkcji \(V \) (tj. w punkcie, w którym spełnione są warunki konieczne (5.15ab)), hesjan \(\hat{H}(V) \) funkcji \(V \) dany wzorem:

\[
\hat{H}(V) = \begin{bmatrix}
\frac{\partial^2 V}{\partial s_K^2} & \frac{\partial^2 V}{\partial s_K \partial s_H} \\
\frac{\partial^2 V}{\partial s_H \partial s_K} & \frac{\partial^2 V}{\partial s_H^2}
\end{bmatrix}
\]

(5.16)

jest ujemnie określony.

Licząc pierwsze pochodne cząstkowe funkcji \(V \), okazuje się, że opisują je wzory:

\[
\frac{\partial V}{\partial s_K} = \frac{\partial}{\partial s_K} \left(\ln(1-s_K-s_H) + \frac{\alpha}{1-\alpha-\beta} \ln(s_K) + \frac{\beta}{1-\alpha-\beta} \ln(s_H) + \right.
\]

\[
- \frac{\alpha}{1-\alpha-\beta} \ln(\delta_K + g + n) - \frac{\beta}{1-\alpha-\beta} \ln(\delta_H + g + n) \Bigg) =
\]

\[
= \frac{\partial}{\partial s_K} (\ln(1-s_K-s_H)) + \frac{\alpha}{1-\alpha-\beta} \cdot \frac{\partial}{\partial s_K} (\ln(s_K)),
\]

czyli:

\[
\frac{\partial V}{\partial s_K} = -\frac{1}{1-s_K-s_H} + \frac{\alpha}{(1-\alpha-\beta) s_K} \quad (5.17a)
\]

i (analogicznie):
\[\frac{\partial V}{\partial s_H} = -\frac{1}{1-s_K-s_H} + \frac{\beta}{(1-\alpha-\beta)s_H}. \]

(5.17b)

Natomiast drugie pochodne cząstkowe i mieszane funkcji (5.14) można zapisać następująco:

\[\frac{\partial^2 V}{\partial s_K^2} = \frac{\partial}{\partial s_K} \left(\frac{\partial V}{\partial s_K} \right) = \frac{\partial}{\partial s_K} \left(-\frac{1}{1-s_K-s_H} + \frac{\alpha}{(1-\alpha-\beta)s_K} \right) = -\frac{\partial}{\partial s_K} \left(\frac{1}{1-s_K-s_H} \right) + \frac{\alpha}{1-\alpha-\beta} \frac{\partial}{\partial s_K} \left(\frac{1}{s_K} \right), \]

a stąd:

\[\frac{\partial^2 V}{\partial s_K^2} = -\frac{1}{(1-s_K-s_H)^2} - \frac{\alpha}{(1-\alpha-\beta)s_K^2} = -\left(\frac{1}{(1-s_K-s_H)^2} + \frac{\alpha}{(1-\alpha-\beta)s_K^2} \right) \]

(5.18a)

i (podobnie):

\[\frac{\partial^2 V}{\partial s_H^2} = -\frac{1}{(1-s_K-s_H)^2} - \frac{\beta}{(1-\alpha-\beta)s_H^2} = -\left(\frac{1}{(1-s_K-s_H)^2} + \frac{\beta}{(1-\alpha-\beta)s_H^2} \right) \]

(5.18b)

oraz:

\[\frac{\partial^2 V}{\partial s_K \partial s_H} = \frac{\partial}{\partial s_K} \left(\frac{\partial V}{\partial s_H} \right) = \frac{\partial}{\partial s_K} \left(-\frac{1}{1-s_K-s_H} + \frac{\beta}{(1-\alpha-\beta)s_H} \right) = -\frac{\partial}{\partial s_K} \left(\frac{1}{(1-s_K-s_H)} \right), \]

czyli:

\[\frac{\partial^2 V}{\partial s_K \partial s_H} = -\frac{1}{(1-s_K-s_H)^2} = \frac{\partial^2 V}{\partial s_H \partial s_K}. \]

(5.18c)

Wstawiając pochodne (5.18abc) do hesjanu (5.16), hesjan ów można zapisać następująco:

\[\hat{H}(V) = \begin{bmatrix} -\left(\frac{1}{(1-s_K-s_H)^2} + \frac{\alpha}{(1-\alpha-\beta)s_K^2} \right) & -\frac{1}{(1-s_K-s_H)^2} \\ -\frac{1}{(1-s_K-s_H)^2} & -\left(\frac{1}{(1-s_K-s_H)^2} + \frac{\beta}{(1-\alpha-\beta)s_H^2} \right) \end{bmatrix}. \]

(5.19)

Hesjan (5.19) jest ujemnie określony wtedy i tylko wtedy, gdy jego pierwszy minor główny:

\[m_1(\hat{H}) = -\frac{1}{(1-s_K-s_H)^2} \]

(5.20a)

jest ujemny, zaś drugi:
 dodatni. Ponieważ dla każdej kombinacji \((s_K, s_H)\) takiej, że \(s_K, s_H \in (0; 1)\) oraz \((s_K + s_H) \in (0; 1)\), minor główny (5.20a) jest ujemny, zatem do tego, by analizowany tu hesjan był ujemnie określony, potrzeba i wystarcza, by minor główny (5.20b) był dodatni. Minor ten można również zapisać następująco:

\[
m_2(\hat{H}) = \begin{vmatrix}
\left(\frac{1}{(1-s_K-s_H)^2} + \frac{\alpha}{(1-\alpha-\beta)s_K^2}\right) & -\frac{1}{(1-s_K-s_H)^2} \\
-\frac{1}{(1-s_K-s_H)^2} & \left(\frac{1}{(1-s_K-s_H)^2} + \frac{\beta}{(1-\alpha-\beta)s_H^2}\right)
\end{vmatrix}
\]

(5.20b)

Płynie stąd wniosek, że hesjan (5.16) jest ujemnie określony dla każdej rozważanej tu kombinacji stóp inwestycji w zasoby kapitału rzeczowego i ludzkiego. Dlatego też kombinacja stóp inwestycji, która spełnia warunki konieczne (5.15ab) maksymalizacji funkcji \(V(s_K, s_H)\), maksymalizuje konsumpcję na jednostkę efektywnej pracy \(\tilde{c}^*\) w długookresowej równowadze Mankiwa-Romera-Weila. Kombinacja ta wyznacza zatem złote reguły akumulacji w rozważanym tu modelu wzrostu gospodarczego.

Wstawiając pochodne (5.17ab) do warunków (5.15ab) warunki te można zapisać następująco:

\[
\left(\frac{1}{1-\alpha-\beta}s_K\right) = \frac{\alpha}{1-s_K-s_H}
\]

i:

\[
\left(\frac{1}{1-\alpha-\beta}s_H\right) = \frac{\beta}{1-s_K-s_H},
\]

a stąd:

\[\alpha - \alpha s_K - \alpha s_H = s_K - \alpha s_K - \beta s_K\]

oraz:

\[\beta - \beta s_K - \beta s_H = s_H - \alpha s_H - \beta s_H,\]
co prowadzi do następującego układu równań (względem stóp inwestycji s_K i s_H):

\[
\begin{align*}
(1 - \beta)s_K + \alpha s_H &= \alpha \\
\beta s_K + (1 - \alpha)s_H &= \beta
\end{align*}
\]

lub w postaci macierzowej:

\[
\begin{bmatrix}
1 - \beta & \alpha \\
\beta & 1 - \alpha
\end{bmatrix}
\begin{bmatrix}
s_K \\
s_H
\end{bmatrix} =
\begin{bmatrix}
\alpha \\
\beta
\end{bmatrix}.
\]

(5.21)

Układ równań (5.21) można rozwiązać, korzystając z twierdzenia Cramera. Kolejne wyznaczniki Cramera owego układu równań dane są wzorami:

\[
W = \begin{vmatrix}
1 - \beta & \alpha \\
\beta & 1 - \alpha
\end{vmatrix} = (1 - \beta)(1 - \alpha) - \alpha \beta = 1 - \alpha - \beta,
\]

(5.22a)

\[
W_K = \begin{vmatrix}
\alpha & \alpha \\
\beta & 1 - \alpha
\end{vmatrix} = \alpha(1 - \alpha) - \alpha \beta = \alpha(1 - \alpha - \beta)
\]

(5.22b)

i:

\[
W_H = \begin{vmatrix}
1 - \beta & \alpha \\
\beta & \beta
\end{vmatrix} = (1 - \beta)\beta - \alpha \beta = \beta(1 - \alpha - \beta).
\]

(5.22c)

Dzieląc przez siebie odpowiednie wyznaczniki Cramera (5.22abc), uzyskuje się rozwiązanie układu równań (5.21) dane wzorami:

\[
s_K = \frac{W_K}{W} = \frac{\alpha(1 - \alpha - \beta)}{1 - \alpha - \beta} = \alpha
\]

(5.23a)

oraz:

\[
s_H = \frac{W_H}{W} = \frac{\beta(1 - \alpha - \beta)}{1 - \alpha - \beta} = \beta
\]

(5.23b)

Z prowadzonych uprzednio rozważań oraz z tego, że $s_K = \alpha$, $s_H = \beta$ i $(s_K + s_H) = (\alpha + \beta) \in (0;1)$, wynika, iż równania (5.23ab), rozwiązujące układ równań (5.21), wyznaczają również kombinację stóp inwestycji w kapitał rzeczowy s_K i kapitał ludzki s_H, przy której konsumpcja na jednostkę efektywnej pracy \bar{c}^* w długookresowej równowadze modelu Mankiwa-Romera-Weilaosiaga swą wartość maksymalną. To zaś implikuje, że kombinacja stóp inwestycji $(s_K, s_H) = (\alpha, \beta)$ wyprowadza rozważaną tu gospodarkę na najwyższej położoną ścieżkę wzrostu konsumpcji na pracującego w długim okresie. Dlatego też kombinacja ta wyznacza złote reguły akumulacji kapitału na gruncie modelu wzrostu gospodarczego Mankiwa-Romera-Weila. Oznacza to, że złotą regułą akumulacji w analizowanym w tym punkcie modelu wzrostu są stopy inwestycji w zasoby kapitału rzeczowego (s_K) i ludzkiego (s_H) równe udziałom zasobów kapitału rzeczowego (α) i ludzkiego (β) w wytworzonym produkcie.
5.4. ZŁOTE REGUŁY AKUMULACJI W RÓWNOWADZE NONNEMANA-VANHOUDTA

Ponieważ model N-kapitałowego wzrostu gospodarczego Nonnemana-Vanhoudta stanowi uogólnienie neoklasycznych modeli wzrostu Solowa i Mankiwa-Romera-Weila, więc również złote reguły akumulacji kapitału w tym modelu wzrostu należy traktować jako uogólnienie złotych reguł z modeli Solowa oraz Mankiwa-Romer-Weila. Dlatego też przez złotą regułę akumulacji kapitału w modelu Nonnemana-Vanhoudta rozumiemy taką kombinację stóp inwestycji \((s_1, s_2, ..., s_N) \) w kolejne zasoby kapitału \(K_1, K_2, ..., K_N \), przy której analizowana tu gospodarka wychodzi na najwyższej położoną ścieżkę konsumpcji na pracującego w warunkach wzrostu równomiernego. Oznacza to, iż wyznaczenie złotej reguły akumulacji Phelpsa w modelu Nonnemana-Vanhoudta tożsame jest z maksymalizacją konsumpcji na jednostkę efektywnej pracy (w warunkach wzrostu równomiernego) względem \(s_1, s_2, ..., s_N \) przy ograniczeniach\(^1\): \(s_1, s_2, ..., s_N \in (0;1) \) oraz \(\sum_{i=1}^{N} s_i \in (0;1) \).

Konsumpcję \(C \) w modelu wzrostu gospodarczego Nonnemana-Vanhoudta można zapisać następująco (por. przypis 17 w rozdziale trzecim skryptu):

\[
\forall t \in [0;+\infty) \quad C(t) = \left(1 - \sum_{i=1}^{N} s_i \right) Y(t),
\]

gdzie \(Y \) jest strumieniem wytworzonego produktu. Dzieląc stronami powyższe równanie przez jednostki efektywnej pracy \(\tilde{L} > 0 \), uzyskuje się konsumpcję na jednostkę efektywnej pracy \(\bar{C} = \frac{\tilde{C}}{\tilde{L}} \) daną wzorem:

\[
\forall t \in [0;+\infty) \quad \bar{C}(t) = \left(1 - \sum_{i=1}^{N} s_i \right) \bar{y}(t).
\]

(5.24)

W warunkach wzrostu równomiernego gospodarki Nonnemana-Vanhoudta produkt na jednostkę efektywnej pracy \(\bar{y} \) osiąga wartość \(\bar{y}^* \) opisaną przez równanie (3.72) w punkcie 3.5 skryptu\(^2\). Dlatego też oznaczając przez \(\bar{c}^* \) konsumpcję na jednostkę efektywnej pracy w warunkach wzrostu równomiernego i korzystając z równań (3.72) oraz (5.24), konsumpcję tę można zapisać za pomocą związku:

\[\text{Czytelnikom.}\]

\[\text{Czytelnicy winni samodzielnie uzasadnić to, iż z równania (3.72) wynika, że produkcję } \bar{y}^* \text{ można zapisać wzorem: } \bar{y}^* = \prod_{i=1}^{N} \left(\frac{s_i}{\delta_i + g + n} \right)^{\alpha_i} \left(1 - \sum_{i=1}^{N} \alpha_i \right).\]
\[
\tilde{c}^* = \left(1 - \sum_{i=1}^{N} s_i\right) y^* = \left(1 - \sum_{i=1}^{N} s_i\right) \prod_{i=1}^{N} \left(\frac{s_i}{\delta_i + g + n}\right)^{\alpha_i} \left(1 - \sum_{j=1}^{N} \alpha_j\right).
\] (5.25a)

Maksymalizacja funkcji (5.23a) względem \(s_1, s_2, \ldots, s_N \in (0;1) \) (przy \(\sum_{i=1}^{N} s_i \in (0;1) \)) tożsama jest z maksymalizacją funkcji:

\[
V(s_1, s_2, \ldots, s_N) = \ln(\tilde{c}^*) = \ln \left(1 - \sum_{i=1}^{N} s_i\right) \prod_{i=1}^{N} \left(\frac{s_i}{\delta_i + g + n}\right)^{\alpha_i} \left(1 - \sum_{j=1}^{N} \alpha_j\right) = \\
= \ln \left(1 - \sum_{i=1}^{N} s_i\right) + \ln \prod_{i=1}^{N} \left(\frac{s_i}{\delta_i + g + n}\right)^{\alpha_i} \left(1 - \sum_{j=1}^{N} \alpha_j\right) = \\
= \ln \left(1 - \sum_{i=1}^{N} s_i\right) + \sum_{i=1}^{N} \left(\frac{\alpha_i}{1 - \sum_{j=1}^{N} \alpha_j} \ln(s_i)\right) - \sum_{i=1}^{N} \left(\frac{\alpha_i}{1 - \sum_{j=1}^{N} \alpha_j} \ln(\delta_i + g + n)\right) \\
\text{lub:} \\
V(s_1, s_2, \ldots, s_N) = \ln \left(1 - \sum_{i=1}^{N} s_i\right) + \sum_{i=1}^{N} \left(\frac{\alpha_i}{1 - \sum_{j=1}^{N} \alpha_j} \ln(s_i)\right) - \Psi, \quad (5.25b)
\]

gdzie \(\Psi = \sum_{i=1}^{N} \left(\frac{\alpha_i}{1 - \sum_{j=1}^{N} \alpha_j} \ln(\delta_i + g + n)\right) \). Warunki konieczne maksymalizacji funkcji \(V \) danej równaniem (5.25b) można zapisać następująco:

\[
\forall i = 1, 2, \ldots, N \quad \frac{\partial V}{\partial s_i} = 0, \quad (5.26)
\]
zaś warunki dostateczne sprowadzają się do tego, że hesjan dany wzorem:

\[
\hat{H}(V) = \begin{bmatrix}
\frac{\partial^2 V}{\partial s_1^2} & \frac{\partial^2 V}{\partial s_1 \partial s_2} & \cdots & \frac{\partial^2 V}{\partial s_1 \partial s_N} \\
\frac{\partial^2 V}{\partial s_2 \partial s_1} & \frac{\partial^2 V}{\partial s_2^2} & \cdots & \frac{\partial^2 V}{\partial s_2 \partial s_N} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^2 V}{\partial s_N \partial s_1} & \frac{\partial^2 V}{\partial s_N \partial s_2} & \cdots & \frac{\partial^2 V}{\partial s_N^2}
\end{bmatrix}
\] (5.27)

jest ujemnie określony w punkcie stacjonarnym funkcji \(V \).

Pierwsze i drugie pochodne funkcji \(V \) (5.25b) można zapisać następująco:

\[
\forall i = 1, 2, \ldots, N \quad \frac{\partial V}{\partial s_i} = \frac{\partial}{\partial s_i} \left(\ln \left(1 - \sum_{j=1}^{N} s_j \right) + \sum_{j=1}^{N} \frac{\alpha_j}{1 - \sum_{m=1}^{N} \alpha_m} \ln(s_j) \right) - \Psi = \\
= \frac{\partial}{\partial s_i} \left(\ln \left(1 - \sum_{j=1}^{N} s_j \right) \right) + \frac{\partial}{\partial s_i} \left(\sum_{j=1}^{N} \frac{\alpha_j}{1 - \sum_{m=1}^{N} \alpha_m} \ln(s_j) \right),
\]

a stąd:

\[
\forall i = 1, 2, \ldots, N \quad \frac{\partial V}{\partial s_i} = \frac{-1}{1 - \sum_{j=1}^{N} s_j} + \frac{\alpha_i}{1 - \sum_{j=1}^{N} \alpha_j} s_i
\] (5.28a)

i:

\[
\forall i = 1, 2, \ldots, N \quad \frac{\partial^2 V}{\partial s_i^2} = \frac{\partial}{\partial s_i} \left(\frac{\partial V}{\partial s_i} \right) = \frac{\partial}{\partial s_i} \left(\frac{-1}{1 - \sum_{j=1}^{N} s_j} + \frac{\alpha_i}{1 - \sum_{j=1}^{N} \alpha_j} s_i \right) = \\
= \frac{\partial}{\partial s_i} \left(\frac{-1}{1 - \sum_{j=1}^{N} s_j} \right) + \frac{\partial}{\partial s_i} \left(\frac{\alpha_i}{1 - \sum_{j=1}^{N} \alpha_j} s_i \right)
\]

lub:
\[
\forall i, j = 1, 2, ..., N; j \neq i \quad \frac{\partial^2 V}{\partial s_i^2} = \frac{1}{\left(1 - \sum_{j=1}^{N} s_j\right)^2} - \frac{\alpha_i}{\left(1 - \sum_{j=1}^{N} \alpha_j\right)s_i^2}
\]
(5.28b)

oraz:

\[
\forall i, j = 1, 2, ..., N; j \neq i \quad \frac{\partial^2 V}{\partial s_i \partial s_j} = \frac{\partial}{\partial s_i} \left(\frac{\partial V}{\partial s_j} \right) =
\]

\[
-\frac{\partial}{\partial s_i} \left(\frac{-1}{1 - \sum_{m=1}^{N} s_m} + \frac{\alpha_j}{\left(1 - \sum_{m=1}^{N} \alpha_m\right)s_j} \right) = -\frac{\partial}{\partial s_i} \left(\frac{1}{1 - \sum_{m=1}^{N} s_m} \right),
\]

a zatem:

\[
\forall i, j = 1, 2, ..., N; j \neq i \quad \frac{\partial^2 V}{\partial s_i \partial s_j} = -\frac{1}{\left(1 - \sum_{m=1}^{N} s_m\right)^2}.
\]
(5.28c)

Wstawiając pochodne cząstkowe (5.28a) do warunków koniecznych (5.26) maksymalizacji funkcji V, warunki te można zapisać następująco:

\[
\forall i = 1, 2, ..., N \quad \frac{-1}{1 - \sum_{j=1}^{N} s_j} + \frac{\alpha_i}{\left(1 - \sum_{j=1}^{N} \alpha_j\right)s_i} = 0,
\]

a stąd:

\[
\forall i = 1, 2, ..., N \quad \frac{\alpha_i \left(1 - \sum_{j=1}^{N} s_j\right) - \left(1 - \sum_{j=1}^{N} \alpha_j\right)s_i}{\left(1 - \sum_{j=1}^{N} s_j\right)\left(1 - \sum_{j=1}^{N} \alpha_j\right)s_i} = 0,
\]

czyli:

\[
\forall i = 1, 2, ..., N \quad \alpha_i \left(1 - \sum_{j=1}^{N} s_j\right) - \left(1 - \sum_{j=1}^{N} \alpha_j\right)s_i = 0
\]

lub:

\[
\forall i = 1, 2, ..., N \quad \left(1 - \sum_{j=1}^{N} \alpha_j\right)s_i + \alpha_i \sum_{j=1}^{N} s_j = \alpha_i
\]

bądź też:
\[
\forall i = 1, 2, ..., N \quad \left(1 - \sum_{j=1; j \neq i}^{N} \alpha_j \right) s_i + \alpha_i \sum_{j=1; j \neq i}^{N} s_j = \alpha_i .
\] (5.29)

Równania (5.29) można sprowadzić do układu równań:
\[
\begin{align*}
(1 - \sum_{i=2}^{N} \alpha_i) s_1 + \alpha_1 s_2 + \ldots + \alpha_1 s_N &= \alpha_1 \\
\alpha_2 s_1 + (1 - \sum_{i=1; i \neq 2}^{N} \alpha_i) s_2 + \ldots + \alpha_2 s_N &= \alpha_2 \\
\vdots \\
\alpha_N s_1 + \alpha_N s_2 + \ldots + (1 - \sum_{i=1}^{N-1} \alpha_i) s_N &= \alpha_N
\end{align*}
\]

i zapisać w postaci macierzowej:
\[
\begin{bmatrix}
1 - \sum_{i=2}^{N} \alpha_i & \alpha_1 & \alpha_1 \\
\alpha_2 & 1 - \sum_{i=1; i \neq 2}^{N} \alpha_i & \alpha_2 \\
\vdots & \vdots & \vdots \\
\alpha_N & \alpha_N & 1 - \sum_{i=1}^{N-1} \alpha_i
\end{bmatrix}
\begin{bmatrix}
s_1 \\
s_2 \\
\vdots \\
s_N
\end{bmatrix}
=
\begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\vdots \\
\alpha_N
\end{bmatrix}.
\] (5.30)

Układ równań (5.30) jest liniowym układem N równań z N niewiadomymi: \(s_1, s_2, \ldots, \ s_N\). Oznacza to, iż jeśli wyznacznik \(W\) macierzy współczynników
\[
\begin{bmatrix}
1 - \sum_{i=2}^{N} \alpha_i & \alpha_1 & \alpha_1 \\
\alpha_2 & 1 - \sum_{i=1; i \neq 2}^{N} \alpha_i & \alpha_2 \\
\vdots & \vdots & \vdots \\
\alpha_N & \alpha_N & 1 - \sum_{i=1}^{N-1} \alpha_i
\end{bmatrix}
\]

owego układu równań będzie różny od zera, to układ równań (5.30) będzie posiadał dokładnie jedno rozwiązanie. Wyznacznik ten można zapisać następująco:
\[
W =
\begin{bmatrix}
1 - \sum_{i=2}^{N} \alpha_i & \alpha_1 & \alpha_1 \\
\alpha_2 & 1 - \sum_{i=1; i \neq 2}^{N} \alpha_i & \alpha_2 \\
\vdots & \vdots & \vdots \\
\alpha_N & \alpha_N & 1 - \sum_{i=1}^{N-1} \alpha_i
\end{bmatrix}
= \begin{bmatrix}
1 - \sum_{i=1}^{N} \alpha_i & 0 & \alpha_1 \\
0 & 1 - \sum_{i=1}^{N-1} \alpha_i & \alpha_2 \\
\vdots & \vdots & \vdots \\
(1 - \sum_{i=1}^{N} \alpha_i) & (1 - \sum_{i=1}^{N-1} \alpha_i) & 1 - \sum_{i=1}^{N-1} \alpha_i
\end{bmatrix}.
\]
a stąd:

\[W = \left(1 - \sum_{i=1}^{N} \alpha_i \right)^{N-1} \in (0;1), \]

czyli istnieje dokładnie jedno rozwiązanie układu równań (5.30). Rozwiązanie to określają równania:

\[\forall i = 1, 2, ..., N \quad s_i = \alpha_i, \quad (5.31) \]

co wynika stąd, iż przy \(s_1 = \alpha_1, s_2 = \alpha_2, ..., s_N = \alpha_N \) spełnione są równania (5.29), gdyż wówczas:

\[\forall i = 1, 2, ..., N \quad \left(1 - \sum_{j=1; j \neq i}^{N} \alpha_j \right) s_i + \alpha_i \sum_{j=1; j \neq i}^{N} s_j = \]

\[= \left(1 - \sum_{j=1; j \neq i}^{N} \alpha_j \right) \alpha_i + \alpha_i \sum_{j=1; j \neq i}^{N} \alpha_j = \alpha_i \left(1 - \sum_{j=1}^{N} \alpha_j + \sum_{j=1; j \neq i}^{N} \alpha_j \right) = \alpha_i. \]

Płynie więc stąd wniosek, iż kombinacja stóp inwestycji \((s_1, s_2, ..., s_N) = (\alpha_1, \alpha_2, ..., \alpha_N) \) jest punktem stacjonarnym funkcji \(V \) w modelu wzrostu Nonnemana-Vanhoudta. Co więcej, jeśli oowej kombinacji stóp inwestycji towarzyszył będzie ujemnie określony hesjan (5.27) funkcji \(V \), to będzie ona maksymalizowała konsumpcję na jednostkę efektywnej pracy w warunkach wzrostu równomiernego analizowanej tu gospodarki, czyli będzie wyznaczała złotą regułę akumulacji kapitału w modelu Nonnemana-Vanhoudta.

Drugie pochodne cząstkowe i mieszane (5.28ab) funkcji \(V \) w punkcie stacjonarnym (5.31) określają równania:

\[\forall i = 1, 2, ..., N \quad \left(\frac{\partial^2 V}{\partial s_i^2} \right|_{s_1 = \alpha_1, \ldots, s_N = \alpha_N} = \frac{1}{\left(1 - \sum_{j=1}^{N} \alpha_j \right)^2} - \frac{\alpha_i}{\left(1 - \sum_{j=1}^{N} \alpha_j \right)^2} = \]

\[= \frac{1}{\left(1 - \sum_{j=1}^{N} \alpha_j \right)^2} - \frac{\alpha_i}{\left(1 - \sum_{j=1}^{N} \alpha_j \right)^2} = \frac{\alpha_i + 1 - \sum_{j=1}^{N} \alpha_j}{\left(1 - \sum_{j=1}^{N} \alpha_j \right)^2} = - \frac{1 - \sum_{j=1; j \neq i}^{N} \alpha_j}{\left(1 - \sum_{j=1}^{N} \alpha_j \right)^2} \alpha_i. \]
oraz:

\[
\forall i, j = 1, 2, \ldots, N; j \neq i \quad \frac{\partial^2 V}{\partial s_i \partial s_j} \bigg|_{s_i = a_1 \land s_2 = a_2 \land \ldots \land s_N = a_N} = -\frac{1}{\left(1 - \sum_{m=1}^{N} \alpha_m\right)^2},
\]

cozimplikuje, że hesjan (5.27) w punkcie stacjonarnym (5.31) można zapisać wzorem:

\[
\hat{H}(V) \bigg|_{s_i = a_1 \land s_2 = a_2 \land \ldots \land s_N = a_N} =
\begin{bmatrix}
-\frac{1}{\left(1 - \sum_{j=2}^{N} \alpha_j\right)^2} & -\frac{1}{\left(1 - \sum_{j=1}^{N} \alpha_j\right)^2} & \cdots & -\frac{1}{\left(1 - \sum_{j=1}^{N} \alpha_j\right)^2} \\
\frac{1}{\left(1 - \sum_{j=1}^{N} \alpha_j\right)^2} & -\frac{1}{\left(1 - \sum_{j=1}^{N} \alpha_j\right)^2} & \cdots & -\frac{1}{\left(1 - \sum_{j=1}^{N} \alpha_j\right)^2} \\
\vdots & \ddots & \ddots & \vdots \\
-\frac{1}{\left(1 - \sum_{j=1}^{N} \alpha_j\right)^2} & -\frac{1}{\left(1 - \sum_{j=1}^{N} \alpha_j\right)^2} & \cdots & -\frac{1}{\left(1 - \sum_{j=1}^{N} \alpha_j\right)^2}
\end{bmatrix}
\]

(5.32)

Hesjan (5.32) będzie ujemnie określony wtedy i tylko wtedy, gdy jego nieparzyste minory główne będą ujemne, parzyste zaś dodatnie. Oznacza to, iż by hesjan ów był ujemnie określony potrzeba i wystarcza, by zachodziły związki:

\[
\forall i = 1, 2, \ldots, N \quad (-1)^{i} m_i \left(\hat{H}\right)_{s_i = a_1 \land s_2 = a_2 \land \ldots \land s_N = a_N} > 0,
\]

(5.33)

gdzie:
$\forall i = 1, 2, ..., N \quad m_i\left(\sum_{j=1}^{\infty} \frac{\alpha_j}{1 - \sum_{j=1}^{\infty} \alpha_j} \right)_{s_1 = \alpha_1 \land s_2 = \alpha_2 \land \ldots \land s_N = \alpha_N} =$

$$\begin{vmatrix}
\frac{1 - \sum_{j=2}^{i} \alpha_j}{\left(1 - \sum_{j=1}^{i} \alpha_j\right)^2} & \frac{1}{\left(1 - \sum_{j=1}^{i} \alpha_j\right)^2} & \frac{1}{\left(1 - \sum_{j=1}^{i} \alpha_j\right)^2} \\
\alpha_1 & \alpha_1 & \alpha_1 \\
\vdots & \vdots & \vdots \\
\frac{1}{\left(1 - \sum_{j=1}^{i} \alpha_j\right)^2} & \frac{1}{\left(1 - \sum_{j=1}^{i} \alpha_j\right)^2} & \frac{1}{\left(1 - \sum_{j=1}^{i} \alpha_j\right)^2}
\end{vmatrix}$$

Minory główne hesjanu (5.32) można zapisać następująco:

$\forall i = 1, 2, ..., N \quad m_i\left(\sum_{j=1}^{\infty} \frac{\alpha_j}{1 - \sum_{j=1}^{\infty} \alpha_j} \right)_{s_1 = \alpha_1 \land s_2 = \alpha_2 \land \ldots \land s_N = \alpha_N} =$

$$\begin{vmatrix}
\frac{1 - \sum_{j=2}^{i} \alpha_j}{\left(1 - \sum_{j=1}^{i} \alpha_j\right)^2} & \frac{1}{\left(1 - \sum_{j=1}^{i} \alpha_j\right)^2} & \frac{1}{\left(1 - \sum_{j=1}^{i} \alpha_j\right)^2} \\
\alpha_1 & \alpha_1 & \alpha_1 \\
\vdots & \vdots & \vdots \\
\frac{1}{\left(1 - \sum_{j=1}^{i} \alpha_j\right)^2} & \frac{1}{\left(1 - \sum_{j=1}^{i} \alpha_j\right)^2} & \frac{1}{\left(1 - \sum_{j=1}^{i} \alpha_j\right)^2}
\end{vmatrix}$$

$$\begin{vmatrix}
(-1)^i \\
\left(1 - \sum_{j=1}^{i} \alpha_j\right)^2
\end{vmatrix}$$

$$\begin{vmatrix}
1 - \sum_{j=2}^{i} \alpha_j & 1 & 1 \\
\alpha_1 & 1 - \sum_{j=1; j \neq 2}^{i} \alpha_j & \alpha_2 \\
\vdots & \vdots & \vdots \\
1 & 1 & \ldots \frac{1}{\alpha_i}
\end{vmatrix}$$

$$\begin{vmatrix}
1 - \sum_{j=2}^{i} \alpha_j & \alpha_1 & \alpha_1 \\
\alpha_2 & \frac{1 - \sum_{j=1; j \neq 2}^{i} \alpha_j}{\alpha_1} & \alpha_2 \\
\vdots & \vdots & \vdots \\
\alpha_i & \frac{1}{\alpha_i} & \ldots \frac{1}{\alpha_i}
\end{vmatrix}$$
a stąd:

\[
\begin{bmatrix}
1 - \sum_{j=1}^{i} \alpha_j & 0 & \ldots & \alpha_1 \\
0 & 1 - \sum_{j=1}^{i} \alpha_j & \ldots & \alpha_2 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{bmatrix}
\]

a stąd:

\[
\prod_{j=1}^{i} \alpha_j = \left(1 - \sum_{j=1}^{i} \alpha_j\right)^{i-1}
\]

\[
\prod_{j=1}^{i} \alpha_j = \left(1 - \sum_{j=1}^{i} \alpha_j\right)^{i-3}
\]

Wstawiając związkę (5.34) do lewych stron nierówności (5.33), okazuje się, że:

\[
\forall i = 1, 2, ..., N \quad m_i \left(\hat{\varphi}\right) = \frac{(-1)^i \left(1 - \sum_{j=1}^{i} \alpha_j\right)^{i-3}}{\prod_{j=1}^{i} \alpha_j} > 0,
\]

co oznacza, iż hesjan (5.32) jest ujemnie określony, czyli w punkcie stacjonarnym \((s_1, s_2, ..., s_N) = (\alpha_1, \alpha_2, ..., \alpha_N)\) spełnione są warunki dostateczne maksymalizacji funkcji V. Dlatego też kombinacja stóp inwestycji \((s_1, s_2, ..., s_N) = (\alpha_1, \alpha_2, ..., \alpha_N)\) jest złotą regulą akumulacji kapitału w modelu Nonnemana-Vanhoudta. Ponieważ reguła ta jest uogólnieniem złotej reguły z modeli Solowa i Mankiwa-Romera-Weila, zatem jej interpretację ekonomiczną pozostawiamy Czytelnikom.

5.5. PODSUMOWANIE

Prowadzone w rozdziale piątym analizy podsumować można następująco:

I. Z modeli wzrostu gospodarczego Solowa, Mankiwa-Romera-Weila i Nonnemana-Vanhoudta wynika m.in., że długookresowa ścieżka wzrostu wydajności pracy jest tym wyżej położona, im wyższa jest stopa (lub stopy) inwestycji w zasób ka-
pitału (lub zasoby kapitału). Należy jednak pamiętać, iż wysoka stopa (lub stopy) inwestycji obniża (obniżając) udział konsumpcji, co prowadzi do tego, że wysokie położenie ścieżki wzrostu wydajności pracy, czyli produkcji na pracującego, nie zawsze powoduje wysokie położenie długookresowej ścieżki wzrostu konsumpcji na pracującego.

II. Poprzez złote reguły akumulacji kapitału Phelpsa rozumie się taką stopę inwestycji w kapitał rzeczowy (na gruncie modelu wzrostu gospodarczego Solowa) lub taką kombinację stóp inwestycji w kolejne zasoby kapitałów (w modelach Mankiwa-Romera-Weila oraz Nonnemana-Vanhoudta), które wyprowadzają konsumpcję na pracującego w długookresowej równowadze gospodarki na najwyższej położoną ścieżkę wzrostu.

III. Jeśli stopa inwestycji w kapitał rzeczowy w modelu wzrostu Solowa jest w długim okresie bardzo niska (zbieżna do zera), to kapitał ulega jedynie deprecjacji, co skutkuje tym, iż zmierza on również do zera. To zaś sprowadza zarówno wielkość produkcji, konsumpcji, jak i konsumpcji na pracującego do zera.

IV. Natomiast jeśli stopa inwestycji w modelu Solowa jest zbieżna do jedności, to (co prawda) ścieżka wzrostu wydajności pracy jest w długim okresie bardzo wysoko położona, ale udział konsumpcji w produkcji zmierza do zera, co sprowadza do zera również długookresową konsumpcję na pracującego.

V. W przypadku, w którym stopa inwestycji w gospodarce Solowa równa jest udziałów nakładów kapitału w produkcie, gospodarka ta wychodzi na najwyższej położoną, długookresową ścieżkę wzrostu konsumpcji na pracującego. Dlatego też stopa ta jest złotą regułą akumulacji kapitału Phelpsa.

VI. Podobnie, jeśli stopa inwestycji w zasób kapitału ludzkiego (rzeczowego) w modelu wzrostu Mankiwa-Romera-Weila jest w długim okresie bliska zera, to również kapitał ludzki (rzeczowy), produkt, konsumpcja oraz konsumpcja na pracującego dąży do zera.

VII. Jeśli zaś suma stóp inwestycji w kapitał rzeczowy i ludzki dąży do jedności, to udział konsumpcji w produkcji jest bliski zera i (mimo że wydajność pracy znajduje się na wysoko położonej długookresowej ścieżce wzrostu) strumienie konsumpcji oraz konsumpcji na pracującego są bliskie zeru.

VIII. Złotą regułą akumulacji Phelpsa na gruncie modelu wzrostu gospodarczego Mankiwa-Romera-Weila jest kombinacja stóp inwestycji równa kombinacji udziałów nakładu rzeczowego i ludzkiego w produkcie, gdyż właśnie ta kombinacja stóp inwestycji wyprowadza gospodarkę Mankiwa-Romera-Weila na najwyższej położoną długookresową ścieżkę wzrostu konsumpcji na pracującego.

IX. Wnioski ze złotej reguły akumulacji Phelpsa w modelach Solowa i Mankiwa-Romera-Weila można również uogólnić na N-kapitałowy model wzrostu gospodarczego Nonnemana-Vanhoudta.
WZROST GOSPODARCZY A ZATRUDNIENIE I BEZROBOCIE

6.1. WPROWADZENIE

W prowadzonych dotychczas rozważaniach dotyczących determinantów długookresowego wzrostu gospodarczego w neoklasycznych modelach wzrostu stopę wzrostu liczby pracujących i \((implicite)\) ścieżkę wzrostu liczby pracujących traktowano jako zmienną egzogeniczną. W rozdziale szóstym założenie to zostanie uchylone na rzecz założenia, iż stopa wzrostu liczby pracujących kształtuje się na takim poziomie, by rynek pracy był w stanie równowagi zgodnej z makroekonomicznymi modelami płac efektywnościowych\(^1\). Dlatego też celem analiz prowadzonych w rozdziale szóstym skryptu jest:

I. Sformułowanie założeń jednokapitałowego modelu wzrostu gospodarczego (typu Solowa), w którym endogenizuje się funkcję popytu na pracę i funkcję płac realnych oraz wyznacza ścieżki wzrostu liczby pracujących i stopy bezrobocia.

II. Rozwiązanie owego modelu wzrostu gospodarczego.

III. Wyciągnięcie wniosków z uzyskanego rozwiązania.

IV. Sformułowanie założeń dwukapitałowego modelu wzrostu gospodarczego (typu Mankiwa-Romera-Weila) z endogenicznymi równaniami popytu na pracę, płac realnych, liczby pracujących i stopy bezrobocia.

V. Rozwiązanie modelu wzrostu typu Mankiwa-Romera-Weila z endogenicznym rynkiem pracy oraz interpretacja ekonomiczna owego rozwiązania.

VI. Analiza N kapitałowego modelu wzrostu gospodarczego typu Nonnemana-Vanhoudta z endogenicznym rynkiem pracy.

6.2. RYNEK PRACY W MODELU TYPU SOLOWA\(^2\)

W rozważanym w punkcie 6.2 skryptu modelu wzrostu gospodarczego, będącego rozszerzeniem modelu wzrostu Solowa, czyni się następujące założenia:

1. Proces produkcyjny opisany jest przez funkcję produkcji Cobba-Douglasa daną wzorem:

\[Y = A(L, K) = AL^a K^{1-a} \]

\(^1\) Modele płac efektywnościowych scharakteryzowane są np. w punkcie 10.2 podręcznika Romera (2000).

\begin{align*}
\forall t \in [0;+\infty) \quad Y(t) = (K(t))^\alpha (A(t) \cdot L(t))^{1-\alpha}, \tag{6.1}
\end{align*}

gdzie \(Y, K, A, L > 0\) to (odpowiednio) strumień produktu i zasoby kapitału (rzeczowego), wiedzy naukowo-technicznej oraz liczba pracujących. Parametry \(\alpha\) oraz \((1-\alpha) \in (0;1)\) są zaś (podobnie jak ma to miejsce w rozdziale drugim skryptu) elastycznościami produktu \(Y\) względem nakładów kapitału rzeczowego \(K\) i pracy \(L\) lub, na gruncie marginalnej teorii podziału Clarka, są udziałami nakładów kapitału i pracy w produkcji.

2. W każdym momencie \(t \in [0;+\infty)\) przyrost zasobu kapitału \(K\) równy jest różnicy między oszczędnościami/inwestycjami \(sY\) (gdzie \(s \in (0;1)\) jest stopą oszczędności/inwestycji definiowaną tak samo, jak poprzednio) a deprecjją kapitału \(\delta K\) (gdzie \(\delta \in (0;1)\) to stopa deprecjacji kapitału). Stąd też:

\begin{align*}
\forall t \in [0;+\infty) \quad K(t) = sY(t) - \delta K(t). \tag{6.2}
\end{align*}

3. Zasób wiedzy \(A\) rośnie według egzogenicznej stopy wzrostu \(g > 0\) (będącą stopą postępu technicznego w sensie Harroda). Dlatego też wielkość owego zasobu w każdym momencie \(t \in [0;+\infty)\) opisuje zależność:

\begin{align*}
A(t) = A_0 e^{gt}, \tag{6.3}
\end{align*}

gdzie \(A_0 > 0\) jest wyjściowym zasobem wiedzy (tj. zasobem wiedzy w momencie \(t = 0\)).

4. Popyt na pracę, podobnie jak w neoklasycznych modelach rynku pracy, wyznaczany jest przez równanie krańcowego produktu pracy \(MPL = \frac{\partial Y}{\partial L}\) z płacami realnymi \(w > 0\). Oznacza to, iż wielkość popytu na pracę jest rozwiązaniem równania:

\begin{align*}
\forall t \in [0;+\infty) \quad MPL(t) = \frac{\partial Y}{\partial L} = w(t) \tag{6.4}
\end{align*}

względem liczby pracujących \(L\).

5. Płace realne \(w > 0\) (zgodnie z funkcjonowaniem mechanizmów płac efektywnościowych) są zaś tym wyższe, im wyższa jest wydajność pracy \(y = \frac{Y}{L}\) oraz im niższa jest stopa bezrobocia \(u = \frac{U}{U+L}\) (gdzie \(U\) jest liczbą bezrobotnych, zaś \(L\) to liczba pracujących). Szczególnym przypadkiem funkcji płac realnych, spełniającym powyższe założenia, jest funkcja dana wzorem:

\begin{align*}
\forall t \in [0;+\infty) \quad w(t) = w_0 \left(\frac{Y(t)}{L(t)}\right)^\phi \left(1-u(t)\right)^\varphi = w_0 \left(\frac{Y(t)}{L(t)}\right)^\phi \left(1-u(t)\right)^\varphi, \tag{6.5}
\end{align*}

gdzie \(w_0 > 0\) jest pewną stałą, która nie ma bezpośredniej interpretacji ekonomicznej, zaś \(\phi \in (0;1)\) i \(\varphi \in (0;1)\) to elastyczności płac realnych względem (odpowiednio) wydajności pracy \(y\) i stopy zatrudnienia \(1-u\). Wynika to stąd, iż zgodnie z równaniem (6.5):
oraz (analogicznie):

\[\varepsilon_{w(1-u)} = \frac{\partial w}{\partial (1-u)} \cdot \frac{1-u}{w} = \varphi. \]

6. Podaż pracy \(N^S \), definiowana jako suma liczba osób pracujących \(L \) oraz bezrobotnych \(U \), rośnie według egzogenicznej, zdeterminowanej przez działanie czynników demograficznych, stopy wzrostu \(n > 0 \). Dlatego też spełniają się związki:

\[\forall t \in [0;+\infty) \quad N^S(t) = L(t) + U(t) \quad (6.6) \]

i:

\[\forall t \in [0;+\infty) \quad N^S(t) = N_0 e^{nt}, \quad (6.7) \]

gdzie \(N_0 > 0 \) jest podażą pracy w momencie \(t = 0 \).

Z równania funkcji produkcji Cobba-Douglasa wynika, iż krańcowy produkt pracy \(MPL \) dany jest wzorem:

\[MPL = \frac{\partial Y}{\partial L} = \frac{\partial}{\partial L} \left(K^\alpha (AL)^{-\alpha} \right) = K^\alpha A^{-\alpha} (1-\alpha)L^{-\alpha} = (1-\alpha) \frac{Y}{L}. \]

Stąd zaś oraz z równania (6.4) płynie wniosek, że w każdym momencie \(t \in [0;+\infty) \) płace realne w opisuje równanie:

\[w(t) = (1-\alpha) \frac{Y(t)}{L(t)}. \quad (6.8) \]

Z równania (6.8) wynika, iż w rozważanym tu modelu wzrostu gospodarczego pracodawcy są skłonni płacić pracobiorcom (za usługi czynnika pracy) część wydajności pracy \(y = \frac{Y}{L} \) równą \(1-\alpha \) (czyli część równą udziałowi nakładów pracy w produkcie).

Wstawiając równanie (6.8) do funkcji płac realnych (6.5), dochodzi się do związku:

\[\forall t \in [0;+\infty) \quad w_0 \left(\frac{Y(t)}{L(t)} \right)^\phi (1-u(t))^\phi = (1-\alpha) \frac{Y(t)}{L(t)} \]

lub:

\[\forall t \in [0;+\infty) \quad w_0 (1-u(t))^\phi = (1-\alpha) \left(\frac{Y(t)}{L(t)} \right)^{1-\phi}. \quad (6.9) \]

Z definicji stopy bezrobocia wynika, iż:

\[\forall t \in [0;+\infty) \quad u(t) = \frac{U(t)}{U(t) + L(t)} \]
lub, po uwzględnieniu tożsamości (6.6):
\[
\forall t \in [0;+\infty) \quad u(t) = \frac{N^S(t) - L(t)}{N^S(t)} = 1 - \frac{L(t)}{N^S(t)} \Rightarrow 1 - u(t) = \frac{L(t)}{N^S(t)}
\]
bądź też, po podstawieniu za \(N^S(t)\) wielkości \(N_0 e^{nt}\) z równania (6.7):
\[
\forall t \in [0;+\infty) \quad 1 - u(t) = \frac{L(t)}{N_0 e^{nt}}. \quad (6.10)
\]

Ze związków (6.9–6.10) wynika, że w warunkach kształtowania się mechanizmu płac efektywnościowych na rynku pracy w każdym momencie \(t \in [0;+\infty)\) spełniona jest zależność:
\[
w_0 \left(\frac{L(t)}{N_0 e^{nt}} \right)^\phi = (1 - \alpha) \left(\frac{Y(t)}{L(t)} \right)^{1-\phi}.
\]

Logarytmując stronami (logarytmem naturalnym) powyższy związek, uzyskuje się równanie:
\[
\forall t \in [0;+\infty) \quad \ln \left(\frac{w_0}{N_0^\phi} \right) + \phi \ln (L(t) - nt) = \ln (1 - \alpha) + (1 - \phi) \ln (Y(t) - \ln (L(t))),
\]
które, po zróżniczkowaniu względem czasu \(t \in [0;+\infty)\), sprowadza się do zależności:
\[
\forall t \in [0;+\infty) \quad \phi \left(L(t) - n \right) = (1 - \phi) \left(\frac{\dot{Y}(t) - \dot{L}(t)}{Y(t) - L(t)} \right)
\]
lub, po podstawieniach \(G_L = \frac{\dot{L}}{L}\) i \(G_Y = \frac{\dot{Y}}{Y}\), gdzie \(G_L\) oraz \(G_Y\) to stopy wzrostu (odpowiednio) liczby pracujących i strumienia produktu:
\[
\forall t \in [0;+\infty) \quad \phi (G_L(t) - n) = (1 - \phi) (G_Y(t) - G_L(t)). \quad (6.11)
\]
Równanie (6.11) można również zapisać następująco:
\[
\forall t \in [0;+\infty) \quad \phi G_L(t) - \phi n = (1 - \phi) G_Y(t) - (1 - \phi) G_L(t)
\]
lub:
\[
\forall t \in [0;+\infty) \quad (1 - \phi + \phi) G_L(t) = \phi n + (1 - \phi) G_Y(t),
\]
a stąd\(^3\):
\[
\forall t \in [0;+\infty) \quad G_L(t) = \frac{\phi}{1 - \phi + \phi} n + \frac{1 - \phi}{1 - \phi + \phi} G_Y(t). \quad (6.12)
\]

\(^3\) Gdyby okazało się, iż występujący w równaniu (6.12) przyrost liczby pracujących \(\dot{L}\) jest wyższy od liczby bezrobotnych \(U\), to albo przyrost ów zrównałby się z liczbą bezrobotnych, albo też (co bardziej prawdopodobne) gospodarka otworzyłaby się na pracujących pochodzących z zagranicy.
Równanie (6.12) wyznacza stopę wzrostu liczby pracujących \(G_L \) (w rozważanym tu modelu wzrostu gospodarczego), uzależniając tę stopę wzrostu m.in. od stopy wzrostu podaży pracy \(n \) oraz stopy wzrostu strumienia wytworzonego produktu \(G_Y \). Z równania tego wynika, że (po pierwsze) im wyższa jest stopa wzrostu podaży pracy, tym wyższa jest stopa wzrostu liczby pracujących (bo \[\frac{\partial G_L}{\partial n} = \frac{\partial}{\partial n} \left(\frac{\phi}{1 - \phi + \phi} n + \frac{1 - \phi}{1 - \phi + \phi} G_Y \right) = \frac{\phi}{1 - \phi + \phi} > 0 \] oraz (po drugie) wysokiej stopie wzrostu produktu towarzyszy wysoka stopa wzrostu liczby pracujących (gdyż \[\frac{\partial G_L}{\partial G_Y} = \frac{\partial}{\partial G_Y} \left(\frac{\phi}{1 - \phi + \phi} n + \frac{1 - \phi}{1 - \phi + \phi} G_Y \right) = \frac{1 - \phi}{1 - \phi + \phi} > 0 \)).

Wstawiając zależność (6.3) do równania (6.1), dochodzi się do związku:

\[\forall t \in [0;+\infty) \quad Y(t) = (K(t))^{\alpha} \left(\Lambda_0 e^{gt} L(t) \right)^{1-\alpha} = \Lambda_0^{1-\alpha} e^{(1-\alpha)gt} (K(t))^{\alpha} (L(t))^{1-\alpha}. \quad (6.13) \]

Logarytmując stronami równanie (6.13) logarytmem naturalnym, można je zapisać następująco:

\[\forall t \in [0;+\infty) \quad \ln(Y(t)) = \ln(\Lambda_0^{1-\alpha}) + (1 - \alpha)gt + \alpha \cdot \ln(K(t)) + (1 - \alpha) \cdot \ln(L(t)) \]
lub, po zróżniczkowaniu względem czasu \(t \in [0;+\infty) \):

\[\forall t \in [0;+\infty) \quad G_Y(t) = \frac{Y(t)}{Y(t)} = (1 - \alpha)g + \alpha \frac{\dot{K}(t)}{K(t)} + (1 - \alpha) \frac{\dot{L}(t)}{L(t)} = \]

\[= (1 - \alpha)g + \alpha G_K(t) + (1 - \alpha)G_L(t), \quad (6.14) \]

gdzie \(G_K = \frac{\dot{K}}{K} \) jest stopą wzrostu zasobu kapitału rzeczowego.

Po podstawieniu równania (6.14) do zależności (6.12) dochodzi się do związku:

\[\forall t \in [0;+\infty) \quad G_L(t) = \frac{\phi}{1 - \phi + \phi} n + \frac{1 - \phi}{1 - \phi + \phi} \left((1 - \alpha)g + \alpha G_K(t) + (1 - \alpha)G_L(t) \right) = \]

\[= \frac{\phi n + (1 - \alpha)(1 - \phi)g + \alpha(1 - \phi)G_K(t) + (1 - \alpha)(1 - \phi)G_L(t)}{1 - \phi + \phi} G_L(t), \]

który implikuje zależność:

\[\forall t \in [0;+\infty) \quad (1 - \phi + \phi)G_L(t) = \phi n + (1 - \alpha)(1 - \phi)g + \alpha(1 - \phi)G_K(t) + (1 - \alpha)(1 - \phi)G_L(t), \]
a stąd:

\[\forall t \in [0;+\infty) \quad [1 - \phi + \phi - (1 - \alpha)(1 - \phi)]G_L(t) = \phi n + (1 - \alpha)(1 - \phi)g + \alpha(1 - \phi)G_K(t), \]
czyli:

\[\forall t \in [0;+\infty) \quad [1 - \phi + \phi - 1 + \phi + \alpha - \alpha \phi]G_L(t) = \phi n + (1 - \alpha)(1 - \phi)g + \alpha(1 - \phi)G_K(t) \]
lub:

\[\forall t \in [0;+\infty) \quad [\phi + \alpha - \alpha \phi]G_L(t) = \phi n + (1 - \alpha)(1 - \phi)g + \alpha(1 - \phi)G_K(t), \]
co implikuje:
\[\forall t \in [0;+\infty) \quad \[\alpha(1-\phi) + \varphi\]G_L(t) = \varphi n + (1-\alpha)(1-\phi)g + \alpha(1-\phi)G_K(t) \]

bądź też, po podzieleniu powyższego równania przez \[\alpha(1-\phi) + \varphi\] :
\[\forall t \in [0;+\infty) \quad G_L(t) = \frac{\varphi n + (1-\alpha)(1-\phi)g + \alpha(1-\phi)G_K(t)}{\alpha(1-\phi) + \varphi} \]

(6.15)

Ze związku (6.15) wynika, co następuje:
- Stopa wzrostu liczby pracujących \(G_L \) zależna jest m.in. od stopy wzrostu podaży pracy \(n \), stopy harrodiańskiego postępu technicznego \(g \) oraz stopy wzrostu zasobu kapitału \(G_K \).
- Różniczkując równanie (6.15) względem stopy wzrostu podaży pracy, okazuje się, iż:
\[\frac{\partial G_L}{\partial n} = \frac{\partial}{\partial n} \left(\frac{\varphi n + (1-\alpha)(1-\phi)g + \alpha(1-\phi)G_K(t)}{\alpha(1-\phi) + \varphi} \right) = \frac{\varphi}{\alpha(1-\phi) + \varphi} > 0, \]

co implikuje, że im wyższa jest stopa wzrostu podaży pracy, tym wyższa jest stopa wzrostu liczby pracujących.
- Podobnie, stąd, że:
\[\frac{\partial G_L}{\partial g} = \frac{\partial}{\partial g} \left(\frac{\varphi n + (1-\alpha)(1-\phi)g + \alpha(1-\phi)G_K(t)}{\alpha(1-\phi) + \varphi} \right) = \frac{(1-\alpha)(1-\phi)}{\alpha(1-\phi) + \varphi} > 0, \]

wynika, iż wysokiej stopie postępu technicznego w sensie Harroda towarzyszy wysoka stopa wzrostu liczby pracujących.
- Ponadto, ze związku (6.15) wyciągnąć można wniosek, że im wyższa jest stopa wzrostu zasobu kapitału w gospodarce, tym wyższa jest stopa wzrostu liczby pracujących. Dzieje się tak dlatego, iż:
\[\frac{\partial G_L}{\partial G_K} = \frac{\partial}{\partial G_K} \left(\frac{\varphi n + (1-\alpha)(1-\phi)g + \alpha(1-\phi)G_K(t)}{\alpha(1-\phi) + \varphi} \right) = \frac{\alpha(1-\phi)}{\alpha(1-\phi) + \varphi} > 0. \]

Z równań (6.2) oraz (6.13) wynika, iż w analizowanym tu modelu wzrostu gospodarczego spełnione jest następujące równanie różniczkowe:
\[\forall t \in [0;+\infty) \quad \dot{K}(t) = s\lambda_0^{-\alpha}e^{(1-\alpha)gt} (K(t))^{\alpha} (L(t))^{1-\alpha} - \delta K(t). \]

Dzieląc stronami powyższy związek przez \(K > 0 \), uzyskuje się zależność:
\[\forall t \in [0;+\infty) \quad G_K(t) = \frac{\dot{K}(t)}{K(t)} = s\lambda_0^{-\alpha}e^{(1-\alpha)gt} \left(\frac{L(t)}{K(t)} \right)^{1-\alpha} - \delta, \]

a stąd:
\[\forall t \in [0;+\infty) \quad G_K(t) + \delta = s\lambda_0^{-\alpha} \left(e^{gt} \frac{L(t)}{K(t)} \right)^{1-\alpha}. \]

(6.16)
Ponieważ dla każdego $K, L>0$ prawa strona równania (6.16) jest dodatnia, więc w każdym momencie $t \in [0;+\infty)$ stopa wzrostu kapitału G_K musi być wyższa od $-\delta$. Co więcej, logarytmując stronami związek (6.16), dochodzimy do zależności:

$$\forall t \in [0;+\infty) \quad \ln[G_K(t)+\delta] = \ln(sA_0^{1-\alpha}) + (1-\alpha)[gt + \ln(L(t)) - \ln(K(t))],$$

któра, po zróżniczowaniu względem czasu $t \in [0;+\infty)$, prowadzi do równania:

$$\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t)+\delta} = (1-\alpha)\left(\frac{g + \dot{L}(t)}{L(t)} - \frac{\dot{K}(t)}{K(t)}\right),$$

co, po podstawieniach $G_K = \frac{\dot{K}}{K}$ oraz $G_L = \frac{\dot{L}}{L}$, daje równanie:

$$\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t)+\delta} = (1-\alpha)(g + G_L(t) - G_K(t)). \quad (6.17)$$

Wstawiając równanie (6.15) do związku (6.17), uzyskujemy następujące równanie różniczkowe:

$$\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t)+\delta} = (1-\alpha)\left(\frac{\varphi n + (1-\alpha)(1-\phi)g}{\alpha(1-\phi)+\varphi} + \frac{\alpha(1-\phi)}{\alpha(1-\phi)+\varphi} G_K(t) - G_K(t)\right),$$

a stąd:

$$\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t)+\delta} = (1-\alpha)\left(\frac{\varphi n + (1-\alpha)(1-\phi)g + \alpha(1-\phi)g + \varphi n}{\alpha(1-\phi)+\varphi + \frac{\alpha(1-\phi) - \alpha(1-\phi) - \varphi}{\alpha(1-\phi)+\varphi} G_K(t)}\right),$$

czyli:

$$\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t)+\delta} = (1-\alpha)\left(\frac{\varphi n + (1-\phi + \varphi)g}{\alpha(1-\phi)+\varphi} - \frac{\varphi}{\alpha(1-\phi)+\varphi} G_K(t)\right)$$

lub:

$$\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t)+\delta} = (1-\alpha)(a_1 - a_2 G_K(t)) = (1-\alpha)a_2\left(\frac{a_1}{a_2} - G_K(t)\right), \quad (6.18)$$

gdzie $a_1 = \frac{\varphi n + (1-\phi + \varphi)g}{\alpha(1-\phi)+\varphi} > 0$ oraz $a_2 = \frac{\varphi}{\alpha(1-\phi)+\varphi} > 0$. Równanie różniczkowe (6.18) wyznacza relacje, które zachodzą między przyrostem stopy wzrostu zasobu kapitału \dot{G}_K a stopą wzrostu owej zmiennej makroekonomicznej w rozważanym tu modelu wzrostu gospodarczego. Równanie to można również zapisać następująco:

$$\forall t \in [0;+\infty) \quad \dot{G}_K(t) = -(1-\alpha)a_2(G_K(t)+\delta)\left(G_K(t) - \frac{a_1}{a_2}\right). \quad (6.19)$$
Z równania (6.19) wyciągnąć można następujące wnioski:

- Prawa strona owego równania jest funkcją kwadratową o ujemnym współczynniku przy G_K^2 oraz dwóch pierwiastkach: $-\delta < 0$ i $\frac{a_1}{a_2} > 0$.

- Ponieważ w każdym momencie $t \in [0;+\infty)$ spełniona jest nierówność: $G_K > -\delta$, zatem rozpatrywanie równania różniczkowego (6.19) jest uprawnione tylko przy $G_K > -\delta$.

- Wyrażenie $(1-\alpha)a_2(G_K + \delta)$ jest dodatnie, zatem przyrost stopy wzrostu kapitału \dot{G}_K jest dodatni (ujemny) wtedy i tylko wtedy, gdy $G_K - \frac{a_1}{a_2} < 0 \left(G_K - \frac{a_1}{a_2} > 0 \right)$.

Stąd zaś płynie wniosek, że $\dot{G}_K > 0 \iff G_K < \frac{a_1}{a_2} \left(\dot{G}_K < 0 \iff G_K > \frac{a_1}{a_2} \right)$.

- Jeśli zaś $G_K = \frac{a_1}{a_2}$, to $\dot{G}_K = 0$.

- Z powyższych wniosków wynika, że zależności zachodzące między \dot{G}_K a G_K, które wynikają z równania (6.19), można zilustrować tak, jak ma to miejsce na rysunku 6.1.

![Rysunek 6.1. Przyrost stopy wzrostu kapitału \dot{G}_K a stopa wzrostu kapitału G_K](https://via.placeholder.com/150)

Z rysunku 6.1 płynie wniosek, że jeśli stopa wzrostu kapitału G_K jest niższa (wyższa) od $\frac{a_1}{a_2}$, to przyrosty owej stopy \dot{G}_K są dodatnie (ujemne) i stopa wzrostu kapitału G_K dąży do $\frac{a_1}{a_2}$. Oznacza to, że stopę G_K^* daną wzorem:
można traktować jako długookresową stopę wzrostu kapitału w rozważanym tu modelu wzrostu gospodarczego. Co więcej, ponieważ spełnione są związki:

\[a_1 = \frac{\phi n + (1 - \phi + \varphi)g}{\alpha(1 - \phi) + \varphi} > 0 \]

i:

\[a_2 = \frac{\varphi}{\alpha(1 - \phi) + \varphi} > 0, \]

zatem długookresową stopę wzrostu kapitału można zapisać następująco:

\[G^*_K = \frac{a_1}{a_2} = \frac{\phi n + (1 - \phi + \varphi)g}{\varphi} = n + \frac{1 - \phi + \varphi}{\varphi} g. \] (6.20)

Z równania (6.20) płyną następujące wnioski natury ekonomicznej:

- Długookresowa stopa wzrostu zasobu kapitału \(G^*_K \) w analizowanym modelu wzrostu gospodarczego zależna jest od stopy wzrostu podaży pracy \(n \), stopy harrodianckiego postępu technicznego \(g \) oraz elastyczności \(\phi \) i \(\varphi \) funkcji płac realnych (6.5).
- Im wyższa jest stopa wzrostu podaży pracy, tym wyższa jest długookresowa stopa wzrostu zasobu kapitału. Wynika to stąd, że:

\[\frac{\partial G^*_K}{\partial n} = \frac{\partial}{\partial n} \left(n + \frac{1 - \phi + \varphi}{\varphi} g \right) = 1. \]

Ponieważ:

\[\frac{\partial G^*_K}{\partial g} = \frac{\partial}{\partial g} \left(n + \frac{1 - \phi + \varphi}{\varphi} g \right) = \frac{1 - \phi + \varphi}{\varphi} > 0, \]

zatem wysokiej stopie postępu technicznego w sensie Harroda \(g \) odpowiada wysoka stopa wzrostu kapitału \(G^*_K \) w długim okresie.

- Stąd, iż:

\[\frac{\partial G^*_K}{\partial \phi} = \frac{\partial}{\partial \phi} \left(n + \frac{1 - \phi + \varphi}{\varphi} g \right) = \frac{\partial}{\partial \phi} \left(\frac{1 + \varphi - \phi}{\varphi} g - \frac{\phi}{\varphi} g \right) = -\frac{g}{\varphi} < 0 \]

oraz:

\[\frac{\partial G^*_K}{\partial \varphi} = \frac{\partial}{\partial \varphi} \left(n + \frac{1 - \phi + \varphi}{\varphi} g \right) = \frac{\partial}{\partial \varphi} \left(\frac{1 - \phi}{\varphi} g + g \right) = -\frac{(1 - \phi)g}{\varphi^2} < 0, \]

pląnie wniosek, iż im wyższe są elastyczności \(\phi \) i \(\varphi \) funkcji płac realnych, tym niższa jest długookresowa stopa wzrostu kapitału \(G^*_K \).

W celu wyznaczenia ścieżki wzrostu stopy wzrostu kapitału, po której stopa ta dochodzi do \(G^*_K \), należy wyznaczyć całkę równania różniczkowego (6.19). Równanie to
jest, matematycznie rzecz biorąc, równaniem różniczkowym Riccatiego. Podstawienie Riccatiego dla owego równania dane jest wzorem:

\[\forall t \in [0;+\infty) \quad \frac{1}{v(t)} = G_K(t) - \frac{a_1}{a_2} . \] (6.21a)

Z podstawienia Riccatiego wynika, że zachodzą związki:

\[\forall t \in [0;+\infty) \quad G_K(t) = \frac{1}{v(t)} + \frac{a_1}{a_2} \] (6.21b)

oraz:

\[\forall t \in [0;+\infty) \quad \dot{G}_K(t) = -\frac{\dot{v}(t)}{(v(t))^2} . \] (6.21c)

Wstawiając zależności (6.21abc) do równania różniczkowego (6.19), można je zapisać następująco:

\[\forall t \in [0;+\infty) \quad \frac{\dot{v}(t)}{(v(t))^2} = \left(1 - \alpha \right)a_2 \left(\frac{1}{v(t)} + \frac{1}{a_2} + \delta \right) \]
a stąd, po przemnożeniu powyższego równania przez \(-v^2\):

\[\forall t \in [0;+\infty) \quad \dot{v}(t) = (1 - \alpha)a_2 \left(\frac{1}{v(t)} + \frac{1}{a_2} + \delta \right)v(t) \]

lub:

\[\forall t \in [0;+\infty) \quad \dot{v}(t) = (1 - \alpha)a_2 + (1 - \alpha)(a_1 + a_2 \delta)v(t) . \] (6.22)

Równanie różniczkowe (6.22) jest równaniem liniowym niejednorodnym względem v. Jedna z całek szczególnych v_s owego równania różniczkowego dana jest wzorem:

\[\forall t \in [0;+\infty) \quad v_s(t) = e^{(1-\alpha)(a_1 + a_2 \delta)t} . \] (6.23)

Zapiszmy teraz całkę v(t) równania różniczkowego (6.22) jako iloczyn całki szczególnej (6.23) i nieznanej całki uzupełniającej v_D(t). Wówczas:

\[\forall t \in [0;+\infty) \quad v(t) = v_s(t) \cdot v_D(t) = e^{(1-\alpha)(a_1 + a_2 \delta)t} \cdot v_D(t) , \] (6.24a)

co implikuje związek:

\[\forall t \in [0;+\infty) \quad \dot{v}(t) = (1 - \alpha)(a_1 + a_2 \delta)e^{(1-\alpha)(a_1 + a_2 \delta)t}v_D(t) + e^{(1-\alpha)(a_1 + a_2 \delta)t}\dot{v}_D(t) . \] (6.24b)

Wstawiając zależności (6.24ab) do równania różniczkowego liniowego niejednorodnego (6.22), uzyskuje się:

\[\forall t \in [0;+\infty) \quad (1 - \alpha)(a_1 + a_2 \delta)e^{(1-\alpha)(a_1 + a_2 \delta)t}v_D(t) + e^{(1-\alpha)(a_1 + a_2 \delta)t}\dot{v}_D(t) = \]
= (1 - \alpha)a_2 + (1 - \alpha)(a_1 + a_2\delta)e^{(1-\alpha)(a_1+a_2\delta)t}v_D(t),

a stąd:
\forall t \in [0;\infty) \quad e^{(1-\alpha)(a_1+a_2\delta)t}v_D(t) = (1 - \alpha)a_2

lub:
\forall t \in [0;\infty) \quad \dot{v}_D(t) = (1 - \alpha)a_2e^{-(1-\alpha)(a_1+a_2\delta)t}.

Całkując powyższą równość względem czasu \(t \in [0;\infty) \), dochodzi się do zależności:
\forall t \in [0;\infty) \quad v_D(t) = \int \dot{v}_D(t)dt = (1 - \alpha)a_2 \int e^{-(1-\alpha)(a_1+a_2\delta)t}dt =

\frac{(1 - \alpha)a_2}{-(1 - \alpha)(a_1 + a_2\delta)}e^{-(1-\alpha)(a_1+a_2\delta)t} + F,

a stąd:
\forall t \in [0;\infty) \quad v_D(t) = \frac{a_2}{a_1 + a_2\delta}e^{-(1-\alpha)(a_1+a_2\delta)t} + F, \quad (6.25)

gdzie \(F \in \mathbb{R} \) jest stałą całkowania, której wartości związane są z wyjściową stopą wzrostu zasobu kapitału \(G_K(0) = G_K^0 > -\delta \). Po wstawieniu całej uzupełniającej (6.25) do związku (6.24a) uzyskuje się całą równania różniczkowego (6.22) daną wzorem:
\forall t \in [0;\infty) \quad v(t) = e^{(1-\alpha)(a_1+a_2\delta)t} \left(-\frac{a_2}{a_1 + a_2\delta}e^{-(1-\alpha)(a_1+a_2\delta)t} + F \right),

czyli:
\forall t \in [0;\infty) \quad v(t) = -\frac{a_2}{a_1 + a_2\delta} + Fe^{(1-\alpha)(a_1+a_2\delta)t}. \quad (6.26)

Po wstawieniu całej (6.26) do podstawienia Riccatiego (6.21b) dochodzi się do całki równania różniczkowego (6.19) danej wzorem:
\forall t \in [0;\infty) \quad G_K(t) = \frac{a_1}{a_2} + \frac{1}{a_1 + a_2\delta} + Fe^{(1-\alpha)(a_1+a_2\delta)t},

a stąd:
\forall t \in [0;\infty) \quad G_K(t) = \frac{a_1}{a_2} - \frac{a_2}{a_1 + a_2\delta} - Fe^{(1-\alpha)(a_1+a_2\delta)t}. \quad (6.27a)

Równanie (6.27a) wyznacza ścieżkę wzrostu stopy wzrostu zasobu kapitału w analizowanym tu modelu wzrostu gospodarczego. Różniczkując równanie (6.27a) względem czasu \(t \in [0;\infty) \), uzyskuje się związki:

\[\text{Wyznaczenie stałej całkowania } F \text{ tak, by } G_K(0) = G_K^0 > -\delta, \text{ pozostawiamy Czytelnikom.} \]
\[\forall t \in [0;+\infty) \quad \dot{G}_K(t) = \frac{d}{dt} \left(\frac{a_1}{a_2} - \frac{1}{a_2} - Fe^{(1-\alpha)(a_1+a_2\delta)t} \right) = \frac{d}{dt} \left(\frac{1}{a_2} - Fe^{(1-\alpha)(a_1+a_2\delta)t} \right) = - \frac{F(1-\alpha)(a_1+a_2\delta)Fe^{(1-\alpha)(a_1+a_2\delta)t}}{\left(\frac{a_2}{a_1+a_2\delta} - Fe^{(1-\alpha)(a_1+a_2\delta)t} \right)^2}, \]

czyli:
\[\forall t \in [0;+\infty) \quad \dot{G}_K(t) = - \frac{F(1-\alpha)(a_1+a_2\delta)Fe^{(1-\alpha)(a_1+a_2\delta)t}}{\left(\frac{a_2}{a_1+a_2\delta} - Fe^{(1-\alpha)(a_1+a_2\delta)t} \right)^2}. \quad (6.27b) \]

Z zależności (6.27ab) płyną następujące wnioski:

- Jeśli stała całkowania \(F \) jest dodatnia (ujemna), to w każdym momencie \(t \in [0;+\infty) \) przyrosty stopy wzrostu zasobu kapitału \(\dot{G}_K \) są ujemne (dodatnie), co oznacza, że wówczas stopy wzrostu kapitału maleją (rosną) wraz z upływem czasu.

- Natomiast przy \(F = 0 \) dla każdego \(t \in [0;+\infty) \) \(\dot{G}_K = 0 \), co implikuje, że w tym przypadku stopy wzrostu kapitału \(G_k \) nie ulegają zmianom w czasie.

- Licząc granicę przy \(t \to +\infty \) z równania (6.27a), okazuje się, iż:

\[G_k^* = \lim_{t \to +\infty} G_K(t) = \lim_{t \to +\infty} \left(\frac{a_1}{a_2} - \frac{1}{a_2} - \frac{a_2}{a_1+a_2\delta} - Fe^{(1-\alpha)(a_1+a_2\delta)t} \right) = \frac{a_1}{a_2} - \lim_{t \to +\infty} \left(\frac{1}{a_2} - \frac{a_2}{a_1+a_2\delta} - Fe^{(1-\alpha)(a_1+a_2\delta)t} \right) = \frac{a_1}{a_2} = n + \frac{1-\phi+\varphi}{\varphi} g, \]

gdyż \(\lim_{t \to +\infty} \left(Fe^{(1-\alpha)(a_1+a_2\delta)t} \right) = +\infty \), a stąd \(\lim_{t \to +\infty} \left(\frac{a_2}{a_1+a_2\delta} - Fe^{(1-\alpha)(a_1+a_2\delta)t} \right) = -\infty \), czyli

\[\lim_{t \to +\infty} \left(\frac{1}{a_2} - \frac{a_2}{a_1+a_2\delta} - Fe^{(1-\alpha)(a_1+a_2\delta)t} \right) = 0, \]

co oznacza, że bez względu na wyjściową stopę wzrostu kapitału \(G_k^* > \delta \) stopa wzrostu owej zmiennej makroekonomicznej dąży w długim okresie do stopy równej \(n + \frac{1-\phi+\varphi}{\varphi} g \).
Z równania (6.15) wynika, iż:

\[
G_L^* = \lim_{t \to +\infty} G_L(t) = \lim_{t \to +\infty} \left(\frac{\varphi_n + (1 - \alpha)(1 - \phi)g}{\alpha(1 - \phi) + \varphi} + \frac{\alpha(1 - \phi)}{\alpha(1 - \phi) + \varphi} G_K(t) \right) =
\]

\[
= \frac{\varphi_n + (1 - \alpha)(1 - \phi)g}{\alpha(1 - \phi) + \varphi} + \frac{\alpha(1 - \phi)}{\alpha(1 - \phi) + \varphi} \lim_{t \to +\infty} G_K(t),
\]

czyli:

\[
G_L^* = \frac{\varphi_n + (1 - \alpha)(1 - \phi)g}{\alpha(1 - \phi) + \varphi} + \frac{\alpha(1 - \phi)}{\alpha(1 - \phi) + \varphi} G_K^*,
\]

(6.28)

gdzie \(G_L^*\) jest stopą wzrostu liczby pracujących w długim okresie. Wstawiając do równania (6.28) związek (6.20), uzyskuje się:

\[
G_L^* = \frac{\varphi_n + (1 - \alpha)(1 - \phi)g + \alpha(1 - \phi)}{\alpha(1 - \phi) + \varphi} \left(n + \frac{1 - \phi + \varphi}{\varphi} g \right) =
\]

\[
= \frac{\varphi_n + (1 - \alpha)(1 - \phi)g + \alpha(1 - \phi)\left(n + \frac{1 - \phi + \varphi}{\varphi} g \right)}{\alpha(1 - \phi) + \varphi}
\]

\[
= \frac{\varphi_n + (1 - \alpha)(1 - \phi)g + \alpha(1 - \phi)n + \alpha(1 - \phi)\frac{1 - \phi + \varphi}{\varphi} g}{\alpha(1 - \phi) + \varphi}
\]

\[
= \frac{(\alpha(1 - \phi) + \varphi)n + (1 - \phi)\left(1 - \alpha + \alpha \frac{1 - \phi + \varphi}{\varphi} \right) g}{\alpha(1 - \phi) + \varphi}
\]

\[
= \frac{(1 - \phi)\frac{\varphi - \alpha \varphi + \alpha - \alpha \phi + \alpha \varphi}{\varphi} g + (1 - \phi)\frac{\varphi - \alpha \varphi + \alpha \varphi}{\varphi} g}{\alpha(1 - \phi) + \varphi}
\]

\[
= \frac{(1 - \phi)\frac{\alpha(1 - \phi) + \varphi}{\varphi} g}{\alpha(1 - \phi) + \varphi} = n + \frac{1 - \phi}{\varphi} g.
\]

czyli:

\[
G_L^* = n + \frac{1 - \phi}{\varphi} g.
\]

(6.29)

Z równania (6.29) wynika, co następuje:

- Długookresowa stopa wzrostu liczby pracujących \(G_L^*\), podobnie jak długookresowa stopa wzrostu zasobu kapitału \(G_K^*\), zależna jest od stopy wzrostu podaży pracy \(n\), stopy harrodiańskiego postępu technicznego \(g\) oraz elastyczności \(\phi\) i \(\varphi\) funkcji płac realnych (6.5).
- Wysokim stopom wzrostu podaży pracy \(n\) i postępu technicznego \(g\) towarzyszy wysoka stopa wzrostu liczby pracujących \(G_L^*\) w długim okresie. Wynika to stąd, iż:
\[
\frac{\partial G_L^*}{\partial \phi} = \frac{\partial}{\partial \phi} \left(n + \frac{1-\phi}{\varphi} g \right) = \frac{1-\phi}{\varphi} > 0.
\]

- Ponieważ:

\[
\frac{\partial G_L^*}{\partial \phi} = \frac{\partial}{\partial \phi} \left(n + \frac{1-\phi}{\varphi} g \right) = -\frac{g}{\varphi} < 0
\]

oraz:

\[
\frac{\partial G_L^*}{\partial \phi} = \frac{\partial}{\partial \phi} \left(n + \frac{1-\phi}{\varphi} g \right) = -\frac{(1-\phi)g}{\varphi^2} < 0,
\]

zatem wysokim elastycznościom \(\phi \) i \(\varphi \) odpowiada niska długookresowa stopa wzrostu liczby pracujących \(G_L^* \).

Z równania (6.14) wynika, że długookresową stopę wzrostu strumienia produktu
\[G_Y^* = \lim_{t \to +\infty} G_Y(t) \] w analizowanym tu modelu wzrostu gospodarczego można zapisać wzorem:

\[G_Y^* = \lim_{t \to +\infty} G_Y(t) = (1-\alpha)g + \alpha \lim_{t \to +\infty} G_K(t) + (1-\alpha) \lim_{t \to +\infty} G_L(t) = (1-\alpha)g + \alpha G_K^* + (1-\alpha)G_L^*. \]

Wstawiając do powyższego związku równania (6.20) i (6.29), okazuje się, iż stopę wzrostu produktu w długim okresie można zapisać następująco:

\[
G_Y^* = (1-\alpha)g + \alpha \left(n + \frac{1-\phi + \varphi}{\varphi} g \right) + (1-\alpha) \left(n + \frac{1-\phi}{\varphi} g \right) =
\]

\[
= (1-\alpha)g + \alpha n + \alpha \frac{1-\phi + \varphi}{\varphi} g + (1-\alpha) n + (1-\alpha) \frac{1-\phi}{\varphi} g =
\]

\[
= n + \frac{(1-\alpha)\varphi + (1-\phi + \varphi)\alpha + (1-\phi)(1-\alpha)}{\varphi} g = n + \frac{(1-\alpha)\varphi + (1-\phi)\alpha + \alpha \varphi + (1-\phi)(1-\alpha)}{\varphi} g,
\]

czyli:

\[
G_Y^* = n + \frac{1-\phi + \varphi}{\varphi} g = G_K^*.
\]

Stopy wzrostu wydajności pracy \(y = \frac{Y}{L} \) i technicznego uzbrożenia pracy \(k = \frac{K}{L} \) w każdym momencie \(t \in [0;+\infty) \) można zapisać za pomocą zależności:

\[
\begin{align*}
 g_y(t) &= \frac{\dot{y}(t)}{y(t)} = \frac{\dot{Y}(t)}{Y(t)} - \frac{\dot{L}(t)}{L(t)} = G_Y(t) - G_L(t) \\
 g_k(t) &= \frac{\dot{k}(t)}{k(t)} = \frac{\dot{K}(t)}{K(t)} - \frac{\dot{L}(t)}{L(t)} = G_K(t) - G_L(t),
\end{align*}
\]

(6.31a)

i:

\[
\begin{align*}
 g_y^* &= \lim_{t \to +\infty} g_y(t) = \lim_{t \to +\infty} G_Y(t) - \lim_{t \to +\infty} G_L(t) = G_Y^* - G_L^* \\
 g_k^* &= \lim_{t \to +\infty} g_k(t) = \lim_{t \to +\infty} G_K(t) - \lim_{t \to +\infty} G_L(t) = G_K^* - G_L^*.
\end{align*}
\]

(6.31b)

gdzie \(g_y \) oraz \(g_k \) to (odpowiednio) stopy wzrostu wydajności pracy i technicznego uzbrożenia pracy. Oznaczając przez \(g_y^* \) oraz \(g_k^* \) długookresowe stopy owych zmien­nych makroekonomicznych, stopy te można zapisać jako:

\[
g_y^* = \lim_{t \to +\infty} g_y(t) = \lim_{t \to +\infty} G_Y(t) - \lim_{t \to +\infty} G_L(t) = G_Y^* - G_L^* \]

(6.32a)

oraz:

\[
g_k^* = \lim_{t \to +\infty} g_k(t) = \lim_{t \to +\infty} G_K(t) - \lim_{t \to +\infty} G_L(t) = G_K^* - G_L^*. \]

(6.32b)

Wstawiając do zależności (6.32ab) równania (6.29–6.30), okazuje się, iż:

\[
g_k^* = g_y^* = G_Y^* - G_L^* = n + \frac{1 - \phi + \varphi}{\varphi} g - \left(n + \frac{1 - \phi + \varphi}{\varphi} g \right) = \frac{1 - \phi + \varphi}{\varphi} g - \frac{1 - \phi}{\varphi} g = g, \]

(6.33)

co oznacza, iż w analizowanym tu modelu wzrostu gospodarczego, podobnie jak w oryginalnym modelu Solowa, wydajność pracy i techniczne uzbrojenie pracy rosną według stóp wzrostu równych stopie postępu technicznego w sensie Harroda.

Z równania (6.8) oraz tożsamości \(y = \frac{Y}{L} \) płynie wniosek, iż w każdym momencie \(t \in [0;+\infty) \) płace realne można zapisać wzorem:

\[
w(t) = (1 - \alpha) y(t). \]

Logarytmując stronami logarytmem naturalnym powyższe równanie, dochodzi się do związku:

\[
\forall t \in [0;+\infty) \quad \ln(w(t)) = \ln(1 - \alpha) + \ln(y(t)),
\]

który, po zróżniczkowaniu względem czasu \(t \in [0;+\infty) \), prowadzi do zależności:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{w}(t)}{w(t)} = \frac{\dot{y}(t)}{y(t)}. \]

(6.34)

Z równania (6.34) płynie wniosek, że w każdym momencie \(t \in [0;+\infty) \) płace realne w rosną według tej samej stopy wzrostu co wydajność pracy \(y \). Dlatego też, zgodnie ze związkiem (6.33), w długim okresie (tj. przy \(t \to +\infty \)) płace te rosną według stopy wzrostu równnej stopie harrodiańskiego postępu technicznego \(g \).
6.3. RYNEK PRACY W MODELU TYPU MANKIWA-ROMERA-WEILA

W modelu wzrostu gospodarczego typu Mankiwa-Romera-Weila z endogenicznym rynkiem pracy przyjmuje się następujące założenia:

1. Proces produkcyjny opisany jest przez rozszerzoną funkcję produkcji Cobba-Douglasta postaci:

\[Y(t) = (K(t) H(t))^\alpha (L(t) L(t))^{1-\alpha-\beta}, \quad (6.35) \]

gdzie \(Y, K, H, \Lambda \) oraz \(L > 0 \) to (odpowiednio) wielkość wytworzonego produktu oraz nakłady kapitału rzeczowego, kapitału ludzkiego, wiedzy i liczba pracujących, zaś \(\alpha, \beta, (1-\alpha-\beta) \in (0;1) \) to zarówno elastyczności \(Y \) względem \(K, H, \Lambda \), jak i (na gruncie marginalnej teorii podziału Clarka) udziały nakładów kapitału rzeczowego, ludzkiego i pracy w produkcie.

2. Przyrosty zasobów kapitału rzeczowego i ludzkiego opisane są przez następujące równania różniczkowe:

\[K(t) = s_K Y(t) - \delta_K K(t), \quad (6.36a) \]
\[H(t) = s_H Y(t) - \delta_H K(t), \quad (6.36b) \]

dzia \(s_K \) i \(s_H \) (przy czym \(s_K, s_H \) oraz \(s_K + s_H \in (0;1) \)) to (odpowiednio) stopy inwestycji w zasoby kapitału rzeczowego i kapitału ludzkiego, zaś \(\delta_K \) oraz \(\delta_H \in (0;1) \) są stopami deprecjacji owych zasobów.

3. Zasób wiedzy \(\Lambda \) rośnie wraz stopę postępu technicznego w sensie Harroda \(g > 0 \) i opisany jest przez równanie (6.3).

4. Popyt na pracę wyznaczany jest przez równanie krańcowego produktu pracy:

\[MPL = \frac{\partial Y}{\partial L} \]

z płacami realnymi \(w > 0 \). Zależność tę opisuje równanie (6.4).

5. Funkcja płac realnych opisana jest przez równanie (6.5).

6. Podaż pracy \(N^S \) rośnie według dodatniej stopy wzrostu \(n \) i opisana jest równaniem (6.7).

Ponieważ \(1 - u = \frac{L}{N^S} \), zatem równanie (6.5) zapisać można następująco:

\[w(t) = w_0 (\frac{Y(t)}{L(t)})^\phi \left(\frac{L(t)}{N^S(t)} \right)^\varphi = w_0 (Y(t))^\phi (L(t))^{\phi-\varphi} (N^S(t))^{-\varphi} \]

lub, po uwzględnieniu równania (6.6):

\[w(t) = w_0 N^S_0^{-\varphi} e^{-\varphi n t} (Y(t))^\phi (L(t))^{\phi-\varphi}. \quad (6.37) \]

Z równania (6.35) wynika, iż krańcowy produkt pracy MPL dany jest wzorem:

\[MPL(t) = \frac{\partial Y}{\partial L} = - \frac{\partial}{\partial L} (K^\alpha H^\beta \Lambda^{1-\alpha-\beta} L^{1-\alpha-\beta}). \]
\[(K(t))^\alpha (H(t))^\beta (\Lambda(t))^{1-\alpha-\beta} (1-\alpha-\beta)(L(t))^{\alpha-\beta} = (1-\alpha-\beta)\frac{(K(t))^\alpha (H(t))^\beta (\Lambda(t) \cdot L(t))^{1-\alpha-\beta}}{L(t)},\]
czyli:

\[
\forall t \in [0;+\infty) \quad MPL(t) = (1-\alpha-\beta)\frac{Y(t)}{L(t)}.
\] (6.38)

Ponieważ, zgodnie z równaniem (6.4), w analizowanym tu modelu wzrostu gospodarczego krańcowy produkt pracy MPL równy jest płacom realnym w, więc z równań (6.37–6.38) wynika, iż w każdym momencie \(t \in [0;+\infty) \) zachodzi związek:

\[
(1-\alpha-\beta)\frac{Y(t)}{L(t)} = w_0 N_0^{-\phi} e^{-\phi t} (Y(t))^{\phi} (L(t))^{\phi-\phi},
\]
który implikuje zależność:

\[
\forall t \in [0;+\infty) \quad \left(\frac{L(t)}{1-\phi+\phi} \right)^{1-\phi+\phi} = \frac{(1-\alpha-\beta)N_0^{-\phi}}{w_0} e^{\phi t} (Y(t))^{1-\phi}. \] (6.39)

Logarytmując stronami równanie (6.39) logarytmem naturalnym, uzyskuje się związek:

\[
\forall t \in [0;+\infty) \quad (1-\phi+\phi)\ln(L(t)) = \ln\left(\frac{(1-\alpha-\beta)N_0^{-\phi}}{w_0} \right) + \phi t + (1-\phi)\ln(Y(t)),
\]
który, po różniczkowaniu względem czasu \(t \in [0;+\infty) \), sprowadza się do zależności:

\[
\forall t \in [0;+\infty) \quad (1-\phi+\phi)\frac{\dot{L}(t)}{L(t)} = \phi n + (1-\phi)\frac{\dot{Y}(t)}{Y(t)}
\]
lub, po podstawieniach \(G_L \equiv \frac{\dot{L}}{L} \) i \(G_Y \equiv \frac{\dot{Y}}{Y} \), gdzie \(G_L \) to stopa wzrostu liczby pracujących, zaś \(G_Y \) – stopa wzrostu strumienia produktu:

\[
\forall t \in [0;+\infty) \quad (1-\phi+\phi)G_L(t) = \phi n + (1-\phi)G_Y(t).
\]

Powyższe równanie można również zapisać następująco:

\[
\forall t \in [0;+\infty) \quad G_L(t) = \frac{\phi}{1-\phi+\phi} n + \frac{1-\phi}{1-\phi+\phi} G_Y(t).
\] (6.40)

Logarytmując stronami funkcję produkcji (6.35), okazuje się, iż można ją zapisać wzorem:

\[
\forall t \in [0;+\infty) \quad \ln(Y(t)) = \alpha \ln(K(t)) + \beta \ln(H(t)) + (1-\alpha-\beta)(\ln(\Lambda(t)) + \ln(L(t)))
\]
lub, po różniczkowaniu względem czasu \(t \in [0;+\infty) \):
\[\forall t \in [0;+\infty) \quad G_Y(t) = \frac{\dot{Y}(t)}{Y(t)} = \alpha \frac{\dot{K}(t)}{K(t)} + \beta \frac{\dot{H}(t)}{H(t)} + (1 - \alpha - \beta) \left(\frac{\dot{A}(t)}{A(t)} + \frac{\dot{L}(t)}{L(t)} \right) = (6.41) \]

gdzie \(G_K = \frac{\dot{K}}{K} \) i \(G_H = \frac{\dot{H}}{H} \) to stopy wzrostu (odpowiednio) kapitału rzeczowego i ludzkiego, zaś na mocy równania (6.3) \(\frac{\dot{A}}{A} = g \). Po podstawieniu równania (6.41) do (6.40) uzyskuje się związek:

\[\forall t \in [0;+\infty) \quad G_L(t) = \frac{\varphi n}{1 - \phi + \varphi} + \frac{1 - \phi}{1 - \phi + \varphi} \left[\alpha G_K(t) + \beta G_H(t) + (1 - \alpha - \beta)(g + G_L(t)) \right], \]

który można zapisać również następująco:

\[\forall t \in [0;+\infty) \quad (1 - \phi + \varphi)G_L(t) = \varphi n + \alpha(1 - \phi)G_K(t) + \beta(1 - \phi)G_H(t) + \]

\[+ (1 - \alpha - \beta)(1 - \phi)g + (1 - \alpha - \beta)(1 - \phi)G_L(t), \]

a stąd:

\[\forall t \in [0;+\infty) \quad [1 - \phi + \varphi - (1 - \alpha - \beta)(1 - \phi)]G_L(t) = \]

\[= \varphi n + (1 - \alpha - \beta)(1 - \phi)g + \alpha(1 - \phi)G_K(t) + \beta(1 - \phi)G_H(t), \]

czyli:

\[\forall t \in [0;+\infty) \quad [(\alpha + \beta)(1 - \phi) + \varphi]G_L(t) = \]

\[= \varphi n + (1 - \alpha - \beta)(1 - \phi)g + \alpha(1 - \phi)G_K(t) + \beta(1 - \phi)G_H(t), \]

co implikuje równanie:

\[\forall t \in [0;+\infty) \quad G_L(t) = \frac{\varphi n + (1 - \alpha - \beta)(1 - \phi)g}{(\alpha + \beta)(1 - \phi) + \varphi} + \frac{\alpha(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \varphi} G_K(t) + \]

\[+ \frac{\beta(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \varphi} G_H(t). \]

Równanie (6.42) stanowi rozszerzenie związku (6.15) na gospodarkę typu Mankiwa-Romera-Weila.

Z równania tego wynika, co następuje:

- Stopa wzrostu liczby pracujących \(G_L \) w analizowanym w tej części skryptu modelu wzrostu gospodarczego zależna jest m.in. od stopy wzrostu podaży pracy \(n \), stopy postępu technicznego w sensie Harroda g oraz od stóp wzrostu zasobów kapitału rzeczowego \(G_K \) i ludzkiego \(G_H \).

- Ponieważ:
$
\frac{\partial G_L}{\partial n} = \frac{\partial}{\partial n}\left(\frac{\varphi n + (1 - \alpha - \beta)(1 - \phi)g}{(\alpha + \beta)(1 - \phi) + \varphi} + \frac{\alpha(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \varphi} G_K + \frac{\beta(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \varphi} G_K \right) = \\
= \frac{\varphi}{(\alpha + \beta)(1 - \phi) + \varphi} > 0
$

oraz:

$
\frac{\partial G_L}{\partial g} = \frac{\partial}{\partial g}\left(\frac{\varphi n + (1 - \alpha - \beta)(1 - \phi)g}{(\alpha + \beta)(1 - \phi) + \varphi} + \frac{\alpha(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \varphi} G_K + \frac{\beta(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \varphi} G_K \right) = \\
= \frac{(1 - \alpha - \beta)(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \varphi} > 0,
$

zatem wysokiej stopie wzrostu podaży pracy i wysokiej stopie harodiańskiego postępu technicznego odpowiada wysoka stopa wzrostu liczby pracujących.

- Również im wyższe są stopy wzrostu zasobów kapitału rzeczowego i ludzkiego, tym wyższa jest stopa wzrostu liczby pracujących w rozważanym tu modelu wzrostu gospodarczego. Wynika to stąd, iż:

$
\frac{\partial G_L}{\partial K} = \frac{\partial}{\partial K}\left(\frac{\varphi n + (1 - \alpha - \beta)(1 - \phi)g}{(\alpha + \beta)(1 - \phi) + \varphi} + \frac{\alpha(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \varphi} G_K + \frac{\beta(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \varphi} G_K \right) = \\
= \frac{\alpha(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \varphi} > 0
$

i:

$
\frac{\partial G_L}{\partial H} = \frac{\partial}{\partial H}\left(\frac{\varphi n + (1 - \alpha - \beta)(1 - \phi)g}{(\alpha + \beta)(1 - \phi) + \varphi} + \frac{\alpha(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \varphi} G_K + \frac{\beta(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \varphi} G_K \right) = \\
= \frac{\beta(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \varphi} > 0.
$

Wstawiając funkcję produkcji (6.35) do równań różniczkowych (6.36ab), dochodzi się do następującego układu równań różniczkowych:

\[
\begin{align*}
\dot{K}(t) &= s_K (K(t))^\alpha (H(t))^\beta (\Lambda(t) \cdot L(t))^{1-\alpha-\beta} - \delta_K K(t) \\
\dot{H}(t) &= s_K (K(t))^\alpha (H(t))^\beta (\Lambda(t) \cdot L(t))^{1-\alpha-\beta} - \delta_H H(t)
\end{align*}
\]

Uwzględniając zaś to, że $\Lambda(t) = \Lambda_0 e^{\gamma t}$, powyższy układ równań przedstawia się następująco:

\[
\begin{align*}
\dot{K}(t) &= s_K \Lambda_0^{1-\alpha-\beta} e^{(1-\alpha-\beta)t} (K(t))^\alpha (H(t))^\beta (L(t))^{1-\alpha-\beta} - \delta_K K(t) \\
\dot{H}(t) &= s_K \Lambda_0^{1-\alpha-\beta} e^{(1-\alpha-\beta)t} (K(t))^\alpha (H(t))^\beta (L(t))^{1-\alpha-\beta} - \delta_H H(t)
\end{align*}
\]

Dzieląc stronami równania układu równań różniczkowych (6.43) przez (odpowiednio) $K > 0$ i $H > 0$, uzyskuje się:
\[G_K(t) = \frac{\dot{K}(t)}{K(t)} = s_K \Lambda_0^{1-\alpha-\beta} e^{(1-\alpha-\beta)gt} (K(t))^{\alpha-1} (H(t))^\beta (L(t))^{1-\alpha-\beta} - \delta_K \]
\[G_H(t) = \frac{\dot{H}(t)}{H(t)} = s_K \Lambda_0^{1-\alpha-\beta} e^{(1-\alpha-\beta)gt} (K(t))^{\alpha} (H(t))^{\beta-1} (L(t))^{1-\alpha-\beta} - \delta_H \]

lub:
\[G_K(t) + \delta_K = s_K \Lambda_0^{1-\alpha-\beta} e^{(1-\alpha-\beta)gt} (K(t))^{\alpha-1} (H(t))^\beta (L(t))^{1-\alpha-\beta} \]
\[G_H(t) + \delta_H = s_K \Lambda_0^{1-\alpha-\beta} e^{(1-\alpha-\beta)gt} (K(t))^{\alpha} (H(t))^{\beta-1} (L(t))^{1-\alpha-\beta} \] \quad (6.44)

Ponieważ prawe strony układu równań (6.44) są dodatnie dla każdego \(K, H \) i \(L > 0 \), zatem również lewe strony owych równań muszą być dodatnie. Płynie stąd wniosek, iż w każdym momencie \(t \in [0;+\infty) \) \(G_K(t) > -\delta_K \) oraz \(G_H(t) > -\delta_H \).

Logarytmując stronami równania układu (6.44), można je zapisać następująco:
\[\ln(G_K(t) + \delta_K) = \ln(s_K \Lambda_0^{1-\alpha-\beta}) + (1-\alpha-\beta)g + (1-\alpha-\beta)\ln(K(t)) + (1-\alpha-\beta)\ln(H(t)) + (1-\alpha-\beta)\ln(L(t)) \]
\[\ln(G_H(t) + \delta_H) = \ln(s_K \Lambda_0^{1-\alpha-\beta}) + (1-\alpha-\beta)g + (1-\alpha-\beta)\ln(K(t)) + (1-\alpha-\beta)\ln(H(t)) + (1-\alpha-\beta)\ln(L(t)) \]

lub (po zróżniczkowaniu względem czasu \(t \in [0;+\infty) \)):
\[\frac{\dot{G}_K(t)}{G_K(t) + \delta_K} = (1-\alpha-\beta)g - (1-\alpha-\beta)\frac{\dot{K}(t)}{K(t)} + \beta \frac{\dot{H}(t)}{H(t)} + (1-\alpha-\beta)\frac{\dot{L}(t)}{L(t)} \]
\[\frac{\dot{G}_H(t)}{G_H(t) + \delta_H} = (1-\alpha-\beta)g + (1-\alpha-\beta)\frac{\dot{K}(t)}{K(t)} - (1-\alpha-\beta)\frac{\dot{H}(t)}{H(t)} + (1-\alpha-\beta)\frac{\dot{L}(t)}{L(t)} \]

czyli, po uwzględnieniu tożsamości \(G_K = \frac{\dot{K}}{K} \), \(G_H = \frac{\dot{H}}{H} \) i \(G_L = \frac{\dot{L}}{L} \):
\[\frac{\dot{G}_K(t)}{G_K(t) + \delta_K} = (1-\alpha-\beta)g - (1-\alpha)G_K(t) + \beta G_H(t) + (1-\alpha-\beta)G_L(t) \]
\[\frac{\dot{G}_H(t)}{G_H(t) + \delta_H} = (1-\alpha-\beta)g + \alpha G_K(t) - (1-\beta)G_H(t) + (1-\alpha-\beta)G_L(t) \] \quad (6.45)

Wstawiając do pierwszego z równań układu równań różniczkowych (6.45) związek (6.42), dochodzi się do zależności:
\[\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t) + \delta_K} = (1-\alpha-\beta)g - (1-\alpha)G_K(t) + \beta G_H(t) + (1-\alpha-\beta)G_L(t) \]
\[+ (1-\alpha-\beta) \left(\frac{\phi n + (1-\alpha-\beta)(1-\phi)}{(\alpha + \beta)(1-\phi) + \varphi} G_K(t) + \frac{\alpha(1-\phi)}{(\alpha + \beta)(1-\phi) + \varphi} G_K(t) + \frac{\beta (1-\phi)}{(\alpha + \beta)(1-\phi) + \varphi} G_H(t) \right) \]

a stąd:
\[\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t) + \delta_K} = (1-\alpha-\beta)g - (1-\alpha)G_K(t) + \beta G_H(t) + (1-\alpha-\beta)G_L(t) \]
czyli:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t) + \delta_K} = (1 - \alpha - \beta) \frac{\varphi n + (1 - \alpha - \beta)(1 - \phi)g + (\alpha + \beta)(1 - \phi)g + \phi g + (1 - \alpha - \beta)\frac{\alpha(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \phi} G_K(t) + \\
+ (1 - \alpha - \beta)\frac{\beta(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \phi} G_H(t),
\]

co implikuje:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t) + \delta_K} = (1 - \alpha - \beta) \frac{\varphi n + (1 - \alpha - \beta)(1 - \phi)g + (\alpha + \beta)(1 - \phi)g + \phi g + (1 - \alpha - \beta)\frac{\alpha(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \phi} G_K(t) + \\
+ (1 - \alpha - \beta)\frac{\alpha(1 - \phi) - (1 - \alpha)\alpha + \beta)(1 - \phi) - (1 - \alpha)\alpha \phi G_K(t) + \frac{\beta(1 - \phi) + \beta \phi + (1 - \alpha - \beta)\beta(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \phi} G_H(t),
\]

Powyższy związek można również zapisać następująco:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t) + \delta_K} = (1 - \alpha - \beta) \frac{\varphi n + (1 - \alpha - \beta)(1 - \phi)g + (\alpha + \beta)(1 - \phi)g + \phi g + (1 - \alpha - \beta)\frac{\alpha(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \phi} G_K(t) + \\
+ (1 - \alpha - \beta)\frac{\alpha(1 - \phi) - (1 - \alpha)\alpha + \beta)(1 - \phi) - (1 - \alpha)\alpha \phi G_K(t) + \frac{\beta(1 - \phi) + \beta \phi + (1 - \alpha - \beta)\beta(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \phi} G_H(t),
\]
a stąd:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t) + \delta_K} = (1 - \alpha - \beta) \frac{\varphi n + (1 - \alpha - \beta)(1 - \phi)g + (\alpha + \beta)(1 - \phi)g + \phi g + (1 - \alpha - \beta)\frac{\alpha(1 - \phi)}{(\alpha + \beta)(1 - \phi) + \phi} G_K(t) + \\
- \frac{\beta(1 - \phi) + (1 - \alpha)\phi G_K(t) + \frac{\beta(1 - \phi + \phi)}{(\alpha + \beta)(1 - \phi) + \phi} G_H(t),
\]
lub:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t) + \delta_K} = (1 - \alpha - \beta)\frac{\varphi n + (1 - \phi + \phi)g - (\beta(1 - \phi) + (1 - \alpha)\phi) G_K(t) + \beta(1 - \phi + \phi) G_H(t)}{(\alpha + \beta)(1 - \phi) + \phi}
\]

Postępując analogicznie z drugim z równań układu równań różniczkowych (6.45), uzyskuje się zależność:
\[\forall t \in [0; +\infty) \quad \frac{\dot{G}_H(t)}{G_H(t) + \delta_H} = \frac{(1 - \alpha - \beta)(\psi n + (1 - \phi + \varphi)g) + \alpha(1 - \phi + \varphi)G_K(t) - (\alpha(1 - \phi) + (1 - \beta)\varphi)G_H(t)}{(\alpha + \beta)(1 - \phi) + \varphi}. \] (6.46b)

Z równania (6.46a) wynika, że:
\[\dot{G}_K(t) \geq 0 \iff (1 - \alpha - \beta)(\psi n + (1 - \phi + \varphi)g) - (\beta(1 - \phi) + (1 - \alpha)\varphi)G_K(t) + (\beta(1 - \phi + \varphi)G_H(t) \geq 0, \]
a stąd:
\[(\beta(1 - \phi) + (1 - \alpha)\varphi)G_K(t) \leq (1 - \alpha - \beta)(\psi n + (1 - \phi + \varphi)g) + \beta(1 - \phi + \varphi)G_H(t), \]
czyli:
\[\dot{G}_K(t) \geq 0 \iff G_K(t) \leq \frac{(1 - \alpha - \beta)(\psi n + (1 - \phi + \varphi)g)}{\beta(1 - \phi) + (1 - \alpha)\varphi} + \frac{\beta(1 - \phi + \varphi)}{\beta(1 - \phi) + (1 - \alpha)\varphi}G_H(t). \] (6.47a)

oraz (analogicznie):
\[\dot{G}_K(t) \leq 0 \iff G_K(t) \geq \frac{(1 - \alpha - \beta)(\psi n + (1 - \phi + \varphi)g)}{\beta(1 - \phi) + (1 - \alpha)\varphi} + \frac{\beta(1 - \phi + \varphi)}{\beta(1 - \phi) + (1 - \alpha)\varphi}G_H(t). \] (6.47b)

Związki (6.47ab) prowadzą do następujących wniosków:
- Linia podziału \(\dot{G}_K = 0 \) diagramu fazowego układu złożonego z równań różniczkowych (6.46ab) dana jest wzorem:
\[G_K(G_H)_{\dot{G}_K = 0} = \frac{(1 - \alpha - \beta)(\psi n + (1 - \phi + \varphi)g)}{\beta(1 - \phi) + (1 - \alpha)\varphi} + \frac{\beta(1 - \phi + \varphi)}{\beta(1 - \phi) + (1 - \alpha)\varphi}G_H. \] (6.48)

- Powyżej (poniżej) linii podziału (6.48), w układzie współrzędnych, w którym na osi poziomej odkłada się zmienną \(G_H \), na pionowej zaś \(G_K \), przyrosty stopy wzrostu kapitału rzeczowego \(\dot{G}_K \) są ujemne (dodatnie).
- Z równania (6.48) wynika, iż:
\[G_H = 0 \Rightarrow G_K\big|_{\dot{G}_K = 0} = \frac{(1 - \alpha - \beta)(\psi n + (1 - \phi + \varphi)g)}{\beta(1 - \phi) + (1 - \alpha)\varphi}, \]
co oznacza, iż jeśli stopy wzrostu kapitału ludzkiego równa jest zeru, to stopy wzrostu zasobu kapitału rzeczowego, przy której \(\dot{G}_K = 0 \), równa jest \(\frac{(1 - \alpha - \beta)(\psi n + (1 - \phi + \varphi)g)}{\beta(1 - \phi) + (1 - \alpha)\varphi} \).
- Ponieważ:
\[\frac{dG_K}{dG_H}\bigg|_{G_K = 0} = \frac{d}{dG_H}\left(\frac{(1 - \alpha - \beta)(\psi n + (1 - \phi + \varphi)g)}{\beta(1 - \phi) + (1 - \alpha)\varphi} + \frac{\beta(1 - \phi + \varphi)}{\beta(1 - \phi) + (1 - \alpha)\varphi}G_H \right) = \frac{\beta(1 - \phi + \varphi)}{\beta(1 - \phi) + (1 - \alpha)\varphi} > 0, \]
zatem linia podziału \(\dot{G}_K = 0 \) jest dodatnio nachylona.
Postępując analogicznie z równaniem (6.46b), okazuje się, że:

\[
\dot{G}_H(t) \geq 0 \iff G_H(t) \leq \frac{(1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g)}{\alpha(1 - \phi) + (1 - \alpha)\varphi} + \frac{\alpha(1 - \phi + \varphi)}{\alpha(1 - \phi) + (1 - \beta)\varphi} G_K(t) \quad (6.49a)
\]

i:

\[
\dot{G}_H(t) \leq 0 \iff G_H(t) \geq \frac{(1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g)}{\alpha(1 - \phi) + (1 - \alpha)\varphi} + \frac{\alpha(1 - \phi + \varphi)}{\alpha(1 - \phi) + (1 - \beta)\varphi} G_K(t), \quad (6.49b)
\]

co prowadzi do równania linii podziału \(\dot{G}_H = 0 \) danej wzorem:

\[
G_H(G_K)_{G_K=0} = \frac{(1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g)}{\alpha(1 - \phi) + (1 - \alpha)\varphi} + \frac{\alpha(1 - \phi + \varphi)}{\alpha(1 - \phi) + (1 - \beta)\varphi} G_K. \quad (6.50)
\]

Z zależności (6.49ab) oraz (6.50) wynika, co następuje:

- Na prawo (na lewo) od rozważanej tu linii podziału przyrosty stopy wzrostu zasobu kapitału ludzkiego \(\dot{G}_H \) są ujemne (dodatnie).
- Jeśli stopa wzrostu zasobu kapitału rzeczowego równa jest zeru, to stopa wzrostu zasobu kapitału ludzikiego, przy której \(\dot{G}_H = 0 \), równa jest wielkości \(\frac{(1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g)}{\alpha(1 - \phi) + (1 - \alpha)\varphi} \).
- Linia podziału \(\dot{G}_H = 0 \) jest dodatnio nachycona względem osi \(G_K \). Wynika to stąd, iż:
\[
\left. \frac{dG_H}{dG_K} \right|_{G_K = 0} = \frac{d}{dG_K} \left(\frac{(1 - \alpha - \beta)(\phi n + (1 - \phi + \phi)g)}{\alpha(1 - \phi) + (1 - \alpha)\phi} + \frac{\alpha(1 - \phi + \phi)}{\alpha(1 - \phi) + (1 - \beta)\phi} G_K \right) = \\
= \frac{\alpha(1 - \phi + \phi)}{\alpha(1 - \phi) + (1 - \beta)\phi} > 0.
\]

- Co więcej, ponieważ:

\[
\left. \frac{dG_K}{dG_H} \right|_{G_H = 0} = \frac{1}{(dG_H / dG_K)_{G_K = 0}} = \frac{\alpha(1 - \phi) + (1 - \beta)\phi}{\alpha(1 - \phi + \phi)},
\]

więc:

\[
\left. \frac{dG_K}{dG_H} \right|_{G_K = 0} - \left. \frac{dG_K}{dG_H} \right|_{G_H = 0} = \frac{\beta(1 - \phi + \phi)}{\beta(1 - \phi) + (1 - \alpha)\phi} - \frac{\alpha(1 - \phi) + (1 - \beta)\phi}{\alpha(1 - \phi + \phi)} = \\
= \alpha\beta(1 - \phi + \phi)^2 - \alpha\beta(1 - \phi)^2 - \alpha(1 - \alpha)(1 - \phi)\phi - \beta(1 - \beta)(1 - \phi)\phi - (1 - \alpha)(1 - \beta)\phi^2 = \\
= \frac{\alpha\beta[(1 - \phi)^2 + 2(1 - \phi)\phi + \phi^2 - (1 - \phi)^2] - (1 - \alpha + \beta + \beta^2)(1 - \phi)\phi - (1 - \alpha)(1 - \beta)\phi^2}{(\beta(1 - \phi) + (1 - \alpha)\phi)\alpha(1 - \phi + \phi)} = \\
= \frac{\alpha\beta(2(1 - \phi) + \phi)(\alpha + \beta - \alpha^2 - \beta^2)(1 - \phi)\phi - (1 - \alpha)(1 - \beta)\phi^2}{(\beta(1 - \phi) + (1 - \alpha)\phi)\alpha(1 - \phi + \phi)} = \\
= \frac{\alpha\phi(2(1 - \phi) + \phi)(\alpha + \beta - \alpha^2 - \beta^2)(1 - \phi) - (1 - \alpha - \beta - \alpha\beta)\phi}{(\beta(1 - \phi) + (1 - \alpha)\phi)\alpha(1 - \phi + \phi)} = \\
= \frac{2\alpha\beta(1 - \phi) + \alpha\beta\phi - (\alpha + \beta)(1 - \phi) + (\alpha^2 + \beta^2)(1 - \phi) - (1 - \alpha - \beta + \alpha\beta)\phi}{(\beta(1 - \phi) + (1 - \alpha)\phi)\alpha(1 - \phi + \phi)} = \\
= \frac{\phi(1 - \phi)(2\alpha\beta - \alpha - \beta + \alpha^2 + \beta^2) - (1 - \alpha - \beta + \alpha\beta - \alpha)\phi}{(\beta(1 - \phi) + (1 - \alpha)\phi)\alpha(1 - \phi + \phi)} = \\
= \frac{\phi((\alpha + \beta)^2 - (\alpha + \beta)) - (1 - \alpha - \beta)\phi}{(\beta(1 - \phi) + (1 - \alpha)\phi)\alpha(1 - \phi + \phi)} = \\
= -\frac{\phi(1 - \alpha - \beta)(\alpha + \beta)(1 - \phi) + (1 - \alpha - \beta)\phi}{(\beta(1 - \phi) + (1 - \alpha)\phi)\alpha(1 - \phi + \phi)} < 0,
\]

co oznacza, iż:

\[
\left. \frac{dG_K}{dG_H} \right|_{G_K = 0} - \left. \frac{dG_K}{dG_H} \right|_{G_H = 0} < 0 \Rightarrow \left. \frac{dG_K}{dG_H} \right|_{G_K = 0} < \left. \frac{dG_K}{dG_H} \right|_{G_H = 0},
\]
czyli linia podziału $\dot{G}_H = 0$ jest bardziej stroma od linii $\dot{G}_K = 0$, a więc linie te przecinają się przy $G_K > 0$ i $G_H > 0$.

- Linia podziału $\dot{G}_H = 0$ przedstawiona jest na rysunku 6.3.

\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{rysunek6_3}
\caption{Linia podziału $\dot{G}_H = 0$}
\end{figure}

Z prowadzonych tu rozważań płynie wniosek, że diagram fazowy układu równań różniczkowych (6.46ab) można zilustrować tak, jak ma to miejsce na rysunku 6.4.

\begin{figure}
\centering
\includegraphics[width=0.6\textwidth]{rysunek6_4}
\caption{Diagram fazowy układu równań różniczkowych (6.46ab)}
\end{figure}

Z rysunku 6.4 wynika, iż diagram fazowy analizowanego układu równań różniczkowych jest diagramem z węzłem stabilnym. Węzeł ów wyznacza rozwiązanie układu
równań różniczkowych (6.46ab) przy $\hat{G}_K = 0$ i $\hat{G}_H = 0$. Dlatego też jest on rozwiązaniem następującego układu równań:

\[
\begin{align*}
(1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g) - (\beta(1 - \phi) + (1 - \alpha)\varphi)G_K + \beta(1 - \phi + \varphi)G_H &= 0 \\
(1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g) + \alpha(1 - \phi + \varphi)G_K - (\alpha(1 - \phi) + (1 - \beta)\varphi)G_H &= 0
\end{align*}
\]

a stąd:

\[
\begin{align*}
(\beta(1 - \phi) + (1 - \alpha)\varphi)G_K - \beta(1 - \phi + \varphi)G_H &= (1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g) \\
- \alpha(1 - \phi + \varphi)G_K + (\alpha(1 - \phi) + (1 - \beta)\varphi)G_H &= (1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g)
\end{align*}
\]

lub w postaci macierzowej:

\[
\begin{bmatrix}
\beta(1 - \phi) + (1 - \alpha)\varphi & -\beta(1 - \phi + \varphi) \\
-\alpha(1 - \phi + \varphi) & \alpha(1 - \phi) + (1 - \beta)\varphi
\end{bmatrix}
\begin{bmatrix}
G_K \\
G_H
\end{bmatrix}
= \begin{bmatrix}
(1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g) \\
(1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g)
\end{bmatrix}.
\]

Układ równań (6.51) można rozwiązać, korzystając z metody wyznaczników Cramera. Kolejne wyznaczniki Cramera owego układu równań dane są wzorami:

\[
W = \begin{vmatrix}
\beta(1 - \phi) + (1 - \alpha)\varphi & -\beta(1 - \phi + \varphi) \\
-\alpha(1 - \phi + \varphi) & \alpha(1 - \phi) + (1 - \beta)\varphi
\end{vmatrix}
= (\beta(1 - \phi) + (1 - \alpha)\varphi)(\alpha(1 - \phi) + (1 - \beta)\varphi) - \alpha\beta(1 - \phi + \varphi)^2 = \\
= \alpha\beta(1 - \phi)^2 + \beta(1 - \beta)(1 - \phi)\varphi + \alpha(1 - \alpha)(1 - \phi)\varphi + (1 - \alpha)(1 - \beta)\varphi^2 + \\
- \alpha\beta(1 - \phi)^2 - 2\alpha\beta(1 - \phi)\varphi - \alpha\beta\varphi^2 = (1 - \phi)\varphi(\beta(1 - \beta) + \alpha(1 - \alpha) - 2\alpha\beta) + \\
+ \varphi^2(1 - \alpha - \beta + \alpha\beta - \alpha\beta) = (1 - \phi)\varphi(\beta - \beta^2 + \alpha - \alpha^2 - 2\alpha\beta) + \varphi^2(1 - \alpha - \beta) = \\
= (1 - \phi)\varphi(\alpha + \beta - (\alpha + \beta)^2) + \varphi^2(1 - \alpha - \beta) = (\alpha + \beta)(1 - \phi)\varphi(1 - \alpha - \beta) + \varphi^2(1 - \alpha - \beta),
\]

cyli:

\[
W = (1 - \alpha - \beta)\varphi((\alpha + \beta)(1 - \phi) + \varphi)
\]

oraz:

\[
W_K = \begin{vmatrix}
(1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g) - \beta(1 - \phi + \varphi) \\
(1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g) \alpha(1 - \phi) + (1 - \beta)\varphi
\end{vmatrix}
= (1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g)(\alpha(1 - \phi) + (1 - \beta)\varphi) + \\
+ (1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g)(\beta(1 - \phi + \varphi)) = \\
= (1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g)(\alpha(1 - \phi) + (1 - \beta)\varphi + \beta(1 - \phi + \varphi)),
\]

a stąd:

\[
W_K = (1 - \alpha - \beta)(\phi n + (1 - \phi + \varphi)g)((\alpha + \beta)(1 - \phi) + \varphi)
\]
i (analogicznie):

\[W_H = \frac{\beta(1-\phi) + (1-\alpha)\varphi}{1-\alpha(1-\phi + \varphi)} \cdot \frac{(1-\alpha - \beta)(\varphi n + (1-\phi + \varphi)g)}{(1-\alpha - \beta)(\varphi n + (1-\phi + \varphi)g)} = W_K. \]

(6.52c)

Z równań (6.52abc) wynika, że długookresowe stopy wzrostu zasobu kapitału rzeczowego \(G_K^* \) i ludzkiego \(G_H^* \) w analizowanym tu modelu wzrostu gospodarczego dane są następującymi wzorami:

\[G_K^* = \frac{dG_K^*}{dn} = \frac{\varphi n + (1-\phi + \varphi)g}{(1-\alpha - \beta)(\varphi n + (1-\phi + \varphi)g)} = \frac{(1-\alpha - \beta)(\varphi n + (1-\phi + \varphi)g)}{(1-\alpha - \beta)(\varphi n + (1-\phi + \varphi)g)} = \frac{\varphi n + (1-\phi + \varphi)g}{\varphi} \]

(6.53a)

i:

\[G_H^* = \frac{W_H}{W} = \frac{\varphi n + (1-\phi + \varphi)g}{\varphi} = G_K^*. \]

(6.53b)

Związki (6.53ab) prowadzą do następujących wniosków:

- Długookresowe stopy wzrostu zasóbów kapitału rzeczowego \(G_K^* \) i ludzkiego \(G_H^* \), w analizowanym w tej części skryptu modelu wzrostu gospodarczego z endogenicznym rynkiem pracy, zależą od stopy wzrostu podaży pracy \(n \), stopy harrodianckiego postępu technicznego \(g \) oraz elastyczności \(\phi \) i \(\varphi \) funkcji płac realnych.

- Ponieważ:

\[\frac{\partial G_K^*}{\partial n} = \frac{\partial G_H^*}{\partial n} = \frac{\partial}{\partial n} \left(\frac{\varphi n + (1-\phi + \varphi)g}{\varphi} \right) = 1 \]

i:

\[\frac{\partial G_K^*}{\partial g} = \frac{\partial G_H^*}{\partial g} = \frac{\partial}{\partial g} \left(\frac{\varphi n + (1-\phi + \varphi)g}{\varphi} \right) = \frac{1-\phi + \varphi}{\varphi} > 0, \]

zatem wysokiej stopie wzrostu podaży pracy i wysokiej stopie postępu technicznego w sensie Harroda odpowiadają wysokie stopy wzrostu zasóbów \(K \) i \(H \).

- Stąd zaś, że:

\[\frac{\partial G_K^*}{\partial \phi} = \frac{\partial G_H^*}{\partial \phi} = \frac{\partial}{\partial \phi} \left(\frac{\varphi n + (1-\phi + \varphi)g}{\varphi} \right) = -\frac{g}{\varphi} < 0 \]

oraz:

\[\frac{\partial G_K^*}{\partial \varphi} = \frac{\partial G_H^*}{\partial \varphi} = \frac{\partial}{\partial \varphi} \left(\frac{\varphi n + (1-\phi + \varphi)g}{\varphi} \right) = \frac{\partial}{\partial \varphi} \left(\frac{n + (1-\phi)g + g}{\varphi} \right) = -\frac{(1-\phi)g}{\varphi^2} < 0, \]

płynie wniosek, że wysokim elastycznościom funkcji płac realnych towarzyszą niskie stopy wzrostu rozważanych tu zmiennych makroekonomicznych w długim okresie.

Oznaczając przez \(G_L^* \) długookresową stopę wzrostu liczby pracujących oraz korzystając z równania (6.42), stopę tę można zapisać następująco:
\[G_L^* = \frac{\varphi n + (1 - \alpha - \beta + 1 - \phi) g}{\alpha + \beta (1 - \phi) + \varphi} + \frac{\alpha (1 - \phi)}{\alpha + \beta (1 - \phi) + \varphi} G_K^* + \frac{\beta (1 - \phi)}{\alpha + \beta (1 - \phi) + \varphi} G_H^*. \]

Po wstawieniu do powyższego związku zależności (6.53ab) okazuje się, iż:

\[G_L^* = \frac{\varphi n + (1 - \alpha - \beta + 1 - \phi) g}{\alpha + \beta (1 - \phi) + \varphi} + \frac{\alpha (1 - \phi)}{\alpha + \beta (1 - \phi) + \varphi} \cdot \varphi n + (1 - \phi + \varphi) g + \frac{\beta (1 - \phi)}{\alpha + \beta (1 - \phi) + \varphi} \cdot \varphi n + (1 - \phi + \varphi) g = \]

\[= \frac{\varphi n + (1 - \alpha - \beta + 1 - \phi) g + (\alpha + \beta) (1 - \phi) (\varphi n + (1 - \phi + \varphi) g)}{\alpha + \beta (1 - \phi) + \varphi} = \frac{\varphi^2 n + (1 - \alpha - \beta + 1 - \phi) g + (\alpha + \beta) (1 - \phi) (\varphi n + (1 - \phi + \varphi) g)}{\alpha + \beta (1 - \phi) + \varphi} = \]

czyli:

\[G_L^* = \frac{\varphi n + (1 - \phi) g}{\varphi}. \] (6.54)

Z równania (6.54) wynika, co następuje:

- Długookresowa stopa wzrostu liczby pracujących zależna jest od tych samych czynników, które determinują długookresowe stopy wzrostu zasobów kapitału rzeczowego i ludzkiego.
- Im wyższe są stopa wzrostu podaży pracy i stopa postępu technicznego w sensie Harroda \(g \), tym wyższa jest stopa wzrostu liczby pracujących w długim okresie. Wynika to stąd, iż:

\[\frac{\partial G_L^*}{\partial n} = \frac{\partial}{\partial n} \left(\frac{\varphi n + (1 - \phi) g}{\varphi} \right) = 1 \]

i:

\[\frac{\partial G_L^*}{\partial g} = \frac{\partial}{\partial g} \left(\frac{\varphi n + (1 - \phi) g}{\varphi} \right) = \frac{1 - \phi}{\varphi} > 0. \]

- Ponieważ:

\[\frac{\partial G_L^*}{\partial \phi} = \frac{\partial}{\partial \phi} \left(\frac{\varphi n + (1 - \phi) g}{\varphi} \right) = -\frac{g}{\varphi} < 0 \]
oraz:

$$\frac{\partial G^*_L}{\partial \varphi} = \frac{\partial}{\partial \varphi} \left(\frac{\varphi n + (1-\phi)g}{\varphi} \right) = \frac{\partial}{\partial \varphi} \left(n + \frac{(1-\phi)g}{\varphi} \right) = -\frac{(1-\phi)g}{\varphi^2} < 0,$$

więc wysokim elastycznościom funkcji płac realnych odpowiada niska stopa wzrostu liczby pracujących w analizowanym tu modelu wzrostu gospodarczego.

Z równania (6.41) wynika, że stopę wzrostu produktu w długim okresie, oznaczaną przez \(G_Y\), można zapisać wzorem:

$$G^*_Y = \alpha G^*_K + \beta G^*_H + (1 - \alpha - \beta)(g + G^*_L).$$

Wstawiając do powyższego równania zależności (6.53ab) oraz (6.54), dochodzi się do związku:

$$G^*_Y = \alpha \frac{\varphi n + (1-\phi + \varphi)g}{\varphi} + \beta \frac{\varphi n + (1-\phi + \varphi)g}{\varphi} + (1 - \alpha - \beta)\left(g + \frac{\varphi n + (1-\phi)g}{\varphi} \right) =$$

$$= (\alpha + \beta)\frac{\varphi n + (1-\phi + \varphi)g}{\varphi} + (1 - \alpha - \beta)\frac{\varphi n + (1-\phi + \varphi)g}{\varphi} =$$

$$= \frac{(\alpha + \beta)\varphi n + (\alpha + \beta)(1-\phi + \varphi)g + (1 - \alpha - \beta)\varphi n + (1 - \alpha - \beta)(1-\phi + \varphi)g}{\varphi},$$

czyli:

$$G^*_Y = \frac{\varphi n + (1-\phi + \varphi)g}{\varphi} = G^*_K = G^*_H.$$

Z równania (6.55) płynie wniosek, że produkcja rośnie w długim okresie według tej samej stopy wzrostu, co nakłady kapitału rzeczowego i ludzkiego.

 Ponieważ wydajność pracy \(y\), techniczne uzbrojenie pracy \(k\) i kapitał ludzki na pracującego \(h\) w każdym momencie \(t \in [0;+\infty)\) można zapisać wzorami:

$$y(t) = \frac{Y(t)}{L(t)},$$

$$k(t) = \frac{K(t)}{L(t)}$$

oraz:

$$h(t) = \frac{H(t)}{L(t)},$$

zatem, co Czytelnicy powinni uzasadnić samodzielnie, stopy wzrostu tych zmiennych \((g_y \equiv \frac{\dot{y}}{y}, g_k \equiv \frac{k}{k}; g_h \equiv \frac{h}{h})\) określają równania:

$$\forall t \in [0;+\infty) \quad g_y(t) = G_Y(t) - G_L(t),$$

(6.56a)
\[\forall t \in [0;+\infty) \quad g_k(t) = G_K(t) - G_L(t) \quad (6.56b) \]

i:

\[\forall t \in [0;+\infty) \quad g_h(t) = G_H(t) - G_L(t). \quad (6.56c) \]

W długim okresie, przy \(t \to +\infty \), równania (6.56abc) sprowadzają się do zależności:

\[g'_y = G'_Y - G'_L, \quad (6.57a) \]

\[g'_k = G'_K - G'_L \quad (6.57b) \]

oraz:

\[g'_h = G'_H - G'_L. \quad (6.57c) \]

Wstawiając do równań (6.57abc) zależności (6.54–6.55), uzyskuje się związek:

\[g'_y = g'_k = g'_h = \frac{\varphi n + (1 - \phi + \varphi)g}{\varphi} - \frac{\varphi n + (1 - \phi)g}{\varphi} = \]

\[= \frac{\varphi n + (1 - \phi + \varphi)g - \varphi n - (1 - \phi)g}{\varphi}, \]

a stąd:

\[g'_y = g'_k = g'_h = g, \]

czyli w długim okresie w rozważanym tu modelu wzrostu gospodarczego, podobnie jak w oryginalnym modelu Mankiwa-Romera-Weila, wydajność pracy, techniczne uzbrojenie pracy i kapitał ludzki na pracującego rosną według stopy wzrostu równej stopie wynikającej z wytwarzania rosnącego stopkowego postępu technicznego.

Co więcej, z równania (6.38) wynika, że w każdym momencie \(t \in [0;+\infty) \) płace reale w równe są \((1 - \alpha - \beta)\dot{y} \). Dlatego też stopa wzrostu owych płac \(\frac{\dot{w}}{w} \) musi być równa stopie wzrostu wydajności pracy \(\frac{\dot{y}}{y} \). Stąd też w długim okresie, czyli przy \(t \to +\infty \), stopa wzrostu płac realnych dąży do długookresowej stopy wzrostu wydajności pracy równej stopie postępu technicznego w sensie Harroda.

6.4. RYNEK PRACY W MODELU TYPU NONNEMANA-VANHOUPTA

W N-kapitałowym modelu wzrostu gospodarczego typu Nonnemana-Vanhoudta przyjmowaliśmy następujące założenia opisujące funkcjonowanie gospodarki:

1. Wielkość wytworzonego w gospodarce produktu Y opisana jest przez rozszerzoną funkcję produkcji Cobba-Douglasa daną wzorem:
\[\forall t \in [0;+\infty) \quad Y(t) = \prod_{i=1}^{N} (K_i(t))^{a_i} \left(\Lambda(t)L(t) \right)^{-\sum_{i=1}^{N} a_i}, \quad (6.58) \]

gdzie \(K_i > 0 \) (dla każdego \(i = 1, 2, \ldots, N \)) to nakłady i-tego zasobu kapitału, \(\Lambda > 0 \) jest zasobem wiedzy, który nie jest związany z akumulacją któregokolwiek ze wspomnianych uprzednio zasobów kapitału, \(L > 0 \) to liczba pracujących, zaś \(a_1, a_2, \ldots, a_N \in (0;1) \) oraz \(\left(1 - \sum_{i=1}^{N} \alpha_i \right) \in (0;1) \) to elastyczności strumienia wytworzonego produktu względem nakładów pierwszego, drugiego, ..., N-tego zasobu kapitału i jednostek efektywnej pracy \(\Lambda L \).

2. Przyrost każdego z rozważanych tu zasobów kapitału \(\dot{K}_i \) opisany jest przez równania różniczkowe postaci:

\[\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N \quad \dot{K}_i(t) = s_i Y(t) - \delta_i K_i(t), \quad (6.59) \]

gdzie \(s_i \) (dla każdego \(i = 1, 2, \ldots, N \)) to stopa inwestycji w i-ty zasób kapitału, zaś \(\delta_i \) (dla \(i = 1, 2, \ldots, N \)) jest stopą jego deprecjacji. O stopach \(s_i \) i \(\delta_i \) zakłada się, że dla dowolnego \(i = 1, 2, \ldots, N \), \(s_i, \delta_i \in (0;1) \) oraz \(\sum_{i=1}^{N} s_i \in (0;1) \).

3. Zasób wiedzy \(\Lambda \) rośnie według stopy harrodiańskiego postępu technicznego \(g \), co opisuje równanie \((6.3)\).

4. Zachodzi również zależność \((6.4)\), co oznacza, iż popyt na pracę wyznaczany jest przez zrównanie krańcowego produktu pracy MPL = \(\frac{\partial Y}{\partial L} \) z płacami realnymi \(w \).

5. Płace realne opisane są przez związek \((6.5)\).

6. Podaż pracy opisuje równanie \((6.7)\).

Stopa bezrobocia u równa jest \(\frac{U}{N^t} \equiv \frac{N - L}{N^t} \), co implikuje, że \(1 - u = \frac{L}{N^t} \). Stąd zaś oraz z równania płac realnych \((6.5)\) wynika, że płace te można zapisać wzorem:

\[\forall t \in [0;+\infty) \quad w(t) = w_0 \left(\frac{Y(t)}{L(t)} \right)^{\phi} (1 - u(t))^\psi = w_0 \left(\frac{Y(t)}{L(t)} \right)^{\phi} \left(\frac{L(t)}{N^t} \right)^\psi. \]

Wstawiając do powyższego związku równanie podaży pracy \((6.7)\), okazuje się, że płace realne w określa zależność:

\[\forall t \in [0;+\infty) \quad w(t) = w_0 \left(\frac{Y(t)}{L(t)} \right)^{\phi} \left(\frac{L(t)}{N_0 e^{\alpha t}} \right)^\psi. \quad (6.60) \]

Z funkcji produkcji \((6.58)\) wynika, że krańcowy produkt pracy MPL w analizowanym tu modelu wzrostu gospodarczego można zapisać następująco:

\[MPL = \frac{\partial Y}{\partial L} = \frac{\partial}{\partial L} \left(\prod_{i=1}^{N} K_i a_i (\Lambda L)^{\psi - \sum_{i=1}^{N} a_i} \right) = \]
a stąd i z równania funkcji produkcji (6.58) otrzymujemy:

\[
\forall t \in [0;+\infty) \quad MPL(t) = (1 - \sum_{i=1}^{N} \alpha_i) \frac{Y(t)}{L(t)} = (1 - \sum_{i=1}^{N} \alpha_i) y(t),
\]

gdzie \(y = \frac{Y}{L} \) to wydajność pracy. Ponieważ, zgodnie z założeniem 4, krańcowy produkt pracy MPL równy jest płacom realnym \(w \), zatem ze związków (6.60–6.61) mamy:

\[
\forall t \in [0;+\infty) \quad \left(1 - \sum_{i=1}^{N} \alpha_i\right) \frac{Y(t)}{L(t)} = w_0 \left(\frac{Y(t)}{L(t)}\right)^\phi \left(\frac{L(t)}{N_0 e^nt}\right)^\psi
\]
lub:

\[
\forall t \in [0;+\infty) \quad w_0 \left(\frac{L(t)}{L}\right)^{-\phi + \psi} = \left(1 - \sum_{i=1}^{N} \alpha_i\right) N_0^\phi \left(\frac{Y(t)}{L(t)}\right)^{-\phi} e^{\psi n t}.
\]

Ponieważ dla każdego \(Y, L > 0 \) obie strony równania (6.62) są dodatnie, zatem można je zlogarytmować stronami logarytmem naturalnym i zróżniczkować względem czasu \(t \in [0;+\infty) \). Wówczas uzyskuje się następującą zależność:

\[
\forall t \in [0;+\infty) \quad (1 - \phi + \psi) G_L(t) = \phi n + (1 - \phi) G_Y(t),
\]
gdzie \(G_L = \frac{L}{L} \) i \(G_Y = \frac{Y}{Y} \), a stąd:

\[
\forall t \in [0;+\infty) \quad G_L(t) = \frac{\phi}{1 - \phi + \psi} n + \frac{1 - \phi}{1 - \phi + \psi} G_Y(t).
\]

Ponieważ równanie (6.63) odpowiada równaniom (6.12), w modelu typu Solowa, oraz (6.40), w modelu typu Mankiwa-Romera-Weila, zatem jego interpretację ekonomiczną pozostawiamy Czytelnikom.

Dzieląc stronami równania różniczkowe (6.59) przez \(K_i > 0 \) (dla każdego \(i = 1, 2, ..., N \)), uzyskuje się związek:

\[
\forall t \in [0;+\infty) \wedge i = 1, 2, ..., N \quad G_i(t) = \frac{K_i(t)}{\hat{K}_i(t)} (t) = s_i \frac{Y(t)}{K_i(t)} - \delta_i,
\]
gdzie \(G_i \) (dla każdego \(i = 1, 2, ..., N \), to stopa wzrostu i-tego zasobu kapitału, a stąd:

\[
\forall t \in [0;+\infty) \wedge i = 1, 2, ..., N \quad G_i(t) + \delta_i = s_i \frac{Y(t)}{K_i(t)}.
\]

Ponieważ przy \(K_1, K_2, ..., K_N > 0 \) prawe strony równań (6.64) są dodatnie, zatem równania te można zlogarytmować stronami. Wówczas dochodzi się do zależności postaci:
\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \ln(G_i(t) + \delta_i) = \ln(s_i) + \ln(Y(t)) - \ln(K_i(t)) \]

lub, po różniczkowaniu względem czasu \(t \in [0;+\infty) \):

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{\dot{G}_i(t)}{G_i(t) + \delta_i} = \frac{\dot{Y}(t)}{Y(t)} - \frac{\dot{K}_i(t)}{K_i(t)}, \]
a stąd:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{\dot{G}_i(t)}{G_i(t) + \delta_i} = G_Y(t) - G_i(t). \quad (6.65) \]

W warunkach wzrostu równomiernego stopy wzrostu każdej ze zmiennych makroekonomicznych powinny być stałe w czasie. Dlatego też wówczas przyrosty stóp wzrostu \(\dot{G}_i \) każdego z zasobów kapitału powinny się zerać. Jeśli więc przez \(G_Y^* \) oznaczmy stopę wzrostu produktu w warunkach wzrostu równomiernego, zaś przez \(G_i^* \) występujące wówczas stopy wzrostu kolejnych zasobów kapitału (dla każdego \(i = 1, 2, ..., N \)), to z równania (6.65) wynika, iż zachodzą związki:

\[G_Y^* - G_i^* = 0, \]
a stąd:

\[G_Y = G_1^* = G_2^* = ... = G_N^*. \quad (6.66) \]

Z równania (6.66) płynie wniosek, że w warunkach wzrostu równomiernego gospodarki Nonnemana-Vanhoudta (z endogenicznym rynkiem pracy) stopa wzrostu strumienia produktu \(G_Y^* \) równa jest stopom wzrostu każdego z zasobów kapitału (czyli \(G_1^* = G_2^* = ... = G_N^* \)).

Logarytmując stronami i różniczkując względem czasu \(t \in [0;+\infty) \) funkcję produkcji (6.58), dochodzi się do związku:

\[\forall t \in [0;+\infty) \quad \frac{\dot{Y}(t)}{Y(t)} = \left(1 - \sum_{i=1}^{N} \alpha_i \right) \left(\frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{L}(t)}{L(t)} \right) + \sum_{i=1}^{N} \left(\alpha_i \frac{\dot{K}_i(t)}{K_i(t)} \right) \]
lub:

\[\forall t \in [0;+\infty) \quad G_Y(t) = \left(1 - \sum_{i=1}^{N} \alpha_i \right) \left(\frac{\dot{\Lambda}(t)}{\Lambda(t)} + G_L(t) \right) + \sum_{i=1}^{N} (\alpha_i G_i(t)). \]

Uwzględniając założenie, iż stopa wzrostu zasobu wiedzy \(\dot{\Lambda} / \Lambda \) równa jest stopie postępu technicznego w sensie Harroda g, powyższe równanie sprowadza się do zależności:

\[\forall t \in [0;+\infty) \quad G_Y(t) = \left(1 - \sum_{i=1}^{N} \alpha_i \right) g + \left(1 - \sum_{i=1}^{N} \alpha_i \right) G_L(t) + \sum_{i=1}^{N} (\alpha_i G_i(t)). \quad (6.67) \]

Jeśli gospodarka Nonnemana-Vanhoudta znajduje się w stanie wzrostu równomiernego, to równania (6.63) i (6.67) można zapisać następująco:
G_L^* = \frac{\varphi}{1 - \phi + \varphi} n + \frac{1 - \phi}{1 - \phi + \varphi} G_Y^* \quad (6.68)

i:

G_Y^* = \left(1 - \sum_{i=1}^{N} \alpha_i\right) g + \left(1 - \sum_{i=1}^{N} \alpha_i\right) G_L^* + \sum_{i=1}^{N} (\alpha_i G_i^*), \quad (6.69)

gdzie G_L^* jest stopą wzrostu liczby pracujących w warunkach wzrostu równomiernego. Z równań (6.69) oraz (6.66) wynika, iż zachodzi związek:

G_Y^* = \left(1 - \sum_{i=1}^{N} \alpha_i\right) g + \left(1 - \sum_{i=1}^{N} \alpha_i\right) G_L^* + \sum_{i=1}^{N} (\alpha_i G_Y^*),

a stąd:

\left(1 - \sum_{i=1}^{N} \alpha_i\right) G_Y^* = \left(1 - \sum_{i=1}^{N} \alpha_i\right) g + \left(1 - \sum_{i=1}^{N} \alpha_i\right) G_L^*,

czyli:

G_Y^* - G_L^* = g. \quad (6.70)

Równanie (6.68) można również zapisać następująco:

(1 - \phi + \varphi) G_L^* = \varphi n + (1 - \phi) G_Y^*

albo:

- (1 - \phi) G_Y^* + (1 - \phi + \varphi) G_L^* = \varphi n. \quad (6.71)

Związki (6.70–6.71) tworzą układ równań:

\begin{align*}
G_Y^* - G_L^* &= g \\
-(1 - \phi) G_Y^* + (1 - \phi + \varphi) G_L^* &= \varphi n
\end{align*}

\quad (6.72)

który można także zapisać w postaci macierzowej następująco:

\begin{bmatrix}
1 & -1 \\
-(1 - \phi) & 1 - \phi + \varphi
\end{bmatrix}
\begin{bmatrix}
G_Y^* \\
G_L^*
\end{bmatrix}
= \begin{bmatrix}
g \\
\varphi n
\end{bmatrix}. \quad (6.73)

Rozwiązanie układu równań (6.73) wyznacza stopę wzrostu liczby pracujących G_L^* oraz stopę wzrostu strumienia produktu G_Y^* (równą stopom wzrostu kolejnych zasobów kapitału) w warunkach wzrostu równomiernego modelu wzrostu gospodarczego Nonnemana-Vanhoudta z endogenicznym rykiem pracy. Układ ten można rozwiązać, korzystając z metody wyznaczników Cramera. Kolejne wyznaczniki Cramera układu równań (6.73) dane są wzorami:

\hat{\mathbf{W}} = \begin{vmatrix}
1 & -1 \\
-(1 - \phi) & 1 - \phi + \varphi
\end{vmatrix} = 1 - \phi + \varphi - (1 - \phi) = \varphi \in (0;1),
\[
\hat{W}_Y = \begin{vmatrix} g & -1 \\ \varphi n & 1 - \phi + \varphi \end{vmatrix} = (1 - \phi + \varphi)g + \varphi n
\]

oraz:

\[
\hat{W}_L = \begin{vmatrix} 1 \\ -(1 - \phi) \end{vmatrix} \begin{vmatrix} g \\ \varphi n \end{vmatrix} = \varphi n + (1 - \phi)g,
\]
a stąd:

\[
G_Y^* = \frac{\hat{W}_Y}{\hat{W}} = \frac{(1 - \phi + \varphi)g + \varphi n}{\varphi} = n + \frac{1 - \phi + \varphi}{\varphi} g
\]

i:

\[
G_L^* = \frac{\hat{W}_L}{\hat{W}} = \frac{\varphi n + (1 - \phi)g}{\varphi} = n + \frac{1 - \phi}{\varphi} g.
\]

Z uwagi na to, że równania (6.74ab) są uogólnieniem równań (6.54–6.55), zatem ich interpretację ekonomiczną pozostawiamy Czytelnikom⁵.

Ponieważ stopa wzrostu wydajności pracy \(g_y\) jest różnicą między stopą wzrostu produktu \(G_Y\) a stopą wzrostu liczby pracujących \(G_L\), zatem w warunkach wzrostu równomiernego mamy:

\[
g_y^* = G_Y^* - G_L^*,
\]
a stąd oraz z pierwszego z równań układu (6.72) wynika, że:

\[
g_y^* = G_Y^* - G_L^* = g,
\]

co oznacza, iż w warunkach wzrostu równomiernego analizowanego w tym punkcie modelu wzrostu gospodarczego wydajność pracy, podobnie jak w oryginalnych modelach wzrostu Solowa, Mankiwa-Romer-Weila i Nonnemana-Vanhoudta, rośnie według stopy wzrostu równiej stopie harrodiańskiego postępu technicznego \(g\). Co więcej, Czytelnicy powinni samodzielnie uzasadnić tezę, że wówczas również stopy wzrostu kolejnych zasobów kapitału na pracującego równe są stopie postępu technicznego w sensie Harroda.

Jeśli zaś (po uwzględnieniem założenia, że płace realne w równe są krańcowemu produktowi pracy MPL) zlogarytmujemy stronami i zróżniczujemy po czasie \(t \in [0;+\infty)\) równanie (6.61), to uzyskamy zależność:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{w}(t)}{w(t)} = \frac{\dot{y}(t)}{y(t)}.
\]

⁵ Pamiętać w tym miejscu należy, że zgodnie z równaniami (6.66) wzór (6.74a) wyznacza również stopy wzrostu kolejnych zasobów kapitału w warunkach wzrostu równomiernego rozważa- nego tu modelu wzrostu gospodarczego.
Ze związku (6.75) wyciągnąć można wniosek, że w rozważanym tu modelu wzrostu gospodarczego w każdym momencie \(t \in [0;+\infty)\) stopa wzrostu płac realnych \(\frac{\dot{w}}{w}\) równa jest stopie wzrostu wydajności pracy \(\frac{\dot{y}}{y}\). Oznacza to, że w warunkach wzrostu równomiernego, kiedy to wydajność pracy rośnie według stopy \(g\), również stopa wzrostu płac realnych równa jest stopie postępu technicznego w sensie Harroda.

6.5. PODSUMOWANIE

Prowadzone w rozdziale szóstym skryptu rozważania można podsumować następująco:

I. W analizowanym w punkcie 6.2 modelu wzrostu gospodarczego typu Solowa z endogenicznym rynkiem pracy czyni się następujące założenia. Po pierwsze, proces produkcyjny opisany jest przez funkcję produkcji Cobba-Douglasta z endogenicznym postępowym technicznym w sensie Harroda. Po drugie, przyrost zasobu kapitału rzeczowego równy jest różnicy między inwestycjami (zdeterminowanymi przez oszczędności) a deprecjacją owego kapitału. Po trzecie, zasób wiedzy rośnie według stopy harrodiańskiego postępu technicznego. Po czwarte, popyt na pracę (podobnie jak w neoklasycznych modelach rynku pracy) wyznaczany jest przez zrównanie krańcowego produktu pracy z płacami realnymi. Po piąte, płyce realne, które równoważą rynek pracy, są rosnącą funkcją wydajności pracy i malejącą funkcją stopy bezrobocia oraz, po szóste, padać pracy (rozumiana jako suma liczby bezrobotnych i pracujących) rośnie według pewnej endogenicznej stopy wzrostu zdeterminowanej przez działanie czynników demograficznych.

II. Z modelu tego wynika, że stopy wzrostu liczby pracujących rośnie wraz ze wzrostem stopy wzrostu podaży pracy oraz wraz ze wzrostem stopy wzrostu produktu. Co więcej, jeśli uwzględni się fakt, że przy funkcji produkcji Cobba-Douglasta stopy wzrostu produktu zależna jest od stopy postępu technicznego, stopy wzrostu zasobu kapitału oraz stopy wzrostu liczby pracujących, to okaże się, iż stopy wzrostu liczby pracujących jest rosnącą funkcją stopy wzrostu podaży pracy, stopy harrodiańskiego postępu technicznego i stopy wzrostu zasobu kapitału.

III. Z modelu wzrostu typu Solowa z endogenicznym rynkiem pracy płynie również wniosek, że przyrost stopy wzrostu zasobu kapitału opisany jest przez równanie różniczkowe Riccatiego. Rozwiązanie tego równania, bez względu na wyjściową stopę wzrostu owego zasobu, dąży do pewnej stałej wielkości, którą można traktować jako długookresową stopę wzrostu kapitału. Stopa ta jest tym wyższa, im wyższe są stopy wzrostu podaży pracy i stopa harrodiańskiego postępu technicznego oraz im niższe są elastyczności funkcji płac realnych. Co więcej, w długim okresie stopa wzrostu zasobu kapitału równa jest stopie wzrostu wytworzonego w gospodarce produktu.
IV. Również długookresowa stopa wzrostu liczby pracujących rośnie wraz ze wzrostem stopy wzrostu podaży pracy i stopy postępu technicznego w sensie Harroda, zaś spada na skutek wzrostu elastyczności funkcji płac realnych względem wydajności pracy i stopy zatrudnienia.

V. Natomiast wydajność pracy i techniczne uozbienie pracy, podobnie jak ma to miejsce w oryginalnym modelu wzrostu gospodarczego Solowa, rosną w długim okresie według stopy wzrostu równej stopie harrodiańskiego postępu technicznego. Również długookresowa stopa wzrostu płac realnych równa jest stopie postępu technicznego w sensie Harroda.

VI. Podobne rozważania prowadzone są w punkcie 6.3 na gruncie modelu wzrostu gospodarczego typu Mankiwa-Romera-Weila. W modelu tym rozszerza się model z punktu 6.2, włączając do funkcji produkcji zasób kapitału ludzkiego oraz uwzględniając równanie akumulacji owego kapitału, które prowadzi do tego, iż przyrost zasobu kapitału ludzkiego jest różnicą między inwestycjami w ów kapitał a jego deprekcją.

VII. Z prowadzonych w punkcie 6.3 skryptu analiz wynika, co następuje. Po pierwsze, w każdym momencie \(t \in [0;+\infty) \) stopa wzrostu liczby pracujących jest tym wyższa, im wyższe są m.in. stopa wzrostu podaży pracy, stopa harrodiańskiego postępu technicznego oraz stopy wzrostu zasobów kapitału rzeczowego i ludzkiego. Po drugie, w długim okresie zasoby kapitału rzeczowego i ludzkiego oraz strumień produktu rosną według stałych, równych sobie stóp wzrostu. Stopy te są tym wyższe, im wyższe są stopa wzrostu podaży pracy i stopa postępu technicznego w sensie Harroda, oraz tym niższe, im wyższe są elastyczności funkcji płac realnych. Po trzecie, również długookresowa stopa wzrostu liczby pracujących rośnie wraz ze wzrostem stopy wzrostu podaży pracy i stopy harrodiańskiego postępu technicznego, zaś spada wraz ze wzrostem wspomnianych uprzednio elastyczności. Po czwarte, stopy wzrostu wydajności pracy, technicznego uozbienia pracy, kapitału ludzkiego na pracującego oraz płac realnych są w długim okresie równe stopie postępu technicznego w sensie Harroda.

VIII. Wnioski z modeli Solowa oraz Mankiwa-Romera-Weila z endogenicznym rynkiem pracy można w znacznej mierze uogólnić na N-kapitałowy model wzrostu gospodarczego typu Nonnemana-Vanhoudta.
Rozdział siódmy

POLITYKA FISKALNA A WZROST GOSPODARCZY

7.1. WPROWADZENIE

Celem rozważań prowadzonych w rozdziale siódmym skryptu jest:
I. Sformułowanie założeń dwukapitałowego modelu wzrostu gospodarczego (typu Mankiwa-Romera-Weila), w którym inwestycje w kapitał rzeczowy i ludzki finansowane są zarówno z dochodów po opodatkowaniu sektora podmiotów mikroekonomicznych, jak i z podatków sektora budżetowego gospodarki (państwa).
II. Wyznaczenie długookresowej równowagi modelu wzrostu gospodarczego z sektorem podmiotów mikroekonomicznych i sektorem budżetowym.
III. Okrzeszenie wpływu (danych egzogenicznie w analizowanym modelu) stóp inwestycji na długookresową równowagę gospodarki.
IV. Wyznaczenie optymalnej stopy fiskalizacji gospodarki (tj. takiej stopy fiskalizacji gospodarki, która wyprowadza ją na najwyższej położoną długookresową ścieżkę wzrostu wydajności pracy).
V. Sformułowanie założeń modelu wzrostu gospodarczego z wyodrębnionym kapitałem sektora budżetowego.
VI. Rozwiązanie owego modelu wzrostu w warunkach długookresowej równowagi.
VII. Wyznaczenie optymalnej stopy fiskalizacji gospodarki w modelu z wyodrębnionym kapitałem sektora budżetowego.

7.2. MODEL PODSTAWOWY

W prowadzonych w punkcie 7.2 skryptu rozważaniach przyjmowane będą następujące założenia:
I. Podobnie jak w oryginalnym modelu wzrostu gospodarczego Mankiwa-Romera-Weila, scharakteryzowanym w punkcie 3.2 skryptu, proces produkcyjny opisany jest przez rozszerzoną funkcję produkcji Cobba-Douglasa postaci:

\[\forall t \in [0; +\infty) \quad Y(t) = (K(t))^\alpha (H(t))^\beta (\Lambda(t)L(t))^{1-\alpha-\beta} = \]

1 Rozdział ten w znacznej mierze oparty jest na rozważaniach prowadzonych w czwartym rozdziale książki Tokarskiego (2005).
\[L(t) = \Lambda L \cdot 0 \] oraz parametry \(\alpha, \beta, (1 - \alpha - \beta) \in (0;1) \) interpretuje się ekonomicznie tak, jak ma to miejsce w rozdziale trzecim skryptu. Oznacza to, iż \(Y, K, H \) oraz \(\tilde{L} \) to (odpowiednio) produkcja, kapitał rzeczowy, kapitał ludzki i jednostki efektywnej pracy, zaś \(\alpha, \beta \) oraz \(1 - \alpha - \beta \) to elastyczności produkcji względem zasobów kapitału rzeczonego, ludzkiego oraz liczby pracujących lub udziałach owych czynników produkcji w wytworzym produkcie.

2. W każdym momencie \(t \in [0;+\infty) \) przyrosty zasobów kapitału rzeczonego \(\dot{K} \) i ludzkiego \(\dot{H} \) równe są różnicom między inwestycjami z owa zasoby, czyli \(s_K Y \) i \(s_H Y \), a wielkościami ich deprecjacji \(\delta_K K \) oraz \(\delta_H H \). Oznacza to, że:

\[\forall t \in [0;+\infty) \quad \dot{K}(t) = s_K Y(t) - \delta_K K(t) \]

i:

\[\forall t \in [0;+\infty) \quad \dot{H}(t) = s_H Y(t) - \delta_H H(t), \]

przy czym \(s_K, s_H, (s_K + s_H), \delta_K \) oraz \(\delta_H \in (0;1) \). Zmienne \(s_K, s_H, \delta_K \) i \(\delta_H \) interpretuje się ekonomicznie tak, jak w oryginalnym modelu wzrostu Mankiwa-Romera-Weila.

3. Zasób efektywnej pracy \(\tilde{L} = \Lambda L \) rośnie według stopy wzrostu równej sumie stopy harrodiańskiego postępu technicznego \(g > 0 \) i stopy wzrostu liczby pracujących \(n > 0 \). Dlatego też:

\[\forall t \in [0;+\infty) \quad \frac{\tilde{L}(t)}{L(t)} = \frac{\Lambda(t)}{\Lambda(t)} + \frac{\dot{L}(t)}{L(t)} = g + n. \]

Założenia 1–3 rozważanego tu modelu wzrostu gospodarczego dokładnie odpowiadają założeniom oryginalnego modelu Mankiwa-Romera-Weila z punktu 3.2 skryptu.

4. Państwo ściaga w formie podatków, przyrostu długu publicznego itp. \(\tau \)-tą część wytworzonego produktu, gdzie \(\tau \in (0;1) \). Stopa \(\tau \) nazywana będzie dalej stopa fiskalizacji gospodarki\(^2\).

5. \(\tilde{s}_K \)-ta część ściąganego przez państwo produktu \(\tau Y \) przeznaczana jest na inwestycje w sferze kapitału rzeczonego, \(\tilde{s}_H \)-tą część \(\tau Y \) stanowią zaś inwestycje sektora budżetowego w kapitał ludzki \(\tilde{s}_K, \tilde{s}_H, (\tilde{s}_K + \tilde{s}_H) \in (0;1) \). Płynie stąd wniosek, że wielkość inwestycji sektora budżetowego w sferze akumulacji kapitału rzeczonego \(\tilde{I}_K \) (rozumianych jako suma bezpośrednich inwestycji budżetu centralnego, budżetów regionalnych i lokalnych w sferze infrastruktury społeczno-ekonomicznej i transferów inwestycyjnych do sektora podmiotów mikroekonomicznych) oraz kapitału ludzkiego

\(^2\) Analizowaną tu stopę fiskalizacji gospodarki \(\tau \) można formalnie zapisać następująco:

\[\tau = \frac{T(t) + \dot{D}(t)}{Y(t)}, \]

gdzie \(T \) to suma dochodów z podatków, co itd., \(\dot{D} \) – bieżący przyrost netto długu publicznego, zaś \(Y \) – strumień produktu (wszystkie wielkości w ujęciu realnym).
\(\bar{I}_H \) (definiowanych jako nakłady sektora budżetowego na publiczną oświatę, służbę zdrowia itp.) dane są wzorami:

\[
\forall t \in [0;+\infty) \quad \bar{I}_K(t) = \bar{s}_K \tau Y(t)
\]

oraz:

\[
\forall t \in [0;+\infty) \quad \bar{I}_H(t) = \bar{s}_H \tau Y(t).
\]

Wielkości \(\bar{s}_K \) i \(\bar{s}_H \) nazywane będą dalej stopami inwestycji sektora budżetowego w zasoby kapitału rzeczowego i ludzkiego z tego względu, iż stanowią odsetek dochodów budżetowych \(\tau Y \) inwestowanych przez sektor budżetowy w te zasoby.

6. Sektor podmiotów mikroekonomicznych\(^3\) inwestuje \(\bar{s}_K \) -tą część dochodów po opodatkowaniu \((1 - \tau)Y \) w zasób kapitału rzeczowego, zaś \(\bar{s}_H \) -ta część owych dochodów inwestowana jest w kapitał ludzki (przy czym \(\bar{s}_K \), \(\bar{s}_H \), \(\bar{s}_K + \bar{s}_H \) \(\in (0;1) \)). Stąd też inwestycje w kapitał rzeczowy \(\bar{I}_K \) oraz ludzki \(\bar{I}_H \) tegoż sektora opisują związki:

\[
\forall t \in [0;+\infty) \quad \bar{I}_K(t) = \bar{s}_K (1 - \tau) Y(t)
\]

i:

\[
\forall t \in [0;+\infty) \quad \bar{I}_H(t) = \bar{s}_H (1 - \tau) Y(t).
\]

7. Łączne nakłady inwestycyjne w kapitał rzeczowy \(I_K \) (ludzki \(I_H \)) są sumą nakładów sektora podmiotów mikroekonomicznych \(\bar{I}_K \) (\(\bar{I}_H \)) i sektora budżetowego \(\bar{I}_K \) (\(\bar{I}_H \)). Dlatego też spełnione są równania:

\[
\forall t \in [0;+\infty) \quad I_K(t) = \bar{I}_K(t) + I_K(t)
\]

oraz:

\[
\forall t \in [0;+\infty) \quad I_H(t) = \bar{I}_H(t) + I_H(t).
\]

Z analiz prowadzonych w rozdziale trzecim (por. równie (3.22)) płynie wniosek, że z założeń 1–3 analizowanego tu modelu wzrostu gospodarczego wynika, iż produkt na jednostkę efektywnej pracy \(\bar{y}^* \) w długookresowej równowadze gospodarki Mankiw-Romera-Weila spełnia związek:

\[
\ln(\bar{y}^*) = \frac{\alpha}{1 - \alpha - \beta} \ln\left(\frac{\bar{s}_K}{\delta_K + g + n} \right) + \frac{\beta}{1 - \alpha - \beta} \ln\left(\frac{\bar{s}_H}{\delta_H + g + n} \right).
\]

\(^3\) Przez podmioty mikroekonomiczne rozumie się w rozdziale siódmem wszystkie gospodarstwa domowe i przedsiębiorstwa (bez względu na formę ich własności). Stopa inwestycji owych podmiotów definiowana jest jako relacja ich łącznych wydatków inwestycyjnych finansowanych ze środków własnych (a nie z dotacji lub transferów budżetowych) do dochodów po opodatkowaniu (gdzie do opodatkowania włącza się również przyrost netto długu publicznego finansowanego przez gospodarstwa domowe i przedsiębiorstwa). Oznacza to, iż np. inwestycje finansowane przez podmioty mikroekonomiczne z dotacji lub transferów budżetowych będą wchodziły do inwestycji sektora budżetowego gospodarki.
Wstawiając zaś równania \((7.1a)\) i \((7.2a)\) do zależności \((7.3a)\), uzyskuje się związek:
\[
\forall t \in [0;+\infty) \quad I_K(t) = \tilde{s}_K \tau Y(t) + \tilde{s}_K (1-\tau) Y(t) = (\tau \tilde{s}_K + (1-\tau) \tilde{s}_K) Y(t)
\]
a stąd:
\[
\forall t \in [0;+\infty) \quad s_K = \frac{I_K(t)}{Y(t)} = \tau \tilde{s}_K + (1-\tau) \tilde{s}_K, \quad (7.5a)
\]
gdzie \(s_K = \frac{I_K(t)}{Y(t)}\) to stopa inwestycji całej gospodarki w zasób kapitału rzeczowego.

Postępując analogicznie ze związkami \((7.1b)\), \((7.2b)\) oraz \((7.3b)\), dochodzi się do następującej zależności:
\[
\forall t \in [0;+\infty) \quad s_H = \frac{I_H(t)}{Y(t)} = \tau \tilde{s}_H + (1-\tau) \tilde{s}_H, \quad (7.5b)
\]
gdzie \(s_H = \frac{I_H(t)}{Y(t)}\) jest stopą inwestycji gospodarki Mankiwa-Romera-Weila w zasób kapitału ludzkiego.

Po wstawieniu stóp inwestycji w kapitał rzeczowy \((7.5a)\) i ludzki \((7.5b)\) do równania \((7.4)\) równanie to można zapisać następująco:
\[
\ln(\bar{y}^*) = \frac{\alpha}{1-\alpha-\beta} \ln \left(\frac{\tau \tilde{s}_K + (1-\tau) \tilde{s}_K}{\delta_K + g + n} \right) + \frac{\beta}{1-\alpha-\beta} \ln \left(\frac{\tau \tilde{s}_H + (1-\tau) \tilde{s}_H}{\delta_H + g + n} \right) =
\]
\[
\ln(\bar{y}^*) = \frac{\alpha}{1-\alpha-\beta} \ln (\tau \tilde{s}_K + (1-\tau) \tilde{s}_K) - \frac{\alpha}{1-\alpha-\beta} (\delta_K + g + n) +
\]
\[
+ \frac{\beta}{1-\alpha-\beta} \ln (\tau \tilde{s}_H + (1-\tau) \tilde{s}_H) - \frac{\beta}{1-\alpha-\beta} \ln (\delta_H + g + n)
\]
bądź też:
\[
\ln(\bar{y}^*) = \frac{\alpha}{1-\alpha-\beta} \ln (\tau \tilde{s}_K + (1-\tau) \tilde{s}_K) + \frac{\beta}{1-\alpha-\beta} \ln (\tau \tilde{s}_H + (1-\tau) \tilde{s}_H) - F, \quad (7.6)
\]
gdzie \(F = \frac{\alpha}{1-\alpha-\beta} \ln (\delta_K + g + n) + \frac{\beta}{1-\alpha-\beta} \ln (\delta_H + g + n)\) \(\in \mathbb{R}\).

Z równania \((7.6)\) płyną m.in. następujące wnioski:
- Ponieważ:
\[
\frac{\partial \ln(\bar{y}^*)}{\partial \tilde{s}_K} = \frac{\partial \ln (\tau \tilde{s}_K + (1-\tau) \tilde{s}_K)}{\partial \tilde{s}_K} + \frac{\beta}{1-\alpha-\beta} \ln (\tau \tilde{s}_H + (1-\tau) \tilde{s}_H) - F =
\]
\[
= \frac{\alpha}{1-\alpha-\beta} \cdot \frac{\partial}{\partial \tilde{s}_K} (\ln (\tau \tilde{s}_K + (1-\tau) \tilde{s}_K)) \geq \frac{\alpha}{1-\alpha-\beta} \cdot \frac{\tau}{\tau \tilde{s}_K + (1-\tau) \tilde{s}_K} > 0
\]
oraz:
\[
\frac{\partial \ln(\bar{y}^*)}{\partial \bar{s}_H} = \frac{\partial}{\partial \bar{s}_H} \left(\frac{\alpha}{1-\alpha-\beta} \ln(\bar{\tau}\bar{s}_K + (1-\bar{\tau})\bar{s}_K) + \frac{\beta}{1-\alpha-\beta} \ln(\bar{\tau}\bar{s}_H + (1-\bar{\tau})\bar{s}_H) - F \right) = \\
= \frac{\beta}{1-\alpha-\beta} \cdot \frac{\partial}{\partial \bar{s}_K} \ln(\bar{\tau}\bar{s}_H + (1-\bar{\tau})\bar{s}_H) = \frac{\beta}{1-\alpha-\beta} \cdot \frac{\tau}{\bar{s}_H + (1-\bar{\tau})\bar{s}_H} > 0,
\]
zatem im wyższe są stopy inwestycji \(\bar{s}_K \) i \(\bar{s}_H \) sektora budżetowego w zasoby kapitału rzeczowego i ludzkiego, tym wyższy jest produkt na jednostkę efektywnej pracy \(\bar{y}^* \) w długookresowej równowadze Mankiwa-Romera-Weila i wyżej położona jest długookresowa ścieżka wzrostu wydajności pracy \(\bar{y}^* \).

* Podobnie, stąd, iż:

\[
\frac{\partial \ln(\bar{y}^*)}{\partial \bar{s}_K} = \frac{\partial}{\partial \bar{s}_K} \left(\frac{\alpha}{1-\alpha-\beta} \ln(\bar{\tau}\bar{s}_K + (1-\bar{\tau})\bar{s}_K) + \frac{\beta}{1-\alpha-\beta} \ln(\bar{\tau}\bar{s}_H + (1-\bar{\tau})\bar{s}_H) - F \right) = \\
= \frac{\alpha}{1-\alpha-\beta} \cdot \frac{\partial}{\partial \bar{s}_K} \ln(\bar{\tau}\bar{s}_K + (1-\bar{\tau})\bar{s}_K) = \frac{\alpha}{1-\alpha-\beta} \cdot \frac{1-\tau}{\bar{s}_K + (1-\bar{\tau})\bar{s}_K} > 0
\]
orzaz:

\[
\frac{\partial \ln(\bar{y}^*)}{\partial \bar{s}_H} = \frac{\partial}{\partial \bar{s}_H} \left(\frac{\alpha}{1-\alpha-\beta} \ln(\bar{\tau}\bar{s}_K + (1-\bar{\tau})\bar{s}_K) + \frac{\beta}{1-\alpha-\beta} \ln(\bar{\tau}\bar{s}_H + (1-\bar{\tau})\bar{s}_H) - F \right) = \\
= \frac{\beta}{1-\alpha-\beta} \cdot \frac{\partial}{\partial \bar{s}_H} \ln(\bar{\tau}\bar{s}_H + (1-\bar{\tau})\bar{s}_H) = \frac{\beta}{1-\alpha-\beta} \cdot \frac{1-\tau}{\bar{s}_H + (1-\bar{\tau})\bar{s}_H} > 0,
\]

widzimy, że również wysokim stopom inwestycji \(\bar{s}_K \) i \(\bar{s}_H \) sektora podmiotów mikroekonomicznych odpowiada wysoka wartość \(\bar{y}^* \), a, tym samym, wysoko położona długookresowa ścieżka wzrostu wydajności pracy.

Różniczkując zaś związek (7.6) względem stopy fiskalizacji gospodarki, okazuje się, że:

\[
\frac{\partial \ln(\bar{y}^*)}{\partial \tau} = \frac{\partial}{\partial \tau} \left(\frac{\alpha}{1-\alpha-\beta} \ln(\bar{\tau}\bar{s}_K + (1-\bar{\tau})\bar{s}_K) + \frac{\beta}{1-\alpha-\beta} \ln(\bar{\tau}\bar{s}_H + (1-\bar{\tau})\bar{s}_H) - F \right) = \\
= \frac{\alpha}{1-\alpha-\beta} \frac{\partial}{\partial \tau} \ln(\bar{\tau}\bar{s}_K + (1-\bar{\tau})\bar{s}_K) + \frac{\beta}{1-\alpha-\beta} \frac{\partial}{\partial \tau} \ln(\bar{\tau}\bar{s}_H + (1-\bar{\tau})\bar{s}_H),
\]

czyli:

\[
\forall \tau \in (0;1) \quad \frac{\partial \ln(\bar{y}^*)}{\partial \tau} = \frac{\alpha}{1-\alpha-\beta} \cdot \frac{\bar{s}_K - \bar{s}_K}{\bar{s}_K + (1-\bar{\tau})\bar{s}_K} + \frac{\beta}{1-\alpha-\beta} \cdot \frac{\bar{s}_H - \bar{s}_H}{\bar{s}_H + (1-\bar{\tau})\bar{s}_H}. \tag{7.7}
\]

Analizując związek (7.7), należy rozpatrzyć dziewięć następujących przypadków:
I. $\bar{s}_K = \bar{s}_K$ oraz $\bar{s}_H = \bar{s}_H$, czyli przypadek, w którym oba rozważane tu sektory gospodarki charakteryzują się takimi samymi stopami inwestycji w zasoby kapitału rzeczowego i ludzkiego;

II. $\bar{s}_K > \bar{s}_K$ i $\bar{s}_H = \bar{s}_H$, a więc sytuacja, w której sektor budżetowy charakteryzuje wyższą stopą inwestycji w kapitał rzeczowy przy takiej samej, jak w sektorze podmiotów mikroekonomicznych, stopie inwestycji w kapitał ludzki;

III. $\bar{s}_K < \bar{s}_K$ i $\bar{s}_H = \bar{s}_H$, czyli przypadek przeciwny do przypadku II;

IV. $\bar{s}_K = \bar{s}_K$ oraz $\bar{s}_H > \bar{s}_H$, tj. sytuacja, w której sektor budżetowy ma wyższą (od sektora podmiotów mikroekonomicznych) stopę inwestycji w kapitał ludzki, przy takich samych stopach inwestycji w zasób kapitału rzeczowego;

V. $\bar{s}_K > \bar{s}_K$ i $\bar{s}_H > \bar{s}_H$, czyli przypadek, w którym sektor budżetowy ma wyższe (od sektora podmiotów mikroekonomicznych) obie analizowane tu stopy inwestycji;

VI. $\bar{s}_K < \bar{s}_K$ oraz $\bar{s}_H > \bar{s}_H$, co oznacza, że sektor budżetowy ma wyższą stopę inwestycji w kapitał ludzki, zaś sektor podmiotów mikroekonomicznych w kapitał rzeczowy;

VII. $\bar{s}_K = \bar{s}_K$ i $\bar{s}_H < \bar{s}_H$, czyli sytuacja przeciwna do przypadku IV;

VIII. $\bar{s}_K > \bar{s}_K$ oraz $\bar{s}_H < \bar{s}_H$, a zatem sektor budżetowy ma wyższą stopę inwestycji w kapitał rzeczowy, sektor podmiotów mikroekonomicznych zaś w kapitał ludzki;

IX. $\bar{s}_K < \bar{s}_K$ i $\bar{s}_H < \bar{s}_H$, a więc sektor podmiotów mikroekonomicznych charakteryzuje się wyższymi stopami inwestycji w oba rozważane w modelu Mankiwa-Romeira-Weilla zasoby kapitału.

Jeśli występuje pierwszy ze wspomnianych uprzednio przypadków, czyli $\bar{s}_K = \bar{s}_K$ oraz $\bar{s}_H = \bar{s}_H$, to pochodna cząstkowa (7.7) równa jest zeru, co implikuje, że przy każdej stopie fiskalizacji τ gospodarka porusza się po tej samej długookresowej ścieżce wzrostu wydajności pracy. Dzieje się tak dlatego, że przy $\bar{s}_K = \bar{s}_K$ i $\bar{s}_H = \bar{s}_H$ zagregowane stopy inwestycji w skali całej gospodarki, czyli $s_K = \tau \bar{s}_K + (1-\tau)\bar{s}_K$ i $s_H = \tau \bar{s}_H + (1-\tau)\bar{s}_H$, są niezależne od stopy fiskalizacji gospodarki τ.

W przypadku II, czyli wówczas, gdy $\bar{s}_K > \bar{s}_K$ i $\bar{s}_H = \bar{s}_H$, pochodną cząstkową (7.7) można zapisać następująco:

$$\forall \tau \in (0;1) \frac{\partial (\ln (\bar{y}^*))}{\partial \tau} = \frac{\alpha}{1-\alpha-\beta} \cdot \frac{\bar{s}_K - \bar{s}_K}{\tau \bar{s}_K + (1-\tau)\bar{s}_K} > 0,$$

co implikuje, iż w tym przypadku każdy wzrost stopy fiskalizacji gospodarki τ prowadzi do wzrostu \bar{y}^* i przesunięcia gospodarki na wyżej położoną ścieżkę wzrostu wydajności pracy.

Przy $\bar{s}_K < \bar{s}_K$ i $\bar{s}_H = \bar{s}_H$, czyli w III ze wspomnianych uprzednio przypadków, pochodna cząstkowa (7.7) sprowadza się do zależności:

$$\forall \tau \in (0;1) \frac{\partial (\ln (\bar{y}^*))}{\partial \tau} = \frac{\alpha}{1-\alpha-\beta} \cdot \frac{\bar{s}_K - \bar{s}_K}{\tau \bar{s}_K + (1-\tau)\bar{s}_K} < 0,$$
co oznacza, iż wówczas wzrost stopy fiskalizacji gospodarki \(\tau \) obniża produkt na jednostkę efektywnej pracy \(\tilde{y}^* \) w długookresowej równowadze Mankiwa-Romera-Weila i (co za tym idzie) obniża położenie długookresowej ścieżki wzrostu wydajności pracy.

Jeśli występuje przypadek IV (czyli wówczas, gdy \(\tilde{s}_K = \ddot{s}_K \) oraz \(\ddot{s}_H > \dddot{s}_H \)), to pochodną cząstkową \(\frac{\partial (\ln(\tilde{y}^*))}{\partial \tau} \) opisuje zależność:

\[
\forall \tau \in (0;1) \quad \frac{\partial (\ln(\tilde{y}^*))}{\partial \tau} = \frac{\beta}{1 - \alpha - \beta} \cdot \frac{\dddot{s}_H - \dddot{s}_H}{\tau \ddot{s}_H + (1 - \tau) \ddot{s}_H} > 0,
\]

skąd płynie wniosek, że w tej sytuacji wzrost stopy fiskalizacji gospodarki prowadzi do wzrostu \(\tilde{y}^* \) i wejścia wydajności pracy na wyżej położoną długookresową ścieżkę wzrostu gospodarczego.

W przypadku V, tj. w sytuacji, w której \(\dddot{s}_K > \dddot{s}_K \) i \(\dddot{s}_H > \ddot{s}_H \), pochodna cząstkowa (7.7) przyjmuje wartości dodatnie (co Czytelnicy powinni uzasadnić samodzielnie) i wówczas każdy wzrost \(\tau \) przesuwa gospodarkę Mankiwa-Romera-Weila na wyżej położoną długookresową ścieżkę wzrostu wydajności pracy.

Gdyby zaś miał miejsce przypadek VI, w którym \(\ddot{s}_K < \dddot{s}_K \) oraz \(\ddot{s}_H > \ddot{s}_H \), to pochodna cząstkowa (7.7) mogła by być zarówno dodatnia, jak i ujemna. Wynika to stąd, iż wówczas pochodną \(\frac{\partial (\ln(\tilde{y}^*))}{\partial \tau} \) można zapisać wzorem:

\[
\forall \tau \in (0;1) \quad \frac{\partial (\ln(\tilde{y}^*))}{\partial \tau} = \frac{\beta (\dddot{s}_H - \ddot{s}_H (\tau \ddot{s}_H + (1 - \tau) \ddot{s}_H) - \alpha (\ddot{s}_K - \ddot{s}_K) (\tau \ddot{s}_K + (1 - \tau) \ddot{s}_K))}{{(1 - \alpha - \beta) (\tau \ddot{s}_H + (1 - \tau) \ddot{s}_H)(\tau \ddot{s}_K + (1 - \tau) \ddot{s}_K)}} = \\
= \frac{\beta (\dddot{s}_H - \ddot{s}_H)(\ddot{s}_K - \ddot{s}_K)}{{(1 - \alpha - \beta) (\tau \ddot{s}_H + (1 - \tau) \ddot{s}_H)(\tau \ddot{s}_K + (1 - \tau) \ddot{s}_K)}}
\]

a stąd:

\[
\forall \tau \in (0;1) \quad \frac{\partial (\ln(\tilde{y}^*))}{\partial \tau} = \frac{\beta (\dddot{s}_H - \ddot{s}_H)(\ddot{s}_K - \ddot{s}_K)}{{(1 - \alpha - \beta) (\tau \ddot{s}_H + (1 - \tau) \ddot{s}_H)(\tau \ddot{s}_K + (1 - \tau) \ddot{s}_K)}}.
\]

Z równania (7.8) płynie wniosek, że:

\[
\frac{\partial (\ln(\tilde{y}^*))}{\partial \tau} > 0 \iff \beta (\dddot{s}_H - \ddot{s}_H)(\ddot{s}_K - \ddot{s}_K) - (\alpha + \beta)(\ddot{s}_K - \ddot{s}_K)(\ddot{s}_H - \ddot{s}_H) > 0,
\]

czyli:
\[
\frac{\partial (\ln(y^*))}{\partial \tau} > 0 \iff \beta (\bar{S}_H - \bar{s}_H) \bar{s}_K - \alpha (\bar{s}_K - \bar{S}_K) \bar{s}_H > (\alpha + \beta) (\bar{s}_K - \bar{s}_K) (\bar{S}_H - \bar{s}_H) \tau
\]
lub:
\[
\frac{\partial (\ln(y^*))}{\partial \tau} > 0 \iff \tau < \frac{\beta (\bar{S}_H - \bar{s}_H) \bar{s}_K - \alpha (\bar{s}_K - \bar{S}_K) \bar{s}_H}{(\alpha + \beta) (\bar{s}_K - \bar{s}_K) (\bar{S}_H - \bar{s}_H)}.
\] (7.9a)
Rozumując analogicznie, okazuje się, iż:
\[
\frac{\partial (\ln(y^*))}{\partial \tau} = 0 \iff \tau = \frac{\beta (\bar{S}_H - \bar{s}_H) \bar{s}_K - \alpha (\bar{s}_K - \bar{S}_K) \bar{s}_H}{(\alpha + \beta) (\bar{s}_K - \bar{s}_K) (\bar{S}_H - \bar{s}_H)}.
\] (7.9b)
i:
\[
\frac{\partial (\ln(y^*))}{\partial \tau} < 0 \iff \tau > \frac{\beta (\bar{S}_H - \bar{s}_H) \bar{s}_K - \alpha (\bar{s}_K - \bar{S}_K) \bar{s}_H}{(\alpha + \beta) (\bar{s}_K - \bar{s}_K) (\bar{S}_H - \bar{s}_H)}.
\] (7.9c)
Ze związków (7.8) oraz (7.9abc) wyciągnąć można następujące wnioski:
- Jeśli \(\beta (\bar{S}_H - \bar{s}_H) \bar{s}_K \leq \alpha (\bar{s}_K - \bar{s}_K) \bar{s}_H \), to z równania (7.8) wynika, że dla każdego \(\tau \in (0;1) \) zachodzi związek:
\[
\frac{\partial (\ln(y^*))}{\partial \tau} \leq -\frac{(\alpha + \beta) (\bar{s}_K - \bar{s}_K) (\bar{S}_H - \bar{s}_H) \tau}{(1 - \alpha - \beta)(\tau \bar{S}_H + (1 - \tau) \bar{s}_H)} < 0,
\]
czyli wówczas każdy wzrost stopy fiskalizacji gospodarki \(\tau \) prowadzi do spadku \(\tilde{y}^* \) i obniża położenie długookresowej ścieżki wzrostu wydajności pracy w gospodarce Mankiwa-Romera-Weila.
- W sytuacji, w której \(\beta (\bar{S}_H - \bar{s}_H) \bar{s}_K > \alpha (\bar{s}_K - \bar{s}_K) \bar{s}_H \) oraz \(\beta (\bar{S}_H - \bar{s}_H) \bar{s}_K < (\alpha + \beta) (\bar{s}_K - \bar{S}_K) (\bar{S}_H - \bar{s}_H) + \alpha (\bar{s}_K - \bar{s}_K) \bar{s}_H \), (po pierwsze) przy każdej stopie fiskalizacji gospodarki \(\tau \in \left(0; \frac{\beta (\bar{S}_H - \bar{s}_H) \bar{s}_K - \alpha (\bar{s}_K - \bar{s}_K) \bar{s}_H}{(\alpha + \beta) (\bar{s}_K - \bar{s}_K) (\bar{S}_H - \bar{s}_H)} \right) \) pochodna cząstkowa (7.8) jest dodatnia, (po drugie) przy stopie \(\tau = \bar{\tau} = \frac{\beta (\bar{S}_H - \bar{s}_H) \bar{s}_K - \alpha (\bar{s}_K - \bar{s}_K) \bar{s}_H}{(\alpha + \beta) (\bar{s}_K - \bar{s}_K) (\bar{S}_H - \bar{s}_H)} \) pochodna ta się zeruje oraz (po trzecie) dla każdego \(\tau \in \left(\frac{\beta (\bar{S}_H - \bar{s}_H) \bar{s}_K - \alpha (\bar{s}_K - \bar{s}_K) \bar{s}_H}{(\alpha + \beta) (\bar{s}_K - \bar{s}_K) (\bar{S}_H - \bar{s}_H)}; 1 \right) \) pochodna \(\frac{\partial (\ln(y^*))}{\partial \tau} \) jest ujemna. Dlatego też wówczas w przedziale \(\left(0; \frac{\beta (\bar{S}_H - \bar{s}_H) \bar{s}_K - \alpha (\bar{s}_K - \bar{s}_K) \bar{s}_H}{(\alpha + \beta) (\bar{s}_K - \bar{s}_K) (\bar{S}_H - \bar{s}_H)} \right) \) wzrost stopy fiskalizacji gospodarki \(\tau \) prowadzi do wzrostu \(\tilde{y}^* \) i gospodarka wchodzi na wyżej położonych długookresowych ścieżce wzrostu wydajności pracy. Przy \(\tau = \bar{\tau} \) produkt na jednostkę efektywnej pracy \(\tilde{y}^* \) osiąga swoje maksimum względem stopy fiskalizacji gospodarki \(\tau \) i gospodarka wchodzi na najwyższej położony długookresową ścieżkę wzrostu wydajności pracy. Natomiast po przekroczeniu przez stopę fiskalizacji gospodarki wielkości \(\bar{\tau} = \frac{\beta (\bar{S}_H - \bar{s}_H) \bar{s}_K - \alpha (\bar{s}_K - \bar{s}_K) \bar{s}_H}{(\alpha + \beta) (\bar{s}_K - \bar{s}_K) (\bar{S}_H - \bar{s}_H)} \) wzrost oowej stopy powoduje obni-
żenie wartości zmiennej \(\tilde{y}^* \) i przesunięcie gospodarki na niżej położoną ścieżkę wzrostu produktu na pracującego.

- Oznacza to, iż w rozważanym tu przypadku optymalną stopą fiskalizacji gospodarki jest stopa \(\bar{\tau} \) dana wzorem\(^4\):

\[
\bar{\tau} = \frac{\beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K - \alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)}. \tag{7.10}
\]

- Jeśli zaś \(\beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K - \alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - (\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H) \tau > 0 \), to dla każdego \(\tau \in (0; 1) \):

\[
\beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K - \alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - (\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H) \tau > 0,
\]

co, zgodnie z równaniem (7.8), implikuje nierówność:

\[
\forall \tau \in (0; 1) \quad \frac{\partial (\ln(\tilde{y}^*))}{\partial \tau} > 0,
\]

która interpretuje się ekonomicznie w ten sposób, iż wysokiej stopie fiskalizacji gospodarki \(\tau \) odpowiada wysoki produkt na jednostkę efektywnej pracy \(\tilde{y}^* \) w długookresowej równowadze Mankiwa-Romera-Weila i wysoko położona ścieżka wzrostu wydajności pracy w długim okresie.

Z równania (7.10) płyną zaś następujące wnioski:

- Optymalna stopa fiskalizacji gospodarki \(\bar{\tau} \) zależna jest od elastyczności \(\alpha \) i \(\beta \) produkcji \(Y \) względem nakładów kapitału rzeczowego \(K \) i ludzkiego \(H \) (równych udziałem nakładów \(K \) i \(H \) w produkcji \(Y \)), stóp inwestycji \(\tilde{s}_K \) i \(\tilde{s}_H \) sektora budżetowego gospodarki oraz stóp inwestycji \(\tilde{s}_K \) i \(\tilde{s}_H \) sektora podmiotów mikroekonomicznych.

- Ponieważ przy \(\tilde{s}_K < \tilde{s}_K \), \(\tilde{s}_H > \tilde{s}_H \), \(\beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K > \alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H \) oraz \(\beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K < (\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H) + \alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H \) zachodzi związek:

\[
\frac{\partial \tau}{\partial \alpha} = \frac{\partial}{\partial \alpha} \left(\frac{\beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K - \alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)} \right) =
\]

\[
= \frac{1}{(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)} \cdot \frac{\partial}{\partial \alpha} \left(\frac{\beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K - \alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H}{\alpha + \beta} \right) =
\]

\[
= \frac{1}{(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)} \cdot \frac{-\alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - \beta(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K + \alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H}{(\alpha + \beta)^2} =
\]

\[
= \frac{1}{(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)} \cdot \frac{-\alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - \beta(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K + \alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H}{(\alpha + \beta)^2}
\]

\(^4\) Równanie (7.10) zostanie niebawem poddane interpretacji ekonomicznej.
zatem im wyższa jest elastyczność α produkcji względem nakładów kapitału rzeczowego, tym niższa jest optymalna stopa fiskalizacji gospodarki \(\bar{\tau} \).

- Stąd, że:

\[
\frac{\partial \bar{\tau}}{\partial \beta} = \frac{1}{\left(\tilde{s}_K - \tilde{s}_H \right) \left(\tilde{s}_H - \bar{s}_h \right)} \cdot \frac{\partial}{\partial \beta} \left(\frac{\beta (\tilde{s}_H - \bar{s}_h) \tilde{s}_K - \alpha (\tilde{s}_K - \bar{s}_h) \bar{s}_H}{\alpha + \beta} \right) = \\
= \frac{1}{\left(\tilde{s}_K - \tilde{s}_H \right) \left(\tilde{s}_H - \bar{s}_h \right)} \cdot \frac{\partial}{\partial \beta} \left(\frac{\alpha (\tilde{s}_H - \bar{s}_h) \tilde{s}_K + \beta (\tilde{s}_H - \bar{s}_h) \tilde{s}_K - \beta (\tilde{s}_H - \bar{s}_h) \tilde{s}_K + \alpha (\tilde{s}_K - \bar{s}_h) \bar{s}_H}{\alpha + \beta} \right) = \\
= \frac{1}{\left(\tilde{s}_K - \tilde{s}_H \right) \left(\tilde{s}_H - \bar{s}_h \right)} \cdot \frac{\alpha (\tilde{s}_H - \bar{s}_h) \tilde{s}_K + \beta (\tilde{s}_H - \bar{s}_h) \tilde{s}_K - \beta (\tilde{s}_H - \bar{s}_h) \tilde{s}_K + \alpha (\tilde{s}_K - \bar{s}_h) \bar{s}_H}{\alpha + \beta} > 0,
\]

płynie wniosek, że wysokiej elastyczności β produkcji względem nakładów kapitału ludzkiego odpowiada wysoka optymalna stopa fiskalizacji gospodarki \(\bar{\tau} \).

- Różniczując równanie (7.10) względem stóp inwestycji \(\tilde{s}_K \) i \(\tilde{s}_H \) sektora budżetowego, okazuje się, iż:

\[
\frac{\partial \bar{\tau}}{\partial \tilde{s}_K} = \frac{\partial}{\partial \tilde{s}_K} \left(\frac{\beta (\tilde{s}_H - \bar{s}_h) \tilde{s}_K - \alpha (\tilde{s}_K - \bar{s}_h) \bar{s}_H}{\alpha + \beta} \right) = \\
= \frac{\beta \tilde{s}_K}{\alpha + \beta} \cdot \frac{1}{\tilde{s}_K - \tilde{s}_H} - \frac{\alpha \tilde{s}_H}{\alpha + \beta} \cdot \frac{1}{\tilde{s}_K - \tilde{s}_H} > 0
\]

oraz:

\[
\frac{\partial \bar{\tau}}{\partial \tilde{s}_H} = \frac{\partial}{\partial \tilde{s}_H} \left(\frac{\beta (\tilde{s}_H - \bar{s}_h) \tilde{s}_K - \alpha (\tilde{s}_K - \bar{s}_h) \bar{s}_H}{\alpha + \beta} \right) = \\
= \frac{\beta \tilde{s}_K}{\alpha + \beta} \cdot \frac{1}{\tilde{s}_K - \tilde{s}_H} - \frac{\alpha \tilde{s}_H}{\alpha + \beta} \cdot \frac{1}{\tilde{s}_H - \tilde{s}_K} > 0.
\]
Z powyższych nierówności wynika, że wysokim stopom inwestycji sektora budżetowego analizowanej tu gospodarki towarzyszy wysoka optymalna stopa fiskalizacji gospodarki.

- Natomiast stąd, iż:

\[
\frac{\partial \tau}{\partial \tilde{s}_K} = \frac{\partial}{\partial \tilde{s}_K} \left(\frac{\beta (\tilde{s}_H - \tilde{s}_K) \tilde{s}_K - \alpha (\tilde{s}_K - \tilde{s}_H) \tilde{s}_H}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_H)(\tilde{s}_H - \tilde{s}_K)} \right) = \\
= \frac{\partial}{\partial \tilde{s}_K} \left(\frac{\beta (\tilde{s}_H - \tilde{s}_K) \tilde{s}_K}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_H)(\tilde{s}_H - \tilde{s}_K)} \right) - \frac{\partial}{\partial \tilde{s}_K} \left(\frac{\alpha (\tilde{s}_K - \tilde{s}_H) \tilde{s}_H}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_H)(\tilde{s}_H - \tilde{s}_K)} \right) = \\
= \frac{\beta}{\alpha + \beta} \cdot \frac{\partial}{\partial \tilde{s}_K} \left(\frac{\tilde{s}_K - \tilde{s}_H}{(\tilde{s}_K - \tilde{s}_H)^2} \right) - \frac{\partial}{\partial \tilde{s}_K} \left(\frac{\alpha \tilde{s}_H}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_H)(\tilde{s}_H - \tilde{s}_K)} \right) = \\
= \frac{\beta}{\alpha + \beta} \cdot (\tilde{s}_K - \tilde{s}_H) - \frac{\alpha \tilde{s}_H}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_H)(\tilde{s}_H - \tilde{s}_K)} \frac{\partial}{\partial \tilde{s}_H} \left(\frac{1}{\tilde{s}_H - \tilde{s}_K} \right) = \\
= -\frac{\alpha (\tilde{s}_K - \tilde{s}_H) \tilde{s}_H}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_H)(\tilde{s}_H - \tilde{s}_K)^2} \frac{1}{\tilde{s}_H - \tilde{s}_K} < 0,
\]

wynika, że przy wysokich stopach inwestycji \(\tilde{s}_K \) i \(\tilde{s}_H \) sektora podmiotów mikroekonomicznych optymalna stopa fiskalizacji gospodarki \(\tau \) jest niska.

W przypadku VII, tj. przy \(\tilde{s}_K = \tilde{s}_K \) i \(\tilde{s}_H < \tilde{s}_K \), pochodna cząstkowa (7.7) dana jest wzorem:

\[
\forall \tau \in (0;1) \quad \frac{\partial}{\partial \tau} \ln(\tilde{y}^*) = \frac{\beta}{1 - \alpha - \beta} \cdot \frac{\tilde{s}_H - \tilde{s}_K}{\tau \tilde{s}_H + (1 - \tau)\tilde{s}_H} < 0,
\]

co oznacza, iż wówczas każdy wzrost stopy fiskalizacji gospodarki przekłada się na spadek \(\tilde{y}^* \) i obniżenie położenia długookresowej ścieżki wzrostu wydajności pracy.

Natomiast w przypadku VIII, czyli przy \(\tilde{s}_K > \tilde{s}_K \) oraz \(\tilde{s}_H < \tilde{s}_H \), można dokonać (analogicznego jak przy przejściu z równania (7.7) do (7.8) w przypadku VI) przekształcenia równania (7.7) i zapisać je wzorem\(^5\):

\[^5\text{Przejście od równania (7.7) do związku (7.11) pozostawiamy Czytelnikom.}\]
\[\forall \tau \in (0;1) \quad \frac{\partial (\ln(\tilde{Y}^*))}{\partial \tau} = \frac{\alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K - (\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)\tau}{(1 - \alpha - \beta)(\tau\tilde{s}_H + (1 - \tau)\tilde{s}_H)(\tau\tilde{s}_K + (1 - \tau)\tilde{s}_K)}. \] (7.11)

Z równania (7.11) wynika, że:

\[\frac{\partial (\ln(\tilde{Y}^*))}{\partial \tau} > 0 \iff \alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K - (\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)\tau > 0, \]
a stąd:

\[\frac{\partial (\ln(\tilde{Y}^*))}{\partial \tau} > 0 \iff (\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)\tau < \alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K, \]

co implikuje, że:

\[\frac{\partial (\ln(\tilde{Y}^*))}{\partial \tau} > 0 \iff \tau < \frac{\alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)}, \] (7.12a)

oraz (anallogicznie):

\[\frac{\partial (\ln(\tilde{Y}^*))}{\partial \tau} = 0 \iff \tau = \frac{\alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)}, \] (7.12b)

i:

\[\frac{\partial (\ln(\tilde{Y}^*))}{\partial \tau} < 0 \iff \tau > \frac{\alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)}. \] (7.12c)

Ze związków (7.11) oraz (7.12abc) wynika, co następuje (por. też wnioski ze związków (7.8) i (7.9abc) w przypadku VI):

- Jeśli \(\alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H \leq \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K \), to:

\[\forall \tau \in (0;1) \quad \frac{\partial (\ln(\tilde{Y}^*))}{\partial \tau} \leq \frac{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)\tau}{(1 - \alpha - \beta)(\tau\tilde{s}_H + (1 - \tau)\tilde{s}_H)(\tau\tilde{s}_K + (1 - \tau)\tilde{s}_K)} < 0 \]

i każde podniesienie stopy fiskalizacji gospodarki \(\tau \) prowadzi do spadku \(\tilde{Y}^* \) i obniżenia położenia długookresowej ścieżki wzrostu wydajności pracy.

- W sytuacji, w której \(\alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H > \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K \) oraz \(\alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H < (\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H) + \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K \) przy stopie fiskalizacji gospodarki \(\tau \in \left(0, \frac{\alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)} \right) \), pochodna \(\frac{\partial (\ln(\tilde{Y}^*))}{\partial \tau} \) jest dodatnia, przy

\[\tau = \tilde{\tau} = \frac{\alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)} \]

pochodna ta się zeruje, zaś przy

\[\tau \in \left(0, \frac{\alpha(\tilde{s}_K - \tilde{s}_K)\tilde{s}_H - \beta(\tilde{s}_H - \tilde{s}_H)\tilde{s}_K}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)(\tilde{s}_H - \tilde{s}_H)} ; 1 \right) \]

spełniają jest nierówność: \(\frac{\partial (\ln(\tilde{Y}^*))}{\partial \tau} > 0 \). Stąd
też płynie wniosek, że optymalną stopą fiskalizacji gospodarki w analizowanym przypadku jest stopa τ dana wzorem⁶:

\[\tau = \frac{\alpha(\bar{s}_K - \bar{s}_K)\bar{s}_H - \beta(\bar{s}_H - \bar{s}_H)\bar{s}_K}{(\alpha + \beta)(\bar{s}_K - \bar{s}_K)(\bar{s}_H - \bar{s}_H)}. \] (7.13)

- Natomiast przy \(\alpha(\bar{s}_K - \bar{s}_K)\bar{s}_H - \beta(\bar{s}_H - \bar{s}_H)\bar{s}_K - (\alpha + \beta)(\bar{s}_K - \bar{s}_K)(\bar{s}_H - \bar{s}_H)\tau > 0 \) dla każdego \(\tau \in (0;1) \) zachodzi związek:

\[\alpha(\bar{s}_K - \bar{s}_K)\bar{s}_H - \beta(\bar{s}_H - \bar{s}_H)\bar{s}_K - (\alpha + \beta)(\bar{s}_K - \bar{s}_K)(\bar{s}_H - \bar{s}_H)\tau > 0, \]

co w połączeniu z równaniem (7.11) implikuje, że \(\frac{\partial(\ln(\bar{y}^*))}{\partial \tau} > 0 \), i wzrost stopy fiskalizacji gospodarki prowadzi wówczas do podniesienia położenia długookresowej ścieżki wzrostu wydajności pracy.

Ponieważ równanie optymalnej stopy fiskalizacji (7.13) w przypadku VIII odpowiada równaniu optymalnej stopy fiskalizacji (7.11) w przypadku VI, zatem płyną zeń te same wnioski co z równania (7.11) z tą różnicą, że przy \(\bar{s}_K > \bar{s}_K \) oraz \(\bar{s}_H < \bar{s}_H \):

\[\frac{\partial \bar{\tau}}{\partial \alpha} = -\beta(\bar{s}_K - \bar{s}_K)\bar{s}_H + (\bar{s}_H - \bar{s}_H)\bar{s}_K = \beta(\bar{s}_H - \bar{s}_H)\bar{s}_K + (\bar{s}_K - \bar{s}_K)\bar{s}_H > 0 \]

i:

\[\frac{\partial \bar{\tau}}{\partial \beta} = \alpha(\bar{s}_H - \bar{s}_H)\bar{s}_K + (\bar{s}_K - \bar{s}_K)\bar{s}_H = -\alpha(\bar{s}_K - \bar{s}_K)\bar{s}_H + (\bar{s}_H - \bar{s}_H)\bar{s}_K < 0. \]

Interpretację ekonomiczną powyższych nierówności pozostawiamy Czytelnikom.

Jeśli zaś wystąpi IX ze wspomnianych uprzednio przypadków, czyli \(\bar{s}_K < \bar{s}_K \) i \(\bar{s}_H < \bar{s}_H \), to (zgodnie z równaniem (7.7)) spełniona jest nierówność:

\[\forall \tau \in (0;1) \quad \frac{\partial(\ln(\bar{y}^*))}{\partial \tau} = \frac{\alpha}{1 - \alpha - \beta} \cdot \frac{\bar{s}_K - \bar{s}_K}{1 - \frac{1}{\tau \bar{s}_K} + (1 - \tau)\bar{s}_K} + \frac{\beta}{1 - \alpha - \beta} \cdot \frac{\bar{s}_H - \bar{s}_H}{1 - \frac{1}{\tau \bar{s}_H} + (1 - \tau)\bar{s}_H} < 0, \]

co oznacza, że w rozpatrywanej tu sytuacji każde podniesienie stopnia fiskalizacji gospodarki τ powoduje obniżenie wielkości produktu na jednostkę efektywnej pracy \(\bar{y}^* \) i wyprowadza długookresową wydajność pracy na niżej położoną ścieżkę wzrostu gospodarczego.

Prowadzone w tej części skryptu rozważania na temat długookresowej efektywności lub nieefektywności ekspansywnej polityki fiskalnej (polegającej na wzroście stopy fiskalizacji gospodarki τ) w warunkach różnych relacji stóp inwestycji sektora budż-
towego i sektora podmiotów mikroekonomicznych można zestawić tak, jak ma to miejsce w tabeli 7.1.

Z przedstawionego w tabeli 7.1 zestawienia płyną następujące wnioski:

- Ekspansywna polityka fiskalna państwa jest efektywna (z punktu widzenia długookresowego wzrostu gospodarczego) przy każdej stopie fiskalizacji gospodarki tylko wówczas, gdy sektor podmiotów mikroekonomicznych charakteryzuje się niższą od sektora budżetowego stopą inwestycji w kapitał rzeczowy lub ludzki przy takiej samej lub niższej stopie inwestycji w drugi, że wspomnianych zasobów czynników produkcji. Wynika to stąd, iż jeśli sektor budżetowy charakteryzuje się wyższymi stopami inwestycji od sektora podmiotów mikroekonomicznych (lub jedną wyższą a drugą równą tej, która występuje w sektorze podmiotów mikroekonomicznych), to każde podniesienie stopnia fiskalizacji gospodarki podnosi stopę (lub stopy) inwestycji całego sektora, co z kolei wprowadza gospodarkę na coraz wyżej położone ścieżki wzrostu gospodarczego. Płynie stąd wniosek, że w rozwiązanych tu warunkach najkorzystniejszą (z punktu widzenia długookresowego wzrostu gospodarczego) stopą fiskalizacji jest stopa $\tau = 1$.

Tabela 7.1. Długookresowe skutki ekspansywnej polityki fiskalnej przy różnych relacjach stóp inwestycji sektora podmiotów mikroekonomicznych i sektora budżetowego

<table>
<thead>
<tr>
<th>Zależności między stopami inwestycji</th>
<th>$\bar{s}_H > s_H > \bar{s}_H$</th>
<th>$\bar{s}_H = s_H = \bar{s}_H$</th>
<th>$\bar{s}_H < s_H < \bar{s}_H$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{k}_H > s_k > \bar{k}_H$</td>
<td>efektywna</td>
<td>efektywna</td>
<td>istnieje optymalna stopa fiskalizacji*</td>
</tr>
<tr>
<td>$\bar{s}_k = s_k = \bar{s}_k$</td>
<td>efektywna</td>
<td>obojętna</td>
<td>nieefektywna</td>
</tr>
<tr>
<td>$\bar{s}_k < s_k < \bar{s}_k$</td>
<td>istnieje optymalną stopa fiskalizacji*</td>
<td>nieefektywna</td>
<td></td>
</tr>
</tbody>
</table>

* Jeśli $\bar{\tau} \notin (0;1)$, to optymalna stopa fiskalizacji wynosi 0% lub 100%.

- W sytuacji, w której sektor podmiotów mikroekonomicznych charakteryzuje się wyższymi stopami inwestycji od sektora budżetowego (lub wyższą jedną z tych stóp, przy takiej samej drugiej stopie inwestycji), każde podniesienie stopy fiskalizacji gospodarki obniża łączne stopy (lub tylko jedną ze stóp) inwestycji i sprowadza rozważaną tę gospodarkę na niżej położoną ścieżkę wzrostu gospodarczego. W związku z poświadczonym najkorzystniejszą stopą fiskalizacji gospodarki w scharakteryzowanym tu przypadku jest stopa $\tau = 0$.

- Gdy stopy inwestycji w zasoby kapitału rzeczowego i ludzkiego sektora podmiotów mikroekonomicznych oraz sektora budżetowego są sobie równe, to polityka fiskalna nie oddziałuje na położenie długookresowej ścieżki wzrostu gospodarczego.

- Jeśli zaś sektor podmiotów mikroekonomicznych charakteryzuje się wyższą stopą inwestycji w jeden z analizowanych w modelu Mankiw-Romera-Weila zasobów kapitału, natomiast sektor budżetowy wykazuje wyższą stopę inwestycji w drugi z owych zasobów, wówczas istnieje stopa fiskalizacji, przy której gospodarka uzyskuje najwyżej położoną ścieżkę wzrostu gospodarczego. Stopa ta zależna jest zarówno od stóp inwestycji w obydwu zasoby kapitału sektora podmiotów mikroekonomicznych
oraz sektora budżetowego, jak i od elastyczności funkcji produkcji względem nakładów kapitału rzeczowego oraz ludzkiego.

Z prowadzonych tu rozważań wynika, że optymalna stopa fiskalizacji gospodarki τ∗ w każdym z rozważanych uprzednio przypadków (poza przypadkiem I, który jest mało interesujący z makroekonomicznego punktu widzenia) dana jest wzorem:

\[
\tau^* = \begin{cases}
0 & \text{w przypadkach III, VII, IX lub przy } \tau \leq 0 \\
\frac{\beta(\bar{s}_H - \bar{s}_H)\bar{s}_K - \alpha(\bar{s}_K - \bar{s}_K)\bar{s}_H}{(\alpha + \beta)(\bar{s}_K - \bar{s}_K)(\bar{s}_H - \bar{s}_H)} & \text{w przypadkach VI, VIII przy } \tau \in (0;1). \\
1 & \text{w przypadkach II, IV, V lub przy } \tau \geq 1
\end{cases}
\]

Jeśli dodatkowo poczynimy założenie, że państwo może ustalić stopę fiskalizacji gospodarki tylko na poziomie τ ∈ [τ_m;τ_M] ⊂ (0;1), tj. założenie, że państwo może ustalić ową stopę tylko w przedziale [τ_m;τ_M], który akceptują podmioty mikroekonomiczne w gospodarce, to wówczas okaże się, że z makroekonomicznego punktu widzenia ma sens rozważanie efektywności polityki fiskalnej jedynie w przedziale [τ_m;τ_M]. W tej sytuacji możliwe są następujące przypadki:

a. Jeśli τ∗ ∈ [0;τ_m), to optymalną stopą fiskalizacji gospodarki leżącą wewnątrz przedziału [τ_m;τ_M] będzie minimalna, społecznie akceptowalna stopa fiskalizacji τ_m. Gospodarka mogła być, co prawda, osiągnąć wyższą położoną długookresową ścieżkę wzrostu wydajności pracy (odpowiadającą stopie fiskalizacji gospodarki τ∗), jednak wspomniana stopa fiskalizacji nie pozwala na realizację minimalnych funkcji państwa i gospodarka pozostaje na ścieżce wzrostu odpowiadającej „nieoptymalnej” stopie fiskalizacji τ_m.

b. Jeśli jednak τ∗ ∈ [τ_m;τ_M], to państwo powinno wybrać stopę fiskalizacji gospodarki τ∗, gdyż nie tylko jest ona optymalna z punktu widzenia długookresowego wzrostu gospodarczego, ale również jest ona akceptowana przez podmioty mikroekonomiczne.

c. Jeśli zaś τ∗ ∈ (τ_m;1], to państwo powinno się zdecydować na maksymalną, społecznie akceptowaną stopę fiskalizacji gospodarki τ_M, gdyż wówczas maksymalizowany jest produkt na jednostkę efektywnej pracy y∗ w długookresowej równowadze gospodarki (w przedziale [τ_m;τ_M]) i gospodarka Mankiwa-Romera-Weila wychodzi w długim okresie na najwyżej położoną ścieżkę wydajności pracy.

\[\text{Dolny kraniec wspomnianego przedziału, czyli } \tau_m, \text{ można interpretować ekonomicznie jako minimalną stopę fiskalizacji gospodarki, która zapewni państwu możliwość realizacji swoich podstawowych zadań w sferze społecznej i politycznej. Natomiast górny kraniec, a więc } \tau_M, \text{ można traktować jako maksymalną stopę fiskalizacji gospodarki, która akceptują podmioty mikroekonomiczne z powodu awersji do realizacji świadczeń na rzecz państwa. Oznacza to, że przedział } [\tau_m;\tau_M] \text{ jest przedziałem społecznie akceptowanej fiskalizacji.}\]
7.3. MODEL Z WYODRĘBNIONYM KAPITAŁEM PUBLICZNYM

W punkcie 7.2 skryptu rozważano model wzrostu gospodarczego, w którym zasoby kapitału rzeczowego i ludzkiego (oraz strumienie inwestycji w owe zasoby) dezagregowano na zasoby, które są finansowane przez sektor podmiotów mikroekonomicznych oraz zasoby finansowane przez sektor budżetowy gospodarki. W punkcie 7.3 rozważany będzie model wzrostu, w którym wyróżnia się dwa zasoby kapitału. Zasobami tymi są:

- zasób kapitału (rzeczowego i ludzkiego), który może być finansowany zarówno przez sektor podmiotów mikroekonomicznych, jak i przez sektor budżetowy oraz
- zasób kapitału, który jest finansowany jedynie przez sektor budżetowy gospodarki. Do owego zasobu kapitału można zaliczyć kapitał rzeczowy związanego z publiczną infrastrukturą społeczno-ekonomiczną, publicznym transportem lub ochroną środowiska oraz kapitał ludzki wynikający z finansowania przez państwo podstawowych badań naukowych, elementarnego szkolnictwa czy ochrony zdrowia.

W prowadzonych w punkcie 7.3 rozważaniach przyjmuje się następujące założenia:

1. Proces produkcyjny opisany jest przez rozszerzoną funkcję produkcji Cobb-Douglassa daną wzorem:

\[
\forall t \in [0;+\infty) \quad Y(t) = \left(K(t) \right)^{\alpha} \left(P(t) \right)^{\beta} \left(\Lambda(t) \cdot L(t) \right)^{1-\alpha-\beta} = \left(K(t) \right)^{\alpha} \left(P(t) \right)^{\beta} \left(\tilde{L}(t) \right)^{1-\alpha-\beta},
\]

gdzie zmienne Y oraz \(\tilde{L} = \Lambda L > 0 \) interpretuje się tak, jak w modelu z punktu 7.2 skryptu. \(K > 0 \) to zasób kapitału, który może być finansowany przez oba sektory gospodarki, \(P > 0 \) jest zaś zasobem kapitału, który finansuje jedynie sektor budżetowy. Natomiast parametry \(\alpha, \beta, \left(1-\alpha-\beta\right) \in (0;1) \) to elastyczności strumienia wtworzonego produktu \(Y \) względem nakładów kapitału \(K \), kapitału \(P \) oraz jednostek efektywnej pracy \(\tilde{L} = \Lambda L \). Z funkcji produkcji (7.14) wyciągnąć można wniosek, że z akumulacji kapitału finansowanego jedynie przez sektor budżetowy (czyli z akumulacji kapitału \(P \)) korzysta zarówno sektor budżetowy, jak i sektor podmiotów mikroekonomicznych. Wynika to stąd, iż wzrost kapitału \(P \) podnosi produktywność kapitału \(K \), gdyż produktywność ta dana jest wzorem:

\[
\forall t \in [0;+\infty) \quad \frac{Y(t)}{K(t)} = \left(K(t) \right)^{\alpha-1} \left(P(t) \right)^{\beta} \left(\tilde{L}(t) \right)^{1-\alpha-\beta},
\]

a stąd:

\[
\frac{\partial (Y/K)}{\partial P} = \beta K^{\alpha-1} P^{\beta-1} \tilde{L}^{1-\alpha-\beta} > 0.
\]

2. Przyrosty zasobów kapitału finansowanego przez oba sektory gospodarki \(\dot{K} \) oraz kapitału finansowanego jedynie przez sektor budżetowy \(\dot{P} \) opisane są przez następujące równania różniczkowe:

\[
\forall t \in [0;+\infty) \quad \dot{K}(t) = s K Y(t) - \delta K(t), \\
\]

(7.15a)
i: $$\forall t \in [0;+\infty) \quad \dot{P}(t) = s_P Y(t) - \delta_P P(t),$$ (7.15b)
gdzie s_K i s_P [przy czym s_K, s_P oraz $s_K + s_P (0;1)$] są zagregowanymi stopami inwestycji w zasoby K i P, zaś δ_K i $\delta_P (0;1)$ to stopy deprecjacji owych zasobów. Z równań (7.15ab) wynika, że przyrost zasobu kapitału finansowanego przez oba sektory gospodarki K (kapitału finansowanego jedynie przez sektor budżetowy \dot{P}) równy jest różnicy między inwestycjami $s_K Y (s_P Y)$ w ów zasób kapitału a jego deprecjacją $\delta_K K (\delta_P P)$.

3. Jednostki efektywnej pracy rosną według stopy wzrostu równé $g + n$, będącej sumą stopy postępu technicznego w sensie Harroda $g > 0$ i stopy wzrostu liczby pracujących $n > 0$.

4. Stopa fiskalizacji gospodarki równa jest $\tau \in (0;1)$.

5. Sektor podmiotów mikroekonomicznych inwestuje w zasób kapitału K \bar{s}_K -tą część swoich dochodów po podatkowaniu $(1 - \tau)Y$. Dlatego też $\bar{s}_K \in (0;1)$ jest stopą inwestycji sektora podmiotów mikroekonomicznych.

6. Sektor budżetowy inwestuje \bar{s}_P -tą część swoich dochodów τY w zasób kapitału K oraz \bar{s}_P -tą część tych dochodów w zasób kapitału P. Wielkości \bar{s}_K i \bar{s}_P [przy czym \bar{s}_K, \bar{s}_P, $\bar{s}_K + \bar{s}_P (0;1)$] są stopami inwestycji sektora budżetowego w oba analizowane w tej części skryptu zasoby kapitału.

Z założeń 1–3 oraz prowadzonych w rozdziale trzecim rozważań (czego uzasadnienie pozostawiamy Czytelnikom) wynika, że produkt na jednostkę efektywnej pracy \bar{y} w długookresowej równowadze rozważanego tu modelu wzrostu gospodarczego można zapisać wzorem:

$$\ln(\bar{y}^*) = \frac{\alpha}{1-\alpha-\beta} \ln\left(\frac{s_K}{\delta_K + g + n}\right) + \frac{\beta}{1-\alpha-\beta} \ln\left(\frac{s_P}{\delta_P + g + n}\right).$$ (7.16)

Co więcej, z założeń 4–6 (analizowanego w tej części skryptu modelu wzrostu gospodarczego) wyciągnąć można wniosek, że inwestycje $s_K Y$ w zasób kapitału K, który może być finansowany przez oba sektory gospodarki, dany jest wzorem:

$$\forall t \in [0;+\infty) \quad s_K Y(t) = \bar{s}_K (1-\tau)Y(t) + \bar{s}_K \tau Y(t),$$

co, po podzieleniu przez wielkość produkcji $Y > 0$, implikuje związek:

$$s_K = \bar{s}_K (1-\tau) + \bar{s}_K \tau.$$ (7.17a)

Podobnie, z założeń 4 i 6 płynie wniosek, iż:

$$\forall t \in [0;+\infty) \quad s_P Y(t) = \bar{s}_P \tau Y(t),$$

a stąd:

$$s_P = \bar{s}_P \tau.$$ (7.17b)

Wstawiając zależności (7.17ab) do równania (7.16), można je zapisać następująco:
\[
\ln(\tilde{y}^*) = \frac{\alpha}{1 - \alpha - \beta} \ln\left(\frac{\tilde{s}_K (1 - \tau) + \tilde{s}_K \tau}{\delta_K + g + n}\right) + \frac{\beta}{1 - \alpha - \beta} \ln\left(\frac{\tilde{s}_P \tau}{\delta_P + g + n}\right) = \\
= \frac{\alpha}{1 - \alpha - \beta} \ln(\tilde{s}_K (1 - \tau) + \tilde{s}_K \tau) + \frac{\beta}{1 - \alpha - \beta} \ln(\tilde{s}_P \tau) + \Psi,
\]

gdzie \(\Psi = -\frac{\alpha}{1 - \alpha - \beta} \ln(\delta_K + g + n) - \frac{\beta}{1 - \alpha - \beta} \ln(\delta_P + g + n)\).

Ze związku (7.18) wynika, co następuje:

- Wielkość produktu na jednostkę efektywnej pracy \(\tilde{y}^*\) w długookresowej równowadze rozważanego tu modelu wzrostu gospodarczego zależna jest m.in. od stopy inwestycji \(\tilde{s}_K\) sektora podmiotów mikroekonomicznych, stóp inwestycji \(\tilde{s}_K\) i \(\tilde{s}_P\) sektora budżetowego oraz od stopy fiskalizacji gospodarki \(\tau\).

- Ponieważ:

\[
\frac{\partial(\ln(\tilde{y}^*))}{\partial \tilde{s}_K} = \frac{\alpha (1 - \tau)}{(1 - \alpha - \beta)(\tilde{s}_K (1 - \tau) + \tilde{s}_K \tau)} > 0,
\]

zatem wysokiej stopie inwestycji sektora podmiotów mikroekonomicznych \(\tilde{s}_K\) w zasób kapitału \(K\), w który mogą inwestować oba analizowane w prezentowanym tu modelu wzrostu gospodarczego sektory gospodarki, towarzyszy wysoki produkt na jednostkę efektywnej pracy \(\tilde{y}^*\) w długim okresie i wysokie położenie długookresowej ścieżki wzrostu gospodarczego.

- Podobnie, stąd, iż:

\[
\frac{\partial(\ln(\tilde{y}^*))}{\partial \tilde{s}_K} = \frac{\alpha \tau}{(1 - \alpha - \beta)(\tilde{s}_K (1 - \tau) + \tilde{s}_K \tau)} > 0
\]

oraz:

\[
\frac{\partial(\ln(\tilde{y}^*))}{\partial \tilde{s}_P} = \frac{\beta}{(1 - \alpha - \beta)\tilde{s}_P} > 0,
\]

pływne wniosek, że wysokim stopom inwestycji \(\tilde{s}_K\) i \(\tilde{s}_P\) sektora budżetowego odpowiadają wysoko położone długookresowe ścieżki wzrostu gospodarczego.

- Różniczkując równanie (7.18) względem stopy fiskalizacji gospodarki \(\tau\), okazuje się, że:

\[
\frac{\partial(\ln(\tilde{y}^*))}{\partial \tau} = \frac{\alpha (\tilde{s}_K - \tilde{s}_K)}{(1 - \alpha - \beta)(\tilde{s}_K (1 - \tau) + \tilde{s}_K \tau)} + \frac{\beta}{(1 - \alpha - \beta)\tau} = (7.19)
\]

lub\(^8\):

\[
\frac{\partial(\ln(\tilde{y}^*))}{\partial \tau} = \frac{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)\tau + \beta \tilde{s}_K}{(1 - \alpha - \beta)\tau(\tilde{s}_K (1 - \tau) + \tilde{s}_K \tau)}.
\]

\(^8\) Przejście od równania (7.19) do związku (7.20) pozostawiamy Czytelnikom.
Analizując równanie (7.20) w kontekście efektywności prowadzonej przez państwo ekspansywnej polityki fiskalnej, należy rozpatrzyć dwa następujące przypadki. Po pierwsze, przypadek, w którym \(\tilde{s}_K \geq \bar{s}_K \) (tj. przypadek, w którym sektor podmiotów mikroekonomicznych charakteryzuje się niemniejszą od sektora budżetowego stopą inwestycji w zasob kapitału K), oraz, po drugie, przypadek, w którym \(\tilde{s}_K < \bar{s}_K \) (czyli sektor podmiotów mikroekonomicznych ma wyższą stopę wzrostu w zasob K od sektora budżetowego). Jeśli występuje pierwszy z rozważanych uprzednio przypadków, to pochodna cząstkowa \(\frac{\partial (\ln (y^*))}{\partial \tau} \) jest dodatnia (gdzie wówczas \((\alpha + \beta)(\tilde{s}_K - \bar{s}_K)\tau + \beta \tilde{s}_K \geq \beta \bar{s}_K > 0 \)) i każde podniesienie stopy fiskalizacji gospodarki \(\tau \) prowadzi do wzrostu wartości \(y^* \), co powoduje wejście gospodarki Mankiwa-Romera-Weila na wyżej położoną długookresową ścieżkę wzrostu gospodarczego. Natomiast w przypadku, w którym \(\tilde{s}_K < \bar{s}_K \), zachodzą zależności:

\[
\frac{\partial (\ln (y^*))}{\partial \tau} \geq 0 \iff (\alpha + \beta)(\tilde{s}_K - \bar{s}_K)\tau + \beta \tilde{s}_K \geq 0 \iff \tau \leq \frac{\beta \tilde{s}_K}{(\alpha + \beta)(\tilde{s}_K - \bar{s}_K)},
\]

oraz:

\[
\frac{\partial (\ln (y^*))}{\partial \tau} \leq 0 \iff (\alpha + \beta)(\tilde{s}_K - \bar{s}_K)\tau + \beta \tilde{s}_K \leq 0 \iff \tau \geq \frac{\beta \tilde{s}_K}{(\alpha + \beta)(\tilde{s}_K - \bar{s}_K)},
\]

co oznacza, iż optymalna stopa fiskalizacji gospodarki \(\bar{\tau} \) dana jest wówczas wzorem:

\[
\bar{\tau} = \frac{\beta \tilde{s}_K}{(\alpha + \beta)(\tilde{s}_K - \bar{s}_K)},
\]

przy czym \(\bar{\tau} \) nie musi należeć do przedziału (0;1). Z równania (7.21) płynie wniosek, że przy \(\tilde{s}_K < \bar{s}_K \) optymalna stopa fiskalizacji gospodarki \(\bar{\tau} \) jest tym wyższa, im wyższe są elastyczności strumienia produktu Y względem kapitału sektora budżetowego P (czyli \(\beta \)) i stopa inwestycji sektora budżetowego \(\tilde{s}_K \) oraz im niższe są elastyczność Y względem K (czyli \(\alpha \)) i stopa inwestycji sektora podmiotów mikroekonomicznych \(\tilde{s}_K \). Wynika to stąd, że:

\[
\frac{\partial \bar{\tau}}{\partial \beta} = \frac{\alpha \tilde{s}_K}{(\alpha + \beta)^2(\tilde{s}_K - \bar{s}_K)} > 0,
\]

\[
\frac{\partial \bar{\tau}}{\partial \tilde{s}_K} = \frac{\beta \tilde{s}_K}{(\alpha + \beta)(\tilde{s}_K - \bar{s}_K)^2} > 0,
\]

\[
\frac{\partial \bar{\tau}}{\partial \alpha} = -\frac{\beta \tilde{s}_K}{(\alpha + \beta)^2(\tilde{s}_K - \bar{s}_K)} < 0
\]

oraz:
\[
\frac{\sigma}{\sigma_K} = -\frac{\beta \tilde{s}_K}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)^2} < 0.
\]

Ponadto stopa fiskalizacji \(\bar{s} \), dana równaniem (7.21), jest niezależna od stopy inwestycji sektora budżetowego w zasób \(P \). Co więcej, ponieważ (jak już wspomniano) stopa \(\bar{s} \) nie musi należeć do przedziału \((0; 1)\), zatem jeśli \(\bar{s} < 0 \), to optymalną stopą fiskalizacji gospodarki będzie zerowa stopa fiskalizacji. Jeśli zaś \(\bar{s} > 1 \), to optymalna stopa fiskalizacji gospodarki równa jest jedności. Płynie stąd wniosek, że optymalną stopę fiskalizacji gospodarki przy \(\tilde{s}_K < \tilde{s}_K \) można zapisać wzorem:

\[
\tau^* = \begin{cases}
0 & \text{gdy } \bar{s} \leq 0 \\
\frac{\beta \tilde{s}_K}{(\alpha + \beta)(\tilde{s}_K - \tilde{s}_K)} & \text{przy } \bar{s} \in (0; 1) \\
1 & \text{gdy } \bar{s} \geq 1
\end{cases}
\] (7.22)

Ponieważ relacje zachodzące między \(\tau^* \) opisanym równaniem (7.22) a przedziałem społecznie akceptowanej fiskalizacji \([\tau_m, \tau_M]\) są analogiczne jak w przypadku \(\tau^* \) w modelu z punktu 7.2 skryptu a wspomnianym przedziałem, zatem państwo (wybierając określoną stopę fiskalizacji gospodarki) powinno kierować się kryteriami analogicznymi do tych, które wyprowadziłyśmy w punkcie 7.2. Oznacza to, iż (po pierwsze) przy \(\tau^* < \tau_m \) należy zdecydować się na stopę fiskalizacji \(\tau_m \), (po drugie) w przypadku, w którym \(\tau^* \in [\tau_m; \tau_M] \), państwo powinno zdecydować się na stopę fiskalizacji gospodarki \(\bar{s} \) daną równaniem (7.21) oraz (po trzecie) wówczas, gdy \(\tau^* > \tau_M \), państwo powinno wybrać maksymalną, społecznie akceptowalną stopę fiskalizacji \(\tau_M \).

7.4. PODSUMOWANIE

Prowadzone w rozdziale siódmym skryptu rozważania można podsumować następująco:

I. Podjęte w punkcie 7.2 analizy wpływu polityki fiskalnej na proces długookresowego wzrostu gospodarczego, na gruncie rozszerzonego modelu wzrostu Mankiwa-Romera-Weila, polegają na dezagregacji stóp inwestycji w zasoby kapitału rzeczowego i ludzkiego. Dezagregacja ta sprowadza się do wyróżnienia stóp inwestycji w owe zasoby kapitału sektora podmiotów mikroekonomicznych i stóp inwestycji sektora budżetowego. Takie rozszerzenie modelu wzrostu gospodarczego Mankiwa-Romera-Weila pozwala na analizę wpływu stopy fiskalizacji gospodarki na proces długookresowego wzrostu gospodarczego.

II. Z prowadzonych w punkcie 7.2 rozważań wynika, że im wyższe są stopy inwestycji w kapitał rzeczowy i ludzki obu analizowanych tam sektorów gospodarki, tym (przy danej stopie fiskalizacji gospodarki) wyżej położona jest długookresowa ścieżka wzrostu gospodarczego. Należy jednak podkreślić, że im wyższa (niższa) jest stopa fiskalizacji gospodarki, tym większy (mniejszy) wpływ na położen-
nie owej ścieżki wzrostu gospodarczego mają stopy inwestycji sektora podmiotów mikroekonomicznych (sektora budżetowego).

III. Pozytywny wpływ wysokiej stopy fiskalizacji gospodarki na położenie długookresowej ścieżki wzrostu gospodarczego występuje jednak jedynie wówczas, gdy sektor budżetowy charakteryzuje się wyższą, od sektora podmiotów mikroekonomicznych, stopą inwestycji w przynajmniej jeden z rozważanych w rozszerzonym modelu Mankiwa-Romera-Weila zaśwób kapitału, przy niemniejszej stopie inwestycji w drugi z tych zaśwób. W sytuacji, w której sektor podmiotów mikroekonomicznych charakteryzuje się wyższymi stopami inwestycji (lub wyższą jedną z tych stóp, przy drugiej równej tej, która występuje w sektorze budżetowym), korzystniejsza, z punktu widzenia długookresowego wzrostu gospodarczego, jest niska stopa fiskalizacji gospodarki.

IV. Jeśli sektor podmiotów mikroekonomicznych charakteryzuje się wyższą stopą inwestycji w zasób kapitału rzeczowego lub ludzkiego, a sektor budżetowy drugą z analizowanych w rozdziele siódmym stopą inwestycji, to istnieje optymalna stopa fiskalizacji gospodarki. Owa stopa fiskalizacji jest optymalna w tym sensie, że gwarantuje gospodarce Mankiwa-Romera-Weila wejście na najwyższej położoną, długookresową ścieżkę wzrostu wydajności pracy. Stopa ta jest tym wyższa, im wyższe są stopy inwestycji sektora budżetowego i im niższe są stopy inwestycji sektora podmiotów mikroekonomicznych. Co więcej, optymalna stopa fiskalizacji gospodarki zależna jest również od elastyczności strumienia wytworzonego produktu względem zaśwób kapitału rzeczowego i ludzkiego. Jeśli sektor budżetowy charakteryzuje się wyższą stopą inwestycji w zasób kapitału rzeczowego (ludzkiego), to optymalna stopa fiskalizacji gospodarki jest tym wyższa, im wyższa jest elastyczność produkcji względem nakładów kapitału rzeczowego (ludzkiego) i niższa jest elastyczność produktu względem nakładów kapitału ludzkiego (rzeczowego).

V. Dokonana w punkcie 7.3 skryptu dezagregacja kapitału rzeczowego i kapitału ludzkiego na kapitał, który może być finansowany przez sektor podmiotów mikroekonomicznych lub sektor budżetowy, oraz na kapitał, który może być finansowany wyłącznie przez sektor budżetowy gospodarki, nieco modyfikuje postawione wcześniej wnioski. Okazuje się wówczas bowiem, że jeżeli przy wspomnianym tu założeniu sektor budżetowy charakteryzuje się wyższą (od sektora podmiotów mikroekonomicznych) stopą inwestycji w zasób kapitału finansowanego przez oba sektory gospodarki, to podnoszenie stopy fiskalizacji gospodarki zawsze wyprowadza gospodarkę na wyżej położoną ścieżkę wzrostu gospodarczego. Jeśli zaś sektor podmiotów mikroekonomicznych ma wyższą stopę inwestycji w ów kapitał, to istnieje optymalna stopa fiskalizacji gospodarki. Co więcej, stopa ta jest tym wyższa, im wyższa jest stopa inwestycji sektora budżetowego w kapitał finansowany przez oba sektory gospodarki oraz im wyższa jest elastyczność strumienia wytworzonego produktu względem kapitału finansowanego wyłącznie przez sektor budżetowy gospodarki. Ponadto optymalna stopa fiskalizacji jest tym niższa, im wyższa jest stopa inwestycji sektora podmiotów mikroekonomicznych oraz elastyczność produkcji względem kapitału finansowanego przez obydwad rozwążane w rozdziale siódmym sektory gospodarki.
VI. Ponieważ optymalna stopa fiskalizacji gospodarki (w obu analizowanych w rozdziale siódmym modelach) może przyjmować dowolne wartości, a podmioty mikroekonomiczne zapewne akceptują jedynie stopy fiskalizacji gospodarki z pewnego, społecznie akceptowalnego przedziału, zatem optymalna stopa fiskalizacji gospodarki nie musi być wielkością, którą rząd może narzucić gospodarce. Jeśli optymalna stopa fiskalizacji gospodarki należy do przedziału społecznie akceptowalnej fiskalizacji, to państwo może zdecydować się, podnosząc lub obniżając stopę fiskalizacji gospodarki, na wybór optymalnej fiskalizacji i wyprowadzić gospodarkę na najwyższej położoną, długookresową ścieżkę wzrostu gospodarczego. Jeśli jednak optymalna stopa fiskalizacji gospodarki leży poniżej dolnej (powyżej górnej) granicy obszaru społecznie akceptowalnego, to państwo, chcąc wyprowadzić gospodarkę na najwyższej położoną ścieżkę wzrostu wydajności pracy w długim okresie, może jedynie ustalić stopę fiskalizacji gospodarki w dolnej (górnej) granicy przedziału społecznie akceptowalnej fiskalizacji.

VII. Im szerszy jest obszar społecznie akceptowalnej fiskalizacji gospodarki, czyli im większą swobodę w ustalaniu stopy fiskalizacji ma państwo, tym bardziej prawdopodobne, że optymalna stopa fiskalizacji będzie leżała wewnątrz obszaru społecznie akceptowalnego. To zaś zwiększa prawdopodobieństwo, iż polityka fiskalna może wyprowadzić gospodarkę na najwyższą położoną ścieżkę wzrostu w długim okresie.

VIII. Państwo może jednak wprowadzić optymalną stopę fiskalizacji gospodarki w obszar akceptowalny społecznie na drodze zmiany realizowanych przez siebie stóp inwestycji. Rezultatem takiej zmiany kombinacji stóp inwestycji sektora budżetowego, połączonej z wprowadzeniem optymalnej stopy fiskalizacji gospodarki w obszar akceptowalny przez podmioty mikroekonomiczne, będzie wyprowadzenie gospodarki na najwyższą z dostępnych (przy danych stopach inwestycji podmiotów mikroekonomicznych) ścieżek wzrostu gospodarczego.
Rozdział ósmy

POLITYKA MONETARNA A WZROST GOSPODARCZY. RÓWNOWAGA TYPU DOMARA-SOLOWA

8.1. WPROWADZENIE

W rozdziale siódmym skryptu analizowaliśmy oddziaływanie instrumentów polityki fiskalnej (stopy fiskalizacji gospodarki oraz kombinacji realizowanych przez państwo wydatków) na równowagę i położenie długookresowej ścieżki wzrostu gospodarczego na gruncie modelu wzrostu gospodarczego typu Mankiwa-Romera-Weila. W rozdziale ósmym rozwijać zaś będziemy skutki prowadzonej przez państwo polityki monetarnej (polegającej na kształtowaniu przez bank centralny realnych stóp procentowych) na równowagę długookresowego wzrostu gospodarczego na gruncie modelu wzrostu gospodarczego będącego kompilacją keynesowskiego modelu wzrostu Evseya D. Domara¹ ze znany nam już neoklasycznym modelem Solowa (dlatego też analizowany w rozdziale ósmym model wzrostu gospodarczego nazywany będzie modelem typu Domara-Solowa).

Analizowany w rozdziale ósmym model wzrostu gospodarczego jest modelem typu Domara-Solowa z dwóch następujących przyczyn. Po pierwsze, podobnie jak w keynesowskim modelu Domara (por. punkt 8.2 skryptu), rozwijać będziemy wpływ realizowanych w gospodarce nakładów inwestycyjnych zarówno na popytową, jak i podażową stronę gospodarki (w neoklasycznym modelu wzrostu Solowa nie ma bowiem rozważań dotyczących wpływu inwestycji na wielkość zagregowanego popytu w gospodarce). Po drugie, analizowany w rozdziale ósmym model wzrostu gospodarczego jest modelem typu Solowa, gdyż (analogicznie jak ma to miejsce w modelu Solowa) proces produkcyjny opisany jest przez neoklasyczną funkcję produkcji Cobba-Douglassa charakteryzującą się elastycznym współczynnikiem kapitałochłonności².

Celem analiz prowadzonych w rozdziale ósmym jest więc:

I. Scharakteryzowanie keynesowskiego modelu wzrostu Domara, które powinno czytelnikom umożliwić lepsze zrozumienie (zasadniczego dla rozważań prowadzonych w rozdziale ósmym) modelu typu Domara-Solowa.

¹ Keynesowski model wzrostu Domara jest starszy od modelu Solowa, gdyż został przedstawiony w pracy Domara (1946).
² Współczynnik kapitałochłonności definiowany jest w ekonomii jako ilość jednostek kapitału K niezbędnych do wytworzenia jednostki produktu Y. Dlatego też współczynnik ten jest odwrotnością produktywności kapitału \(\frac{Y}{K} \).
II. Sformułowanie założeń modelu wzrostu gospodarczego typu Domara-Solowa.

III. Wyznaczenie równowagi owego modelu wzrostu gospodarczego oraz sformułowanie reguł polityki monetarnej, które umożliwiają gospodarce poruszać się po ścieżce wzrostu gospodarczego, na której występuje pełne wykorzystanie istniejących w gospodarce zdolności produkcyjnych.

8.2. KEYNESOWSKI MODEL WZROSTU DOMARA

W keynesowskim modelu wzrostu gospodarczego Domara przyjmuje się następujące założenia:

1. Przyrost zagregowanego popytu \(\dot{Y}^D \) w gospodarce, podobnie jak ma to miejsce w modelach mnożnika Johna M. Keynesa, jest iloczynem przyrostu nakładów inwestycyjnych \(I \) oraz keynesowskiego mnożnika wydatków inwestycyjnych \(m > 1 \). Oznacza to, że:

\[
\forall t \in [0;+\infty) \quad \dot{Y}^D(t) = m \cdot \dot{I}(t). \tag{8.1}
\]

2. Wielkość zagregowanej podaży \(Y^S \) w gospodarce Domara jest iloczynem współczynnika \(\kappa \) i zasobu kapitału rzeczowego \(K \) (w modelu Domara nie analizuje się oddziaływania nakładów pracy na wielkość wytworzonego produktu). Zależność tę opisuje następujący związek:

\[
\forall t \in [0;+\infty) \quad Y^S(t) = \kappa \cdot K(t). \tag{8.2}
\]

Współczynnik \(\kappa \) nazywany był przez Domara „potencjalną społecznie przeciętną efektywnością inwestycji” (Domar, 1962: 129). Współczynnik ten jest również albo produktywnością kapitału \(Y / K \), albo (co na jedno wychodzi) odwrotnością współczynnika kapitałochłonności \(v_K = \frac{K}{Y^S} \), gdyż z równania (8.2) wynika, że:

\[
\forall t \in [0;+\infty) \quad v_K = \frac{K(t)}{Y^S(t)} = \frac{1}{\kappa}.
\]

Ze względu na to, że w funkcjonujących gospodarkach współczynnik kapitałochłonności jest wyższy od jedności, więc \(\kappa \in (0;1) \). Co więcej, ponieważ współczynnik kapitałochłonności w modelu wzrostu gospodarczego Domara nie ulega zmianom w czasie,

1 W statycznych modelach mnożnika Keynesa mnożnik wydatków inwestycyjnych \(m > 1 \) definiuje się za pomocą następującego związku:

\[
m = \frac{dY^D}{dl}.
\]

W ujęciu dynamicznym równanie to tożsame jest z równaniem (8.1), gdyż wówczas \(dY^D = \dot{Y}^D = \frac{dY^D}{dt} \) oraz \(dl = \dot{l} = \frac{dl}{dt} \).
zatem model ten, podobnie jak inne keynesowskie modele wzrostu gospodarczego, jest modelem z nieelastycznym (sztywnym) współczynnikiem kapitałochłonności.

3. Przyrost zasobu kapitału rzeczowego K równy jest realizowanym w gospodarce nakładom inwestycyjnym I (dla uproszczenia rozważań w modelu wzrostu Domara pomija się deprecjacje kapitału). Założenie to opisuje następujące równanie różniczkowe:

$$\forall t \in [0;+\infty) \quad \dot{K}(t) = I(t). \quad (8.3)$$

4. W momencie $t = 0$ wielkość zagregowanego popytu $Y^D(0) = Y^S_0 > 0$ równa była wielkości zagregowanej podaży $Y^S(0) = Y^S_0 > 0$, czyli:

$$Y^D_0 = Y^S_0. \quad (8.4)$$

Jeśli gospodarka Domara ma być w stanie równowagi w każdym momencie $t \in [0;+\infty)$, to musi zachodzić związek:

$$\forall t \in [0;+\infty) \quad Y(t) = Y^D(t) = Y^S(t), \quad (8.5)$$

gdzie Y jest wielkością wytworzonego w gospodarce Domara produktu (równego zarówno zagregowanemu popytowi Y^D, jak i zagregowanej podaży Y^S). Różniczkując równanie (8.5) względem czasu $t \in [0;+\infty)$, okazuje się, że jeśli spełniony jest warunek równowagi gospodarki (8.4) w momencie $t = 0$, to równowaga w każdym następnym momencie występuje wówczas, gdy zachodzi związek:

$$\forall t \in [0;+\infty) \quad \dot{Y}(t) = \dot{Y}^D(t) = \dot{Y}^S(t). \quad (8.6)$$

Równanie (8.6) interpretuje się ekonomicznie w ten sposób, iż gospodarka Domara jest w stanie równowagi (zagregowanego popytu i zagregowanej podaży) wtedy i tylko wtedy, gdy w każdym momencie $t > 0$ przyrost zagregowanego popytu \dot{Y}^D równy jest przyrostowi zagregowanej podaży \dot{Y}^S.

Po zróżniczkowaniu równania (8.2) względem czasu $t \in [0;+\infty)$ dochodzimy do zależności:

$$\forall t \in [0;+\infty) \quad \dot{Y}^S(t) = \kappa \dot{K}(t),$$

a stąd oraz z równania akumulacji kapitału (8.3) wynika, iż spełniony jest związek:

$$\forall t \in [0;+\infty) \quad \dot{Y}^S(t) = \kappa I(t). \quad (8.7)$$

Wstawiając związki (8.1) i (8.7) do równania równowagi (8.6), okazuje się, iż warunek ów sprowadza się do zależności:

$$\forall t \in [0;+\infty) \quad m I(t) = \kappa I(t),$$

a stąd4:

4 Ponieważ mnożnik Keynesa m można zapisać wzorem:

$$m = \frac{1}{1 - c}$$
\[\forall t \in [0;+\infty) \quad \frac{\dot{I}(t)}{I(t)} = \frac{\kappa}{m}. \] (8.8)

Z prowadzonych tu rozważań oraz z równania (8.8) płynie wniosek, że do tego, by gospodarka Domara znajdowała się w stanie równowagi zagregowanego popytu \(Y^D \) i zagregowanej podaży \(Y^S \), potrzeba i wystarcza, by w każdym momencie \(t \in [0;+\infty) \) stopa wzrostu inwestycji \(\frac{\dot{I}}{I} \) równa była ilorazowi produktywności kapitału \(\kappa \) i keynesowskiego mnożnika \(m \).

Zastanówmy się jednak, co będzie się działo w gospodarce Domara, jeśli rzeczywista stopa wzrostu inwestycji:
\[\forall t \in [0;+\infty) \quad t = \frac{\dot{I}(t)}{I(t)} > 0 \] (8.9)
będzie się różnić od stopy \(\frac{\kappa}{m} \)? Z równania (8.9) wynika, że w każdym momencie \(t \in [0;+\infty) \) zachodzi związek:
\[I(t) = I_0 e^{ut}, \] (8.10)
gdzie \(I_0 > 0 \) to wielkość nakładów inwestycyjnych w momencie \(t = 0 \).

Zdefiniujmy teraz przez:
\[\forall t \in [0;+\infty) \quad D(t) = Y^S(t) - Y^D(t) \] (8.11)
różnicę między wielkością zagregowanej podaży \(Y^S \) a wielkością zagregowanego popytu \(Y^D \) w gospodarce Domara. Z założenia 4 modelu wzrostu Domara oraz z równania (8.4) wynika, że:
\[D(0) = 0, \] (8.12)
gdyż w momencie \(t = 0 \) wielkość zagregowanej podaży \(Y^S \) równa jest wielkości zagregowanego popytu \(Y^D \).

Różniczkując równanie (8.11) względem czasu \(t \in [0;+\infty) \), okazuje się, iż:
\[\forall t \in [0;+\infty) \quad \dot{D}(t) = \dot{Y}^S(t) - \dot{Y}^D(t). \] (8.13)

Wstawiając do równania (8.13) związki (8.1) oraz (8.7), mamy:

\[\text{(gdzie } c \in (0;1) \text{ jest krańcową skłonnością do konsumpcji)} \text{ lub:} \]
\[m = \frac{1}{s} \]
\[\text{(przy czym } s = 1 - c \text{ jest krańcową skłonnością do oszczędności), zatem warunek (8.8) sprowadza się również do związku:} \]
\[\forall t \in [0;+\infty) \quad \frac{i(t)}{I(t)} = ks. \]

5 Przejście od równania (8.9) do zależności (8.10) pozostawiamy Czytelnikom.
6 Wielkość nakładów inwestycyjnych \(I_0 \) należy dobrać tak, by spełniona była równość (8.4).
\[\forall t \in [0;+\infty) \quad \dot{D}(t) = \kappa I(t) - mI(t) \]

lub (po uwzględnieniu zależności (8.8), z której wynika, że \(\hat{I} = 0 \)):

\[\forall t \in [0;+\infty) \quad \dot{D}(t) = \kappa I(t) - mI(t) = \left(\frac{K}{m} - 1 \right) mI(t). \]

Wstawiając do powyższego równania związek (8.9), okazuje się, że spełniona jest zależność:

\[\forall t \in [0;+\infty) \quad \dot{D}(t) = \left(\frac{K}{m} - 1 \right) mI(t) = \left(\frac{K}{m} - 1 \right) mI_0 e^{\mu t}. \quad (8.14) \]

Całkując stronami równanie (8.14) względem czasu \(t \in [0;+\infty) \), dochodzimy do związku:

\[\forall t \in [0;+\infty) \quad D(t) = \int_0^t \dot{D}(t) dt = \left(\frac{K}{m} - 1 \right) mI_0 \int_0^t e^{\mu t} dt = \frac{K}{m} mI_0 e^{\mu t} + F, \quad (8.15) \]

gdzie \(F \in \mathbb{R} \) jest stałą całkowania. Stałą całkowania \(F \) należy dobrać tak, by spełniony był warunek (8.12). Oznacza to, iż:

\[0 = D(0) = \frac{K}{m} mI_0 + F, \]

a stąd:

\[F = -\frac{K}{m} mI_0. \quad (8.16) \]

Z równań (8.15–8.16) płynie wniosek, że zachodzi związek:

\[\forall t \in [0;+\infty) \quad D(t) = -\frac{K}{m} mI_0 + \frac{K}{m} mI_0 e^{\mu t}. \quad (8.17) \]

Równania (8.14) i (8.17) implikują, co następuje:

\[t < \frac{K}{m} \Rightarrow \forall t \in [0;+\infty) \quad \dot{D}(t) > 0, \quad (8.18a) \]

\[t > \frac{K}{m} \Rightarrow \forall t \in [0;+\infty) \quad \dot{D}(t) < 0, \quad (8.18b) \]

\[t < \frac{K}{m} \Rightarrow \lim_{t \to +\infty} D(t) = \lim_{t \to +\infty} \left(-\frac{K}{m} mI_0 + \frac{K}{m} mI_0 e^{\mu t} \right) = +\infty \quad (8.18c) \]

oraz:
Z zależności (8.11–8.12) oraz (8.18abcd) wyciągnąć można następujące wnioski:

- Jeśli rzeczywista stopa inwestycji \(t \) jest wyższa od \(\frac{K}{m} \), to (wraz z upływem czasu \(t \)) różnica między wielkością zagregowanej podaży \(Y^S \) a wielkością zagregowanego popytu \(Y^D \) rośnie od zera do \(+\infty \). Oznacza to, iż przy warunku \(t > \frac{K}{m} \) wielkość nadwyżkowej podaży na rynku produktu (albo, co na jedno wychodzi, stopień niewykorzystania zdolności produkcyjnych) w gospodarce Domara rośnie wraz upływem czasu \(t \in [0;+\infty) \).

- Natomiast przy \(t < \frac{K}{m} \) różnica między zagregowaną podażą a zagregowanym popytem spada od zera do \(-\infty \). Dlatego też w tym przypadku wielkość niezaspokojonego popytu w gospodarce Domara rośnie.

Z przedstawionych tu wniosków wynika, że w rozważanym w tym punkcie skrypcie modelu wzrostu gospodarczego zachodzi tzw. paradoks Domara. Paradoks ów polega na tym, że jeśli rzeczywista stopa wzrostu inwestycji \(t \) będzie niższa (wyższa) od \(\frac{K}{m} \), to gospodarka Domara charakteryzować się będzie stanem permanentnej nadwyżki popytu (podaży). To zaś skłoni funkcjonujących w tej gospodarce przedsiębiorców do podwyższenia (obniżenia) rzeczywistej stopy wzrostu inwestycji \(t \) w celu podniesienia (obniżenia) zdolności produkcyjnych gospodarki. Ale wzrost (spadek) rzeczywistej stopy wzrostu inwestycji \(t \) jedynie powiększy nierównowagę gospodarki Domara, gdyż zwiększy się wartość bezwzględna różnicy między \(t \) a \(\frac{K}{m} \).

8.3. ZAŁOŻENIA MODELU WZROSTU TYPU DOMARA-SOLOWA

W prezentowanym dalej modelu wzrostu gospodarczego, opisującym reguły polityki monetarnej w gospodarce typu Domara-Solowa, przyjmowaliśmy następujące założenia:

1. Proces produkcyjny (podobnie jak ma to miejsce w modelu Solowa z funkcją produkcji Cobba-Dougla) opisany jest przez makroekonomiczną funkcję produkcji daną wzorem\(^7\):

\[
\forall t \in [0;+\infty) \quad Y^S(t) = (K(t))^{\alpha} (e^{\delta L(t)})^{1-\alpha}, \quad (8.19)
\]

\(^7\) W funkcji produkcji (8.19) implicite zakładana się, iż w momencie \(t = 0 \) zasób wiedzy \(\Lambda(t) = e^{\delta t} \) wystandardyzowany jest do jedności. Założenie to nie wpływa jednak istotnie na prowadzone dalej rozważania i płynące z nich wnioski.
gdzie $Y^S > 0$ to produkt potencjalny (czyli wielkość zagregowanej podaży w gospodarce), K i $L > 0$ – nakłady kapitału (rzeczowego) i pracy, $g > 0$ jest stopą postępu technicznego w sensie Harroda, α i $1 - \alpha \in (0; 1)$ są zaś elastycznościami produktu potencjalnego Y^S względem nakładów kapitału K i pracy L.

2. Wielkość zagregowanego popytu Y^D w gospodarce Domara-Solowa zależna jest od realnej stopy procentowej r, wielkości zagregowanego popytu Y^D oraz keynesowskiego mnożnika wydatków autonomicznych $m > 0$ (oddziaływanie mnożnika analogiczne jest do tego, które ma miejsce w oryginalnym, keynesowskim modelu wzrostu Domara). Wpływ realnej stopy procentowej na wielkość zagregowanego popytu Y^D wynika z jej wpływu na popyt konsumpcyjny, inwestycyjny oraz (poprzez parytet stop procentowych i mechanizm kształtowania się kursu walutowego) na eksport netto. Przyjmuje się też, że elastyczność zagregowanego popytu względem realnej stopy procentowej wynosi $-\beta$, gdzie $\beta \in (0; 1)$. Długookresowy wpływ produktu potencjalnego na wielkość zagregowanego popytu w gospodarce wynika zaś stąd, iż wzrost produkcji powoduje w długim okresie wzrost popytu przez wzrost dochodów z czynników produkcji (czyli wzrost płac i zysków). W prowadzonych dalej rozważaniach zakładamy więc, że zagregowany popyt rośnie wraz ze wzrostem produktu potencjalnego, zaś jego elastyczność względem owego produktu wynosi $\gamma \in (0; 1)$. Fakt, iż $\gamma < 1$, można uzasadnić ekonomicznie w ten sposób, że jeśli zagregowany popyt jest zależny od wydatków autonomicznych $A_0 > 0$ według równania $Y^D = A_0 + cY$ (gdzie krącowa skłonność do konsumpcji c należy do przedziału $[0;1]$), to $\frac{Y^D}{Y^D} = \frac{cY}{A_0 + cY} < \frac{Y}{Y}$. Wpływ stąd, iż funkcję zagregowanego popytu w rozważanym tu modelu wzrostu gospodarczego można zapisać następująco:

$$ \forall t \in [0; +\infty) \quad Y^D(t) = m\left(Y^S(t)\right)^\gamma \left(r(t)\right)^{-\beta}. \quad (8.20) $$

3. Przyrost zasobu kapitału \dot{K}, podobnie jak ma to miejsce w modelu Solowa, jest różnicą między inwestycjami I a deprecjacją kapitału δK (gdzie stopa deprecjacji kapitału δ należy do przedziału $(0;1)$). O funkcji inwestycji $I(r)$ zakłada się, iż dana jest wzorem $I(r) = I_0 r^{-\beta}$ (gdzie stała $I_0 > 0$, co implikuje, że $-\beta$ jest również elastycznością inwestycji względem realnej stopy procentowej (implicite zakładamy tu więc, iż wrażliwość inwestycji I na zmiany realnej stopy procentowej r równa jest wrażliwości pozostałoścą składowych zagregowanego produktu Y^D względem tej wielkości makroekonomicznej). Równanie przyrostu zasobu kapitału dane jest zatem następującym wzorem:

$$ \forall t \in [0; +\infty) \quad \dot{K}(t) = I_0 \left(r(t)\right)^{-\beta} - \delta K(t). \quad (8.21) $$

8 Stalą I_0 w funkcji inwestycji $I(r) = I_0 r^{-\beta}$ można interpretować ekonomicznie jako wielkość inwestycji przy realnej stopie procentowej $r = 1$. Uzasadnienie tego pozostawiamy Czytelnikom.

\[Y^D(t) = Y^S(t), \quad (8.22) \]

zaś z trzeciej z przedstawionych zasad wyprowadzić można równanie długookresowej stopy wzrostu liczby pracujących postaci:

\[\forall t \in [0;+\infty) \quad \frac{\dot{L}(t)}{L(t)} = n, \quad (8.23) \]

gdzie \(n > 0 \) jest stopą wzrostu liczby pracujących równą stopie wzrostu podaży pracy, która (w długim okresie) wynika głównie z oddziaływania czynników demograficznych. Z powyższych założeń (dotyczących reguł długookresowej polityki monetarnej) wynika, że bank centralny powinien kształtować realne stopy procentowe \(r \) na takim poziomie, by spełnione były równania (8.22–8.23), przy czym oddziaływanie owych stóp procentowych na równowagę gospodarki typu Domara-Solowa odbywa się kanałami opisanymi przez związki (8.19–8.21).

Dążenie do uzyskania powyższych celów drogą zmiany realnych, a nie nominalnych, stóp procentowych można również uzasadnić następująco. Przybliżoną relację między realną \((r) \) a nominalną \((R) \) stopą procentową opisuje tożsamość: \(r = R - \pi \), gdzie \(\pi \) jest stopą inflacji\(^9\). Niech ponadto stopa inflacji w długim okresie dana będzie wzorem:

\[\forall t \in [0;+\infty) \quad \pi(t) = \mu(t) - \frac{\dot{Y}(t)}{Y(t)} + h \frac{Y^D(t) - Y^S(t)}{Y^S(t)}, \quad (8.24) \]

gdzie \(\mu \) jest stopą wzrostu nominalnej podaży pieniądza, zaś \(h > 0 \) współczynnikiem opisującym wpływ luki popytowej \(\frac{Y^D - Y^S}{Y^S} \) na stopę inflacji \(\pi \). Z relacji (8.24) wynika, że zakładamy, iż stopa inflacji może być skutkiem działania czynników monetar-

\(^9\) Rzecz jasna, jeśli wyjściowa stopa bezrobocia u będzie powyżej lub poniżej stopy bezrobocia równowagi \(u^* \), to w krótkim i średnim okresie muszą wystąpić pewne mechanizmy dostosowawcze na rynku pracy, które zrównają u z \(u^* \). Mechanizmy te wydają się jednak przedmiotem analiz makroekonomicznych w krótkim i średnim okresie, które niekoniecznie muszą być przedmiotem analiz długookresowych.

\(^{10}\) Dokładnie rzecz ujmując, realna stopa procentowa winna być zapisana następująco:

\[r = \frac{1 + R}{1 + \pi} - 1 = \frac{R - \pi}{1 + r}. \]

Wydaje się jednak, iż zapisanie realnej stopy procentowej w formie uproszczonej (jako \(r = R - \pi \)) nie wpływa istotnie na prowadzone dalej rozważania.
nych \(\left(\mu - \frac{Y'}{Y} \right) \) oraz presji inflacyjnej wynikającej z istnienia w gospodarce luki popy-
towej \(\left(\frac{Y^D - Y^S}{Y^S} \right) \). Jeśli jednak bankowi centralnemu uda się zlikwidować lękę popy-
tową \(\left(\frac{Y^D - Y^S}{Y^S} = 0 \right) \), to inflacja będzie miała źródła jedynie monetarne. Wówczas równanie (8.24) sprowadza się do zależności:

$$\forall t \in [0;+\infty) \quad \pi(t) = \mu(t) - \frac{Y'(t)}{Y(t)},$$

a realna stopa procentowa \(r \) dana jest wzorem:

$$\forall t \in [0;+\infty) \quad r(t) = R(t) - \pi(t) = R(t) - \mu(t) + \frac{Y'(t)}{Y(t)}.$$

(8.25)

Gdyby dodatkowo założyć, że bank centralny, stosując politykę wzrostu nominalnej
podaży pieniądza (a nie stóp procentowych), chce osiągnąć w długim okresie cel infla-
cyjny równy \(\pi^T \), to musi ustalić stopę wzrostu nominalnej podaży pieniądza \(\mu \) na po-
ziomie:

$$\forall t \in [0;+\infty) \quad \mu(t) = \pi^T + \frac{Y'(t)}{Y(t)}.$$

To z kolei sprowadza równanie (8.25) do związku:

$$\forall t \in [0;+\infty) \quad r(t) = R(t) - \pi^T$$

i wówczas zmiany nominalnych stóp procentowych \(R \) (przy celu inflacyjnym \(\pi^T \)) toż-
same są ze zmianami realnych stóp procentowych \(r \).

8.4. RÓWNOWAGA MODELU DOMARA-SOLOWA

Oznaczmy przez \(Y \) wielkość wytworzonego w gospodarce Domara-Solowa produk-
tu przy spełnieniu warunku równowagi gospodarki (8.22). Wówczas spełniony jest związek:

$$\forall t \in [0;+\infty) \quad Y(t) = Y^S(t) = Y^D(t).$$

(8.26)

Z równań (8.20) i (8.26) wyciągnąć można wniosek, iż w warunkach równowagi go-
spodarki typu Domara-Solowa zachodzi zależność:

$$\forall t \in [0;+\infty) \quad Y(t) = m(Y(t))^\gamma (r(t))^\beta,$$

a stąd:

$$\forall t \in [0;+\infty) \quad (r(t))^\beta = m(Y(t))^{\gamma-1}.$$
lub:
\[\forall t \in [0;+\infty) \quad \beta \cdot \ln(r(t)) = \ln(m) - (1 - \gamma) \cdot \ln(Y(t)), \]
co implikuje związek:
\[\forall t \in [0;+\infty) \quad \ln(r(t)) = \frac{\ln(m) - (1 - \gamma) \cdot \ln(Y(t))}{\beta}. \quad (8.27) \]

Równanie (8.27) wyznacza ścieżkę czasową realnej stopy procentowej \(r \), uzależniając ją m.in. od keynesowskiego mnożnika \(m \) oraz wielkości wytworzonej produkcji \(Y \). Ponieważ z równania tego wynika, iż:
\[\frac{\partial [\ln(r)]}{\partial m} = \frac{\partial}{\partial m} \left(\frac{\ln(m) - (1 - \gamma) \cdot \ln(Y)}{\beta} \right) = \frac{1}{\beta m} > 0 \]

oraz:
\[\frac{\partial [\ln(r)]}{\partial [\ln Y]} = \frac{\partial}{\partial [\ln Y]} \left(\frac{\ln(m) - (1 - \gamma) \cdot \ln(Y)}{\beta} \right) = - \frac{1 - \gamma}{\beta} < 0, \]
zatem realna stopa procentowa \(r \), która równoważy gospodarkę Domara-Solowa, powinna być tym wyższa, im wyższy jest keynesowski mnożnik \(m \) oraz im niższa jest wielkość wytworzonego w gospodarce produktu \(Y \).

Ze związków (8.19) oraz (8.26) mamy:
\[\forall t \in [0;+\infty) \quad Y(t) = (K(t))^\alpha \left(e^{\alpha t} L(t) \right)^{1-\alpha}, \]
a stąd:
\[\forall t \in [0;+\infty) \quad \ln(Y(t)) = (1 - \alpha) gt + \alpha \ln(K(t)) + (1 - \alpha)(L(t)). \quad (8.28) \]

Wstawiając równanie (8.28) do związku (8.27), dochodzimy do równania realnej stopy procentowej \(r \) postaci:
\[\forall t \in [0;+\infty) \quad \ln(r(t)) = \frac{\ln(m) - (1 - \gamma) \cdot ((1 - \alpha) gt + \alpha \ln(K(t)) + (1 - \alpha)(L(t)))}{\beta} \]
bądź też, po zróżniczkowaniu powyższej zależności względem czasu \(t \in [0;+\infty) \):
\[\forall t \in [0;+\infty) \quad g_r(t) = \frac{\dot{r}(t)}{r(t)} = - \frac{1 - \gamma}{\beta} \left((1 - \alpha) g + \alpha \frac{\dot{K}(t)}{K(t)} + (1 - \alpha) \frac{\dot{L}(t)}{L(t)} \right) = \]
\[= - \frac{1 - \gamma}{\beta} \left((1 - \alpha) g + \alpha G_K(t) + (1 - \alpha) \frac{\dot{L}(t)}{L(t)} \right), \quad (8.29) \]
gdzie \(g_r \equiv \frac{\dot{r}}{r} \) to stopa wzrostu realnej stopy procentowej, zaś \(G_K \equiv \frac{\dot{K}}{K} \) jest stopą wzrostu zasobu kapitału. Ponieważ w warunkach równowagi popytu i podaży w gospodarce Domara-Solowa liczba pracujących \(L \), zgodnie z równaniem (8.23), powinna rosnąć
według stopy \(n > 0 \) (czyli \(\frac{L}{L} = n \)), więc wówczas związek (8.29) sprowadza się do zależności:

\[
\forall t \in [0;+\infty) \quad g_r(t) = -\frac{1 - \gamma}{\beta}((1 - \alpha)(g + n) + \alpha G_K(t))
\]
lub:

\[
\forall t \in [0;+\infty) \quad g_r(t) = -\frac{(1 - \gamma)(1 - \alpha)(g + n) - (1 - \gamma)\alpha}{\beta} G_K(t). \quad (8.30)
\]

Równanie (8.30) uzależnia stopę wzrostu realnej stopy procentowej \(g_r \) od stopy wzrostu zasobu kapitału rzeczowego \(G_K \), stopy wzrostu liczby pracujących \(n \) oraz od stopy harrodiańskiego postępu technicznego \(g \). Ponieważ:

\[
\frac{\partial g_r}{\partial G_K} = \frac{\partial}{\partial G_K} \left(-\frac{(1 - \gamma)(1 - \alpha)(g + n) - (1 - \gamma)\alpha}{\beta} G_K \right) = -\frac{(1 - \gamma)\alpha}{\beta} < 0,
\]

\[
\frac{\partial g_r}{\partial n} = \frac{\partial}{\partial n} \left(-\frac{(1 - \gamma)(1 - \alpha)(g + n) - (1 - \gamma)\alpha}{\beta} G_K \right) = -\frac{(1 - \gamma)(1 - \alpha)}{\beta} < 0
\]
i (analogicznie):

\[
\frac{\partial g_r}{\partial g} = \frac{\partial}{\partial g} \left(-\frac{(1 - \gamma)(1 - \alpha)(g + n) - (1 - \gamma)\alpha}{\beta} G_K \right) = -\frac{(1 - \gamma)(1 - \alpha)}{\beta} < 0,
\]
zatem im wyższe są trzy wspomniane uprzednio stopy, tym niższa powinna być stopa wzrostu realnej stopy procentowej zapewniająca analizowanej tu gospodarce równowagę popytu i podaży.

Równanie przyrostu zasobu kapitału (8.21) można zapisać następująco:

\[
\forall t \in [0;+\infty) \quad \dot{K}(t) + \delta K(t) = I_0(r(t))^{-\beta},
\]
a stąd:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{K}(t)}{K(t)} + \delta = I_0 \left(\frac{r(t)}{K(t)} \right)^{-\beta}
\]
lub:

\[
\forall t \in [0;+\infty) \quad G_K(t) + \delta = I_0 \left(\frac{r(t)}{K(t)} \right)^{-\beta}.
\]

Logarytmując stronami powyższy związek (przy założeniu, że w dowolnym momencie \(t \in [0;+\infty) \) realna stopa procentowa jest dodatnia\(^{11}\)), uzyskujemy zależność:

\(^{11}\) To, iż realna stopa procentowa \(r \) jest w każdym nieujemnym momencie \(t \) dodatnia, implikuje, że \(G_K(t) + \delta = I_0 \left(\frac{r(t)}{K(t)} \right)^{-\beta} > 0 \), a stąd uzyskuje się zależność: \(\forall t \in [0;+\infty) G_K(t) > -\delta \), którą
\[\forall t \in [0;+\infty) \quad \ln(G_K(t)+\delta) = \ln(I_0) - \beta \ln(r(t)) - \ln(K(t)), \]

która, po zróżniczkowaniu względem czasu \(t \in [0;+\infty) \), sprowadza się do równania:

\[\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t)+\delta} = -\beta \frac{\dot{r}(t)}{r(t)} - \frac{\dot{K}(t)}{K(t)} \]

lub:

\[\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t)+\delta} = -\beta g_r(t) - G_K(t). \quad (8.31) \]

Wstawiając stopę wzrostu realnej stopy procentowej \(g_r \) z równania (8.30) do związku (8.31), dochodzimy do równania różniczkowego Riccatiego postaci:

\[\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t)+\delta} = -\beta \left(-\frac{(1-\gamma)(1-\alpha)(g+n)}{\beta} - \frac{(1-\gamma)\alpha}{\beta} G_K(t) \right) - G_K(t) = (1-\gamma)(1-\alpha)(g+n) + (1-\gamma)\alpha G_K(t) - G_K(t) \]

lub:

\[\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t)+\delta} = (1-\gamma)(1-\alpha)(g+n) - [1 - (1-\gamma)\alpha] G_K(t), \]

czyli:

\[\forall t \in [0;+\infty) \quad \dot{G}_K(t) = (G_K(t)+\delta)[(1-\gamma)(1-\alpha)(g+n) - [1 - (1-\gamma)\alpha] G_K(t)] \]

bądź po podstawieniach \(\kappa_1 = (1-\gamma)(1-\alpha)(g+n) > 0 \) i \(\kappa_2 = 1 - (1-\gamma)\alpha > 0 \):

\[\forall t \in [0;+\infty) \quad \dot{G}_K(t) = (G_K(t)+\delta)[\kappa_1 - \kappa_2 G_K(t)]. \quad (8.32) \]

Rozwiązanie równania różniczkowego Riccatiego (8.32) wyznaczy ścieżkę wzrostu stopy wzrostu kapitału w gospodarce typu Domara-Solowa. Jeśli zaś znajdziemy ścieżkę wzrostu kapitału, to (korzystając z równania (8.30)) będziemy mogli wyznaczyć również ścieżkę wzrostu realnych stóp procentowych, która równoważy analizowaną w tej części skryptu gospodarkę.

Weźmy podstawienie Riccatiego postaci:

\[\forall t \in [0;+\infty) \quad G_K(t)+\delta = \frac{1}{v(t)} > 0 \Rightarrow G_K(t) = \frac{1}{v(t)} - \delta, \quad (8.33a) \]

a stąd:

\[\forall t \in [0;+\infty) \quad \dot{G}_K(t) = -\frac{\dot{v}(t)}{[v(t)]^2}. \quad (8.33b) \]

interpretuje się w ten sposób, iż w każdym momencie \(t \in [0;+\infty) \) stopa spadku zasobu kapitału \((-G_K\,)\) musi być niższa od stopy deprecjacji tego czynnika produkcji (\(\delta \)).
Wstawiając związek (8.33ab) do równania różniczkowego (8.32), mamy:

$$\forall t \in [0;+\infty) \quad -\frac{\dot{v}(t)}{[v(t)]^2} = \frac{1}{v(t)} \left[\kappa_1 - \kappa_2 \left(\frac{1}{v(t)} - \delta \right) \right] = \frac{1}{v(t)} \left(\kappa_1 + \kappa_2 \delta - \frac{\kappa_2}{v(t)} \right)$$

lub, po przemnożeniu powyższego równania przez $-v^2 < 0$:

$$\forall t \in [0;+\infty) \quad \dot{v}(t) = \kappa_2 - (\kappa_1 + \kappa_2 \delta)v(t). \quad (8.34)$$

Całka szczególna $v_S(t)$ równania (8.34), rozwiązująca równanie różniczkowe $\dot{v}_S = - (\kappa_1 + \kappa_2 \delta)v_S$,dana jest wzorem:

$$\forall t \in [0;+\infty) \quad v_S(t) = e^{-(\kappa_1 + \kappa_2 \delta)t}, \quad (8.35a)$$
a stąd:

$$\forall t \in [0;+\infty) \quad v_S(t) = v_S(t)v_D(t) \quad (8.36a)$$
oraz:

$$\forall t \in [0;+\infty) \quad \dot{v}(t) = \dot{v}_S(t)v_D(t) + v_S(t)\dot{v}_D(t)$$

lub, po uwzględnieniu równania (8.35b):

$$\forall t \in [0;+\infty) \quad \dot{v}(t) = -(\kappa_1 + \kappa_2 \delta)v_S(t)v_D(t) + v_S(t)\dot{v}_D(t). \quad (8.36b)$$

Wstawiając zależności (8.36ab) do równania różniczkowego (8.34), uzyskujemy:

$$\forall t \in [0;+\infty) \quad - (\kappa_1 + \kappa_2 \delta)v_S(t)v_D(t) + v_S(t)\dot{v}_D(t) = \kappa_2 - (\kappa_1 + \kappa_2 \delta)v_S(t)v_D(t),$$

co implikuje:

$$\forall t \in [0;+\infty) \quad v_S(t)v_D(t) = \kappa_2.$$

Wstawiając do powyższej zależności całość szczególną v_S z równania (8.35a), okazuje się, iż spełniony jest związek:

$$\forall t \in [0;+\infty) \quad e^{-(\kappa_1 + \kappa_2 \delta)t}v_D(t) = \kappa_2,$$

który można zapisać następująco:

$$\forall t \in [0;+\infty) \quad \dot{v}_D(t) = \kappa_2 e^{(\kappa_1 + \kappa_2 \delta)t}. \quad (8.37)$$

Całkując równanie (8.37) względem czasu $t \in [0;+\infty)$, dochodzimy do całości uzupełniającej v_D danej wzorem:

$$\forall t \in [0;+\infty) \quad v_D(t) = \int \dot{v}_D(t)dt = \kappa_2 \int e^{(\kappa_1 + \kappa_2 \delta)t}dt = \frac{\kappa_2}{\kappa_1 + \kappa_2 \delta}e^{(\kappa_1 + \kappa_2 \delta)t} + F, \quad (8.38)$$
gdzie $F \in \mathbb{R}$ jest stałą całkowania równania (8.37)12. Po wstawieniu całki szczególnej (8.35a) i całki uzupełniającej (8.38) do równania (8.36a) otrzymamy całkę v równania (8.34) daną wzorem:

$$\forall t \in [0;+\infty) \quad v(t) = v_S(t) v_D(t) = e^{-(\kappa_1 + \kappa_2\delta) t} \left(\frac{\kappa_2}{\kappa_1 + \kappa_2 \delta} e^{(\kappa_1 + \kappa_2 \delta) t} + F \right),$$

której można również zapisać następująco:

$$\forall t \in [0;+\infty) \quad v(t) = \frac{\kappa_2}{\kappa_1 + \kappa_2 \delta} + Fe^{-(\kappa_1 + \kappa_2 \delta) t}. \quad (8.39)$$

Wstawiając całąkę (8.39) do podstawienia Riccatiego (8.33a), otrzymamy całąkę równania różniczkowego Riccatiego (8.32) daną wzorem:

$$\forall t \in [0;+\infty) \quad G_K(t) = \int_0^t - \delta = \frac{1}{v(t)} - \delta = \frac{1}{\kappa_2} \frac{\kappa_2}{\kappa_1 + \kappa_2 \delta} + Fe^{-(\kappa_1 + \kappa_2 \delta) t},$$

a stąd, po uwzględnieniu podstawień $\kappa_1 = (1 - \gamma)(1 - \alpha)(g + n)$ i $\kappa_2 = 1 - (1 - \gamma)\alpha$:

$$\forall t \in [0;+\infty) \quad G_K(t) = \frac{1}{(1 - \gamma)(1 - \alpha)(g + n) + (1 - (1 - \gamma)\alpha)\delta} - \delta$$

lub:

$$\forall t \in [0;+\infty) \quad G_K(t) = \frac{1}{(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta} - \delta.$$ (8.40)

Równanie (8.40) wyznacza ścieżkę wzrostu stopy wzrostu kapitału w modelu wzrostu gospodarczego typu Domara-Solowa. Stalą całkowania F w równaniu (8.40) należy zatem dobrać tak, by spełniony był związek:

$$-\delta < G^K_0 = G_K(0),$$

co oznacza, iż:

$$G^K_0 = G_K(0) = \frac{1}{(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta} + F$$

a stąd:

$$\frac{1}{(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta} = G^K_0 + \delta.$$

12 Czytelnicy powinni samodzielnie uzasadnić to, iż stała całkowania F związana jest z wyjściową stopą wzrostu kapitału $G^K_0 = G_K(0) > -\delta$.

czyli:
\[
\frac{1}{G^0_k + \delta} = \frac{1 - \alpha + \alpha \gamma}{(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta} + F
\]
lub:
\[
F = \frac{1}{G^0_k + \delta} - \frac{1 - \alpha + \alpha \gamma}{(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta}.
\]
(8.41)

Z równania (8.41) płynie wniosek, który Czytelnicy powinni uzasadnić samodzielnie, że jeśli wyjściowa stopa wzrostu zasobu kapitału \(G^0_k \) jest niższa (wyższa) od wyrażenia \(\frac{(1 - \alpha)(1 - \gamma)(g + n)}{1 - \alpha + \alpha \gamma} \), to stała całkowania \(F \) jest dodatnia (ujemna). Jeśli zaś \(G^0_k = \frac{(1 - \alpha)(1 - \gamma)(g + n)}{1 - \alpha + \alpha \gamma} \), to stała ta równa jest zeru.

Różniczkując równanie (8.40) względem czasu \(t \in [0;+\infty) \), okazuje się, iż:
\[
\forall t \in [0;+\infty) \quad \dot{G}_k(t) = \frac{d}{dt} \left(\frac{1}{\frac{1 - \alpha + \alpha \gamma}{(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta} + Fe^{-\left[(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta\right]t}} \right) =
\]
\[
= \frac{d}{dt} \left(\frac{1 - \alpha + \alpha \gamma}{(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta} + Fe^{-\left[(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta\right]t} \right)
\]
\[
= \frac{-1}{\left(\frac{1 - \alpha + \alpha \gamma}{(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta} + Fe^{-\left[(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta\right]t} \right)^2} \cdot \left[(-F\left[(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta\right]_t e^{-\left[(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta\right]t} \right],
\]

czyli w każdym momencie \(t \in [0;+\infty) \) spełniony jest związek:
\[
\dot{G}_k(t) = \frac{F\left[(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta\right]_t e^{-\left[(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta\right]t}}{(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta} + Fe^{-\left[(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta\right]t} \right)^2. \]
(8.42)

Z równania (8.42) oraz z tego, że dla każdego \(t \in [0;+\infty) \) wyrażenie:
\[
\frac{\left[(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta\right]_t e^{-\left[(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta\right]t}}{(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta} + Fe^{-\left[(1 - \gamma)(1 - \alpha)(g + n) + (1 - \alpha + \alpha \gamma)\delta\right]t} \right)^2
\]

przyjmuje wartości dodatnie, wynika, co następuje:
Jeśli wyjściowa stopa wzrostu zasobu kapitału \(G^0_K \) jest niższa (wyższa) od wyrażenia \(\frac{(1-\alpha)(1-\gamma)(g+n)}{1-\alpha+\alpha\gamma} \), to stała całkowania \(F \) jest dodatnia (ujemna) i wówczas w każdym momencie \(t \in [0;+\infty) \) przyrosta stop wzrostu kapitału \(\dot{G}_K \) są dodatnie (ujemne). Oznacza to, iż stopy wzrostu \(G_K \) owego zasobu są wówczas coraz wyższe (niższe).

Jeśli zaś w momencie \(t = 0 \) spełnione jest równanie \(G^0_K = \frac{(1-\alpha)(1-\gamma)(g+n)}{1-\alpha+\alpha\gamma} \), to \(F = 0 \) i w każdym momencie \(t \in [0;+\infty) \) \(\dot{G}_K = 0 \). Oznacza to również, że w tym przypadku w każdym momencie \(t > 0 \) stopa wzrostu kapitału równa jest jej wielkości w momencie \(t = 0 \), czyli \(G_K(t) = \frac{(1-\alpha)(1-\gamma)(g+n)}{1-\alpha+\alpha\gamma} \).

Licząc zaś granicę, przy \(t \to +\infty \), ze stopy wzrostu zasobu kapitału \(G_K \), opisanej równaniem (8.40), okazuje się, że (bez względu na wyjściową stopę wzrostu \(G^0_K > -\delta \)) długookresowa stopa wzrostu zasobu kapitału, \(G^*_K = \lim_{t \to +\infty} [G_K(t)] \), dana jest wzorem:

\[
G^*_K = \lim_{t \to +\infty} [G_K(t)] = \lim_{t \to +\infty} \left(\frac{1}{1-\gamma(1-\alpha)(g+n)+\frac{1}{1-\alpha+\alpha\gamma}} + Fe^{-[(1-\alpha)(g+n)+\frac{1}{1-\alpha+\alpha\gamma}]t} \right) - \delta = \frac{1}{1-\gamma(1-\alpha)(g+n)+\frac{1}{1-\alpha+\alpha\gamma}} + F \lim_{t \to +\infty} \left(e^{-[(1-\alpha)(g+n)+\frac{1}{1-\alpha+\alpha\gamma}]t} \right) - \delta,
\]

a stąd, po uwzględnieniu faktu, że \((1-\gamma)(1-\alpha)(g+n) + (1-\alpha+\alpha\gamma)\delta > 0 \), mamy:

\[
G^*_K = \frac{1}{1-\gamma(1-\alpha)(g+n)+\frac{1}{1-\alpha+\alpha\gamma}} - \delta = \frac{(1-\gamma)(1-\alpha)(g+n) + (1-\alpha+\alpha\gamma)\delta}{1-\alpha+\alpha\gamma} - \delta,
\]

czyli:

\[
G^*_K = \frac{(1-\gamma)(1-\alpha)(g+n)}{1-\alpha+\alpha\gamma}.
\]

(8.43)

Ze związku (8.43) płyną następujące wnioski:

- Długookresowa stopa wzrostu zasobu kapitału \(G^*_K \) w gospodarce typu Domara-Solowa zależna jest od stopy harrodiańskiego postępu technicznego \(g \), stopy wzrostu liczby pracujących \(n \), elastyczności \(\alpha \) produkcji \(Y \) względem nakładów kapitału rzeczowego \(K \) oraz od elastyczności \(\gamma \) zagregowanego popytu \(Y^D \) względem produktu zagregowanej podaży \(Y^S \) w analizowanej tu gospodarce.

- Ponieważ:
\[
\frac{\partial G^*_K}{\partial g} = \frac{\partial}{\partial g} \left(\frac{(1-\gamma)(1-\alpha)(g+n)}{1-\alpha + \alpha\gamma} \right) = \frac{(1-\gamma)(1-\alpha)}{1-\alpha + \alpha\gamma} > 0
\]
oraz:
\[
\frac{\partial G^*_K}{\partial n} = \frac{\partial}{\partial n} \left(\frac{(1-\gamma)(1-\alpha)(g+n)}{1-\alpha + \alpha\gamma} \right) = \frac{(1-\gamma)(1-\alpha)}{1-\alpha + \alpha\gamma} > 0,
\]
zatem wysokiej stopie postępu technicznego w sensie Harroda g i/lub wysokiej stopie wzrostu liczby pracujących n odpowiada wysoka długookresowa stopa wzrostu zasobu kapitału \(G^*_K \).

- Licząc pochodną cząstkową równania (8.43) po elastyczności \(\alpha \) produktu \(Y \) względem nakładów kapitału \(K \), okazuje się, iż zachodzi związek:

\[
\frac{\partial G^*_K}{\partial \alpha} = \frac{\partial}{\partial \alpha} \left(\frac{(1-\gamma)(1-\alpha)(g+n)}{1-\alpha + \alpha\gamma} \right) = (1-\gamma)(g+n) \frac{\partial}{\partial \alpha} \left(\frac{1-\alpha}{1-\alpha + \alpha\gamma} \right) =
\]

\[
= (1-\gamma)(g+n) \left(1 - \frac{1-\alpha + \alpha\gamma}{(1-\alpha + \alpha\gamma)^2} \right) = (1-\gamma)(g+n) \frac{1 - \alpha - \alpha\gamma + 1 - \gamma - \alpha + \alpha\gamma}{(1-\alpha + \alpha\gamma)^2} =
\]

\[
= \frac{\gamma(1-\gamma)(g+n)}{(1-\alpha + \alpha\gamma)^2} < 0,
\]
który implikuje, że wysokiej elastyczności \(\alpha \) towarzyszy niska długookresowa stopa wzrostu zasobu kapitału \(G^*_K \).

- Podobnie, stąd, że:

\[
\frac{\partial G^*_K}{\partial \gamma} = \frac{\partial}{\partial \gamma} \left(\frac{(1-\gamma)(1-\alpha)(g+n)}{1-\alpha + \alpha\gamma} \right) = -\frac{\gamma(1-\gamma)(g+n)}{(1-\alpha + \alpha\gamma)^2} < 0,
\]
wynika, iż im wyższa jest elastyczność \(\gamma \) zagregowanego popytu \(Y^D \) względem zagregowanej podaży \(Y^S \), tym wyższa jest długookresowa stopa wzrostu \(G^*_K \) zasobu kapitału w modelu wzrostu typu Domara-Solowa.

- Porównując zaś długookresową stopę wzrostu kapitału w modelu Domara-Solowa (równanie (8.43)) z analogiczną stopą wzrostu w modelu Solowa z funkcją produkcyj Cobba-Douglasa (por. rozważania w punkcie 2.4 skryptu), która równa jest \(g+n \), okazuje się, iż przy \(\alpha, \gamma \in (0;1) \) zachodzi związek:

\[
\frac{(1-\gamma)(1-\alpha)(g+n)}{1-\alpha + \alpha\gamma} < \frac{(1-\alpha - \gamma + \alpha\gamma)(g+n)}{1-\alpha + \alpha\gamma} = \frac{(1-\alpha - \alpha\gamma)(g+n)}{1-\alpha + \alpha\gamma} = g+n,
\]
który implikuje, że długookresowa stopa wzrostu kapitału w gospodarce Domara-Solo-wa
\[
\frac{(1-\gamma)(1-\alpha)(g+n)}{1-\alpha+\alpha\gamma}
\]
jest niższa od długookresowej stopy wzrostu owego zasobu w analogicznym, neoklasycznym modelu wzrostu gospodarczego Solowa.

Wstawiając zaś równanie ścieżki czasowej stopy wzrostu kapitału (8.40) do związku (8.30), okazuje się, iż ścieżkę czasową stopy wzrostu realnej stopy procentowej opisuje zależność:

\[
\forall t \in [0;+\infty) \quad g_r(t) = -\frac{(1-\gamma)(1-\alpha)(g+n)}{\beta} + \frac{(1-\gamma)\alpha}{\beta}\left(\frac{1}{1-\gamma(1-\alpha)(g+n)+(1-\alpha+\alpha\gamma)\delta} + Fe^{-[(1-\gamma)(1-\alpha)(g+n)+(1-\alpha+\alpha\gamma)\delta]t}\right),
\]

gdzie stała F opisana jest przez związek (8.41). Różniczkując równanie (8.44) względem czasu \(t \in [0;+\infty) \), okazuje się, że:

\[
\forall t \in [0;+\infty) \quad \dot{g}_r(t) = \frac{d}{dt}\left(-\frac{(1-\gamma)(1-\alpha)(g+n)}{\beta} + \frac{(1-\gamma)\alpha}{\beta}\left(\frac{1}{1-\gamma(1-\alpha)(g+n)+(1-\alpha+\alpha\gamma)\delta} + Fe^{-[(1-\gamma)(1-\alpha)(g+n)+(1-\alpha+\alpha\gamma)\delta]t}\right)\right) =
\]

\[
= -\frac{(1-\gamma)\alpha}{\beta}\frac{d}{dt}\left(\frac{1}{1-\gamma(1-\alpha)(g+n)+(1-\alpha+\alpha\gamma)\delta} + Fe^{-[(1-\gamma)(1-\alpha)(g+n)+(1-\alpha+\alpha\gamma)\delta]t}\right) =
\]

\[
= \frac{(1-\gamma)\alpha}{\beta}\left(-\frac{(1-\gamma)(1-\alpha)(g+n)+(1-\alpha+\alpha\gamma)\delta}{(1-\gamma)(1-\alpha)(g+n)+(1-\alpha+\alpha\gamma)\delta} + Fe^{-[(1-\gamma)(1-\alpha)(g+n)+(1-\alpha+\alpha\gamma)\delta]t}\right)^2,
\]

a stąd dla każdego \(t \in [0;+\infty) \):

\[
\dot{g}_r(t) = \frac{(1-\gamma)\alpha\left[(1-\gamma)(1-\alpha)(g+n)+(1-\alpha+\alpha\gamma)\delta\right]}{\beta\left(1-\gamma(1-\alpha)(g+n)+(1-\alpha+\alpha\gamma)\delta\right) + Fe^{-[(1-\gamma)(1-\alpha)(g+n)+(1-\alpha+\alpha\gamma)\delta]t}}. \tag{8.45}
\]

Z równań (8.45) i (8.41) wynika, co następuje:

- Jeśli wyjściowa stopa wzrostu kapitału \(G^0_K \) jest niższa (wyższa) od wielkości \(\frac{(1-\alpha)(1-\gamma)(g+n)}{1-\alpha+\alpha\gamma} \), to stała F jest dodatnia (ujemna) i wówczas w każdym momencie...
przyrosty stóp wzrostu realnej stopy procentowej \(g_r \) w gospodarce Domara-Solowa są dodanie (ujemne), co implikuje, że analizowane tu stopy wzrostu \(g_r \) są coraz wyższe (niższe).

- Natomiast przy \(G_k^0 = \frac{(1 - \alpha)(1 - \gamma)(g + n)}{1 - \alpha + \alpha \gamma} \) przyrosty stóp wzrostu realnych stóp procentowych są równe zera, czyli stopy wzrostu \(g_r \) nie ulegają zmianom w czasie.

Licząc zaś granicę, przy \(t \to +\infty \), z równania (8.44), okazuje się, że:

\[
\lim_{t \to +\infty} g_r(t) = \lim_{t \to +\infty} \left(-\frac{(1 - \gamma)(1 - \alpha)(g + n)}{\beta} \right) = -\frac{(1 - \gamma)(1 - \alpha)(g + n)}{\beta}
\]

gdzie \(g^*_r \) jest długookresową stopą wzrostu realnej stopy procentowej w gospodarce Domara-Solowa. Z równania (8.46) wyciągnąć można następujące wnioski:
• Długookresowa stopa wzrostu realnej stopy procentowej zależna jest od pięciu następujących zmiennych makroekonomicznych: stopy postępu technicznego w sensie Harroda, stopy wzrostu liczby pracujących, elastyczności α zagregowanej podaży Y_S względem nakładów kapitału K, elastyczności γ zagregowanego popytu Y^D względem produktu Y_S oraz elastyczności zagregowanego popytu Y^D względnej realnej stopy procentowej r (równej -β).
• Ponieważ:
 \[
 \frac{\partial g_r^*}{\partial g} = \frac{\partial}{\partial g} \left(-\frac{(1-\gamma)(1-\alpha)(g+n)}{1-\alpha + \alpha \gamma \beta} \right) = -\frac{(1-\gamma)(1-\alpha)}{1-\alpha + \alpha \gamma \beta} < 0
 \]
oraz:
 \[
 \frac{\partial g_r^*}{\partial n} = \frac{\partial}{\partial n} \left(-\frac{(1-\gamma)(1-\alpha)(g+n)}{1-\alpha + \alpha \gamma \beta} \right) = -\frac{(1-\gamma)(1-\alpha)}{1-\alpha + \alpha \gamma \beta} < 0,
 \]
zatem wysokiej stopie harrodiańskiego postępu technicznego g i/lub wysokiej stopie wzrostu liczby pracujących n odpowiada niska stopa wzrostu realnej stopy procentowej g_r* w modelu typu Domara-Solowa w długim okresie. WNiosek ten można również interpretować ekonomicznie w ten sposób, że wysokim stopom g i n towarzyszy niższa stopa spadku r, gdyż:
 \[
 \frac{\partial |g_r^*|}{\partial g} = \frac{\partial |g_r^*|}{\partial n} = \frac{(1-\gamma)(1-\alpha)}{1-\alpha + \alpha \gamma \beta} > 0.
 \]
• Różniczkując transport (8.46) względem elastyczności α funkcji produkcji Cobb-Dougla, okazuje się, iż zachodzi zależność:
 \[
 \frac{\partial g_r^*}{\partial \alpha} = \frac{\frac{\partial}{\partial \alpha} \left(-\frac{(1-\gamma)(1-\alpha)(g+n)}{1-\alpha + \alpha \gamma \beta} \right)}{\frac{\partial}{\partial \alpha} \left(-\frac{(1-\gamma)(g+n)}{1-\alpha + \alpha \gamma \beta} \right)} = -\frac{(1-\gamma)(g+n)}{\beta} \frac{1-\alpha + \alpha \gamma}{1-\alpha + \alpha \gamma}
 \]
 \[
 = \frac{(1-\gamma)(g+n)}{\beta} \frac{1-\alpha + \alpha \gamma -1 + \gamma + \alpha - \alpha \gamma}{(1-\alpha + \alpha \gamma)^2}
 \]
 \[
 = \frac{(1-\gamma)(g+n)}{\beta} \frac{\gamma}{(1-\alpha + \alpha \gamma)^2} > 0
 \]
bądź też:
 \[
 \frac{\partial |g_r^*|}{\partial \alpha} = -\frac{(1-\gamma)(g+n)}{\beta} \frac{\gamma}{(1-\alpha + \alpha \gamma)^2} < 0,
 \]
co oznacza, im wyższa jest elastyczność produkcji względem nakładów kapitału rzeczowego, tym wyższa (niższa) jest długookresowa stopa wzrostu (spadku) realnej stopy procentowej.
• Podobnie, stąd, że:

\[\frac{\partial g_r^*}{\partial \gamma} = \frac{(1-\alpha)(g+n)}{\beta} \cdot \frac{\alpha}{(1 - \alpha + \alpha \gamma)^2} > 0 \]

i:

\[\frac{\partial |g_r^*|}{\partial \gamma} = -\frac{(1-\alpha)(g+n)}{\beta} \cdot \frac{\alpha}{(1 - \alpha + \alpha \gamma)^2} < 0, \]

wyciągnąć można wniosek, że wysoka elastyczność zagregowanego popytu względem zagregowanej podaży prowadzi do wysokich (niskich) stóp wzrostu (spadku) realnej stopy procentowej w długookresowej równowadze typu Domara-Solowa.

• Natomiast z tego, że:

\[\frac{\partial g_r^*}{\partial \beta} = \frac{\partial}{\partial \beta} \left(-\frac{(1-\gamma)(1-\alpha)(g+n)}{(1 - \alpha + \alpha \gamma)\beta} \right) = \frac{(1-\gamma)(1-\alpha)(g+n)}{(1 - \alpha + \alpha \gamma)\beta^2} > 0 \]

oraz:

\[\frac{\partial |g_r^*|}{\partial \beta} = -\frac{(1-\gamma)(1-\alpha)(g+n)}{(1 - \alpha + \alpha \gamma)\beta^2} < 0, \]

wynika, iż im silniej zagregowany popyt w gospodarce Domara-Solowa reaguje na zmianę realnej stopy procentowej, czyli im wyższa jest wartość parametru \(\beta \), tym wyższa (niższa) jest stopa wzrostu (spadku) realnej stopy procentowej w długim okresie.

Z równania (8.27) wynika, że w warunkach równowagi popytu \(Y_D \) i podaży \(Y_S \) w analizowanej gospodarce spełniona jest zależność:

\[\forall t \in [0;+\infty) \quad \beta \cdot \ln(r(t)) = \ln(m) - (1-\gamma) \cdot \ln(Y(t)), \]

a stąd:

\[\forall t \in [0;+\infty) \quad (1-\gamma) \cdot \ln(Y(t)) = \ln(m) - \beta \cdot \ln(r(t)) \]

lub:

\[\forall t \in [0;+\infty) \quad \ln(Y(t)) = \frac{\ln(m)}{1-\gamma} - \frac{\beta}{1-\gamma} \ln(r(t)). \]

Różniczkując powyższe równanie względem czasu \(t \in [0;+\infty) \), okazuje się, że zachodzi związek:

\[\forall t \in [0;+\infty) \quad G_Y(t) = \frac{\dot{Y}(t)}{Y(t)} = -\frac{\beta}{1-\gamma} \cdot \frac{\dot{r}(t)}{r(t)} = -\frac{\beta}{1-\gamma} g_r(t), \quad (8.47) \]

gdzie \(G_Y = \frac{\dot{Y}}{Y} \) to stopa wzrostu produktu. Wstawiając zaś równanie ścieżki czasowej stopy wzrostu realnej stopy procentowej (8.44) do zależności (8.47), uzyskujemy:
\[
G_Y(t) = \frac{-\beta}{1-\gamma} \left[-\frac{(1-\gamma)(1-\alpha)(g+n)}{\beta} + \frac{1}{\beta} \left\{ \frac{1 - \alpha + \alpha\gamma}{(1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta} + F e^{-\left((1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta\right)} \right\} \right] =
\]
\[
= (1-\alpha)(g+n) + \alpha \left(\frac{1 - \alpha + \alpha\gamma}{(1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta} + F e^{-\left((1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta\right)} \right),
\]
\[
\forall t \in [0;+\infty) \quad G_Y(t) =
\]
\[
= (1-\alpha)(g+n) - \alpha\delta + \frac{1 - \alpha + \alpha\gamma}{(1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta} + F e^{-\left((1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta\right)}. \quad (8.48)
\]

Z równania (8.48) wyciągnąć można wniosek, że w każdym momencie \(t \in [0;+\infty) \) zachodzi:

\[
\dot{G}_Y(t) = \frac{d}{dt} \left((1-\alpha)(g+n) - \alpha\delta + \frac{1 - \alpha + \alpha\gamma}{(1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta} + F e^{-\left((1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta\right)} \right) =
\]
\[
= \frac{d}{dt} \left(\frac{1 - \alpha + \alpha\gamma}{(1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta} + F e^{-\left((1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta\right)} \right) =
\]
\[
= -\alpha \cdot \left((1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta \right) \cdot F \cdot e^{-\left((1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta\right)} \cdot \left(\frac{1 - \alpha + \alpha\gamma}{(1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta} + F e^{-\left((1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta\right)} \right)^2,
\]
\[
\forall t \in [0;+\infty) \quad \dot{G}_Y(t) = \alpha \cdot \left((1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta \right) \cdot F \cdot e^{-\left((1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta\right)} \cdot \left(\frac{1 - \alpha + \alpha\gamma}{(1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta} + F e^{-\left((1-\gamma)(1-\alpha)(g+n) + (1-\alpha + \alpha\gamma)\delta\right)} \right)^2. \quad (8.49)
\]

Ze związku (8.49) wynika, co następuje. Po pierwsze, jeśli stała całkowania \(F \) jest dodatnia (ujemna), co jest równoznaczne z tym, iż:
\[G^*_K < \frac{(1-\alpha)(1-\gamma)(g+n)}{1-\alpha+\alpha\gamma}, \]
\[G^*_K > \frac{(1-\alpha)(1-\gamma)(g+n)}{1-\alpha+\alpha\gamma}, \]

to w każdym momencie \(t \in [0;+\infty) \) \(\dot{G}_Y > 0 \) \((\ddot{G}_Y < 0) \) i stopa wzrostu produktu
\[G_Y = \frac{\dot{Y}}{Y}, \]
podobnie jak analizowana uprzednio stopa wzrostu kapitału rzeczowego
\[G_K = \frac{\dot{K}}{K}, \]
jest coraz wyższa (niższa). Po drugie, w przypadku, w którym
\[G^*_K = \frac{(1-\alpha)(1-\gamma)(g+n)}{1-\alpha+\alpha\gamma}, \]
stała \(F \) równa jest zeru, co implikuje, że \(\dot{G}_Y = 0 \) i stopa wzrostu produktu \(G_Y \), analogicznie jak stopa wzrostu kapitału \(G_K \), nie ulega wówczas zmianom w czasie.

Oznaczając przez \(G^*_Y = \lim_{t \to +\infty} G_Y(t) \) długookresową stopę wzrostu strumienia produktu w równowadze gospodarki Domara-Solowa i licząc granicę, przy \(t \to +\infty \), z równania (8.48), okazuje się, że spełniona jest zależność:

\[G^*_Y = \lim_{t \to +\infty} \left((1-\alpha)(g+n) - \alpha\delta + \frac{\alpha}{(1-\gamma)(1-\alpha)(g+n) + (1-\alpha+\alpha\gamma)\delta} \right) + F \lim_{t \to +\infty} \left(e^{-((1-\gamma)(1-\alpha)(g+n) + (1-\alpha+\alpha\gamma)\delta)t} \right) = \frac{(1-\alpha)(g+n)}{1-\alpha+\alpha\gamma} + \frac{\alpha(1-\gamma)(1-\alpha)(g+n)}{1-\alpha+\alpha\gamma} = \frac{(1-\alpha)(g+n)(1+\frac{\alpha(1-\gamma)}{1-\alpha+\alpha\gamma})}{1-\alpha+\alpha\gamma}, \]

a stąd:
\[G^*_Y = \frac{(1-\alpha)(g+n)}{1-\alpha+\alpha\gamma}. \]

Z równania (8.50) wyciągnąć można następujące wnioski:
- Długookresowa stopa wzrostu \(G^*_Y \) strumienia produktu w modelu typu Domara-Solowa, podobnie jak długookresowa stopa wzrostu zasobu kapitału w owym modelu, zależna jest od stopy harrodiańskiego postępu technicznego \(g \), stopy wzrostu liczby
pracujących n, elastyczności α produktu Y^S względem nakładów kapitału rzeczowego K oraz elastyczności γ zagregowanego popytu Y^D względem zagregowanej podaży Y^S.

- Stąd, że:

$$\frac{\partial G^*_Y}{\partial g} = \frac{\partial}{\partial g} \left(\frac{(1-\alpha)(g+n)}{1-\alpha + \alpha\gamma} \right) = \frac{1-\alpha}{1-\alpha + \alpha\gamma} > 0$$

oraz:

$$\frac{\partial G^*_Y}{\partial n} = \frac{\partial}{\partial n} \left(\frac{(1-\alpha)(g+n)}{1-\alpha + \alpha\gamma} \right) = 1-\alpha > 0,$$

wynika, iż im wyższa jest stopa postępu technicznego w sensie Harroda i/lub stopa wzrostu liczby pracujących, tym wyższa jest długookresowa stopa wzrostu produktu.

- Ponieważ:

$$\frac{\partial G^*_Y}{\partial \alpha} = \frac{\partial}{\partial \alpha} \left(\frac{(1-\alpha)(g+n)}{1-\alpha + \alpha\gamma} \right) = (g+n)\frac{\partial}{\partial \alpha} \left(\frac{1-\alpha}{1-\alpha + \alpha\gamma} \right) =$$

$$(g+n)\frac{-(1-\alpha + \alpha\gamma) - (1-\alpha)(-1+\gamma)}{(1-\alpha + \alpha\gamma)^2} = (g+n)\frac{-1+\alpha - \alpha\gamma + (1-\alpha)(1-\gamma)}{(1-\alpha + \alpha\gamma)^2} =$$

$$(g+n)\frac{-1+\alpha - \alpha\gamma + 1-\gamma - \alpha + \alpha\gamma}{(1-\alpha + \alpha\gamma)^2} = \frac{-\gamma(g+n)}{(1-\alpha + \alpha\gamma)^2} < 0,$$

zatem wysokiej elastyczności α odpowiada niska stopa wzrostu G^*_Y produktu w długim okresie.

- Podobnie, im wyższa jest elastyczność γ zagregowanego popytu Y^D względem zagregowanej podaży Y^S, tym niższa jest stopa wzrostu G^*_Y produktu w długim okresie. Wynika to stąd, iż:

$$\frac{\partial G^*_Y}{\partial \gamma} = \frac{\partial}{\partial \gamma} \left(\frac{(1-\alpha)(g+n)}{1-\alpha + \alpha\gamma} \right) = (1-\alpha)(g+n)\frac{\partial}{\partial \gamma} \left(\frac{1}{1-\alpha + \alpha\gamma} \right) =$$

$$(1-\alpha)(g+n)\frac{-\alpha}{(1-\alpha + \alpha\gamma)^2} < 0.$$

- Porównując zaś długookresową stopę wzrostu produktu (8.50) z długookresową stopą wzrostu zasobu kapitału (8.43) oraz ze stopami wzrostu produktu i kapitału (równymi g + n) w równowadze modelu Solowa, okazuje się, że zachodzą nierówności:

$$\frac{(1-\gamma)(1-\alpha)(g+n)}{1-\alpha + \alpha\gamma} < \frac{(1-\alpha)(g+n)}{1-\alpha + \alpha\gamma} < g+n,$$

z których wynika, iż długookresowa stopa wzrostu kapitału $G^*_K = \frac{(1-\alpha)(1-\gamma)(g+n)}{1-\alpha + \alpha\gamma}$ w modelu Domara-Solowa jest niższa od długookresowej stopy wzrostu produktu.
\[G_y^* = \frac{(1-\alpha)(g+n)}{1-\alpha+\alpha\gamma} \] w owym modelu wzrostu gospodarczego, ta zaś kształtuję się na poziomie niższym od stop wzrostu kapitału i produktu w długim okresie w oryginalnym modelu Solowa.

Z tożsamości wydajności pracy \(y = \frac{Y}{L} \) i technicznego uzbrojenia pracy \(k = \frac{K}{L} \) wynika (co Czytelnicy winni uzasadnić samodzielnie), że stopy wzrostu tych zmienności makroekonomicznych (oznaczane przez \(g_y = \frac{\dot{Y}}{Y} \) oraz \(g_k = \frac{\dot{K}}{K} \)) można zapisać następująco:

\[
\forall t \in [0;+\infty) \quad g_y(t) = \frac{\dot{Y}(t)}{Y(t)} - \frac{\dot{L}(t)}{L(t)} = G_Y(t) - \frac{\dot{L}(t)}{L(t)}
\]

i:

\[
\forall t \in [0;+\infty) \quad g_k(t) = \frac{\dot{K}(t)}{K(t)} - \frac{\dot{L}(t)}{L(t)} = G_K(t) - \frac{\dot{L}(t)}{L(t)}
\]

lub, po uwzględnieniu założenia, iż liczba pracujących rośnie według stopy wzrostu \(n \):

\[
\forall t \in [0;+\infty) \quad g_y(t) = G_Y(t) - n \tag{8.51a}
\]

oraz:

\[
\forall t \in [0;+\infty) \quad g_k(t) = G_K(t) - n. \tag{8.51b}
\]

Oznaczając przez \(g_y^* = \lim_{t \to +\infty}^{} g_y(t) \) i \(g_k^* = \lim_{t \to +\infty}^{} g_k(t) \) stopy wzrostu wydajności pracy i technicznego uzbrojenia pracy w długim okresie oraz korzystając z równań (8.51ab), okazuje się, iż zachodzą związki:

\[
g_y^* = \lim_{t \to +\infty}^{} g_y(t) = \lim_{t \to +\infty}^{} G_Y(t) - n = G_Y^* - n \tag{8.52a}
\]

i:

\[
g_k^* = \lim_{t \to +\infty}^{} g_k(t) = \lim_{t \to +\infty}^{} G_K(t) - n = G_K^* - n. \tag{8.52b}
\]

Wstawiając równania (8.43) i (8.50) do zależności (8.52ab), dochodzimy do relacji:

\[
g_y^* = G_y^* - n = \frac{(1-\alpha)(g+n)}{1-\alpha+\alpha\gamma} - n = \frac{(1-\alpha)g+(1-\alpha)n-(1-\alpha+\alpha\gamma)n}{1-\alpha+\alpha\gamma},
\]

a stąd:

\[
g_y^* = \frac{(1-\alpha)(g-\alpha\gamma)n}{1-\alpha+\alpha\gamma} \tag{8.53a}
\]

oraz:

\[
g_k^* = G_K^* - n = \frac{(1-\gamma)(1-\alpha)(g+n)}{1-\alpha+\alpha\gamma} - n = \frac{(1-\alpha)(1-\gamma)g+(1-\alpha)(1-\gamma)n-(1-\alpha+\alpha\gamma)n}{1-\alpha+\alpha\gamma} =
\]

\[\frac{(1 - \alpha)(1 - \gamma)g + (1 - \gamma - \alpha + \alpha \gamma - l + \alpha - \alpha \gamma)n}{1 - \alpha + \alpha \gamma}, \]

a zatem:

\[g^*_k = \frac{(1 - \alpha)(1 - \gamma)g - \gamma n}{1 - \alpha + \alpha \gamma}. \]

(8.53b)

Z równań (8.53ab) oraz stąd, że \(g^*_y = G^*_y - n \) i \(g^*_k = G^*_k - n \), wynika, co następuje:

- Długookresowe stopy wzrostu wydajności pracy i technicznego uzbrojenia pracy w równowadze gospodarki typu Domara-Solowa zależne są od tych samych zmienności, które oddziałują na stopy wzrostu strumienia produktu i zasobu kapitału rzeczowego w długim okresie.
- Różniczkując równania (8.53ab) względem stopy harrodiańskiego postępu technicznego \(g \), otrzymujemy:

\[
\frac{\partial g^*_y}{\partial g} = \frac{\partial}{\partial g} \left(\frac{(1 - \alpha)(1 - \gamma)g - \gamma n}{1 - \alpha + \alpha \gamma} \right) = \frac{1 - \alpha}{1 - \alpha + \alpha \gamma} > 0
\]

oraz:

\[
\frac{\partial g^*_k}{\partial g} = \frac{\partial}{\partial g} \left(\frac{(1 - \alpha)(1 - \gamma)g - \gamma n}{1 - \alpha + \alpha \gamma} \right) \left(\frac{(1 - \alpha)(1 - \gamma)}{1 - \alpha + \alpha \gamma} \right) > 0,
\]

co oznacza, że – podobnie jak w modelu Solowa – wysokiej stopie postępu technicznego w sensie Harroda towarzyszą wysokie długookresowe stopy wzrostu wydajności pracy i technicznego uzbrojenia pracy.

- Stąd, że:

\[
\frac{\partial g^*_y}{\partial n} = \frac{\partial}{\partial n} \left(\frac{(1 - \alpha)(1 - \gamma)g - \gamma n}{1 - \alpha + \alpha \gamma} \right) = -\frac{\alpha \gamma}{1 - \alpha + \alpha \gamma} < 0
\]

oraz:

\[
\frac{\partial g^*_k}{\partial n} = \frac{\partial}{\partial n} \left(\frac{(1 - \alpha)(1 - \gamma)g - \gamma n}{1 - \alpha + \alpha \gamma} \right) = -\frac{\gamma}{1 - \alpha + \alpha \gamma} < 0,
\]

plynie wniosek, iż wysokiej stopie wzrostu liczby pracujących odpowiadają niskie stopy wzrostu wydajności pracy i technicznego uzbrojenia pracy w długookresowej równowadze rozważanego tu modelu wzrostu gospodarczego.
- Ponieważ:

\[
\frac{\partial g^*_y}{\partial \alpha} = \frac{\partial}{\partial \alpha} (G^*_y - n) = \frac{\partial G^*_y}{\partial \alpha}
\]

oraz:

\[
\frac{\partial g^*_k}{\partial \alpha} = \frac{\partial}{\partial \alpha} (G^*_k - n) = \frac{\partial G^*_k}{\partial \alpha},
\]
zaś, zgodnie z prowadzonymi uprzednio rozważaniami, pochodne cząstkowe \(\frac{\partial G^*_Y}{\partial \alpha} \) i \(\frac{\partial G^*_K}{\partial \alpha} \) są ujemne, zatem również pochodne \(\frac{\partial g^*_y}{\partial \gamma} \) oraz \(\frac{\partial g^*_k}{\partial \gamma} \) przyjmują wartości ujemne. Dlatego też wysokiej elastyczności \(\alpha \) funkcji produkcji w analizowanym tu modelu wzrostu gospodarczego odpowiadają niskie stopy wzrostu strumienia produktu na pracującego i zasobu kapitału na pracującego.

- Podobnie, stąd, iż \(\frac{\partial G^*_Y}{\partial \gamma} < 0 \) i \(\frac{\partial G^*_K}{\partial \gamma} < 0 \), wynika, że:

\[
\frac{\partial g^*_y}{\partial \gamma} = \frac{\partial}{\partial \gamma} \left(G^*_Y - n \right) = \frac{\partial G^*_Y}{\partial \gamma} < 0
\]

oraz:

\[
\frac{\partial g^*_k}{\partial \gamma} = \frac{\partial}{\partial \gamma} \left(G^*_K - n \right) = \frac{\partial G^*_K}{\partial \gamma} < 0,
\]

czyli wysoka elastyczność \(\gamma \) funkcji zagregowanego popytu \(Y^D \) względem podaży \(Y^S \) prowadzi do niskich stóp wzrostu \(y = \frac{Y}{L} \) i \(k = \frac{K}{L} \).

- Ponieważ:

\[
G^*_K < G^*_Y < g + n, \\
g^*_y = G^*_Y - n \quad \text{i} \quad g^*_k = G^*_K - n, \quad \text{zatem:}
\]

\[
g^*_k < g^*_y < g,
\]

cóż oznacza, iż w modelu wzrostu typu Domara-Solowa techniczne uzbrojenie pracy rośnie w długim okresie wolniej od wydajności pracy, natomiast ta jest niższa od stopy postępu technicznego w sensie Harroda. Stąd też w modelu tym zarówno długookresowa stopa wzrostu kapitału na pracującego, jak i długookresowa stopa wzrostu produktu na pracującego są niższe od tych, które mają miejsce w długookresowej równowadze Solowa.

8.5. PODSUMOWANIE

Prowadzone w rozdziale ósmym rozważania można podsumować następująco:

I. W modelu wzrostu gospodarczego Domara zakłada się, iż inwestycje oddziałują zarówno na popytową, jak i podażową stronę gospodarki. Oddziaływanie inwestycji na popytową stronę gospodarki odbywa się na skutek działania keynesowskiego mnożnika wydatków inwestycyjnych, zaś wpływ inwestycji na podażową stronę gospodarki (podobnie jak w neoklasycznych modelach wzrostu gospodarczego) jest skutkiem procesu akumulacji kapitału rzeczowego. Ponadto w modelu wzro-
stu Domara zakłada się, iż proces produkcyjny opisany jest przez funkcję produkcyjną o stałym w czasie (czyli nieelastycznym) współczynniku kapitałochłonności.

II. Z modelu wzrostu Domara wynika, iż istnieje dokładnie jedna stopa wzrostu inwestycji, która gwarantuje gospodarce zapewnienie równowagi popytu i podaży. Stopa ta zależna jest od produktywności kapitału oraz keynesowskiego mnożnika wydatków inwestycyjnych. Jeśli jednak rzeczywista stopa wzrostu inwestycji będzie różna od tej, która gwarantuje równość zagregowanego popytu i zagregowanej podaży, to gospodarka Domara znajduje się w stanie permanentnej, powiększającej się nierównowagi. Stan owej nierównowagi polega albo na tym, iż wraz z upływem czasu rośnie wielkość niezaspokojonego, zagregowanego popytu bądź też rośnie stopień niewykorzystania zdolności produkcyjnych gospodarki.

III. Rozważając zaś wpływ polityki monetarnej, polegającej na ustalaniu przez bank centralny realnych stóp procentowych, na równowagę długookresowego wzrostu gospodarczego, wygodnie jest posłużyć się modelem wzrostu będącym kompilacją modeli Domara i Solowa. Wynika to stąd, iż zmiana realnych stóp procentowych powinna prowadzić do zmiany wielkości nakładów inwestycyjnych w gospodarce. To zaś oddziaływać będzie zarówno na popytową stronę gospodarki (przez keynesowskie efekty mnożnikowe), jak i na jej stronę podażową (przez zmianę stopy wzrostu zasobu kapitału rzeczowego). Kompilacja modelu wzrostu Domara (popytowe i podażowe efekty realizowanych inwestycji) z modelem Solowa (o elastycznym współczynniku kapitałochłonności) pozwala na wyznaczenie długookresowej równowagi gospodarki wolnej od problemu jedynnej ścieżki wzrostu inwestycji gwarantującej gospodarce pełne wykorzystanie istniejących wej zdolności produkcyjnych.

IV. Co więcej, kompilacja taka jest również użyteczna przy próbie wyznaczenia długookresowych regul polityki monetarnej banku centralnego polegającej na zmianach realnej stopy procentowej. Z analizowanego w rozdziale ósmym skryptu modelu wzrostu gospodarczego typu Domara-Solowa wynika bowiem, że bank centralny może dostosowywać realną stopę procentową do stopy wzrostu zasobu kapitału tak, aby w pełni wykorzystać istniejące w gospodarce zdolności produkcyjne. Stopa wzrostu realnej stopy procentowej w tych warunkach jest liniową, malejącą funkcją stopy wzrostu zasobu kapitału rzeczowego. Wynika stąd, iż w warunkach wysokiej stopy wzrostu kapitału bank centralny powinien obniżać realne stopy procentowe w takim tempie, by nie dopuścić do obniżenia zagregowanego popytu w gospodarce poniżej wielkości występującej w niej zagregowanej podaży. Podnoszenie realnej stopy procentowej ma z tego punktu widzenia sens jedynie wówczas, gdy stopa wzrostu kapitału jest na bardzo niskim poziomie, gdyż wówczas utrzymanie realnej stopy procentowej na niskim poziomie groziło by ekspancją zagregowanego popytu, czego rezultatem byłaby krótka- lub długookresowa presja inflacyjna.

V. Z prezentowanego w rozdziale ósmym modelu typu Domara-Solowa wynika również, że jeśli bank centralny będzie stosował przedstawione reguły monetarne, to stopa wzrostu kapitału i stopa wzrostu produktu ukształtują się (podobnie jak ma to miejsce w neoklasycznych modelach wzrostu Solowa, Mankiwa-Romera-Weila i Nonnemana-Vanhoudta) w długim okresie na pewnym stałym poziomie, wynikającym w znacznej mierze ze stopy egzogenicznego postępu technicznego w sensie
Harroda oraz ze stopy wzrostu liczby pracujących. Warto jednak zauważyć, że długookresowe stopy wzrostu owych zmiennych makroekonomicznych w modelu typu Domara-Solowa są niższe od stóp wzrostu tych zmiennych w neoklasycznych modelach wzrostu gospodarczego. Wynika to stąd, że w modelach neoklasycznych nie uwzględnia się ograniczeń popytowych (związanych z procesem wzrostu gospodarczego) i analizuje się jedynie ścieżkę produktu potencjalnego, natomiast „w rzeczywistości, która jest przedmiotem opisu, nie jest na ogół spełnione teoretyczne założenie, iż produkcja realizuje się na poziomie potencjalnie określonym” (Welfe, 2000: 64). Ponieważ w modelu typu Domara-Solowa uwzględnia się również popytowe ograniczenia procesu wzrostu gospodarczego, zatem uzyskuje się rozwiązanie o niższych długookresowych stopach wzrostu, niż ma to miejsce w modelach neoklasycznych.
Rozdział dziewiąty

EFEKTY SKALI A WZROST GOSPODARCZY

9.1. WPROWADZENIE

W poprzednich rozdziałach skryptu analizowaliśmy ważniejsze aspekty procesów długookresowego wzrostu gospodarczego na gruncie założenia, że makroekonomiczna funkcja produkcji charakteryzuje się stałymi efektami skali (co jest równoznaczne z tym, iż - matematycznie rzecz biorąc - jest ona jednorodna stopnia pierwszego). W rozdziale dziewiątym uchylamy to założenie, przyjmując, iż proces produkcyjny w gospodarce opisany jest przez funkcję produkcji jednorodną dowolnego, dodatniego stopnia. Oznacza to, iż jeśli stopień jednorodności analizowanych funkcji produkcji będzie mniejszy (większy) od jedności, to w gospodarce wystąpią malejące (rosnące) efekty skali (por. też rozważania w punkcie 1.6 skryptu). Dlatego też w prowadzonych w rozdziale dziewiątym analizach wyznaczana będzie równowaga długookresowego wzrostu gospodarczego w warunkach efektów skali:

I. W modelu typu Solowa.
II. W modelu typu Mankiwa-Romera-Weila
oraz:
III. W modelu typu Nonnemana-Vanhoudta.

9.2. EFEKTY SKALI W RÓWNOWADZE TYPU SOLOWA1

W modelu wzrostu typu Solowa w warunkach występowania efektów skali procesu produkcyjnego przyjmować będziemy następujące założenia:

1. Proces produkcyjny opisany jest przez funkcję produkcji daną wzorem:

\[Y(t) = (K(t))^\alpha (L(t))^\beta, \]

gdzie \(Y, K, \Lambda \) i \(L > 0 \) to (odpowiednio) wielkość produkcji, nakłady kapitału rzeczowego, zasób wiedzy naukowo-technicznej (który wykorzystywany jest w procesach produkcyjnych) oraz liczba pracujących, zaś \(\alpha, \Theta \in (0;1) \) są elastycznościami produktu \(Y \) względem nakładów kapitału rzeczowego \(K \) i pracy \(L \) (lub, co na jedno wychodzi, nakładów efektywnej pracy \(\Lambda L \)). Funkcja produkcji (9.1) jest jednorodna (względem

1 Rozszerzenie analiz prowadzonych w punktach 9.2 i 9.3 skryptu znaleźć można w książce Tokarskiego (2008a).
K i L) stopnia $\Omega = \alpha + \Theta$ (por. funkcję produkcji (1.31c) w punkcie 1.6 skryptu i jej właściwości). Oznacza to, iż przy $\Omega < 1$ ($\Omega > 1$) funkcja ta charakteryzuje się będzie malejącymi (rosnącymi) efektami skali, natomiast przy $\Omega = 1$ (czyli wówczas, gdy $\Theta = 1 - \alpha$) wystąpią, podobnie jak w przypadku modelu wzrostu gospodarczego Solowa z funkcją produkcji Cobba-Douglasa, stałe efekty skali procesu produkcyjnego.

2. Przyrost zasobu kapitału rzeczowego \dot{K} opisany jest przez następujące równania różniczkowe:

$$\forall t \in [0;+\infty) \quad \dot{K}(t) = sY(t) - \delta K(t),$$

gdzie s i $\delta \in (0;1)$ to (podobnie jak w modelu Solowa) stopy oszczędności/inwestycji (s) i deprecjacji kapitału (δ). Równanie (9.2) interpretuje się ekonomicznie tak samo jak równanie (2.2) w modelu Solowa.

3. Zasoby wiedzy A i pracy L rosną według dodatnich stóp wzrostu równych g oraz n. Stopa g jest stopą egzogenicznego postępu technicznego w sensie Harroda. Dlatego też $\frac{\dot{A}}{A} = g$ oraz $\frac{\dot{L}}{L} = n$, co (przy dodatkowym założeniu, iż w każdym momencie $t \in [0;+\infty)$ zasoby A i L są dodatnie) implikuje związki:

$$\forall t \in [0;+\infty) \quad A(t) = A_0 e^{gt}$$

oraz:

$$\forall t \in [0;+\infty) \quad L(t) = L_0 e^{nt} \Rightarrow \frac{\dot{L}(t)}{L(t)} = n,$$

gdzie $A_0 > 0$ i $L_0 > 0$ to zasoby wiedzy oraz pracy w momencie $t = 0$.

Wstawiając równanie (9.3) do funkcji produkcji (9.1), dochodzimy do związku:

$$\forall t \in [0;+\infty) \quad Y(t) = (K(t))^\alpha \left(A_0 e^{gt} L(t) \right)^\Theta = A_0^\Theta e^{\Theta gt} (K(t))^\alpha (L(t))^\Theta = \tilde{\lambda} e^{\Theta gt} (K(t))^\alpha (L(t))^\Theta,$$

gdzie $\tilde{\lambda} = A_0^\Theta > 0$. Dzieląc równanie (9.5) przez liczbę pracujących $L > 0$, uzyskuje- my:

$$\forall t \in [0;+\infty) \quad \frac{Y(t)}{L(t)} = \frac{\tilde{\lambda} e^{\Theta gt} (K(t))^\alpha (L(t))^\Theta}{L(t)} = \frac{\tilde{\lambda} e^{\Theta gt} (K(t))^\alpha (L(t))^\Theta}{(L(t))^\alpha (L(t))^\alpha} = \tilde{\lambda} e^{\Theta gt} \left(\frac{K(t)}{L(t)} \right)^\alpha (L(t))^\alpha + \Theta - 1,$$

lub, po uwzględnieniu tego, że $y = \frac{Y}{L}$ i $k = \frac{K}{L}$, to (odpowiednio) wydajność pracy i techniczne uzbrojenie pracy:

$$\forall t \in [0;+\infty) \quad y(t) = \tilde{\lambda} e^{\Theta gt} (k(t))^\alpha (L(t))^\alpha + \Theta - 1.$$

Równanie (9.6) wyznacza funkcję wydajności pracy w modelu Solowa z funkcją produkcji Cobba-Douglasa w warunkach efektów skali. Z równania tego płyną następujące wnioski:
• Bez względu na rodzaj efektów skali (czyli dla dowolnego \(\Omega = \alpha + \Theta > 0 \)) wydajność pracy \(y \) jest tym wyższa, im wyższe jest techniczne uzbrojenie pracy \(k \). Wynnika to stąd, że:

\[
\forall k > 0 \quad \frac{\partial y}{\partial k} = \frac{\partial}{\partial k} \left(\alpha e^{\Theta t} k^\alpha L^{\alpha + \Theta - 1} \right) = \alpha \Lambda e^{\Theta t} k^{\alpha - 1} L^{\alpha + \Theta - 1} > 0.
\]

• Jeśli występują stałe efekty skali \(\Omega = 1 \), to liczba pracujących \(L \) nie oddziałuje na poziom wydajności pracy \(y \). Dzieje się tak dlatego, że przy \(\Omega = 1 \) równanie (9.6) sprowadza się do zwięzka:

\[
\forall t \in [0;+\infty) \quad y(t) = \tilde{\Lambda} e^{\Theta t} (k(t))^\alpha.
\]

• Przy malejących (rosnących) efektach skali, czyli przy \(\Omega = \alpha + \Theta < 1 \) (\(\Omega = \alpha + \Theta > 1 \)), zachodzi nierówność:

\[
\forall k > 0 \quad \frac{\partial y}{\partial L} = \frac{\partial}{\partial L} \left(\alpha e^{\Theta t} k^\alpha L^{\alpha + \Theta - 1} \right) = (\alpha + \Theta - 1) \alpha e^{\Theta t} k^{\alpha - 1} L^{\alpha + \Theta - 2} < 0,
\]

co oznacza, iż wówczas wysoka liczba pracujących \(L \) przekłada się na niski (wysoki) poziom wydajności pracy \(y \).

Różniczkując tożsamość technicznego uzbrojenia pracy \(k = \frac{K}{L} \) względem czasu \(t \in [0;+\infty) \), uzyskuje się zwięzki:

\[
\forall t \in [0;+\infty) \quad \dot{k}(t) = \frac{\dot{K}(t)L(t) - K(t)\ddot{L}(t)}{(L(t))^2} = \frac{\dot{K}(t) - \frac{\dddot{L}(t)}{L(t)} K(t)}{L(t)}.
\]

Wstawiając do powyższego równania zależności (9.2) oraz (9.4), mamy:

\[
\forall t \in [0;+\infty) \quad \dot{k}(t) = \frac{sY(t) - \delta K(t) - nK(t)}{L(t)} = s \frac{Y(t)}{L(t)} - (\delta + n) \frac{K(t)}{L(t)}
\]

lub, po uwzględnieniu tożsamości \(y = \frac{Y}{L} \) i \(k = \frac{K}{L} \):

\[
\forall t \in [0;+\infty) \quad \dot{k}(t) = sy(t) - (\delta + n) k(t).
\]

Po wstawieniu do równania różniczkowego (9.7) funkcji wydajności pracy (9.6) dochodzi się do związku:

\[
\forall t \in [0;+\infty) \quad \dot{k}(t) = s \tilde{\Lambda} e^{\Theta t} (k(t))^\alpha (L(t))^{\alpha + \Theta - 1} - (\delta + n) k(t)
\]

lub, po uwzględnieniu zależności (9.4):

\[
\forall t \in [0;+\infty) \quad \dot{k}(t) = s \tilde{\Lambda} e^{\Theta t} (k(t))^\alpha (L_0 e^{nt})^{\alpha + \Theta - 1} - (\delta + n) k(t) =
\]
= s\tilde{\Lambda}L_0^\alpha e^{[\Theta g+(\alpha+\Theta-1)n)t}\left(k(t)\right)^\alpha - (\delta + n)k(t),

a stąd:

\forall t \in [0;+\infty) \quad \tilde{k}(t) = \tilde{\Lambda}e^{[\Theta g+(\alpha+\Theta-1)n)t}\left(k(t)\right)^\alpha - (\delta + n)k(t), \quad (9.8)

gdzie: \tilde{\Lambda} = s\tilde{\Lambda}L_0^\alpha = s\left(\Lambda_0L_0\right) > 0^\alpha. Całka równania różniczkowego Bernoulliego (9.8), przy dodatkowym warunku, że k(0) = k_0 > 0 (gdzie k_0 to techniczne uzbrojenie pracy w momencie t = 0), wyznacza ścieżkę wzrostu technicznego uzbrojenia pracy w analizowanym tu modelu wzrostu gospodarczego.

Mnożąc równanie (9.8) przez k^{-\alpha} > 0, uzyskuje się zależność:

\forall t \in [0;+\infty) \quad \left(\tilde{k}(t)\right)^{-\alpha} \tilde{k}(t) = \tilde{\Lambda}e^{[\Theta g+(\alpha+\Theta-1)n)t}\left(k(t)\right)^{1-\alpha}. \quad (9.9)

Weźmy podstawienie Bernoulliego postaci:

\forall t \in [0;+\infty) \quad \nu(t) = (k(t))^{1-\alpha}, \quad (9.10a)

a stąd:

\forall t \in [0;+\infty) \quad \dot{\nu}(t) = (1 - \alpha)(k(t))^{-\alpha} \dot{k}(t) \implies (k(t))^{-\alpha} \dot{k}(t) = \frac{\dot{\nu}(t)}{1 - \alpha}. \quad (9.10b)

Wstawiając podstawienia (9.10ab) do równania różniczkowego Bernoulliego (9.9), uzyskujemy związek:

\forall t \in [0;+\infty) \quad \frac{\dot{\nu}(t)}{1 - \alpha} = \tilde{\Lambda}e^{[\Theta g+(\alpha+\Theta-1)n)t}\left(k(t)\right)^{1-\alpha} - (\delta + n)\nu(t)

lub:

\forall t \in [0;+\infty) \quad \dot{\nu}(t) = (1 - \alpha)\tilde{\Lambda}e^{[\Theta g+(\alpha+\Theta-1)n)t} - (1 - \alpha)(\delta + n)\nu(t). \quad (9.11)

Całka szczególna \nu_S równania różniczkowego (9.11), rozwiązująca równanie różniczkowe \dot{\nu}_S = -(1 - \alpha)(\delta + n)\nu_S, dana jest wzorem:

\forall t \in [0;+\infty) \quad \nu_S(t) = e^{-(1 - \alpha)(\delta + n)t}, \quad (9.12a)

a stąd:

\forall t \in [0;+\infty) \quad \dot{\nu}_S(t) = -(1 - \alpha)(\delta + n)e^{-(1 - \alpha)(\delta + n)t} = -(1 - \alpha)(\delta + n)\nu_S(t). \quad (9.12b)

Zapiszmy teraz całkę w równania różniczkowego (9.11) jako iloczyn całki szczególnej \nu_S, danej równaniem (9.12a), i nieznanej całki uzupełniającej \nu_D. Wówczas:

\forall t \in [0;+\infty) \quad \nu(t) = \nu_S(t)\nu_D(t), \quad (9.13a)

co implikuje związek:

\forall t \in [0;+\infty) \quad \dot{\nu}(t) = \dot{\nu}_S(t)\nu_D(t) + \nu_S(t)\dot{\nu}_D(t)

bądź też, po uwzględnieniu zależności (9.12b):
\[\forall t \in [0;+\infty) \quad \dot{v}(t) = -(1 - \alpha)(\delta + n)v_S(t)v_D(t) + \dot{v}_S(t)v_D(t). \] (9.13b)

Wstawiając równania (9.13ab) do związku (9.11), mamy:

\[\forall t \in [0;+\infty) \quad -(1 - \alpha)(\delta + n)v_S(t)v_D(t) + \dot{v}_S(t)v_D(t) = (1 - \alpha)\Lambda e^{[\Theta g + (\alpha + \Theta - 1)n]t} - (1 - \alpha)(\delta + n)v_S(t)v_D(t) \]

lub:

\[\forall t \in [0;+\infty) \quad v_S(t)v_D(t) = (1 - \alpha)\Lambda e^{[\Theta g + (\alpha + \Theta - 1)n]t}. \]

Po wstawieniu do powyższego związku całki szczególnej (9.12a) dochodzimy do równania różniczkowego postaci:

\[\forall t \in [0;+\infty) \quad e^{-(1 - \alpha)(\delta + n)t}\dot{v}_D(t) = (1 - \alpha)\Lambda e^{[\Theta g + (\alpha + \Theta - 1)n]t}, \]

a stąd:

\[\forall t \in [0;+\infty) \quad \dot{v}_D(t) = (1 - \alpha)\Lambda e^{[\Theta g + (\alpha + \Theta - 1)n]t}e^{(1 - \alpha)(\delta + n)t}, \]

czyli:

\[\forall t \in [0;+\infty) \quad \dot{v}_D(t) = (1 - \alpha)\Lambda e^{[\Theta g + (\alpha + \Theta - 1)n]t + (1 - \alpha)(\delta + n)t} = (1 - \alpha)\Lambda e^{[\Theta(g + n) + (1 - \alpha)\delta]t}. \] (9.14a)

Całkując równanie (9.14a) względem czasu \(t \in [0;+\infty) \), uzyskujemy całkę uzupełniającą \(v_D \) daną wzorem:

\[\forall t \in [0;+\infty) \quad v_D(t) = \int \dot{v}_D(t)dt = \int [(1 - \alpha)\Lambda e^{[\Theta g + (1 - \alpha)\delta]t}]dt = (1 - \alpha)\Lambda \int e^{[\Theta g + (1 - \alpha)\delta]t}dt, \]

czyli:

\[\forall t \in [0;+\infty) \quad v_D(t) = \frac{(1 - \alpha)\Lambda}{\Theta(g + n) + (1 - \alpha)\delta} e^{[\Theta(g + n) + (1 - \alpha)\delta]t} + F, \] (9.14b)

gdzie \(F \in \mathbb{R} \) jest stałą całkowania\(^2\). Po wstawieniu całki uzupełniającej (9.15) i całki szczególnej (9.12a) do związku (9.13a) dochodzimy do całki w równaniu różniczkowego (9.11) danej wzorem:

\[\forall t \in [0;+\infty) \quad v(t) = e^{-(1 - \alpha)(\delta + n)t} \left(\frac{(1 - \alpha)\Lambda}{\Theta(g + n) + (1 - \alpha)\delta} e^{[\Theta g + (1 - \alpha)\delta]t} + F \right) \]

lub:

\[\forall t \in [0;+\infty) \quad v(t) = \frac{(1 - \alpha)\Lambda}{\Theta(g + n) + (1 - \alpha)\delta} e^{[\Theta g + (1 - \alpha)\delta]t} + F e^{-(1 - \alpha)(\delta + n)t}, \]

\(^2\) Czytelnicy powinni sami uzasadnić to, że stała całkowania \(F \) powinna być tak dobrana, by spełniony był warunek \(k(0) = k_0 > 0 \).
co w połączeniu z podstawieniem Bernoulliego (9.10a) prowadzi do zależności:
\[
\forall t \in [0;+\infty) \quad (k(t))^{1-\alpha} = \frac{(1-\alpha)\hat{\Lambda}}{\Theta(g+n)+(1-\alpha)\delta} e^{[\Theta(g+n)-(1-\alpha)n]t} + Fe^{-(1-\alpha)(\delta+n)t}. \quad (9.15)
\]

Dzieląc stronami równanie (9.8) przez techniczne uzbrojenie pracy \(k > 0 \), dochodzimy do równania stopy wzrostu technicznego uzbrojenia pracy \(g_k = \frac{k}{k} \) postaci:
\[
\forall t \in [0;+\infty) \quad g_k(t) = \frac{\dot{k}(t)}{k(t)} = \frac{\hat{\Lambda}e^{[\Theta(g+n)-(1-\alpha)n]t}(k(t))^{1-\alpha} - (\delta + n)}{(k(t))^{1-\alpha} - (\delta + n)},
\]
a stąd oraz z równania (9.15) mamy:
\[
\forall t \in [0;+\infty) \quad g_k(t) = \frac{\hat{\Lambda}e^{[\Theta(g+n)-(1-\alpha)n]t}}{\Theta(g+n)+(1-\alpha)\delta} e^{[\Theta(g+n)-(1-\alpha)n]t} + Fe^{-(1-\alpha)(\delta+n)t}.
\]
Powyższe równanie możemy zapisać także następująco:
\[
\forall t \in [0;+\infty) \quad g_k(t) = \frac{\hat{\Lambda}}{\Theta(g+n)+(1-\alpha)\delta} e^{[\Theta(g+n)-(1-\alpha)n]t} + Fe^{-(1-\alpha)(\delta+n)t} \quad (9.16)
\]

lub:
\[
\forall t \in [0;+\infty) \quad g_k(t) = \frac{\hat{\Lambda}}{\Theta(g+n)+(1-\alpha)\delta} e^{[\Theta(g+n)-(1-\alpha)n]t} + Fe^{-(\Theta(g+n)+(1-\alpha)\delta)t}.
\]

Równanie (9.16) wyznacza ścieżkę czasową stopy wzrostu technicznego uzbrojenia pracy w analizowanym w tym podpunkcie skrypcie modelu wzrostu gospodarczego. Licząc pochodną względem czasu \(t \in [0;+\infty) \) oraz granicę, przy \(t \to +\infty \), z zależności (9.16) okazuje się, że:
\[
\forall t \in [0;+\infty) \quad \dot{g}_k(t) = \frac{d}{dt} \left(\frac{\hat{\Lambda}}{\Theta(g+n)+(1-\alpha)\delta} e^{[\Theta(g+n)-(1-\alpha)n]t} + Fe^{-(\Theta(g+n)+(1-\alpha)\delta)t} \right) =
\]
\[
\frac{\hat{\Lambda}}{\Theta(g+n)+(1-\alpha)\delta} - \frac{1}{\Theta(g+n)+(1-\alpha)\delta} \right) =
\]
\[
= \frac{\hat{\Lambda}}{\Theta(g+n)+(1-\alpha)\delta} - \frac{1}{\Theta(g+n)+(1-\alpha)\delta} \right).
\]
czyli:

\[
\forall t \in [0;+\infty) \quad \dot{g}_k(t) = \frac{-\Lambda[\Theta(g+n)+(1-\alpha)\delta]e^{-[\Theta(g+n)+(1-\alpha)\delta]t}}{\left(1-\alpha\right)\Lambda + \Theta(g+n)(1-\alpha)\delta + Fe^{-[\Theta(g+n)+(1-\alpha)\delta]t}}^2
\]

oraz:

\[
g_k^* = \lim_{t \to +\infty} g_k(t) = \lim_{t \to +\infty} \frac{-\Lambda[\Theta(g+n)+(1-\alpha)\delta]e^{-[\Theta(g+n)+(1-\alpha)\delta]t}}{\left(1-\alpha\right)\Lambda + \Theta(g+n)(1-\alpha)\delta + Fe^{-[\Theta(g+n)+(1-\alpha)\delta]t}} =
\]

\[
= \frac{1}{\left(1-\alpha\right) \Lambda + \Theta(g+n)(1-\alpha)\delta} - (\delta + n)
\]

\[
= \frac{\Theta g + \Theta n}{1-\alpha} + \delta - n = \frac{\Theta g + \Theta n - (1-\alpha)n}{1-\alpha},
\]

a zatem:

\[
g_k = \frac{\Theta g + (\Theta + \alpha - 1)n}{1-\alpha},
\]

gdzie \(g_k^*\) to długookresowa stopa wzrostu technicznego uzbrojenia pracy w modelu typu Solowa z efektami skali funkcji produkcji.

Ze związków (9.17–9.18) płyną następujące wnioski:

- Jeśli wyjściowy poziom technicznego uzbrojenia pracy \(k_0\) ukształtuje się tak, że stała całkowania \(F\) będzie dodatnia (ujemna), to w każdym momencie \(t \in [0;+\infty)\) \(\dot{g}_k < 0\) (\(\dot{g}_k > 0\)) i stopy wzrostu technicznego uzbrojenia pracy będą, wraz z upływem czasu, coraz niższe (wyższe). Jeśli zaś \(F = 0\), to w każdym momencie \(t \in [0;+\infty)\) \(\dot{g}_k = 0\) i stopa wzrostu owej zmiennej makroekonomicznej nie będzie ulegać zmianom w czasie.
Długookresowa stopa wzrostu technicznego uzbrojenia pracy g_k^* zależna jest od elastyczności α i Θ funkcji produkcji Cobba-Douglasa (9.1), stopy harrodiańskiego postępu technicznego g oraz od stopy wzrostu liczby pracujących n.

Ponieważ:

\[
\frac{\partial g_k^*}{\partial \alpha} = \frac{\partial}{\partial \alpha} \left(\frac{\Theta g + (\Theta + \alpha - 1)n}{1 - \alpha} \right) = \frac{n(1 - \alpha) - \left(\Theta g + (\Theta + \alpha - 1)n \right) \cdot (-1)}{(1 - \alpha)^2} = \frac{n(1 - \alpha) + \Theta g + (\Theta + \alpha - 1)n}{(1 - \alpha)^2} > 0
\]

oraz:

\[
\frac{\partial g_k^*}{\partial \Theta} = \frac{\partial}{\partial \Theta} \left(\frac{\Theta g + (\Theta + \alpha - 1)n}{1 - \alpha} \right) = \frac{g + n}{1 - \alpha} > 0,
\]

zatem im wyższe są elastyczności α i Θ produktu Y względem nakładów kapitału rzeczowego K i pracy L, tym wyższa jest długoookresowa stopa wzrostu gospodarczego. Oznacza to także, że im wyższy jest stopień jednorodności $\Omega = \alpha + \Theta$ funkcji produkcji Cobba-Douglasa, tym wyższa jest stopa wzrostu kapitału na pracującego w długim okresie.

Im wyższa jest stopa postępu technicznego w sensie Harroda g, tym (podobnie jak w modelu Solowa z funkcją produkcji Cobba-Douglasa) wyższa jest stopa wzrostu technicznego uzbrojenia pracy w długim okresie. Wynika to stąd, iż:

\[
\frac{\partial g_k^*}{\partial g} = \frac{\partial}{\partial g} \left(\frac{\Theta g + (\Theta + \alpha - 1)n}{1 - \alpha} \right) = \frac{\Theta}{1 - \alpha} > 0.
\]

Licząc pochodną cząstkową równania (9.18) względem stopy wzrostu liczby pracujących, okazuje się, iżdana jest ona wzorem:

\[
\frac{\partial g_k^*}{\partial n} = \frac{\partial}{\partial n} \left(\frac{\Theta g + (\Theta + \alpha - 1)n}{1 - \alpha} \right) = \frac{\Theta + \alpha - 1}{1 - \alpha}.
\]

Z powyższego równania wynika, że jeśli w gospodarce występują malejące (rosnące) efekty skali, czyli $\Omega = \alpha + \Theta < 1$ ($\Omega = \alpha + \Theta > 1$), to pochodna cząstkowa $\frac{\partial g_k^*}{\partial n}$ jest ujemna (dodatnia) i wysokiej stopie wzrostu liczby pracujących n odpowiada niska (wysoka) stopa wzrostu technicznego uzbrojenia pracy w długim okresie.

Ponadto przy $\Omega = \alpha + \Theta < 1$ ($\Omega = \alpha + \Theta > 1$) spełniona jest nierówność:

\[
g_k^* = \frac{\Theta g + (\Theta + \alpha - 1)n}{1 - \alpha} < \frac{(1 - \alpha)g + (1 - \alpha + \alpha - 1)n}{1 - \alpha} = \bar{g},
\]

\[
\left(g_k^* = \frac{\Theta g + (\Theta + \alpha - 1)n}{1 - \alpha} > \frac{(1 - \alpha)g + (1 - \alpha + \alpha - 1)n}{1 - \alpha} = \bar{g} \right),
\]
zatem przy malejących (rosnących) efektach skali długookresowa stopa wzrostu technicznego uzbrojenia pracy jest niższa (wyższa) od stopy harrodiańskiego postępu technicznego, która wyznacza długookresową stopę wzrostu kapitału na pracującego w modelu Solowa w warunkach stałych efektów skali.

Logarytmując stronami (logarytmem naturalnym) funkcję wydajności pracy (9.6), uzyskujemy:

\[\forall t \in [0;+\infty) \quad \ln(y(t)) = \ln(\bar{y}) + \Theta gt + \alpha \ln(k(t)) + (\alpha + \Theta - 1)\ln(L(t)), \]

a stąd, po zróżniczowaniu względem czasu \(t \in [0;+\infty) \) i uwzględnieniu założenia, że \(\frac{\dot{L}}{L} = n \):

\[\forall t \in [0;+\infty) \quad \frac{\dot{y}(t)}{y(t)} = \Theta g + \alpha \frac{\dot{k}(t)}{k(t)} + (\alpha + \Theta - 1)\frac{\dot{L}(t)}{L(t)} = \Theta g + \alpha \frac{\dot{k}(t)}{k(t)} + (\alpha + \Theta - 1)n \]

lub, po podstawieniu za \(\frac{\dot{y}}{y} \) i \(\frac{\dot{k}}{k} \) stóp wzrostu wydajności pracy (\(g_y \)) i technicznego uzbrojenia pracy (\(g_k \)):

\[\forall t \in [0;+\infty) \quad g_y(t) = \Theta g + \alpha g_k(t) + (\alpha + \Theta - 1)n. \quad (9.19) \]

Różniczkując równanie (9.19) względem czasu \(t \in [0;+\infty) \), otrzymujemy:

\[\forall t \in [0;+\infty) \quad \dot{g}_y(t) = \alpha \dot{g}_k(t). \quad (9.20) \]

Z równania (9.20) wyciągnąć można dwa następujące wnioski. Po pierwsze, jeśli przyrody stopy wzrostu technicznego uzbrojenia pracy \(\dot{g}_k \) są dodatnie (ujemne), to przyrosty stóp wzrostu wydajności pracy \(\dot{g}_y \) są również dodatnie (ujemne). Po drugie, przy \(\dot{g}_k = 0 \) stopy wzrostu wydajności pracy nie zmieniają się, gdyż wówczas \(\dot{g}_y = 0 \).

Oznaczając przez \(g_y^* = \lim_{t \to +\infty} g_y(t) \) długookresową stopę wzrostu wydajności pracy i licząc granicę, przy \(t \to +\infty \), z równania (9.19) otrzymujemy:

\[g_y^* = \lim_{t \to +\infty} g_y(t) = \Theta g + \alpha \lim_{t \to +\infty} g_k(t) + (\alpha + \Theta - 1)n = \Theta g + \alpha g_k^* + (\alpha + \Theta - 1)n, \]

a stąd, po uwzględnieniu równania (9.18)

\[g_y^* = \Theta g + \alpha \frac{\Theta g + (\Theta + \alpha - 1)n}{1 - \alpha} + (\alpha + \Theta - 1)n = \]

\[\frac{\Theta(1 - \alpha)g + \alpha \Theta g + \alpha(\Theta + \alpha - 1)n + (1 - \alpha)(\Theta + \alpha - 1)n}{1 - \alpha}, \]

czyli:

\[g_y^* = \frac{\Theta g + (\Theta + \alpha - 1)n}{1 - \alpha} = g_k^*, \]
co oznacza, że w warunkach efektów skali, podobnie jak przy stałych efektach skali funkcji produkcji, długookresowa stopa wzrostu wydajności pracy równa jest długo-okresowej stopie wzrostu technicznego uzbrojenia pracy.

9.3. EFEKTY SKALI W RÓWNOWADZE TYPU MANKIWA-ROMERA-WEILA

W modelu wzrostu Mankiwa-Romera-Weila z efektami skali funkcji produkcji czy-
ni się następujące założenia dotyczące funkcjonowania gospodarki:

1. Funkcja produkcji dana jest wzorem:

\[Y(t) = \Phi(A(t), K(t), H(t), L(t)) = (K(t))^\alpha (H(t))^\beta (A(t)L(t))^\gamma, \]

gdzie \(Y, K, H, A \) i \(L > 0 \) interpretuje się tak, jak ma to miejsce w oryginalnym modelu Mankiwa-Romera-Weila, natomiast parametry \(\alpha, \beta \) oraz \(\Theta \) to elastyczności produktu \(Y \) względem (odpowiednio) nakładów kapitału rzeczowego \(K \), kapitału ludzkiego \(H \) i nakładów pracy \(L \) (lub jednostek efektywnej pracy \(AL \)). O elastycznościach tych zakłada się, że \(\alpha, \beta, (\alpha + \beta), \Theta \in (0;1) \). Funkcja produkcji (9.21) jest jednorodna (względem \(K, H \) i \(L \)) stopnia \(\Psi = \alpha + \beta + \Theta \), co wynika stąd, iż:

\[\forall \zeta > 0 \quad \Phi(\Lambda, \zeta K, \zeta H, \zeta L) = (\zeta K)^\alpha (\zeta H)^\beta (\zeta AL)^\gamma = \zeta^{\alpha + \beta + \Theta} K^\alpha H^\beta (\Lambda L)^\gamma = \zeta^{\alpha + \beta + \Theta} \Phi(\Lambda, K, H, L). \]

Oznacza to, iż jeśli \(\Omega \) jest większe (mniejsze) od jedności, to w gospodarce występują rosnące (malejące) efekty skali procesu produkcyjnego, zaś przy \(\Omega = 1 \) mamy do czynienia ze stałymi efektami skali.

2. Przyrosty zasobów kapitału rzeczowego \(K \) i ludzkiego \(H \), podobnie jak w ory-
ginalnym modelu wzrostu Mankiwa-Romera-Weila, opisane są przez następujące równania różniczkowe:

\[\forall t \in [0;+\infty) \quad \dot{K}(t) = s_K Y(t) - \delta_K K(t) \quad (9.22a) \]

oraz:

\[\forall t \in [0;+\infty) \quad \dot{H}(t) = s_H Y(t) - \delta_H H(t), \quad (9.22b) \]

gdzie \(s_K \) i \(s_H \) to stopy inwestycji w analizowane tu zasoby kapitału, zaś \(\delta_K \) oraz \(\delta_H \) to stopy ich deprekcji. O stopach \(s_K, s_H, \delta_K \) i \(\delta_H \) zakłada się, iż należą do przedziału \((0;1) \) oraz \((s_K + s_H) \in (0;1) \).

3. Zasoby wiedzy \(\Lambda \) i pracy \(L \) opisane są przez równania (9.3–9.4). Oznacza to, iż zasoby te rosną według stopień wzrostu równej (odpowiednio) \(g \) oraz \(n \).

Wstawiając równania (9.3–9.4) do makroekonomicznej funkcji produkcji (9.21), dochodzi się do związku:

\[\forall t \in [0;+\infty) \quad Y(t) = (K(t))^\alpha (H(t))^\beta \left(\Lambda_0 e^{g t L_0 e^{nt}} \right)^\gamma = (\Lambda_0 L_0)^\gamma e^{\Theta(g+n) t} (K(t))^\alpha (H(t))^\beta. \]

(9.23)
Uwzględniając zaś funkcję produkcji (9.23) w równaniu przyrostu zasobu kapitału rzeczowego (9.22a), mamy:

\[\forall t \in [0;+\infty) \quad \dot{K}(t) = s_K (\Lambda_0 L_0) \theta \exp(\alpha t) (K(t))^\alpha (H(t))^\beta - \delta_K K(t) \]

lub:

\[\forall t \in [0;+\infty) \quad \dot{K}(t) + \delta_K K(t) = s_K (\Lambda_0 L_0) \theta \exp(\alpha t) (K(t))^\alpha (H(t))^\beta, \]

a stąd, po podzieleniu powyższego równania przez \(K > 0 \):

\[\forall t \in [0;+\infty) \quad \frac{\dot{K}(t)}{K(t)} + \delta_K = s_K (\Lambda_0 L_0) \theta \exp(\alpha t) (K(t))^{\alpha-1} (H(t))^\beta \]

bądź też:

\[\forall t \in [0;+\infty) \quad G_K(t) + \delta_K = s_K (\Lambda_0 L_0) \theta \exp(\alpha t) (K(t))^{\alpha-1} (H(t))^\beta, \quad (9.24a) \]

gdzie \(G_K = \frac{\dot{K}}{K} \) jest stopą wzrostu zasobu kapitału rzeczowego. Podobnie, ze związków (9.22b) i (9.23) wynika, że zachodzi zależność:

\[\forall t \in [0;+\infty) \quad G_H(t) + \delta_H = s_H (\Lambda_0 L_0) \theta \exp(\alpha t) (K(t))^{\alpha-1} (H(t))^\beta, \quad (9.24b) \]

gdzie \(G_H = \frac{\dot{H}}{H} \) to stopa wzrostu kapitału ludzkiego. Ponieważ dla każdego \(K, H > 0 \) prawe strony równań (9.24ab) są dodatnie, zatem w każdym momencie \(t \in [0;+\infty) \) stopa wzrostu kapitału rzeczowego \(G_K \) (ludzkiego \(G_H \)) jest wyższa od \(-\delta_K \) \(-\delta_H \).

Logarytmując stronami równania (9.24ab), uzyskujemy związki:

\[\forall t \in [0;+\infty) \quad \ln(G_K(t) + \delta_K) = \ln(s_K (\Lambda_0 L_0) \theta) + \exp(\alpha t) + (1-\alpha)\ln(K(t)) + \beta \ln(H(t)) \]

i:

\[\forall t \in [0;+\infty) \quad \ln(G_H(t) + \delta_H) = \ln(s_H (\Lambda_0 L_0) \theta) + \exp(\alpha t) + \alpha \ln(K(t)) - (1-\beta)\ln(H(t)). \]

Różniczkując związki (9.25ab) względem czasu \(t \in [0;+\infty) \), dochodzimy do równań:

\[\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t) + \delta_K} = \Theta(g + n) - (1-\alpha)\frac{\dot{K}(t)}{K(t)} + \beta \frac{\dot{H}(t)}{H(t)} \]

oraz:

\[\forall t \in [0;+\infty) \quad \frac{\dot{G}_H(t)}{G_H(t) + \delta_H} = \Theta(g + n) + \alpha \frac{\dot{K}(t)}{K(t)} - (1-\beta)\frac{\dot{H}(t)}{H(t)} \]

lub, po uwzględnieniu tożsamości \(G_K = \frac{\dot{K}}{K} \) i \(G_H = \frac{\dot{H}}{H} \):
\[
\forall t \in [0;+\infty) \quad \frac{\dot{G}_K(t)}{G_K(t)+\delta_K} = \Theta(g + n) - (1 - \alpha)G_K(t) + \beta G_H(t) \quad (9.26a)
\]
i:
\[
\forall t \in [0;+\infty) \quad \frac{\dot{G}_H(t)}{G_H(t)+\delta_H} = \Theta(g + n) + \alpha G_K(t) - (1 - \beta)G_H(t) . \quad (9.26b)
\]
Równania różniczkowe (9.26ab) wyznaczają równania ruchu w analizowanym tu modelu wzrostu gospodarczego typu Mankiwa-Romera-Weila z efektami skali procesu produkcyjnego. Równania te wyznaczają zależności, które zachodzą między przyrostami stop wzrostu zasobów kapitału rzeczowego \(\dot{G}_K \) i ludzkiego \(\dot{G}_H \) a stopami wzrostu owych zasobów (\(G_K \) oraz \(G_H \)), elastycznościami \(\alpha, \beta \) i \(\Theta \) makroekonomicznej funkcji produkcji (9.21), stopą harrodiańskiego postępu technicznego \(g \) oraz stopą wzrostu liczby pracujących \(n \).

Ponieważ w każdym momencie \(t \in [0;+\infty) \) spełniona jest nierówność \(G_K > -\delta_K \), zatem z równania (9.26a) wynika, iż:
\[
\forall t \in [0;+\infty) \quad \dot{G}_K(t) \geq 0 \iff \Theta(g + n) - (1 - \alpha)G_K(t) + \beta G_H(t) \geq 0 ,
\]
a stąd:
\[
\forall t \in [0;+\infty) \quad \dot{G}_K(t) \geq 0 \iff G_K(t) \leq \frac{\Theta(g + n)}{1 - \alpha} + \frac{\beta}{1 - \alpha} G_H(t) \quad (9.27a)
\]
oraz, rozumując analogicznie:
\[
\forall t \in [0;+\infty) \quad \dot{G}_K(t) \leq 0 \iff G_K(t) \geq \frac{\Theta(g + n)}{1 - \alpha} + \frac{\beta}{1 - \alpha} G_H(t) . \quad (9.27b)
\]
Ze związków (9.27ab) wynika, co następuje:
- Przyrost stopy wzrostu kapitału rzeczowego \(\dot{G}_K \) jest dodatni (ujemny) wtedy i tylko wtedy, gdy stopa wzrostu owego zasobu \(G_K \) jest niższa (wyższa) od wielkości \(\frac{\Theta(g + n)}{1 - \alpha} + \frac{\beta}{1 - \alpha} G_H \).
- Linia podziału \(\dot{G}_K = 0 \) układu równań złożonego z równań różniczkowych (9.26ab) określona jest przez równanie:
\[
G_K |_{\dot{G}_K = 0} = \frac{\Theta(g + n)}{1 - \alpha} + \frac{\beta}{1 - \alpha} G_H . \
\]
- Stąd, że:
\[
G_H = 0 \quad \Rightarrow \quad G_K |_{\dot{G}_K = 0} = \frac{\Theta(g + n)}{1 - \alpha} > 0 , \
\]
wynika, iż jeśli zasób kapitału ludzkiego nie ulega zmianom w czasie (czyli jego stopa wzrostu \(G_H \) równa jest zeru), to przy stopie wzrostu zasobu kapitału rzeczowego \(G_K \) równej \(\frac{\Theta(g + n)}{1 - \alpha} \) przyrosty owej stopy wzrostu \(\dot{G}_K \) także równe są zeru.
- Ponieważ:

\[
\left. \frac{dG_K}{dG_H} \right|_{\dot{G}_K=0} = \frac{d}{dG_H} \left(\frac{\Theta(g+n)}{1-\alpha} + \frac{\beta}{1-\alpha} G_H \right) = \frac{\beta}{1-\alpha} > 0, \tag{9.29b}
\]

zatem linia podziału \(\dot{G}_K = 0 \) jest dodatnio nachylona.

- Linia podziału \(\dot{G}_K = 0 \) wynikająca ze związków (9.27ab), (9.28) oraz (9.29ab) przedstawiona jest na rysunku 9.1.

![Linia podziału](image)

Rys. 9.1. Linia podziału \(\dot{G}_K = 0 \) układu równań różniczkowych (9.26ab)

Postępując analogicznie, jak ze związkiem (9.26a), z równaniem (9.2bb), okazuje się, że spełnione są następujące zależności\(^3\):

\[
\forall t \in [0;+\infty) \quad \dot{G}_H(t) \geq 0 \Leftrightarrow G_H(t) \leq \frac{\Theta(g+n)}{1-\beta} + \frac{\alpha}{1-\beta} G_K(t), \tag{9.30a}
\]

\[
\forall t \in [0;+\infty) \quad \dot{G}_H(t) \leq 0 \Leftrightarrow G_H(t) \geq \frac{\Theta(g+n)}{1-\beta} + \frac{\alpha}{1-\beta} G_K(t) \tag{9.30b}
\]

i:

\[
G_H(G_K)_{G_H=0} = \frac{\Theta(g+n)}{1-\beta} + \frac{\alpha}{1-\beta} G_K, \tag{9.31}
\]

a stąd:

\[
G_K = 0 \quad \Rightarrow \quad G_H|_{G_H=0} = \frac{\Theta(g+n)}{1-\beta} > 0 \tag{9.32a}
\]

\(^3\) Wyprowadzenie zależności (9.30ab), (9.31) oraz (9.32ab) pozostawiamy Czytelnikom.
oraz:

$$\left. \frac{dG_H}{dG_K} \right|_{G_H=0} = \frac{\alpha}{1-\beta} > 0.$$

(9.32b)

Z zależności (9.30ab), (9.31) i (9.32ab) wynika, iż linię podziału $\dot{G}_H = 0$ analizowanego tu układu równań różniczkowych można zilustrować tak, jak ma to miejsce na rysunku 9.2.

Rys. 9.2. Linia podziału $\dot{G}_K = 0$ układu równań różniczkowych (9.26ab)

Rys. 9.3. Diagram fazowy układu równań różniczkowych (9.26ab)
Z rysunków 9.1–9.2 wynika, że układ równań różniczkowych (9.26ab) ilustruje diagram fazowy na rysunku 9.3. Z diagramu fazowego na rysunku 9.3 wyciągnąć można wniosek, że stopy wzrostu zasobów kapitału rzeczonego G_K i ludzkiego G_H dają do punktu przecięcia linii podziału $\dot{G}_K = 0$ i $\dot{G}_H = 0$. Punkt ów jest rozwiązaniem układu złożonego z równań (9.26ab) przy $\dot{G}_K = 0$ oraz $\dot{G}_H = 0$. Jeśli więc przez G_K^* i G_H^* oznaczmy długookresowe stopy wzrostu zasobów kapitału rzeczonego i ludzkiego (rozumiane jako stopy wzrostu tych zmiennych makroekonomicznych przy $\dot{G}_K = 0$ oraz $\dot{G}_H = 0$), to – zgodnie z równaniami (9.26ab) – są one rozwiązaniem następującego układu równań:

\[
\begin{align*}
\Theta(g+n)-(1-\alpha)G_K^*+\beta G_H^* &= 0 \\
\Theta(g+n)+\alpha G_K^*-(1-\beta)G_H^* &= 0
\end{align*}
\]

który można zapisać także jako:

\[
\begin{align*}
(1-\alpha)G_K^* - \beta G_H^* &= \Theta(g+n) \\
-\alpha G_K^* + (1-\beta)G_H^* &= \Theta(g+n)
\end{align*}
\]

lub w postaci macierzowej:

\[
\begin{bmatrix}
1-\alpha & -\beta \\
-\alpha & 1-\beta
\end{bmatrix}
\begin{bmatrix}
G_K^* \\
G_H^*
\end{bmatrix}
= \begin{bmatrix}
\Theta(g+n) \\
\Theta(g+n)
\end{bmatrix}.
\]

(9.33)

Układ równań (9.33) można rozwiązać, korzystając z metody wyznaczników Cramera. Kolejne wyznaczniki Cramera owego układu równań dane są wzorami:

\[
W = \begin{vmatrix}
1-\alpha & -\beta \\
-\alpha & 1-\beta
\end{vmatrix} = (1-\alpha)(1-\beta) - \alpha \beta = 1-\alpha - \beta + \alpha \beta - \alpha \beta = 1-\alpha - \beta > 0,
\]

\[
W_K = \begin{vmatrix}
\Theta(g+n) & -\beta \\
\Theta(g+n) & 1-\beta
\end{vmatrix} = \Theta(g+n)(1-\beta) + \Theta(g+n)\beta = \Theta(g+n) > 0
\]

oraz:

\[
W_H = \begin{vmatrix}
1-\alpha & \Theta(g+n) \\
-\alpha & \Theta(g+n)
\end{vmatrix} = (1-\alpha)\Theta(g+n) + \alpha \Theta(g+n) = \Theta(g+n) > 0,
\]

\[
\frac{dG_K}{dG_H}igg|_{G_H=0} - \frac{dG_K}{dG_H}igg|_{G_K=0} = \frac{1-\beta}{\alpha} - \frac{\beta}{1-\alpha} = \frac{(1-\alpha)(1-\beta) - \alpha \beta}{\alpha(1-\alpha)} = \frac{1-\alpha - \beta + \alpha \beta - \alpha \beta}{\alpha(1-\alpha)} = \frac{1-\alpha - \beta}{\alpha(1-\alpha)} > 0.
\]

⁴ To, iż linia podziału $\dot{G}_H = 0$ na diagramie fazowym 9.3 jest bardziej stroma od linii podziału $\dot{G}_K = 0$, wynika stąd, iż – zgodnie ze związkami (9.29b) i (9.32b) – przy $\alpha + \beta < 1$ spełniona jest nierówność:
co implikuje, że długookresowe stopy wzrostu zasobów kapitału rzeczowego \(G^*_K \) i ludzkiego \(G^*_H \) dane są wzorami:

\[
G^*_K = \frac{W_K}{W} = \frac{\Theta(g + n)}{1 - \alpha - \beta} \tag{9.34a}
\]

i:

\[
G^*_H = \frac{W_H}{W} = \frac{\Theta(g + n)}{1 - \alpha - \beta} = G^*_K \tag{9.34b}
\]

Z równań (9.34ab) płyną następujące wnioski:

- Długookresowe stopy wzrostu zasobów kapitału rzeczowego \(G^*_K \) i ludzkiego \(G^*_H \) w analizowanym tu modelu wzrostu gospodarczego typu Mankiwa-Romera-Weila zależne są od elastyczności \(\alpha, \beta \) i \(\Theta \) makroekonomicznej funkcji produkcji, stopy po- stępu technicznego w sensie Harroda \(g \) oraz stopy wzrostu liczby pracujących \(n \).

- Stąd, że:

\[
\frac{\partial G^*_K}{\partial \alpha} = \frac{\partial G^*_H}{\partial \alpha} = \frac{\partial}{\partial \alpha} \left(\frac{\Theta(g + n)}{1 - \alpha - \beta} \right) = \Theta(g + n) \frac{\partial}{\partial \alpha} \left(\frac{1}{1 - \alpha - \beta} \right) = \Theta(g + n) \frac{-1}{(1 - \alpha - \beta)^2} (-1) = \frac{\Theta(g + n)}{(1 - \alpha - \beta)^2} > 0
\]

i (podobnie):

\[
\frac{\partial G^*_K}{\partial \beta} = \frac{\partial G^*_H}{\partial \beta} = \frac{\Theta(g + n)}{(1 - \alpha - \beta)^2} > 0
\]

oraz:

\[
\frac{\partial G^*_K}{\partial \Theta} = \frac{\partial G^*_H}{\partial \Theta} = \frac{\partial}{\partial \Theta} \left(\frac{\Theta(g + n)}{1 - \alpha - \beta} \right) = \frac{g + n}{1 - \alpha - \beta} > 0,
\]

wynika, iż wysokim elastycznościom \(\alpha, \beta \) i \(\Theta \) makroekonomicznej funkcji produkcji odpowiadają wysokie stopy wzrostu kapitałów rzeczowego i ludzkiego w długim okre- sie. Oznacza to również, iż im wyższy jest stopień jednorodności \(\Omega = \alpha + \beta + \Theta \) ma- kroekonomicznej funkcji produkcji (9.23), tym wyższe są owe stopy wzrostu.

- Wysokiej stopie harrodiańskiego postępu technicznego \(g \) lub wysokiej stopie wzrostu liczby pracujących \(n \) towarzyszą wysokie długookresowe stopy wzrostu anali- zowanych tu zasobów kapitału. Dzieje się tak dlatego, iż:

\[
\frac{\partial G^*_K}{\partial g} = \frac{\partial G^*_H}{\partial g} = \frac{\partial}{\partial g} \left(\frac{\Theta(g + n)}{1 - \alpha - \beta} \right) = \frac{\Theta}{1 - \alpha - \beta} > 0
\]

oraz:

\[
\frac{\partial G^*_K}{\partial n} = \frac{\partial G^*_H}{\partial n} = \frac{\partial}{\partial n} \left(\frac{\Theta(g + n)}{1 - \alpha - \beta} \right) = \frac{\Theta}{1 - \alpha - \beta} > 0.
\]
• W warunkach malejących (rosnących) efektów skali funkcji produkcji (9.21), czyli przy $\Omega = \alpha + \beta + \Theta < 1$ ($\Omega = \alpha + \beta + \Theta > 1$), zachodzi nierówność:

$$G^*_H = G^*_K = \frac{\Theta(g + n)}{1 - \alpha - \beta} \frac{1 - \alpha - \beta}{g + n} = g + n$$

która oznacza, że wówczas długookresowe stopy wzrostu zasobów kapitału rzeczowego i ludzkiego są niższe (wyższe), niż ma to miejsce o oryginalnym modelu Mankiwa-Romera-Weila.

Logarytmując stronami funkcję produkcji (9.23), otrzymujemy:

$$\forall t \in [0;+\infty) \qquad \ln(Y(t)) = \Theta \ln(A_0L_0) + \Theta(g + n)t + \alpha \ln(K(t)) + \beta \ln(H(t)).$$

Różniczkując zaś powyższy związek względem czasu $t \in [0;+\infty)$, dochodzimy do równania:

$$\forall t \in [0;+\infty) \qquad G_Y(t) = \frac{\dot{Y}(t)}{Y(t)} = \Theta(g + n) + \alpha \frac{\dot{K}(t)}{K(t)} + \beta \frac{\dot{H}(t)}{H(t)} = \frac{\Theta(g + n)}{1 - \alpha - \beta} = G^*_H,$$

gdzie $G_Y(t)$ jest stopą wzrostu strumienia produktu. Ponieważ w długim okresie (przy $t \rightarrow +\infty$) stopa wzrostu kapitału rzeczowego $G_K(t)$ dąży do G^*_K, a stopa wzrostu kapitału ludzkiego $G_H(t)$ zmierza do G^*_H, zatem wówczas $G_Y(t) \xrightarrow{t \rightarrow +\infty} G^*_Y$, gdzie G^*_Y jest stopą wzrostu produktu w długookresowej równowadze rozważanego tu modelu wzrostu gospodarczego. To zaś (wraz z równaniem (9.35)) implikuje, że:

$$G^*_Y = \Theta(g + n) + \alpha G^*_K + \beta G^*_H.$$

(9.36)

Wstawiając do równania (9.36) związkę (9.34ab), mamy:

$$G^*_Y = \Theta(g + n) + \alpha \frac{\Theta(g + n)}{1 - \alpha - \beta} + \beta \frac{\Theta(g + n)}{1 - \alpha - \beta} = \Theta(g + n)(1 - \alpha - \beta + \alpha + \beta),$$

a stąd:

$$G^*_Y = \frac{\Theta(g + n)}{1 - \alpha - \beta} = G^*_K = G^*_H.$$

(9.37)

Z równania (9.37) wnosimy, iż w analizowanym tu modelu wzrostu gospodarczego, podobnie jak w oryginalnym modelu Mankiwa-Romera-Weila, długookresowa stopa wzrostu produktu G^*_Y równa jest długookresowym stopom wzrostu zasobów kapitału rzeczowego G^*_K i ludzkiego G^*_H.

Ponieważ wydajność pracy y, techniczne uzbrojenie pracy k i kapitał ludzki na pracującego h można zapisać następująco:
\[\forall t \in [0;+\infty) \quad y(t) = \frac{Y(t)}{L(t)}, \]

\[\forall t \in [0;+\infty) \quad k(t) = \frac{K(t)}{L(t)} \]

oraz:

\[\forall t \in [0;+\infty) \quad h(t) = \frac{H(t)}{L(t)}, \]

zatem ich stopy wzrostu \(g_y = \frac{\dot{y}}{y} \), \(g_k = \frac{\dot{k}}{k} \) i \(g_h = \frac{\dot{h}}{h} \) dane są wzorami:

\[\forall t \in [0;+\infty) \quad g_y(t) = G_Y(t) - \frac{\dot{L}(t)}{L(t)}, \]

\[\forall t \in [0;+\infty) \quad g_k(t) = G_K(t) - \frac{\dot{L}(t)}{L(t)} \]

oraz:

\[\forall t \in [0;+\infty) \quad g_h(t) = G_H(t) - \frac{\dot{L}(t)}{L(t)} \]

lub, po uwzględnieniu tego, że (zgodnie z równaniem (9.4)) \(\frac{\dot{L}}{L} = n \):

\[\forall t \in [0;+\infty) \quad g_y(t) = G_Y(t) - n, \quad (9.38a) \]

\[\forall t \in [0;+\infty) \quad g_k(t) = G_K(t) - n \quad (9.38b) \]

i:

\[\forall t \in [0;+\infty) \quad g_h(t) = G_H(t) - n. \quad (9.38c) \]

Ponieważ w długim okresie \(G_Y(t), G_K(t), G_H(t) \rightarrow \frac{\Theta(g+n)}{1-\alpha-\beta} \), więc stąd oraz ze związków (9.38abc) wynika, iż długookresowe stopy wzrostu wydajności pracy \((g_y^*) \), technicznego uzbrojenia pracy \((g_k^*) \) i kapitału ludzkiego na pracującego \((g_h^*) \) można zapisać jako:

\[g_y^* = g_k^* = g_h^* = \frac{\Theta(g+n)}{1-\alpha-\beta} - n = \frac{\Theta g + \Theta n - (1-\alpha-\beta)n}{1-\alpha-\beta}, \]

lub:

\[g_y^* = g_k^* = g_h^* = \frac{\Theta g + (\Theta + \alpha + \beta - 1)n}{1-\alpha-\beta}. \quad (9.39) \]
Równanie (9.39) wyznacza długookresowe stopy wzrostu wydajności pracy, technicznego uzbrojenia pracy i kapitału ludzkiego na pracującego w równowadze typu Mankiwa-Romera-Weila z efektami skali funkcji produkcji.

Z równania tego płyną następujące wnioski:

- Rozważane tu stopy wzrostu są zależne od tych samych czynników, które determinują długookresowe stopy wzrostu strumienia produktu oraz zasobów kapitału rzeczowego i ludzkiego w rozważanej gospodarce.
- Ponieważ:

\[g_y = \left(\frac{\Theta (g + n)}{(1 - \alpha - \beta)^2} \right) > 0 \]

oraz:

\[g_y = \left(\frac{\Theta (g + n)}{(1 - \alpha - \beta)^2} \right) > 0 \]

i (podobnie):

\[\frac{\partial g_y}{\partial g} = \frac{\partial g_k}{\partial g} = \frac{\partial g_h}{\partial g} = \frac{\partial}{\partial g} \left(\frac{\Theta (g + n)}{1 - \alpha - \beta} \right) = \frac{\Theta (g + n)}{1 - \alpha - \beta} > 0 \]

zatem wysokim elastycznościom \(\alpha, \beta \) i \(\Theta \) makroekonomicznej funkcji produkcji Cobba-Douglasta (i, co za tym idzie, wysokiemu stopniowi \(\Delta = \alpha + \beta + \Omega \) jednorodności owej funkcji produkcji) odpowiadają wysokie stopy wzrostu wydajności pracy, technicznego uzbrojenia pracy oraz kapitału ludzkiego na pracującego w długim okresie.

- Różniczkując równanie (9.39) względem stopy harrodiańskiego postępu technicznego, okazuje się, iż zachodzi zależność:

\[\frac{\partial g_y}{\partial \theta} = \frac{\partial g_k}{\partial \theta} = \frac{\partial g_h}{\partial \theta} = \frac{\partial}{\partial \theta} \left(\frac{\Theta (g + n)}{1 - \alpha - \beta} \right) = \frac{\Theta (g + n)}{1 - \alpha - \beta} > 0 \]

Płynie stąd wniosek, że im wyższa jest stopa egzogenicznych postępu technicznego w sensie Harroda, tym wyższe są długookresowe stopy wzrostu analizowanych tu zmiennych makroekonomicznych.

- Pochodne cząstkowe stop wzrostu \(g_y, g_k \) i \(g_h \) względem stopy wzrostu liczby pracujących \(n \) określa związek:

\[\frac{\partial g_y}{\partial n} = \frac{\partial g_k}{\partial n} = \frac{\partial g_h}{\partial n} = \frac{\partial}{\partial n} \left(\frac{\Theta (g + n)}{1 - \alpha - \beta} \right) = \frac{\Theta (g + n)}{1 - \alpha - \beta} > 0 \]
Z powyższego równania wynika, że jeśli w gospodarce występują malejące (rosnące) efekty skali, czyli \(\Omega = \alpha + \beta + \Theta < 1 \) (\(\Omega = \alpha + \beta + \Theta > 1 \)), to pochodne cząstkowe \(\frac{\partial g^*_y}{\partial n} = \frac{\partial g^*_k}{\partial n} = \frac{\partial g^*_h}{\partial n} \) są ujemne (dodatnie) i im wyższa jest stopa wzrostu liczby pracujących \(n \), tym niższe (wyższe) są stopy wzrostu wydajności pracy, technicznego uzbrojenia pracy i kapitału ludzkiego na pracującego w długim okresie.

- Przy malejących (rosnących) efektach skali, czyli wówczas, gdy \(Q = a + 0 + 0 < 1 \) (\(Q = a + 0 + 0 > 1 \)), zachodzi:
 \[
 g^*_y = g^*_k = g^*_h = \frac{\Theta g + (\Theta + \alpha + \beta - 1)n}{1 - \alpha - \beta} < \frac{(1 - \alpha - \beta)g}{1 - \alpha - \beta} = g,
 \]
 \[
 \left(g^*_y = g^*_k = g^*_h = \frac{\Theta g + (\Theta + \alpha + \beta - 1)n}{1 - \alpha - \beta} > \frac{(1 - \alpha - \beta)g}{1 - \alpha - \beta} = g \right),
 \]
 co implikuje, iż długookresowe stopy wzrostu analizowanych tu zmiennych makroekonomicznych są niższe (wyższe) od stopy harrodiańskiego postępu technicznego, która jest długookresową stopą wzrostu owych zmiennych w oryginalnym modelu Mankiwa-Romera-Weila.

9.4. EFEKTY SKALI W RÓWNOWADZE TYPU NONNEMANA-VANHOUDTA

Rozszerzeniem modeli prezentowanych w punktach 9.2–9.3 skryptu jest model wzrostu gospodarczego, w którym w procesie produkcyjnym wykorzystywana jest skończona ilość \(N \) zasobów kapitału oraz jednostki efektywnej pracy. Jest to więc model nawiązujący do prezentowanego w punkcie 3.5 skryptu modelu wzrostu gospodarczego Nonnemana-Vanhoudta. W modelu tym przyjmowaliśmy następujące założenia:

1. Makroekonomiczna funkcja produkcji w gospodarce dany jest wzorem:

\[
\forall t \in [0;+\infty) \quad Y(t) = \Phi(\Lambda(t), K_1(t), K_2(t), ..., K_N(t), L(t)) = \prod_{i=1}^{N} (K_i(t))^{\alpha_i} (\Lambda(t)L(t))^\Theta,
\]

gdzie \(Y \) to wielkość wytworzonego w gospodarce strumienia produktu, \(K_i > 0 \) (dla każdego \(i = 1, 2, ..., N \)) nakłady i-tego zasobu kapitału, \(\Lambda > 0 \) to zasób wiedzy, którego przyrost ma charakter egzogenicznego postępu technicznego w sensie Harroda, \(L > 0 \) jest wielkością nakładów pracy, \(\alpha_i \) (dla \(i = 1, 2, ..., N \)) to elastyczność produkcji względem i-tego zasobu kapitału, \(\Theta \) – elastyczność \(Y \) względem \(L \) (oraz jednostek efektywnej pracy \(\Lambda L \)). O elastycznościach \(\alpha_1, \alpha_2, ..., \alpha_N \) i \(\Theta \) zakładamy, że należą one do przedziału \((0;1)\) oraz, iż \(\sum_{i=1}^{N} \alpha_i \in (0;1) \). Ponieważ dla każdego \(\zeta > 0 \) spełniony jest związek:
\[
\Phi(\Lambda, \zeta K_1, \zeta K_2, \ldots, \zeta K_N, \zeta L) = \prod_{i=1}^{N} (\zeta K_i)^{a_i} (\Lambda \zeta L)^{\Theta} = \prod_{i=1}^{N} (\zeta_1 K_i)^{a_i} (\Lambda L)^{\Theta} = \\
= \zeta \sum_{i=1}^{N} a_i \zeta^\Theta \prod_{i=1}^{N} K_i^{a_i} (\Lambda L)^{\Theta} = \zeta \sum_{i=1}^{N} a_i + \Theta \prod_{i=1}^{N} K_i^{a_i} (\Lambda L)^{\Theta} = \zeta \sum_{i=1}^{N} a_i + \Theta \Phi(\Lambda, K_1, K_2, \ldots, K_N, L),
\]

zatem funkcja produkcji (9.40) jest jednorodna stopnia \(\Omega = \sum_{i=1}^{N} \alpha_i + \Theta\). Wynika stąd, iż jeśli stopień jednorodności \(\Omega = \sum_{i=1}^{N} \alpha_i + \Theta\) jest mniejszy (większy) od jedności, to w gospodarce występują malejące (rosnące) efekty skali procesu produkcyjnego. Na-
tomiast przy \(\Omega = \sum_{i=1}^{N} \alpha_i + \Theta = 1\) (podobnie jak w oryginalnym modelu wzrostu Nonnemana-Vanhoudta) mamy do czynienia ze stałymi efektami skali.

2. Przyrost \(\dot{K}_i\) każdego z \(N\) zasobów kapitału opisany jest przez następujące równania różniczkowe:

\[
\forall t \in [0;+\infty) \wedge i = 1, 2, \ldots, N \quad \dot{K}_i(t) = s_i Y(t) - \delta_i K_i(t),
\] (9.41)
gdzie \(s_i\) to stopa inwestycji w \(i\)-ty zasób kapitału, zaś \(\delta_i\) jest stopą deprecjacji owego zasobu (dla każdego \(i = 1, 2, \ldots, N\)). O stopach \(s_i\) oraz \(\delta_i\), podobnie jak ma to miejsce w oryginalnym modelu Nonnemana-Vanhoudta, zakłada się, iż \(s_1, s_2, \ldots, s_N, \sum_{i=1}^{N} s_i, \delta_1, \delta_2, \ldots, \delta_N \in (0;1)\).

3. Ścieżki czasowe zasobów wiedzy \(\Lambda\) i pracy \(L\) opisane są przez równania (9.3–9.4), co oznacza, iż zasoby te rosną według stóp wzrostu równych \(g\) oraz \(n\).

Z równań (9.3–9.4) wynika, iż:

\[
\forall t \in [0;+\infty) \quad \Lambda(t) L(t) = \Lambda_0 L_0 e^{(g+n)t}.
\]

Wstawiając zaś powyższy związek do funkcji produkcji (9.40), dochodzimy do zależności:

\[
\forall t \in [0;+\infty) \quad Y(t) = \prod_{i=1}^{N} (K_i(t))^{a_i} (\Lambda_0 L_0 e^{(g+n)t})^{\Theta} = (\Lambda_0 L_0)^{\Theta} e^{\Theta(g+n)t} \prod_{i=1}^{N} (K_i(t))^{a_i}.
\] (9.42)

Z równań (9.41–9.42) płynie zaś wniosek, że:

\[
\forall t \in [0;+\infty) \wedge i = 1, 2, \ldots, N \quad \dot{K}_i(t) = s_i (\Lambda_0 L_0)^{\Theta} e^{\Theta(g+n)t} \prod_{i=1}^{N} (K_i(t))^{a_i} - \delta_i K_i(t),
\]

co można zapisać także jako:

\[
\forall t \in [0;+\infty) \wedge i = 1, 2, \ldots, N \quad \dot{K}_i(t) + \delta_i K_i(t) = s_i (\Lambda_0 L_0)^{\Theta} e^{\Theta(g+n)t} \prod_{i=1}^{N} (K_i(t))^{a_i}
\]
lub, po podzieleniu przez $K_i > 0$:

$$\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{\dot{K}_i(t)}{K_i(t)} + \delta_i = s_i \left(\Lambda_0 L_0\right)^\Theta e^{(g+n)t} \left(K_i(t)\right)^{\alpha_i-1} \prod_{j=1; j \neq i}^{N} \left(K_j(t)\right)^{\alpha_j},$$

a stąd, po podstawieniu tożsamości $G_i \equiv \frac{\dot{K}_i}{K_i}$:

$$\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad G_i(t) + \delta_i = s_i \left(\Lambda_0 L_0\right)^\Theta e^{(g+n)t} \left(K_i(t)\right)^{\alpha_i-1} \prod_{j=1; j \neq i}^{N} \left(K_j(t)\right)^{\alpha_j},$$

(9.43)

gdzie G_i (dla każdego $i = 1, 2, ..., N$) to stopa wzrostu i-tego zasobu kapitału. Ponieważ dla każdego $K_1, K_2, ..., K_N, \Lambda, L > 0$ prawe strony równań (9.43) są dodatnie, zatem również lewe strony owych równań muszą być dodatnie. To zaś implikuje, że:

$$\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad G_i(t) > -\delta_i.$$

Logarytmując stronami równania (9.43), uzyskujemy:

$$\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \ln(G_i(t) + \delta_i) = \ln\left(s_i \left(\Lambda_0 L_0\right)^\Theta \right) + \Theta(g+n)t - (1-\alpha_i)\ln(K_i(t)) + \sum_{j=1; j \neq i}^{N} (\alpha_j \ln(K_j(t))),$$

a stąd, po zróżniczkowaniu powyższych związków względem czasu $t \in [0;+\infty)$:

$$\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{\dot{G}_i(t)}{G_i(t) + \delta_i} = \Theta(g+n) - (1-\alpha_i) \frac{\dot{K}_i(t)}{K_i(t)} + \sum_{j=1; j \neq i}^{N} (\alpha_j \frac{\dot{K}_j(t)}{K_j(t)}),$$

lub, po uwzględnieniu tożsamości $G_i \equiv \frac{\dot{K}_i}{K_i}$:

$$\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{\dot{G}_i(t)}{G_i(t) + \delta_i} = \Theta(g+n) - (1-\alpha_i) G_i(t) + \sum_{j=1; j \neq i}^{N} (\alpha_j G_j(t)).$$

(9.44)

Równania (9.44) można również zapisać w postaci następującego układu równań różniczkowych:

$$\begin{align*}
\dot{G}_1(t) &= \Theta(g+n) - (1-\alpha_1) G_1(t) + \alpha_2 G_2(t) + ... + \alpha_N G_N(t) \\
\dot{G}_2(t) &= \Theta(g+n) + \alpha_1 G_1(t) - (1-\alpha_2) G_2(t) + ... + \alpha_N G_N(t) \\
& \vdots \\
\dot{G}_N(t) &= \Theta(g+n) + \alpha_1 G_1(t) + \alpha_2 G_2(t) + ... - (1-\alpha_N) G_N(t)
\end{align*}$$

(9.45)
W warunkach wzrostu równomiernego stopy wzrostu każdego z zasobów kapitału muszą być stałe. Oznacza to, że wówczas \(\hat{G}_1 = \hat{G}_2 = \ldots = \hat{G}_N = 0 \) i układ równań (9.45) sprowadza do zależności:

\[
\begin{align*}
\Theta(g + n) - (1 - \alpha_1)G_1^* + \alpha_2G_2^* + \ldots + \alpha_NG_N^* &= 0 \\
\Theta(g + n) + \alpha_1G_1^* - (1 - \alpha_2)G_2^* + \ldots + \alpha_NG_N^* &= 0 \\
&\vdots \\
\Theta(g + n) + \alpha_1G_1^* + \alpha_2G_2^* + \ldots - (1 - \alpha_N)G_N^* &= 0
\end{align*}
\]

(9.46)

gdzie \(G_i^* \) (dla każdego \(i = 1, 2, \ldots, N \)) to stopa wzrostu \(i \)-tego zasobu kapitału w warunkach wzrostu równomiernego. Układ równań (9.46) można również zapisać następująco:

\[
\begin{align*}
(1 - \alpha_1)G_1^* - \alpha_2G_2^* - \ldots - \alpha_NG_N^* &= \Theta(g + n) \\
- \alpha_1G_1^* + (1 - \alpha_2)G_2^* - \ldots - \alpha_NG_N^* &= \Theta(g + n) \\
&\vdots \\
- \alpha_1G_1^* - \alpha_2G_2^* - \ldots -(1 - \alpha_N)G_N^* &= \Theta(g + n)
\end{align*}
\]

lub w postaci macierzowej:

\[
\begin{bmatrix}
1 - \alpha_1 & -\alpha_2 & \ldots & -\alpha_N \\
-\alpha_1 & 1 - \alpha_2 & \ldots & -\alpha_N \\
& \vdots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \ldots & 1 - \alpha_N
\end{bmatrix}
\begin{bmatrix}
G_1^* \\
G_2^* \\
\vdots \\
G_N^*
\end{bmatrix}
= \begin{bmatrix}
\Theta(g + n) \\
\Theta(g + n) \\
\vdots \\
\Theta(g + n)
\end{bmatrix}
\]

(9.47)

Układ równań (9.47) można rozwiązać, wykorzystując wyznaczniki Cramer. Wyznaczniki te dane są następującymi wzorami:

\[
W = \begin{vmatrix}
1 - \alpha_1 & -\alpha_2 & \ldots & -\alpha_N \\
-\alpha_1 & 1 - \alpha_2 & \ldots & -\alpha_N \\
& \vdots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \ldots & 1 - \alpha_N
\end{vmatrix}
\]

(9.48a)

i:

\[
\forall i = 1, 2, \ldots, N \quad W_i = \begin{vmatrix}
1 - \alpha_1 & -\alpha_2 & \ldots & -\alpha_i & \ldots & -\alpha_N \\
-\alpha_1 & 1 - \alpha_2 & \ldots & -\alpha_i & \ldots & -\alpha_N \\
& \vdots & \ddots & \vdots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \ldots & 1 - \alpha_i & \ldots & -\alpha_N \\
& \vdots & \ddots & \vdots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \ldots & -\alpha_i & \ldots & 1 - \alpha_N \\
\end{vmatrix}
\]

(9.48b)
Odejmując od pierwszego, drugiego, ..., (N - 1)-szego wiersza wyznacznika W, danego równaniem (9.48a), wiersz N-ty, wyznacznik ten można zapisać następująco:

\[
W = \begin{vmatrix}
1 & 0 & \ldots & -1 \\
0 & 1 & \ldots & -1 \\
\vdots & \vdots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \ldots & 1-\alpha_N \\
\end{vmatrix}
\]

Dodając teraz do N-tej kolumny wyznacznika W wszystkie pozostałe kolumny, otrzymujemy:

\[
W = \begin{vmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
\vdots & \vdots & \vdots \\
-\alpha_1 & -\alpha_2 & 1-\sum_{i=1}^{N} \alpha_i \\
\end{vmatrix} = 1 - \sum_{i=1}^{N} \alpha_i \in (0;1).
\]
(9.49a)

Natomiast wyznaczniki (9.48b) można również zapisać jako:

\[
\forall i = 1, 2, \ldots, N \quad W_i = \Theta(g+n)
\]

Odejmując od j-tych (dla j ≠ i) wierszy wyznaczników W i wiersze i-te (dla każdego i = 1, 2, ..., N), dochodzimy do zależności:

\[
\forall i = 1, 2, \ldots, N \quad W_i = \Theta(g+n)
\]

Dodając teraz do i-tych wierszy wyznaczników W (dla każdego i = 1, 2, ..., N) j-te wiersze przemnożone przez \(\alpha_j\) (dla j ≠ i), uzyskujemy:
\[\forall i = 1, 2, \ldots, N \quad W_i = \Theta(g+n) \begin{bmatrix} 1 & 0 & \ldots & 0 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 1 & 0 & \ldots & 0 \\ 0 & 0 & \ldots & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & 0 & \ldots & 1 \end{bmatrix} = \Theta(g+n). \quad (9.49b) \]

Z zależności (9.49ab) wynika, że stopy wzrostu kolejnych zasobów kapitału w warunkach wzrostu równomiernego, będące rozwiązaniem układu równań (9.47), dane są wzorami:

\[\forall i = 1, 2, \ldots, N \quad G_i^* = \frac{W_i}{W} = \frac{\Theta(g+n)}{1-\sum_{j=1}^{N} \alpha_j}. \quad (9.50) \]

Z równań (9.50) płyną następujące wnioski (por. też równania (9.34ab) w punkcie 9.3 skryptu i wnioski płynące):

- Stopy wzrostu \(G_i^* \) dla \(i = 1, 2, \ldots, N \) kolejnych zasobów kapitału w warunkach wzrostu równomiernego w modelu wzrostu typu Nonnemana-Vanhoudta z efektami skali funkcji produkcji zdeterminowane są przez elastyczności \(\alpha_1, \alpha_2, \ldots, \alpha_N \) i \(\Theta \) makroekonomicznej funkcji produkcji (9.40), stopę harrodiańskiego postępu technicznego \(g \) oraz stopę wzrostu liczby pracujących \(n \).
- Ponieważ:

\[\forall i, j = 1, 2, \ldots, N \quad \frac{\partial G_i^*}{\partial \alpha_j} = \frac{\partial G_i^*}{\partial \alpha_j} \left(\frac{\Theta(g+n)}{1-\sum_{m=1}^{N} \alpha_m} \right) = -\frac{\Theta(g+n)}{\left(1-\sum_{m=1}^{N} \alpha_m\right)^2} (-1) = \frac{\Theta(g+n)}{\left(1-\sum_{m=1}^{N} \alpha_m\right)^2} > 0 \]

i:

\[\forall i = 1, 2, \ldots, N \quad \frac{\partial G_i^*}{\partial \Theta} = \frac{\partial}{\partial \Theta} \left(\frac{\Theta(g+n)}{1-\sum_{j=1}^{N} \alpha_j} \right) = \frac{g+n}{1-\sum_{j=1}^{N} \alpha_j} > 0, \]

więc wysokim elastycznościom \(\alpha_1, \alpha_2, \ldots, \alpha_N \) oraz \(\Theta \) funkcji produkcji (9.40) odpowiadają wysokie stopy wzrostu kolejnych zasobów kapitału w modelu wzrostu typu Nonnemana-Vanhoudta. Oznacza to również, iż im wyższy jest stopień jednorodności
\[\Omega = \sum_{i=1}^{N} \alpha_i + \Theta \] rozważanej funkcji produkcji, tym wyższe są stopy wzrostu kolejnych zasobów kapitału w warunkach wzrostu równomiernego analizowanej gospodarki.

- Stąd, że:

\[\forall i = 1, 2, \ldots, N \quad \frac{\partial G_i^*}{\partial g} = \frac{\partial}{\partial g} \left(\frac{\Theta(g+n)}{1-\sum_{j=1}^{N} \alpha_j} \right) = \frac{\Theta}{1-\sum_{j=1}^{N} \alpha_j} > 0 \]

oraz:

\[\forall i = 1, 2, \ldots, N \quad \frac{\partial G_i^*}{\partial n} = \frac{\partial}{\partial n} \left(\frac{\Theta(g+n)}{1-\sum_{j=1}^{N} \alpha_j} \right) = \frac{\Theta}{1-\sum_{j=1}^{N} \alpha_j} > 0 , \]

pływnie wniosek, iż wysokiej stopie postępu technicznego w sensie Harroda \(g \) i/lub wysokiej stopie wzrostu liczby pracujących \(n \) odpowiadają wysokie stopy wzrostu kolejnych zasobów kapitału w warunkach wzrostu równomiernego rozważanego tu modelu wzrostu gospodarczego.

- Porównując zaś stopy wzrostu (9.50) z analogicznymi stopami wzrostu w oryginalnym modelu Nonnemana-Vanhoudta, gdzie równe są one \(g + n \), okazuje się, że przy malejących (rosnących) efektach skali, a więc przy \(\sum_{i=1}^{N} \alpha_i + \Theta < 1 \left(\sum_{i=1}^{N} \alpha_i + \Theta > 1 \right) \), zachodzi związek:

\[\forall i = 1, 2, \ldots, N \quad G_i^* = \left(\frac{\Theta(g+n)}{1-\sum_{j=1}^{N} \alpha_j} \right) \left(\frac{1-\sum_{j=1}^{N} \alpha_j}{1-\sum_{j=1}^{N} \alpha_j} \right) = g+n , \]

\[\left\{ \begin{array}{ll}
\forall i = 1, 2, \ldots, N & G_i^* = \frac{\Theta(g+n)}{1-\sum_{j=1}^{N} \alpha_j} > \frac{1-\sum_{j=1}^{N} \alpha_j}{1-\sum_{j=1}^{N} \alpha_j} = g+n , \\
\forall i = 1, 2, \ldots, N & G_i^* = \frac{\Theta(g+n)}{1-\sum_{j=1}^{N} \alpha_j} < \frac{1-\sum_{j=1}^{N} \alpha_j}{1-\sum_{j=1}^{N} \alpha_j} = g+n \end{array} \right. \]

który implikuje, że wówczas stopy wzrostu analizowanych zasobów kapitału są mniejsze (większe) od tych, które występują w warunkach stałych efektów skali procesu produkcyjnego.

Logarytmując stronami funkcję produkcji (9.42), uzyskwujemy:
\[\forall i = 1, 2, \ldots, N \quad \ln(Y(t)) = \Theta \ln(\Lambda_0 L_0) + \Theta (g + n) t + \sum_{i=1}^{N} (\alpha_i \ln[K_i(t)]). \]

Różniczkując zaś powyższy związek względem czasu \(t \in [0;+\infty) \), dochodzimy do zależności:

\[\forall i = 1, 2, \ldots, N \quad G_Y(t) = \frac{\dot{Y}(t)}{Y(t)} = \Theta (g + n) + \sum_{i=1}^{N} \left(\alpha_i \frac{\dot{K}_i(t)}{K_i(t)} \right) = \Theta (g + n) + \sum_{i=1}^{N} (\alpha_i G_i(t)), \tag{9.51} \]

gdzie \(G_Y \) to stopa wzrostu strumienia produktu. Ponieważ w warunkach wzrostu równomiernego, zgodnie z równaniem (9.50), \(G_1^* = G_2^* = \ldots = G_N^* = \frac{\Theta (g + n)}{1 - \sum_{j=1}^{N} \alpha_j} \), zatem stąd

oraz ze związku (9.51) wynika, że wówczas stopa wzrostu produktu (oznaczana przez \(G_Y^* \)) dana jest wzorem:

\[
G_Y^* = \Theta (g + n) + \sum_{i=1}^{N} (\alpha_i G_i^*) = \Theta (g + n) + \sum_{i=1}^{N} \left(\alpha_i \frac{\Theta (g + n)}{1 - \sum_{j=1}^{N} \alpha_j} \right) = \\
= \Theta (g + n) \left(1 + \frac{\sum_{i=1}^{N} \alpha_i}{1 - \sum_{i=1}^{N} \alpha_i} \right) = \Theta (g + n) \frac{1 - \sum_{i=1}^{N} \alpha_i + \sum_{i=1}^{N} \alpha_i}{1 - \sum_{i=1}^{N} \alpha_i},
\]

czyli:

\[G_Y^* = \frac{\Theta (g + n)}{1 - \sum_{i=1}^{N} \alpha_i} = G_1^* = G_2^* = \ldots = G_N^*. \tag{9.52} \]

Równanie (9.52) prowadzi do wniosku, że w warunkach wzrostu równomiernego strumień produktu rośnie według tej samej stopy wzrostu co kolejne zasoby kapitału.

Ponieważ poziom wydajności pracy \((y) \) oraz kolejne zasoby kapitału na pracującego \((k_i) \) dla każdego \(i = 1, 2, \ldots, N \) można zapisać za pomocą następujących tożsamości:

\[\forall t \in [0;+\infty) \quad y(t) = \frac{Y(t)}{L(t)} \]

oraz:

\[\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N \quad k_i(t) = \frac{K_i(t)}{L(t)}, \]
zatem stopę wzrostu wydajności pracy \(g_y = \frac{\dot{y}}{y} \) i stopy wzrostu kolejnych zasobów kapitału na pracującego \(g_i = \frac{\dot{k}_i}{k_i} \) dla \(i = 1, 2, ..., N \) określają równania:

\[
\forall t \in [0;+\infty) \quad g_y(t) = \frac{\dot{y}(t)}{y(t)} = \frac{\dot{Y}(t)}{Y(t)} - \frac{\dot{L}(t)}{L(t)} = G_Y(t) - \frac{\dot{L}(t)}{L(t)}
\]

i:

\[
\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad g_i(t) = \frac{\dot{k}_i(t)}{k_i(t)} = \frac{\dot{K}_i(t)}{K_i(t)} - \frac{\dot{L}(t)}{L(t)} = G_i(t) - \frac{\dot{L}(t)}{L(t)}.
\]

Uwzględniając zaś to, że liczba pracujących rośnie według stopy \(n \), czyli \(\frac{\dot{L}}{L} = n \), równania (9.53a,b) sprowadzają się do zależności:

\[
\forall t \in [0;+\infty) \quad g_y(t) = G_Y(t) - n
\]

oraz:

\[
\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad g_i(t) = G_i(t) - n.
\]

W warunkach wzrostu równomiernego gospodarki (w analizowanym tym modelu wzrostu gospodarczego) zachodzą równości: \(G_Y = G_1 = G_2 = \ldots = G_N = \frac{\Theta(g+n)}{1-\sum_{i=1}^{N} \alpha_i} \), oznacza to, że jeśli przez \(g_y \) oraz \(g_i \) (dla \(i = 1, 2, ..., N \)) oznaczmy stopy wzrostu wydajności pracy i kolejnych zasobów kapitału na pracującego w warunkach wzrostu równomiernego, to równania (9.54a,b) można zapisać wzorem:

\[
g_y^* = g_1^* = g_2^* = \ldots = g_N^* = \frac{\Theta(g+n)}{1-\sum_{i=1}^{N} \alpha_i} - n = \frac{\Theta g + \Theta n - \left(1 - \sum_{i=1}^{N} \alpha_i\right) n}{1-\sum_{i=1}^{N} \alpha_i}
\]

lub:

\[
g_y^* = g_1^* = g_2^* = \ldots = g_N^* = \frac{\Theta g + \left(\Theta + \sum_{i=1}^{N} \alpha_i - 1\right) n}{1-\sum_{i=1}^{N} \alpha_i}.
\]

Z równania (9.55) wynika, co następuje (por. też równanie (9.39) w punkcie 9.3 skryptu i wnioski, które z niego płyną):

- Stopy wzrostu wydajności pracy i kolejnych zasobów kapitału na pracującego w warunkach wzrostu równomiernego gospodarki typu Nonnemana-Vanhoudta z efektami skali procesu produkcyjnego zdeterminowane są przez elastyczności \(\alpha_1, \alpha_2, ..., \alpha_N \).
i Θ makroekonomicznej funkcji produkcji (9.40), stopę harrodiańskiego postępu technicznego g oraz stopę wzrostu liczby pracujących n.

- Stąd, że:

\[
\forall i = 1, 2, \ldots, N \quad \frac{\partial g^*_y}{\partial \alpha_i} = \frac{\partial g^*_1}{\partial \alpha_i} = \frac{\partial g^*_2}{\partial \alpha_i} = \ldots = \frac{\partial g^*_N}{\partial \alpha_i} = \frac{\partial}{\partial \alpha_i} \left(\Theta g + \left(\Theta + \sum_{j=1}^{N} \alpha_j - 1 \right) n \right) \frac{1}{1 - \sum_{j=1}^{N} \alpha_j} = 0.
\]

płynie wniosek, iż wysokim elastycznościom funkcji produkcji (9.40) towarzyszą wysokie stopy wzrostu rozważanych tu zmiennych makroekonomicznych w warunkach wzrostu równomiernego. Wynika stąd też, że wysokiemu stopniowi jednorodności

\[
\Omega = \Theta + \sum_{i=1}^{N} \alpha_i
\]

funkcji produkcji Cobba-Douglasa odpowiadają wysokie stopy wzrostu

\[
g^*_y, g^*_1, g^*_2, \ldots, g^*_N.
\]

- Im wyższa jest zaś stopa postępu technicznego w sensie Harroda, tym wyższe są stopy wzrostu równomiernego wydajności pracy oraz kolejnych zasobów kapitału na pracującego w modelu typu Nonnemana-Vanhoudta z efektami skali. Wynika to stąd, iż:

\[
\frac{\partial g^*_y}{\partial g} = \frac{\partial g^*_1}{\partial g} = \frac{\partial g^*_2}{\partial g} = \ldots = \frac{\partial g^*_N}{\partial g} = \frac{\partial}{\partial g} \left(\Theta g + \left(\Theta + \sum_{i=1}^{N} \alpha_i - 1 \right) n \right) \frac{1}{1 - \sum_{i=1}^{N} \alpha_i} = \frac{\Theta}{1 - \sum_{i=1}^{N} \alpha_i} > 0.
\]
Pochodna cząstkowa równania (9.55) względem stopy wzrostu liczby pracujących n dana jest wzorem:

\[
\frac{\partial g_y^*}{\partial n} = \frac{\partial g_1^*}{\partial n} = \frac{\partial g_2^*}{\partial n} = \ldots = \frac{\partial g_N^*}{\partial n} = \frac{\partial}{\partial n} \left(\Theta g + \left(\Theta + \sum_{i=1}^{N} \alpha_i - 1 \right) n \right) \frac{1}{1 - \sum_{i=1}^{N} \alpha_i} = \Theta + \sum_{i=1}^{N} \alpha_i - 1 \frac{1}{1 - \sum_{i=1}^{N} \alpha_i}.
\]

Z powyższej równości wynika, iż jeśli w analizowanej tu gospodarce występują malejące (rosnące) efekty skali, czyli \(\Omega = \Theta + \sum_{i=1}^{N} \alpha_i < 1 \left(\Omega = \Theta + \sum_{i=1}^{N} \alpha_i > 1 \right) \), to analizowane tu pochodne cząstkowe są ujemne (dodatnie) i im wyższa jest stopa wzrostu liczby pracujących, tym niższe (wyższe) są stopy wzrostu wydajności pracy i kolejnych zasobów kapitału na pracującego w warunkach wzrostu równomiernego gospodarki typu Nonnemana-Vanhoudta.

- Przy \(\Omega = \Theta + \sum_{i=1}^{N} \alpha_i < 1 \left(\Omega = \Theta + \sum_{i=1}^{N} \alpha_i > 1 \right) \) spełniona jest nierówność:

\[
g_y^* = g_1^* = g_2^* = \ldots = g_N^* = \frac{\Theta g + \left(\Theta + \sum_{i=1}^{N} \alpha_i - 1 \right) n}{1 - \sum_{i=1}^{N} \alpha_i} \frac{1}{1 - \sum_{i=1}^{N} \alpha_i} = g, \]

co oznacza, iż przy malejących (rosnących) efekta skali stopy wzrostu analizowanych zmiennych makroekonomicznych w warunkach wzrostu równomiernego są niższe (wyższe) od stopy postępu technicznego w sensie Harroda, która wyznacza stopę wzrostu tych zmiennych w warunkach stałych efektów skali.

9.5. PODSUMOWANIE

Prowadzone w rozdziale dziewiątym skryptu analizy można podsumować następująco:

I. Z modelu wzrostu typu Solowa w warunkach efektów skali wyciągnąć można wniosek, że długookresowe stopy wzrostu wydajności pracy i technicznego uzbrojenia pracy zależne są nie tylko od stopy harrodiańskiego postępu technicznego (jak ma to miejsce w oryginalnym modelu wzrostu Solowa), ale również od
elastyczności funkcji produkcji względem nakładów kapitału rzeczowego i pracy (określających stopień jednorodności funkcji produkcji i rodzaj uzyskiwanych przez gospodarkę efektów skali) oraz stopy wzrostu liczby pracujących.

II. Z modelu tego wynika również, że wysoka stopa postępu technicznego w sensie Harroda i/lub wysokie elastyczności produkcji względem nakładów czynników produkcji prowadzą do wysokich stóp wzrostu strumienia produktu i zasobu kapitału rzeczowego na pracującego. Natomiast oddziaływanie stopy wzrostu liczby pracujących na stopy wzrostu wydajności pracy i technicznego uzbrojenia pracy zależne jest od rodzaju występujących w gospodarce efektów skali. W warunkach malejących (rosnących) efektów skali wysokiej stopie wzrostu liczby pracujących towarzyszą niskie (wysokie) stopy wzrostu wydajności pracy i technicznego uzbrojenia pracy w długim okresie.

III. Co więcej, jeśli występują malejące (rosnące) efekty skali procesu produkcyjnego, to długookresowe stopy wzrostu podstawowych zmiennych makroekonomicznych na pracującego są niższe (wyższe) od długookresowych stóp wzrostu owych zmiennych makroekonomicznych, którymi charakteryzuje się gospodarka Solowa ze stałymi efektami skali.

IV. Z rozważań prowadzonych w punktach 9.3 i 9.4 skryptu wynika również, że wnioski dotyczące oddziaływania efektów skali w gospodarce typu Solowa można uogólnić na gospodarkę typu Mankiwa-Romera-Weila (w której obok akumulacji kapitału rzeczowego uwzględnia się również akumulację kapitału ludzkiego) oraz na gospodarkę typu Nonnemana-Vanhoudta (w której analizuje się akumulację dowolnych N różnych zasobów kapitału).
Rozdział dziesiąty

WYBRANE MODELE OPTYMALNEGO STEROWANIA

10.1. WPROWADZENIE

W prowadzonych w rozdziałach od drugiego do dziewiątego skryptu analizach determinantów długookresowego wzrostu gospodarczego przyjmowaliśmy założenie, że stopa inwestycji (lub stopy inwestycji) ma charakter zmiennych egzogenicznych w rozważanych tam modelach wzrostu gospodarczego. W rozdziale dziesiątym uchyliliśmy to założenie, zastępując je hipotezą, że stopa inwestycji (lub stopy inwestycji) kształtuję się na takim poziomie, by maksymalizować sumę zdyskontowanej użyteczności konsumpcji typowego podmiotu w gospodarce.

Prezentowane w rozdziale dziesiątym skryptu rozważania oparte są na silnym założeniu nowej ekonomii klasycznej o długookresowej racjonalności typowych podmiotów mikroekonomicznych (utożsamianych dalej z typowym konsumentem w gospodarce). Warto jednak w tym miejscu zauważyć, że o ile w modelach nowej ekonomii klasycznej a priori przyjmuje się, iż zachowania i oczekiwania typowych podmiotów mikroekonomicznych są racjonalne tak w długim, jak i w krótkim okresie, o tyle w prezentowanych dalej modelach wzrostu gospodarczego założenie to ogranicza się jedynie do okresu długiego (abstrahując od tego, co dzieje się w krótkim okresie).

W prowadzonych w rozdziale dziesiątym analizach scharakteryzowane są makroekonomiczne modele wzrostu gospodarczego oparte na matematycznej teorii optymalnego sterowania wykorzystującej zasadę maksimum L.S. Pontriagina. Stąd też modele te można nazwać modelami optymalnego sterowania 1.

W rozdziale dziesiątym skryptu znaleźć więc można wybrane, makroekonomiczne modele wzrostu gospodarczego wykorzystujące elementy teorii optymalnego sterowania. Modelami tymi są:

I. Model Franka Ramseya z 1928 roku.
II. Model Roberta E. Lucasa z 1988 roku.
III. Model Paula M. Romera z 1990 roku.

1 Często również prezentowane w punktach 10.3–10.4 modele wzrostu Lucasa i Romera nazywane są w literaturze modelami wzrostu endogenicznego. Wynika to stąd, iż w modelach tych endogenezuje się zarówno postęp techniczny (który wynika z akumulacji wiedzy naukowo-technicznej i/lub akumulacji kapitału ludzkiego), jak i stopy inwestycji w zasoby rozważanych w tych modelach czynników produkcji. Szerzej zagadnienie klasyfikacji makroekonomicznych modeli wzrostu gospodarczego scharakteryzowane jest w literaturze polskiej np. w pracach Tokarskiego (2001, 2005).
IV. Model optymalnego sterowania bazujący na założeniach modelu wzrostu Mankiwa-Romera-Weila
oraz:
V. Model optymalnego sterowania nawiązujący do modelu wzrostu gospodarczego Nonnemana-Vanhoudta.

10.2. MODEL RAMSEYA

W modelu wzrostu gospodarczego Ramseya przyjmuje się następujące założenia dotyczące funkcjonowania gospodarki:

1. Proces produkcyjny, podobnie jak w modelu wzrostu Solowa z funkcją produkcyjnej Cobba-Douglasa, opisany jest za pomocą funkcji danej wzorem:

$$\forall t \in [0;+\infty) \quad Y(t) = (K(t))^{a} (\Lambda(t)L(t))^{1-a},$$ \hspace{1cm} (10.1)

gdzie zmienne ($Y > 0$, $K > 0$, $\Lambda > 0$ i $L > 0$) oraz parametr $\alpha \in (0;1)$ interpretuje się tak samo, jak ma to miejsce w modelu wzrostu Solowa. Oznacza to, iż Y jest strumieniem wytworzonego produktu, K, Λ i L to (odpowiednio) zasoby kapitału rzeczowego, wieńcze pracy, zaś α jest zarówno elastycznością produktu Y względem nakładów kapitału rzeczowego K, jak i (na gruncie marginalnej teorii podziału Clarka) udziałem nakładów owego kapitału w produkcji.

2. Zasoby pracy L i wiedzy Λ rosną według stop wzrostu równych n i g (gdzie $n > 0$, $g > 0$, przy czym g to stopa egzogenicznego postępu technicznego w sensie Harroda). Stąd zaś wynika, że spełnione są równania:

$$\forall t \in [0;+\infty) \quad \frac{\dot{L}(t)}{L(t)} = n > 0$$ \hspace{1cm} (10.2)

oraz:

$$\forall t \in [0;+\infty) \quad \frac{\dot{\Lambda}(t)}{\Lambda(t)} = g > 0.$$ \hspace{1cm} (10.3)

Ponadto przyjmuje się, że w każdym momencie $t \in [0;+\infty)$ zasoby $\Lambda(t)$ i $L(t)$ przyjmują wartości dodatnie.

3. Gospodarka Ramseya ma charakter gospodarki doskonale konkurencyjnej, w której producenci (przedsiębiorstwa) dążą do maksymalizacji zysku w każdym momencie $t \in [0;+\infty)$. Założenie to (zgodnie z marginalną teorią podziału Clarka) powoduje, że kapitał K i praca L opłacane są zgodnie z ich produktami krańcowymi. Dlatego też płace realne w i realna stopa procentowa r określane są przez równania:

$$\forall t \in [0;+\infty) \quad w(t) = \frac{\partial Y(t)}{\partial L(t)}$$ \hspace{1cm} (10.4)

oraz:
\[\forall t \in [0;+\infty) \quad r(t) + \delta = \frac{\partial Y(t)}{\partial K(t)}, \quad (10.5) \]

gdzie \(\delta \in (0;1) \) to stopa deprecjacji kapitału\(^2\).

4. Celem działania typowego konsumenta w gospodarce Ramseya jest maksymalizacja sumy zdyskontowanej użyteczności konsumpcji w nieskończonym horyzoncie czasowym. Suma zdyskontowanej użyteczności konsumpcji owego konsumenta opisana jest przez całkę niewłaściwą postaci:\(^3\)

\[\int_0^{+\infty} (c(t))^{1-\sigma} L e^{-\rho t} \, dt, \quad (10.6) \]

gdzie \(c = \frac{C}{L} \) jest konsumpcją na pracującym (utożsamianą z konsumpcją typowego konsumenta), zaś \(\sigma \in (0;1) \cup (1;+\infty) \) to odwrotność międzyokresowej substytucji owego konsumenta. Parametr \(\rho > 0 \) nazywany jest w teorii ekonomii stopą dyskontową typowego konsumenta. Stopę tę interpretuje się ekonomicznie w ten sposób, iż typowy konsument jest zawsze skłonny zamienić \(\zeta > 0 \) jedenostek użyteczności konsumpcji w dowolnym momencie \(t_1 \in [0;+\infty) \) na \(\zeta e^{\rho(t_2-t_1)} \) jednostek owej użyteczności w momencie \(t_2 > t_1 \). Oznacza to również, że im wyższa jest stopa dyskontowa \(\rho \), tym konsumpcja bieżąca jest przez typowego konsumenta bardziej preferowana w stosunku do konsumpcji przyszłej.

5. Podobnie, jak w modelu wzrostu gospodarczego Solowa, przyrost zasobu kapitału \(\dot{K} \) jest różnicą między inwestycjami\(^4\) \(I = Y - C \) a deprecjacją kapitału \(\delta K \). Płynie stąd wniosek, iż przyrost ów można zapisać za pomocą następującego równania różniczkowego:

\[\forall t \in [0;+\infty) \quad \dot{K}(t) = Y(t) - C(t) - \delta K(t). \quad (10.7) \]

Wstawiając funkcję produkcji (10.1) do równania różniczkowego (10.7), dochodzimy do zależności:

\[\forall t \in [0;+\infty) \quad \dot{K}(t) = (K(t))^{\alpha} (\Lambda(t)L(t))^{1-\alpha} - C(t) - \delta K(t), \]

\(^2\) Z reguły mikroekonomiczną funkcję zysku \(\pi \) przedsiębiorstwa definiuje się jako \(\pi(K,L) = F(K,L) - rK - wL \) (gdzie \(F(K,L) \) jest funkcją produkcji w przedsiębiorstwie) i wówczas warunki konieczne maksymalizacji zysku (względem \(K \) oraz \(L \)) sprowadzają się do równań: \(w = \frac{\partial Y}{\partial L} \) i \(r = \frac{\partial Y}{\partial K} \). Jeśli jednak w funkcji zysku \(\pi(K,L) \) uwzględnimy również deprecjację kapitału \(\delta K \), to można ją zapisać jako \(\pi(K,L) = F(K,L) - (r + \delta)K - wL \) i wówczas warunki konieczne maksymalizacji zysku sprowadzają się do równań (10.4–10.5).

\(^3\) Całki niewłaściwe typu (10.6), opisujące sumę zdyskontowanej konsumpcji typowego podmiotu w gospodarce, nazywane będą dalej również całkami preferencji typowego konsumenta.

\(^4\) Jeśli oszczędności \(S \) zdefiniuje się jako nieskonsumowaną część produktu, czyli \(S = Y - C \), to inwestycje \(I \), zdeterminowane przez oszczędności \(S \), muszą być równe \(Y - C \).
a stąd, po podzieleniu powyższego równania przez \(L > 0 \), mamy:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{K}(t)}{L(t)} = \frac{(K(t))^a (\Lambda(t))^{1-\alpha} (L(t))^{1-\alpha}}{L(t)} - \frac{C(t)}{L(t)} - \delta \frac{K(t)}{L(t)} = \\
= \frac{(K(t))^a (\Lambda(t))^{1-\alpha} (L(t))^{1-\alpha}}{(L(t))^a (L(t))^{1-\alpha}} - \frac{c(t)}{L(t)} - \delta \frac{K(t)}{L(t)} = \left(\frac{K(t)}{L(t)} \right)^a (\Lambda(t))^{1-\alpha} - \frac{c(t)}{L(t)} - \delta \frac{K(t)}{L(t)}
\]

lub, po uwzględnieniu tożsamości \(k = \frac{K}{L} \), gdzie \(k \) to techniczne uzbrojenie pracy:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{K}(t)}{L(t)} = (k(t))^a (\Lambda(t))^{1-\alpha} - \frac{c(t)}{L(t)} - \delta k(t).
\] (10.8)

Z tożsamości \(k = \frac{K}{L} \) wynika, iż spełnione jest równanie:

\[
\forall t \in [0;+\infty) \quad K(t) = k(t)L(t).
\]

Różniczkując powyższy związek względem czasu \(t \in [0;+\infty) \), mamy:

\[
\forall t \in [0;+\infty) \quad \dot{K}(t) = \dot{k}(t)L(t) + k(t)\dot{L}(t)
\]

lub, po podzieleniu powyższej zależności przez \(L > 0 \):

\[
\forall t \in [0;+\infty) \quad \frac{\dot{K}(t)}{L(t)} = \dot{k}(t) + k(t)\frac{\dot{L}(t)}{L(t)}.
\] (10.9)

Ponieważ z równania (10.2) wynika, że \(\frac{\dot{L}}{L} = n \), więc związek (10.9) można zapisać także następująco:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{K}(t)}{L(t)} = \dot{k}(t) + nk(t).
\] (10.10)

Lewe strony równań (10.8) i (10.10) są sobie równe. Dlatego też prawe strony tych równań muszą być sobie równe. Oznacza to, iż spełniona jest zależność:

\[
\forall t \in [0;+\infty) \quad \dot{k}(t) + nk(t) = (k(t))^a (\Lambda(t))^{1-\alpha} - c(t) - \delta k(t),
\]

a stąd:

\[
\forall t \in [0;+\infty) \quad \dot{k}(t) = (k(t))^a (\Lambda(t))^{1-\alpha} - c(t) - (\delta + n)k(t).
\] (10.11)

Z równania (10.11) wynika, iż przyrost technicznego uzbrojenia pracy \(\dot{k} \) zależy od m.in. poziomu kapitału na pracującego \(k \) oraz od wielkości konsumpcji na pracującego \(c \).

Korzystając z założeń 4 i 5 modelu wzrostu Ramseya, problem maksymalizacji całkowi preferencji (10.6) typowego konsumenta, przy ograniczeniu danym równaniem różniczkowym (10.11), można zapisać w postaci następującego zadania sterowania opty-
malnego, którego rozwiązanie (na gruncie teorii sterowania optymalnego) znajdujemy, korzystając z zasady maksimum Pontriagina⁵:

\[
\max_{c(t)} \int_0^{+\infty} \frac{(c(t))^{1-\sigma}-1}{1-\sigma} e^{-\rho t} dt
\]

\[
\dot{k}(t) = (k(t))^{1-\alpha} (\Lambda(t))^{1-\alpha} - c(t) - (\delta + n) k(t)
\]

\[
k(0) = k_0
\]

gdzie \(k_0 > 0 \) jest zasobem technicznego uzbrojenia pracy w momencie \(t = 0 \).

Bieżący hamiltonian (current value of hamiltonian) \(\tilde{H} \) maksimum Pontriagina (10.12) w każdym momencie \(t \in [0;+\infty) \) dany jest wzorem:

\[
\tilde{H}(k(t),c(t),\lambda(t),t) = \frac{(c(t))^{1-\sigma}-1}{1-\sigma} + \lambda(t) \cdot [(k(t))^{1-\alpha} (\Lambda(t))^{1-\alpha} - c(t) - (\delta + n) k(t)] = \frac{(c(t))^{1-\sigma}-1}{1-\sigma} + \lambda(t) \cdot (k(t))^{1-\alpha} (\Lambda(t))^{1-\alpha} - \lambda(t) \cdot c(t) - \lambda(t) \cdot (\delta + n) \cdot k(t),
\]

gdzie \(\lambda \) jest mnożnikiem Lagrange’a hamiltonianu \(\tilde{H} \). O mnożniku Lagrange’a zakłada się, iż jest on różniczkowalny względem czasu \(t \in [0;+\infty) \). Warunki konieczne istnienia niebrzegowego maksimum Pontriagina określone są przez wzory:

\[
\forall t \in [0;+\infty) \quad \frac{\partial \tilde{H}(t)}{\partial c(t)} = 0,
\]

\[
\forall t \in [0;+\infty) \quad - \frac{\partial \tilde{H}(t)}{\partial k(t)} + \rho \lambda(t) = \dot{\lambda}(t)
\]

i:

\[
\forall t \in [0;+\infty) \quad \frac{\partial \tilde{H}(t)}{\partial \lambda(t)} = \dot{k}(t)
\]

oraz tzw. warunek transwersalności:

\[
\lim_{t \to +\infty} (\lambda(t)e^{-\rho t}) = 0.
\]

Różniczkując bieżący hamiltonian (10.13) względem \(c, k \) i \(\lambda \), okazuje się, iż wspomniane tu pochodne cząstkowe określone są wzorami:

\[
\frac{\partial \tilde{H}}{\partial c} = \frac{\partial}{\partial c} \left(\frac{c^{1-\sigma}-1}{1-\sigma} + \lambda k^{1-\alpha} \Lambda^{1-\alpha} - \lambda c - \lambda (\delta + n) k \right) = \frac{(1-\sigma)c^{-\sigma}}{1-\sigma} - \lambda,
\]

a stąd:
\[\frac{\partial H}{\partial c} = c^{-\sigma} - \lambda, \quad (10.15a) \]
\[\frac{\partial H}{\partial k} = \frac{\partial}{\partial k} \left(\frac{c^{1-\sigma}-1}{1-\sigma} + \lambda k^\alpha \Lambda^{1-\alpha} - \lambda c - \lambda(\delta + n)k \right) = \alpha \lambda k^{\alpha-1} \Lambda^{1-\alpha} - \lambda(\delta + n) \quad (10.15b) \]

oraz:
\[\frac{\partial H}{\partial \lambda} = \frac{\partial}{\partial \lambda} \left(\frac{c^{1-\sigma}-1}{1-\sigma} + \lambda \cdot \left[k^\alpha \Lambda^{1-\alpha} - c - (\delta + n)k \right] \right) = k^\alpha \Lambda^{1-\alpha} - c - (\delta + n)k. \quad (10.15c) \]

Wstawiając pochodną cząstkową (10.15a) do warunku koniecznego (10.14a) maksimum Pontriagina (10.12), okazuje się, iż warunek ów można zapisać następująco:

\[\forall t \in [0;+\infty) \quad (c(t))^{-\sigma} - \lambda(t) = 0 \]

lub:
\[\forall t \in [0;+\infty) \quad (c(t))^{-\sigma} = \lambda(t). \]

Logarytmując stronami powyższe równanie, mamy:
\[\forall t \in [0;+\infty) \quad -\sigma \ln(c(t)) = \ln(\lambda(t)), \]

co, po zróżniczkowaniu względem czasu \(t \in [0;+\infty) \), prowadzi do związku:
\[\forall t \in [0;+\infty) \quad -\sigma \frac{\dot{c}(t)}{c(t)} = \frac{\dot{\lambda}(t)}{\lambda(t)}. \quad (10.16) \]

Z równania (10.15b) wynika, iż warunek konieczny (10.14b) analizowanego maksimum Pontriagina można zapisać wzorem:

\[\forall t \in [0;+\infty) \quad -\alpha \lambda(t)(k(t))^{\alpha-1}(\Lambda(t))^{1-\alpha} + (\delta + n)\lambda(t) + \rho \lambda(t) = \dot{\lambda}(t), \]
a stąd:
\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}(t)}{\lambda(t)} = \delta + n + \rho - \alpha \left(\frac{k(t)}{\Lambda(t)} \right)^{\alpha-1} \]

lub:
\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}(t)}{\lambda(t)} = \delta + n + \rho - \alpha \left(\frac{\tilde{k}}{\Lambda} \right)^{\alpha-1}, \quad (10.17) \]

dzięki \(\tilde{k} = \frac{k}{\Lambda} = \frac{K}{\Lambda L} \) jest kapitałem na jednostkę efektywnej pracy (gdzie \(\Lambda L \) to jednostki efektywnej pracy). Wstawiając wyrażenie \(-\sigma \frac{\dot{c}}{c} \) z równania (10.16) za \(\frac{\dot{\lambda}}{\lambda} \) w związku (10.17), otrzymujemy:
\(\forall t \in [0;+\infty) \quad -\sigma \frac{\dot{c}(t)}{c(t)} = \delta + n + \rho - \alpha (k(t))^{\alpha-1}, \)

co implikuje zależność:

\(\forall t \in [0;+\infty) \quad \alpha (k(t))^{\alpha-1} = \delta + n + \rho + \sigma \frac{\dot{c}(t)}{c(t)}. \) (10.18)

Po wstawieniu pochodnej cząstkowej (10.15c) do związku (10.14c) dochodzimy do zależności:

\(\forall t \in [0;+\infty) \quad \dot{k}(t) = (k(t))^{\alpha-1} (\Lambda(t))^{-a} - c(t) - (\delta + n)k(t), \)

która, po podzieleniu przez \(k > 0, \) możemy zapisać jako:

\(\forall t \in [0;+\infty) \quad \frac{\dot{k}(t)}{k(t)} = (k(t))^{\alpha-1} (\Lambda(t))^{-a} - \frac{c(t)}{k(t)} - (\delta + n) = (\frac{k(t)}{\Lambda(t)})^{\alpha-1} - \frac{c(t)}{k(t)} (\Lambda(t)) - (\delta + n) \)

lub, uwzględniając to, że \(\tilde{k} = \frac{k}{\Lambda} \) i \(\tilde{c} = \frac{c}{\Lambda}, \) gdzie \(\tilde{c} \) to konsumpcja na jednostkę efektywnej pracy:

\(\forall t \in [0;+\infty) \quad \frac{\dot{k}(t)}{k(t)} = (\tilde{k}(t))^{\alpha-1} - \frac{\tilde{c}(t)}{k(t)} - (\delta + n). \) (10.19)

Z tożsamości \(\tilde{k} = \frac{k}{\Lambda} \) wynika, iż techniczne uzbrojenie pracy \(k \) możemy zapisać jako \(k = \tilde{k}\Lambda. \) To zaś implikuje, że stopa wzrostu technicznego uzbrojenia pracy \(\frac{\dot{k}}{k} \) dana jest wzorem:

\(\forall t \in [0;+\infty) \quad \frac{\dot{k}(t)}{k(t)} = \frac{\tilde{k}(t)}{k(t)} + \frac{\dot{\Lambda}(t)}{\Lambda(t)} \)

lub, po uwzględnieniu tego, że zgodnie z równaniem (10.3) \(\frac{\dot{\Lambda}}{\Lambda} = g: \)

\(\forall t \in [0;+\infty) \quad \frac{\dot{k}(t)}{k(t)} = \frac{\tilde{k}(t)}{k(t)} + g. \) (10.20)

Wstawiając stopę wzrostu technicznego uzbrojenia pracy ze związku (10.20) do równania (10.19), uzyskujemy zależność:

\(\forall t \in [0;+\infty) \quad \frac{\tilde{k}(t)}{k(t)} + g = (\tilde{k}(t))^{\alpha-1} - \frac{\tilde{c}(t)}{k(t)} - (\delta + n), \)

którą można zapisać również następująco:
\[\forall t \in [0;+\infty) \quad \frac{\dot{k}(t)}{k(t)} = (\tilde{k}(t))^{a-1} \tilde{c}(t) = - (\delta + g + n) \]

lub, po przemnożeniu powyższego równania przez \(\tilde{k} > 0 \):

\[\forall t \in [0;+\infty) \quad \dot{k}(t) = (\tilde{k}(t))^a - \tilde{c}(t) - (\delta + g + n)\tilde{k}(t). \quad (10.21) \]

Równanie różniczkowe (10.21) wyznacza pierwsze z równań ruchu w modelu wzrostu gospodarczego Ramseya. Równanie to opisuje relacje, które zachodzą między przyrostem kapitału rzecznego na jednostkę efektywnej pracy \(\tilde{k} \) a poziomem owego kapitału \(\tilde{k} \) i wielkością konsumpcji na jednostkę efektywnej pracy \(\tilde{c} \). Ze związku (10.21) wynika, że przy \(\tilde{k} > 0 \):

\[\forall t \in [0;+\infty) \quad \dot{k} \geq 0 \iff (\tilde{k}(t))^a - \tilde{c}(t) - (\delta + g + n)\tilde{k}(t) \geq 0, \]

a stąd:

\[\forall t \in [0;+\infty) \quad \dot{k} \geq 0 \iff \tilde{c}(t) \leq (\tilde{k}(t))^a - (\delta + g + n)\tilde{k}(t) \quad (10.22a) \]

oraz (analogicznie):

\[\forall t \in [0;+\infty) \quad \dot{k} \leq 0 \iff \tilde{c}(t) \geq (\tilde{k}(t))^a - (\delta + g + n)\tilde{k}(t). \quad (10.22b) \]

Ze związków (10.22ab) wynika, że jeśli konsumpcja na jednostkę efektywnej pracy \(\tilde{c} \) jest niższa (wyższa) od \((\tilde{k}(t))^a - (\delta + g + n)\tilde{k}(t) \), to przyrosty kapitału na jednostkę efektywnej pracy \(\dot{k} \) są dodatnie (ujemne). Natomiast równanie krzywej podziału \(\tilde{k} = 0 \) dane jest wzorem:\

\[\tilde{c}(\tilde{k})_{\tilde{k}=0} = \tilde{k}^a - (\delta + g + n)\tilde{k}. \quad (10.23) \]

Z równania krzywej podziału (10.23) wyciągnąć można następujące wnioski:

- Jeśli kapitał przypadający na jednostkę efektywnej pracy \(\tilde{k} \) równy jest zeru, to również konsumpcja na jednostkę efektywnej pracy \(\tilde{c} \), przy \(\tilde{k} = 0 \), równa jest zeru. Wynika to stąd, iż (zgodnie ze związkiem (10.23)):

\[\tilde{k} = 0 \implies \tilde{c}_{\tilde{k}=0} = 0^a - (\delta + g + n) \cdot 0 = 0. \quad (10.24a) \]

6 Równanie (10.23) jest interpretowalne ekonomicznie jedynie przy takich \(\tilde{k} > 0 \), przy których \(\tilde{c} \geq 0 \). Oznacza to, że \(\tilde{k}^a - (\delta + g + n)\tilde{k} \geq 0 \), a stąd \(\frac{\tilde{k}^a}{\delta + g + n} \geq \tilde{k} \), lub \(\tilde{k}^{1-a} \leq \frac{1}{\delta + g + n} \), czyli

\[\tilde{k} \leq \left(\frac{1}{\delta + g + n} \right)^{1-a}. \]
Pochodna cząstkowa \(\ddot{c} \) po \(\ddot{k} \), na krzywej podziału \(\ddot{k} = 0 \), dana jest wzorem:

\[
\left. \frac{dc}{dk} \right|_{\ddot{k}=0} = \frac{1}{\alpha k^{\alpha-1}} - (\delta + g + n) \dot{k} = \alpha k^{\alpha-1} - (\delta + g + n). \tag{10.24b}
\]

Ze związku (10.24b) wynika, że:

\[
\left. \frac{dc}{dk} \right|_{\ddot{k}=0} > 0 \iff \alpha k^{\alpha-1} - (\delta + g + n) > 0 \iff k^{\alpha-1} > \frac{\delta + g + n}{\alpha} \iff \frac{1}{k^{1-\alpha}} > \frac{\delta + g + n}{\alpha} \iff k^{1-\alpha} < \frac{\alpha}{\delta + g + n},
\]

a stąd:

\[
\left. \frac{dc}{dk} \right|_{\ddot{k}=0} > 0 \iff \ddot{k} < \left(\frac{\alpha}{\delta + g + n} \right)^{1/(1-\alpha)} \tag{10.24c}
\]

oraz (analogicznie):

\[
\left. \frac{dc}{dk} \right|_{\ddot{k}=0} < 0 \iff \ddot{k} > \left(\frac{\alpha}{\delta + g + n} \right)^{1/(1-\alpha)} \tag{10.24d}
\]

Oznacza to, iż jeśli kapitał na jednostkę efektywnej pracy \(\ddot{k} \) jest mniejszy od \(\ddot{k} = \left(\frac{\alpha}{\delta + g + n} \right)^{1/(1-\alpha)} \), to pochodna \(\left. \frac{dc}{dk} \right|_{\ddot{k}=0} \) jest dodatnia i krzywa podziału \(\ddot{k} = 0 \) jest dodatnio nachylona. Jeżeli zaś \(\ddot{k} \) przekroczy \(\ddot{k} = \left(\frac{\alpha}{\delta + g + n} \right)^{1/(1-\alpha)} \), to \(\left. \frac{dc}{dk} \right|_{\ddot{k}=0} < 0 \) i krzywa ta jest ujemnie nachylona.

Krzywa podziału \(\ddot{k} = 0 \) wynikająca z równania (10.23) zilustrowana jest na rysunku 10.1.
Ponieważ konsumpcję na pracującego \(c \) można zapisać jako \(c = \Lambda \tilde{c} \), więc stopa wzrostu konsumpcji na pracującego \(\frac{\dot{c}}{c} \) dana jest wzorem:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{c}(t)}{c(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{\tilde{c}}(t)}{\tilde{c}(t)},
\]
a stąd, po uwzględnieniu równania stopy wzrostu wiedzy (10.3):

\[
\forall t \in [0;+\infty) \quad \frac{\dot{c}(t)}{c(t)} = g + \frac{\dot{\tilde{c}}(t)}{\tilde{c}(t)}.
\] (10.25)

Wstawiając stopę wzrostu konsumpcji na pracującego \(\frac{\dot{c}}{c} \) z równania (10.25) do związku (10.18), otrzymujemy:

\[
\forall t \in [0;+\infty) \quad \alpha \left(\tilde{k}(t) \right)^{\alpha-1} = \delta + n + \rho + \sigma \left(g + \frac{\dot{\tilde{c}}(t)}{\tilde{c}(t)} \right) = \rho + \delta + n + \sigma g + \sigma \frac{\dot{\tilde{c}}(t)}{\tilde{c}(t)},
\] (10.26)
a stąd:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{\tilde{c}}(t)}{\tilde{c}(t)} = \alpha \left(\tilde{k}(t) \right)^{\alpha-1} - \left(\rho + \delta + n + \sigma g \right)
\]
lub:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{\tilde{c}}(t)}{\tilde{c}(t)} = \frac{\alpha \left(\tilde{k}(t) \right)^{\alpha-1} - \left(\rho + \delta + n + \sigma g \right)}{\sigma}.
\] (10.27)

Z równania (10.27) wynika, iż przy \(\tilde{c} > 0 \) spełniony jest związek:

\[
\forall t \in [0;+\infty) \quad \tilde{c}(t) \geq 0 \quad \Leftrightarrow \quad \alpha \left(\tilde{k}(t) \right)^{\alpha-1} - \left(\rho + \delta + n + \sigma g \right) \geq 0 \quad \Leftrightarrow \quad \alpha \left(\tilde{k}(t) \right)^{\alpha-1} \geq \left(\rho + \delta + n + \sigma g \right) \\
\Leftrightarrow \quad \frac{1}{\left(\tilde{k}(t) \right)^{1-\alpha}} \geq \frac{\rho + \delta + n + \sigma g}{\alpha} \quad \Leftrightarrow \quad \left(\tilde{k}(t) \right)^{-\alpha} \leq \frac{\alpha}{\rho + \delta + n + \sigma g},
\]

czyli:

\[
\forall t \in [0;+\infty) \quad \tilde{c}(t) \geq 0 \quad \Leftrightarrow \quad \tilde{k}(t) \leq \left(\frac{\alpha}{\rho + \delta + n + \sigma g} \right)^{1/(1-\alpha)},
\] (10.28a)

i analogicznie:

\[
\forall t \in [0;+\infty) \quad \tilde{c}(t) \leq 0 \quad \Leftrightarrow \quad \tilde{k}(t) \geq \left(\frac{\alpha}{\rho + \delta + n + \sigma g} \right)^{1/(1-\alpha)}.
\] (10.28b)
Ze związków (10.28ab) wyciągnąć można wniosek, iż jeśli kapitał na jednostkę efektywnej pracy \(\tilde{k} \) jest mniejszy (większy) od wyrażenia \(\tilde{k}^* = \left(\frac{\alpha}{\rho + \delta + n + \sigma g} \right)^{1/(1-\alpha)} \), to przyrosta konsumpcji na jednostkę efektywnej pracy \(\tilde{c} \) są dodatnie (ujemne), zaś linię podziału \(\tilde{c} = 0 \) można zapisać wzorem:

\[
\tilde{k}^* \bigg|_{\tilde{c}=0} = \left(\frac{\alpha}{\rho + \delta + n + \sigma g} \right)^{1/(1-\alpha)}.
\]

(10.29)

Linia podziału (10.29) zilustrowana jest na rysunku 10.2.

Z prowadzonych uprzednio rozważań oraz rysunków 10.1–10.2 wyciągnąć można wniosek, iż diagram fazowy modelu wzrostu gospodarczego Ramseya można zilustrować tak, jak ma to miejsce na rysunku 10.3.

Z przedstawionego na rysunku 10.3 diagramu fazowego modelu wzrostu gospodarczego Ramseya wynika, że analizowany tu model wzrostu jest modelem z punktem siodłowym. Oznacza to, że jeśli gospodarka Ramseya w momencie \(t = 0 \) znajduje się na trajektorii \(T_1 \) lub \(T_2 \), to zmierza do stabilnego położenia długookresowej równowagi leżącego w punkcie przecięcia krzywej podziału \(\tilde{k} = 0 \) z linią podziału \(\tilde{c} = 0 \). To zaś implikuje, że wówczas spełnione są warunki konieczne istnienia niebrzegowego maksimum Pontriagina (10.12). Jeśli zaś gospodarka Ramseya startuje spoza trajektorii \(T_1 \)

\[\text{Czytelnicy powinni pokazać, że jeśli } \rho > (1-\sigma)g \quad [\rho < (1-\sigma)g], \text{ to maksimum } \tilde{c} \text{ na krzywej podziału } \tilde{k} = 0 \text{ będzie leżało na lewo [na prawo] od linii podziału } \tilde{c} = 0, \text{ czyli } \tilde{k} < k^* \quad (\tilde{k} > k^*). \]

Nie ma to jednak większego znaczenia ani dla stabilności (a w zasadzie niestabilności) rozwiązania modelu Ramseya, ani dla wniosków płynących z owego modelu wzrostu gospodarczego.
i T₂, to nie istnieje żadne stabilne, niebrzegowe położenie równowagi owego modelu wzrostu gospodarczego.

Jeśli jednak w momencie t = 0 gospodarka Ramseya znajduje się na trajektorii T₁ lub trajektorii T₂, to w długim okresie (przy t → +∞) kapitał na jednostkę efektywnej pracy i konsumpcja na jednostkę owej pracy dążą do wielkości \(\tilde{k}^* \) i \(\tilde{c}^* \), leżących w punkcie przecięcia krzywej podziału \(\tilde{k} = 0 \) z linią podziału \(\tilde{c} = 0 \). Jeśli gospodarka Ramseya dąży po trajektorii T₁ lub T₂ do punktu przecięcia krzywej podziału \(\tilde{k} = 0 \) z linią podziału \(\tilde{c} = 0 \), to stopa wzrostu konsumpcji na jednostkę efektywnej pracy \(\frac{\dot{c}}{c} \) dąży do zera. To zaś, wraz z równaniem (10.25), oznacza, że stopa wzrostu konsumpcji na pracującego \(\frac{\dot{c}}{c} \) dąży wówczas do stopy harrodiańskiego postępu technicznego. Ponieważ, na mocy równania (10.16), \(\frac{\dot{\lambda}}{\lambda} = -\sigma \frac{\dot{c}}{c} \), więc w równowadze Ramseya stopa wzrostu mnoźnika Lagrange'a \(\frac{\dot{\lambda}}{\lambda} \) równa jest \(-\sigma g < 0\). Dlatego też wówczas:

\[
\lim_{t \to +\infty} (\lambda(t)) = \lim_{t \to +\infty} \left(\lambda_0 e^{-\sigma g t}\right),
\]

gdzie \(\lambda_0 \) jest pewną stałą rzeczywistą. To z kolei oznacza, że spełniony jest warunek transwersalności (10.14d), gdyż:

\[
\lim_{t \to +\infty} \left(\lambda(t)e^{-\rho t}\right) = \lim_{t \to +\infty} \left(\lambda_0 e^{-\left(\sigma g + \rho\right) t}\right) = 0.
\]
Kapitał rzeczowy na jednostkę efektywnej pracy \tilde{k}^* w równowadze Ramseya (o ile taka równowaga będzie istniała) można wyznaczyć z równania (10.29). Z równania tego wynika bowiem, że jeśli $\tilde{c} = 0$, to:

$$\tilde{k}^* = \left(\frac{\alpha}{\rho + \delta + n + \sigma g} \right)^{1/(1-\alpha)}.$$ \hspace{1cm} (10.30)

Dzieląc stronami funkcję produkcji (10.1) przez jednostki efektywnej pracy ΛL, uzyskujemy:

$$\forall t \in [0;+\infty) \quad \tilde{y}(t) = \frac{Y(t)}{\Lambda(t)L(t)} = \frac{(K(t))^{\alpha} (\Lambda(t)L(t))^{1-\alpha}}{\Lambda(t)L(t)} = \left(\frac{K(t)}{\Lambda(t)L(t)} \right)^{\alpha}$$

lub, po uwzględnieniu tożsamości $\tilde{k} = \frac{K}{\Lambda L}$:

$$\forall t \in [0;+\infty) \quad \tilde{y}(t) = \left(\tilde{k}(t) \right)^{\alpha}. \hspace{1cm} (10.31)$$

Jeśli zaś istnieje długookresowa równowaga Ramseya i $\tilde{k}(t) \xrightarrow{t \to +\infty} \tilde{k}^*$, to $\tilde{y}(t) \xrightarrow{t \to +\infty} \tilde{y}^*$, gdzie \tilde{y}^* jest produktem na jednostkę efektywnej pracy w równowadze Ramseya. Stąd zaś oraz z równania (10.31) wynika, że wówczas:

$$\tilde{y}^* = \left(\tilde{k}^* \right)^{\alpha}$$

lub, po uwzględnieniu związku (10.30):

$$\tilde{y}^* = \left(\frac{\alpha}{\rho + \delta + n + \sigma g} \right)^{\alpha/(1-\alpha)}. \hspace{1cm} (10.32)$$

Z prowadzonych uprzednio rozważań oraz równań (10.30–10.32) płyną następujące wnioski:

- Ponieważ w długookresowej równowadze Ramseya $\tilde{k}(t) \xrightarrow{t \to +\infty} \tilde{k}^*$, zatem wówczas stopa wzrostu kapitału na jednostkę efektywnej pracy $\frac{\tilde{k}}{k}$ dąży do zera. Stąd oraz z równania (10.20) wynika, że stopa wzrostu technicznego uzbrojenia pracy $\frac{k}{k}$ zbieżna jest ze stopą harrodiańskiego postępu technicznego g.
- Z równania (10.31) wynika, że stopę wzrostu produktu na jednostkę efektywnej pracy $\frac{\tilde{y}}{y}$ można zapisać wzorem:

$$\forall t \in [0;+\infty) \quad \frac{\tilde{y}(t)}{y(t)} = \alpha \frac{\tilde{k}(t)}{k(t)}.$$
Jeśli zaś w długookresowej równowadze Ramseya \(\frac{\dot{k}(t)}{k(t)} \xrightarrow{t \to \infty} 0 \), to również \(\frac{\dot{y}(t)}{y(t)} \xrightarrow{t \to \infty} 0 \). Co więcej, ponieważ wydajność pracy opisana jest przez tożsamość
\[y = \frac{Y}{L} = \Lambda \frac{Y}{\Lambda L} = \Lambda \tilde{y}, \] zatem:
\[\forall t \in [0; +\infty) \quad \frac{\dot{y}(t)}{y(t)} = \frac{\dot{\Lambda}(t)}{\Lambda(t)} + \frac{\dot{\tilde{y}}(t)}{\tilde{y}(t)} \]
lub, po uwzględnieniu założenia, że \(\frac{\dot{\Lambda}}{\Lambda} = g : \)
\[\forall t \in [0; +\infty) \quad \frac{\dot{y}(t)}{y(t)} = g + \frac{\dot{\tilde{y}}(t)}{\tilde{y}(t)}. \quad (10.33) \]
Jeśli zaś w równowadze Ramseya \(\frac{\dot{y}(t)}{y(t)} \xrightarrow{t \to \infty} 0 \), to – zgodnie z równaniem (10.33) – stopa wzrostu wydajności pracy \(\frac{\dot{y}}{y} \), podobnie jak stopa wzrostu technicznego uzbrojenia pracy \(\frac{k}{k^*} \), dąży do stopy postępu technicznego w sensie Harroda g.

- Ponieważ wielkości strumienia produktu \(\tilde{y}^* \) i zasobu kapitału \(\tilde{k}^* \) na jednostkę efektywnej pracy w równowadze Ramseya zależne są m.in. od stopy dyskontowej \(\rho \), odwrotności międzyokresowej substytucji konsumpcji \(\sigma \) typowego konsumenta, stopy deprecjacji kapitału \(\delta \) oraz stopy wzrostu liczby pracujących \(n \), zatem również położenie długookresowych ścieżek wzrostu wydajności pracy \(y \) i technicznego uzbrojenia pracy \(k \) zdeterminowane jest przez wartości \(\rho, \sigma, \delta \) oraz \(n \).
- Logarytmy naturalne z \(\tilde{y}^* \) i \(\tilde{k}^* \) dane są wzorami:
 \[\ln(\tilde{y}^*) = \frac{\alpha}{1-\alpha} \ln\left(\frac{\alpha}{\rho + \delta + n + \sigma g}\right) \quad (10.34a) \]
 oraz:
 \[\ln(\tilde{k}^*) = \frac{1}{1-\alpha} \ln\left(\frac{\alpha}{\rho + \delta + n + \sigma g}\right). \quad (10.34b) \]
- Różniczkując równania (10.34ab) względem stopy dyskontowej \(\rho \) typowego konsumenta, okazuje się, że:
 \[\frac{\partial[\ln(\tilde{y}^*)]}{\partial \rho} = \frac{\partial}{\partial \rho} \left(\frac{\alpha}{1-\alpha} \ln\left(\frac{\alpha}{\rho + \delta + n + \sigma g}\right)\right) = \frac{\alpha}{1-\alpha} \frac{\partial}{\partial \rho} \left(\ln(\alpha) - \ln(\rho + \delta + n + \sigma g)\right) = \]
\[
\frac{\partial}{\partial \rho} \left(-\ln(\rho + \delta + n + \sigma g) \right) = \frac{-\alpha}{(1 - \alpha)(\rho + \delta + n + \sigma g)} < 0
\]
oraz (analogicznie):
\[
\frac{\partial}{\partial \rho} \left(\ln(k^*) \right) = \frac{-1}{(1 - \alpha)(\rho + \delta + n + \sigma g)} < 0.
\]

Wynika stąd, iż im wyższa jest stopa dyskontowa typowego konsumenta, tym niższe wartości przyjmują \(\tilde{y}^* \) oraz \(\tilde{k}^* \) i niżej położone są długookresowe ścieżki wzrostu wydajności pracy i technicznego uzbrojenia pracy w równowadze Ramseya.

- Podobnie, stąd, że:
\[
\frac{\partial}{\partial \sigma} \left(\ln(\tilde{y}^*) \right) = \frac{\alpha g}{(1 - \alpha)(\rho + \delta + n + \sigma g)} < 0,
\]
\[
\frac{\partial}{\partial \delta} \left(\ln(\tilde{y}^*) \right) = \frac{-\alpha}{(1 - \alpha)(\rho + \delta + n + \sigma g)} < 0,
\]
\[
\frac{\partial}{\partial n} \left(\ln(\tilde{y}^*) \right) = \frac{-\alpha}{(1 - \alpha)(\rho + \delta + n + \sigma g)} < 0,
\]
\[
\frac{\partial}{\partial \sigma} \left(\ln(\tilde{k}^*) \right) = \frac{g}{(1 - \alpha)(\rho + \delta + n + \sigma g)} < 0,
\]
\[
\frac{\partial}{\partial \delta} \left(\ln(\tilde{k}^*) \right) = \frac{-1}{(1 - \alpha)(\rho + \delta + n + \sigma g)} < 0,
\]
oraz:
\[
\frac{\partial}{\partial n} \left(\ln(\tilde{k}^*) \right) = \frac{-1}{(1 - \alpha)(\rho + \delta + n + \sigma g)} < 0,
\]

wynika, iż wysokiej odwrotności międzyokresowej substytucji konsumpcji \(\sigma \) typowego konsumenta w gospodarce Ramseya i/lub wysokiej stopie deprecjacji kapitału \(\delta \) oraz wysokiej stopie wzrostu liczby pracujących \(n \) odpowiadają nisko położone ścieżki wzrostu wydajności pracy i technicznego uzbrojenia pracy w równowadze Ramseya.

Z funkcji produkcji (10.1) wynika, iż krańcowy produkt pracy \(\frac{\partial Y}{\partial L} \) można zapisać jako:

\[
\forall t \in [0;+\infty) \quad \frac{\partial Y(t)}{\partial L(t)} = \frac{\partial}{\partial L(t)} \left[(K(t))^a (\Lambda(t)L(t))^{1-a} \right] = (1-\alpha)(K(t))^a (\Lambda(t))^{1-a} (L(t))^{-a} = (1-\alpha)\frac{Y(t)}{L(t)},
\]
czyli:

\[\forall t \in [0;+\infty) \quad \frac{\partial Y(t)}{\partial L(t)} = (1 - \alpha)y(t). \] (10.35)

Z równania (10.35) oraz z warunku (10.4) wynika, że płace realne w określone są przez równanie:

\[\forall t \in [0;+\infty) \quad w(t) = (1 - \alpha)y(t). \]

Logarytmując stronami powyższe równanie, okazuje się, iż:

\[\forall t \in [0;+\infty) \quad \ln(w(t)) = \ln(1 - \alpha) + \ln(y(t)). \]

Różniczkując zaś powyższy związek względem czasu \(t \in [0;+\infty) \), dochodzimy do zależności:

\[\forall t \in [0;+\infty) \quad \frac{\dot{w}(t)}{w(t)} = \frac{\dot{y}(t)}{y(t)}. \] (10.36)

Z równania (10.36) wyciągnąć można dwa następujące wnioski. Po pierwsze, w każdym momencie \(t \in [0;+\infty) \) stopa wzrostu płac realnych \(\frac{\dot{w}}{w} \) równa jest stopie wzrostu wydajności pracy \(\frac{\dot{y}}{y} \). Po drugie, jeśli w długim okresie (przy \(t \to +\infty \)) w równowadze Ramseya stopa wzrostu wydajności pracy \(\frac{\dot{y}}{y} \) dąży do stopy harrodiańskiego postępu technicznego \(g \), to również \(\frac{\dot{w}(t)}{w(t)} \to_{t \to +\infty} g \).

Korzystając z równania (10.1), krańcowy produkt kapitału \(\frac{\partial Y}{\partial K} \) można zapisać następująco:

\[\forall t \in [0;+\infty) \quad \frac{\partial Y(t)}{\partial K(t)} = \frac{\partial}{\partial K(t)} \left[(K(t))^a (\Lambda(t)L(t))^{1-a} \right] = \alpha(K(t))^{a-1} (\Lambda(t)L(t))^{1-a} = \alpha \left(\frac{K(t)}{\Lambda(t)L(t)} \right)^{a-1}, \]

lub, po uwzględnieniu tożsamości \(\tilde{k} = \frac{K}{\Lambda L} \):

\[\forall t \in [0;+\infty) \quad \frac{\partial Y(t)}{\partial K(t)} = \alpha\tilde{k}^{a-1}. \] (10.37)

Z równań (10.37) oraz (10.5) wynika, iż realna stopa procentowa w modelu Ramseya dana jest wzorem:

\[\forall t \in [0;+\infty) \quad r(t) = \alpha\tilde{k}^{a-1} - \delta. \] (10.38)
Wstawiając $\alpha \kappa^{\alpha-1}$ z równania (10.26) do związku (10.38), otrzymujemy:

$$\forall t \in [0;+\infty) \quad r(t) = \rho + n + \sigma g + \frac{\dot{c}(t)}{c(t)} = \rho + n + \sigma \left(g + \frac{\dot{c}(t)}{c(t)} \right)$$

lub, po uwzględnieniu tego, że $\frac{\dot{c}}{c} = g + \frac{\dot{c}}{c}$, mamy:

$$\forall t \in [0;+\infty) \quad r(t) = \rho + n + \sigma \frac{\dot{c}(t)}{c(t)}. \quad (10.39)$$

Z równania (10.39) płyną następujące wnioski dotyczące kształtowania się realnej stopy procentowej w analizowanym tu modelu wzrostu gospodarczego:

- Realna stopa procentowa r jest tym wyższa, im wyższa jest stopa dyskontowa ρ typowego konsumenta, stopa wzrostu liczby pracujących n oraz stopa wzrostu konsumpcji na pracującego $\frac{\dot{c}}{c}$.

- Jeśli stopa wzrostu konsumpcji na pracującego jest dodatnia (ujemna), to realna stopa procentowa jest tym wyższa, im wyższa (niższa) jest odwrotność międzyokresowej substytucji σ typowego konsumenta.

- Jeżeli istnieje długookresowa równowaga Ramseya, to $\frac{\dot{c}(t)}{c(t)} \overset{t \to +\infty}{\rightarrow} g$ i długookresowa realna stopa procentowa $r^* = \lim_{t \to +\infty} r(t)$ kształtuję się na poziomie równym $\rho + n + \sigma g$. Płynie stąd wniosek, że długookresowa realna stopa procentowa w równowadze Ramseya jest wyższa od stopy dyskontowej typowego konsumenta w rozważanej tu gospodarce. Stopa ta jest również tym wyższa, im wyższe są: stopa wzrostu liczby pracujących, odwrotność międzyokresowej substytucji konsumpcji oraz stopa harrodiańskiego postępu technicznego.

10.3. MODEL LUCASA

Innym modelem optymalnego sterowania jest model wzrostu endogenicznego Lucasa. W modelu tym czyni się następujące założenia:

1. Typowy, zachowujący się racjonalnie konsument maksymalizuje sumę zdyskontowanej użyteczności konsumpcji na pracującego w nieskończonym horyzoncie czasowym. Suma ta opisana jest przez następującą całkę preferencji:

$$\int_{0}^{+\infty} \frac{(c(t))^{\alpha-1}}{(1-\sigma)(1-\rho)} e^{-\rho t} dt, \quad (10.40)$$

gdzie $c = \frac{C}{L}$ jest konsumpcją na pracującego, zaś parametry $\rho > 0$ i $\sigma \in (0;1) \cup (1;+\infty)$ interpretuje się tak, jak ma to miejsce w modelu wzrostu gospodarczego Ramseya.

2. Makroekonomiczna funkcja produkcji opisana jest przez związek:
\[\forall t \in [0;+\infty) \quad Y(t) = (h(t))^{\beta}(K(t))^{\alpha} \left[\Xi(t)h(t)L(t) \right]^{1-\alpha}, \quad (10.41) \]

gdzie \(\alpha \) i \(1-\alpha \in (0;1) \) są elastycznościami strumienia produktu \(Y \) względem nakładów kapitału rzeczowego \(K \) i nakładów pracy w sferze produkcji \(\Xi h L \), \(\Xi \in (0;1) \) to udział czasu przeznaczonego na pracę, który kierowany jest do pracy w sferze produkcji dóbr i usług (natomiast udział czasu \(1-\Xi \) kierowany jest na akumulację kapitału ludzkiego), zaś \(h \) jest zasobem kapitału ludzkiego w gospodarce. Parametr \(\beta \in (0;1) \) mierzy siłę oddziaływania tzw. efektów zewnętrznych akumulacji kapitału ludzkiego.

3. Przyrost zasobu kapitału rzeczowego \(K \) opisany jest przez następujące równanie różniczkowe:

\[\forall t \in [0;+\infty) \quad \dot{K}(t) = I(t) - \delta K(t) = Y(t) - C(t) - \delta K(t), \]

które interpretuje się ekonomicznie tak, jak równanie (10.7) w modelu wzrostu Ramseya. Stąd zaś oraz z funkcji produkcji (10.41) i równości \(C = cL \) uzyskujemy związek:

\[\forall t \in [0;+\infty) \quad \dot{K}(t) = (h(t))^{\beta}(K(t))^{\alpha} \left[\Xi(t)h(t)L(t) \right]^{1-\alpha} - c(t)L(t) - \delta K(t). \quad (10.42) \]

4. Przyrost zasobu kapitału ludzkiego opisany jest przez funkcję akumulacji kapitału ludzkiego Uzawy-Rosena daną wzorem:

\[\forall t \in [0;+\infty) \quad \dot{h}(t) = \kappa [1-\Xi(t)] h(t), \quad (10.43) \]

gdzie \(\kappa > 0 \) jest maksymalną, możliwą do uzyskania stopą wzrostu zasobu kapitału ludzkiego. Innymi słowy, \(\kappa \) jest stopą wzrostu kapitału ludzkiego \(\frac{\dot{h}}{h} \), która wystąpiła-by wówczas, gdyby cały dostępny zasób czasu przeznaczony był na akumulację kapitału ludzkiego (a więc gdyby \(\Xi = 0 \)). Wynika to stąd, że:

\[\forall t \in [0;+\infty) \quad \Xi(t) = 0 \Rightarrow \dot{h}(t) = \kappa h(t) \Rightarrow \frac{\dot{h}(t)}{h(t)} = \kappa. \]

5. Liczba pracujących \(L \) rośnie według egzogenicznej stopy wzrostu \(n > 0 \), co można zapisać następująco:

\[\forall t \in [0;+\infty) \quad \frac{\dot{L}(t)}{L(t)} = n. \quad (10.44) \]

6. Wyjściowe zasoby kapitału rzeczowego \(K \), kapitału ludzkiego \(h \) i pracy \(L \) ukształtowały się na poziomach \(K(0) = K_0 > 0 \), \(h(0) = h_0 > 0 \) oraz \(L(0) = L_0 > 0 \).

\[^8 \] O ile zasób \(H \) w modelu Mankiwa-Romera-Weila należy interpretować jako łączny zasób kapitału ludzkiego w gospodarce, o tyle zasób \(h \) w modelu wzrostu gospodarczego Lucasa jest przeciwnym zasobem owego kapitału przypadającym na jednego pracującego. Wynika to stąd, iż zasób \(h \) w modelu wzrostu Lucasa definiowany jest przez niego jako „ogólny poziom umiejętności, który oznacza, że pracownik charakteryzujący się kapitałem ludzkim \(h(t) \) jest tak samo wydajny jak dwóch pracowników o kapitale ludzkim \(\frac{1}{2}h(t) \) każdy lub jest dwa razy mniej produktywny od pracownika o kapitale ludzkim \(2h(t) \)” (Lucas, 1988: 17).
Problem wyznaczenia optymalnej ścieżki czasowej konsumpcji na pracującego ci udziału czasu przeznaczonego na pracę w sferze produkcji Ξ można formalnie zapisać jako następujące zadanie sterowania optymalnego:

$$\max_{c(t), \Xi(t)} \int_0^{+\infty} \left(\frac{c(t)^{1-\alpha} - 1}{1-\sigma} - e^{-\rho t} dt \right)$$

$$K(t) = (K(t))^\alpha [\Xi(t) \cdot L(t)]^{1-\alpha} (h(t))^{1-\alpha + \beta} - c(t)L(t) - \delta K(t)$$

$$\dot{h}(t) = \kappa [1 - \Xi(t)] h(t)$$

$$K(0) = K_0 \land h(0) = h_0 \land L(0) = L_0$$

przy czym $c(t) \geq 0$ i $\Xi(t) \in (0;1)$ w każdym momencie $t \in [0;+\infty)$. Całkę niewłaściwą

$$\int_0^{+\infty} \left(\frac{c(t)^{1-\alpha} - 1}{1-\sigma} - e^{-\rho t} dt \right)$$

opisującą sumę zdyskontowanej użyteczności konsumpcji w nieskończonym horyzoncie czasowym, maksymalizuje się ze względu na ścieżki czasowe $c(t)$ i $\Xi(t)$ dlatego, że im wyższy jest udział czasu przeznaczonego na działalność produkcyjną (czyli Ξ), tym wyższy jest poziom bieżącej produkcji Y i $(ceteris paribus)$ inwestycje w kapitał rzeczowy oraz produkcja. Pamiętać jednak należy o tym, że wysoki udział czasu przeznaczonego na działalność bezpośrednio produkcyjną przekłada się na niski udział czasu przeznaczonego na akumulację kapitału ludzkiego $(1-\Xi)$ i niską stopę wzrostu $\frac{h}{h}$ owej zmiennej makroekonomicznej. To zaś ogranicza przy-
szą produkcję oraz, jeśli założy się stały udział konsumpcji w produkcji, inwestycje i produkcję. Z drugiej zaś strony, im wyższy jest bieżący udział konsumpcji w produkcji, tym wyższa jest bieżąca konsumpcja i niższe są inwestycje w kapitał rzeczowy. Wspomniane niskie inwestycje determinują zaś proces akumulacji kapitału rzeczowego, co przekłada się na obniżenie przyszłych możliwości produkcyjnych i konsumcyjnych gospodarki Lucasa. Ponieważ analizowany w modelu wzrostu gospodarczego Lucasa typowy konsument zachowuje się racjonalnie, zatem jednocześnie wybiera takie ścieżki czasowe $c(t)$ i $\Xi(t)$, które maksymalizują jego sumę zdyskontowanej użyteczności konsumpcji opisaną przez całkę niewłaściwą

$$\int_0^{+\infty} \left(\frac{c(t)^{1-\alpha} - 1}{1-\sigma} - e^{-\rho t} dt \right).$$

Bieżący hamiltonian \tilde{H} dla zadania sterowania optymalnego (10.45) dany jest wzro-
mem:

$$\forall t \in [0;+\infty) \quad \tilde{H}(K(t), h(t), c(t), \Xi(t), \lambda_K(t), \lambda_h(t), t) = \frac{(c(t))^{1-\alpha} - 1}{1-\sigma} +$$

$$+ \lambda_K(t) [(K(t))^\alpha [\Xi(t) \cdot L(t)]^{1-\alpha} (h(t))^{1-\alpha + \beta} - c(t)L(t) - \delta K(t)] +$$

$$+ \lambda_h(t) [1 - \Xi(t)] h(t),$$

gде λ_K i λ_h to mnożniki Lagrange'a hamiltonianu (10.46). O mnożnikach tych zakła-
damy, iż są różniczkowalne względem czasu $t \in [0;+\infty)$.
Warunki konieczne istnienia niebrzegowego maksimum Pontriagina (10.45) określone są przez związki:

\[
\forall t \in [0;+\infty) \quad \frac{\partial \hat{H}(t)}{\partial c(t)} = 0 ,
\]

(10.47a)

\[
\forall t \in [0;+\infty) \quad \frac{\partial \hat{H}(t)}{\partial \Xi(t)} = 0 ,
\]

(10.47b)

\[
\forall t \in [0;+\infty) \quad -\frac{\partial \hat{H}(t)}{\partial K(t)} + \rho \lambda_K(t) = \dot{\lambda}_K(t) ,
\]

(10.47c)

\[
\forall t \in [0;+\infty) \quad -\frac{\partial \hat{H}(t)}{\partial h(t)} + \rho \lambda_h(t) = \dot{\lambda}_h(t) ,
\]

(10.47d)

\[
\forall t \in [0;+\infty) \quad \frac{\partial \hat{H}(t)}{\partial \lambda_K(t)} = \dot{K}(t) ,
\]

(10.47e)

\[
\forall t \in [0;+\infty) \quad \frac{\partial \hat{H}(t)}{\partial \lambda_h(t)} = \dot{h}(t) ,
\]

(10.47f)

oraz warunki transwersalności:

\[
\lim_{t \to +\infty} (\lambda_K(t)e^{-\rho t}) = 0 ,
\]

(10.47g)

\[
\lim_{t \to +\infty} (\lambda_h(t)e^{-\rho t}) = 0 .
\]

(10.47h)

Różniczkując bieżący hamiltonian \(\hat{H} \) (10.46) względem \(c, \Xi, K, h, \lambda_K \) oraz \(\lambda_h \), okaże się, że:

\[
\frac{\partial \hat{H}}{\partial c} = \frac{\partial}{\partial c} \left(\frac{c^{1-\sigma}-1}{1-\sigma} + \lambda_K \left[K^a(\Xi L)^{1-a} h^{1-a+\beta} - c L - \delta K \right] + \lambda_h \kappa [1-\Xi] h \right) =
\]

\[
= \frac{\partial}{\partial c} \left(\frac{c^{1-\sigma}-1}{1-\sigma} \right) + \frac{\partial}{\partial c} \left(\lambda_K \left[K^a(\Xi L)^{1-a} h^{1-a+\beta} - c L - \delta K \right] \right) + \frac{\partial}{\partial c} \left(\lambda_h \kappa [1-\Xi] h \right) = \frac{(1-\sigma)c^{\sigma}}{1-\sigma} - \lambda_K L ,
\]

czyli:

\[
\frac{\partial \hat{H}}{\partial c} = c^{-\sigma} - \lambda_K L ,
\]

(10.48a)

\[
\frac{\partial \hat{H}}{\partial \Xi} = \frac{\partial}{\partial \Xi} \left(\frac{c^{1-\sigma}-1}{1-\sigma} + \lambda_K \left[K^a(\Xi L)^{1-a} h^{1-a+\beta} - c L - \delta K \right] + \lambda_h \kappa [1-\Xi] h \right) =
\]

\[
= \frac{\partial}{\partial \Xi} \left(\lambda_K \left[K^a(\Xi L)^{1-a} h^{1-a+\beta} - c L - \delta K \right] \right) + \frac{\partial}{\partial \Xi} \left(\lambda_h \kappa [1-\Xi] h \right) =
\]
\[(1 - \alpha) \lambda K^a \Xi^{-a} L^{1-\alpha} h^{1-\alpha + \beta} - \lambda_h kh,\]
a więc:
\[
\frac{\partial \tilde{H}}{\partial \Xi} = (1 - \alpha) \lambda K^a \Xi^{-a} L^{1-\alpha} - \lambda_h kh, \quad (10.48b)
\]
\[
\frac{\partial \tilde{H}}{\partial K} = \frac{\partial}{\partial K} \left(\frac{c^{l-a} - 1}{1 - \sigma} + \lambda_K \left[K^a (\Xi l)^{-a} h^{1-\alpha + \beta} - cL - \delta K \right] + \lambda_h \kappa [1 - \Xi] h \right) =
\]
\[
= \frac{\partial}{\partial K} \left[\lambda_K \left(\alpha K^{a-1} (\Xi L)^{-a} h^{1-\alpha + \beta} - \delta \right) \right] = \lambda_K \left(\alpha K^{a-1} (\Xi L)^{-a} h^{1-\alpha + \beta} - \delta \right),
\]
czyli:
\[
\frac{\partial \tilde{H}}{\partial K} = \lambda_K \left(\alpha K^{a-1} (\Xi L)^{-a} h^{1-\alpha + \beta} - \delta \right), \quad (10.48c)
\]
\[
\frac{\partial \tilde{H}}{\partial h} = \frac{\partial}{\partial h} \left(\frac{c^{l-a} - 1}{1 - \sigma} + \lambda_K \left[K^a (\Xi L)^{-a} h^{1-\alpha + \beta} - cL - \delta K \right] + \lambda_h \kappa [1 - \Xi] h \right) =
\]
\[
= \frac{\partial}{\partial h} \left(\lambda_K \left[K^a (\Xi L)^{-a} h^{1-\alpha + \beta} - cL - \delta K \right] \right) = \lambda_h \kappa [1 - \Xi] h =
\]
\[
= (1 - \alpha + \beta) \lambda K^a \Xi^{-a} L^{1-\alpha} h^{1-\alpha + \beta} + \lambda_h \kappa [1 - \Xi], \quad (10.48d)
\]
a zatem:
\[
\frac{\partial \tilde{H}}{\partial h} = (1 - \alpha + \beta) \lambda K^a (\Xi L)^{-a} h^{1-\alpha + \beta} + \lambda_h \kappa [1 - \Xi], \quad (10.48d)
\]
\[
\frac{\partial \tilde{H}}{\partial \lambda_K} = \frac{\partial}{\partial \lambda_K} \left(\frac{c^{l-a} - 1}{1 - \sigma} + \lambda_K \left[K^a (\Xi L)^{-a} h^{1-\alpha + \beta} - cL - \delta K \right] + \lambda_h \kappa [1 - \Xi] h \right) =
\]
\[
= \frac{\partial}{\partial \lambda_K} \left(\lambda_K \left[K^a (\Xi L)^{-a} h^{1-\alpha + \beta} - cL - \delta K \right] \right),
\]
czyli:
\[
\frac{\partial \tilde{H}}{\partial \lambda_K} = K^a (\Xi L)^{-a} h^{1-\alpha + \beta} - cL - \delta K \quad (10.48e)
\]
oraz:
\[
\frac{\partial \tilde{H}}{\partial \lambda_h} = \frac{\partial}{\partial \lambda_h} \left(\frac{c^{l-a} - 1}{1 - \sigma} + \lambda_K \left[K^a (\Xi L)^{-a} h^{1-\alpha + \beta} - cL - \delta K \right] + \lambda_h \kappa [1 - \Xi] h \right) =
\]
\[
= \frac{\partial}{\partial \lambda_h} \left(\lambda_h \kappa [1 - \Xi] h \right),
\]
a stąd:
\[
\frac{\partial \tilde{H}}{\partial \lambda_h} = \kappa [1 - \Xi] h. \quad (10.48f)
\]
Z równań (10.47abcdef) oraz (10.48abcdef) wynika, iż warunki konieczne istnienia niebrzegowego maksimum Pontriagina (10.45) sprowadzają się do spełnienia następującego układu równań (w każdym momencie $t \in [0;+\infty)$):

$$
\begin{align*}
(c(t))^\sigma - \lambda_K (t)L(t) &= 0,
(1 - \alpha)\lambda_K (t)(K(t))^a (\Xi(t))^{-\alpha} L(t)(h(t))^{1-\alpha} L(t) - \alpha \lambda_h (t)h(t) = 0
- \lambda_K (t)\alpha(K(t))^{\alpha - 1} (\Xi(t) L(t))^{\alpha - \alpha} (h(t))^{1-\alpha} L(t) - \alpha \lambda_h (t)h(t) = 0
- (1 - \alpha + \beta)\lambda_K (t)(K(t))^a (\Xi(t)L(t))^{\alpha - \alpha} (h(t))^{1-\alpha} L(t) - \alpha \lambda_h (t)h(t) = 0
- \lambda_K (t)(1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_K (t)
- \lambda_K (t)(1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_h (t)
- \lambda_K (t)(1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_K (t)
- \lambda_K (t)(1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_h (t)
- \lambda_K (t)(1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_K (t)
- \lambda_K (t)(1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_h (t)
\end{align*}
$$

oraz wynika, iż warunki konieczne istnienia niebrzegowego maksimum Pontriagina (10.45) sprowadzają się do spełnienia następującego układu równań (w każdym momencie $t \in [0;+\infty)$):

$$
\begin{align*}
(c(t))^\sigma - \lambda_K (t)L(t) &= 0,
(1 - \alpha)\lambda_K (t)(K(t))^a (\Xi(t))^{-\alpha} L(t)(h(t))^{1-\alpha} L(t) - \alpha \lambda_h (t)h(t) = 0
- \lambda_K (t)\alpha(K(t))^{\alpha - 1} (\Xi(t) L(t))^{\alpha - \alpha} (h(t))^{1-\alpha} L(t) - \alpha \lambda_h (t)h(t) = 0
- (1 - \alpha + \beta)\lambda_K (t)(K(t))^a (\Xi(t)L(t))^{\alpha - \alpha} (h(t))^{1-\alpha} L(t) - \alpha \lambda_h (t)h(t) = 0
- \lambda_K (t)(1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_K (t)
- \lambda_K (t)(1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_h (t)
\end{align*}
$$

a stąd:

$$
\begin{align*}
(c(t))^\sigma &= \lambda_K (t)L(t)
(1 - \alpha)\lambda_K (t)(K(t))^a (\Xi(t))^{-\alpha} L(t)(h(t))^{1-\alpha} L(t) - \alpha \lambda_h (t)h(t) = \kappa \lambda_h (t)h(t)
- \alpha \lambda_K (t)(K(t))^a (\Xi(t))^\alpha - \alpha L(t)(h(t))^{1-\alpha} L(t) + (\rho + \delta) \lambda_K (t) = \hat{\lambda}_K (t)
- (1 - \alpha + \beta)\lambda_K (t)(K(t))^a (\Xi(t)L(t))^{\alpha - \alpha} (h(t))^{1-\alpha} L(t) - \alpha \lambda_h (t)h(t) = \kappa (1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_h (t)
- \lambda_K (t)(1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_K (t)
- \lambda_K (t)(1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_h (t)
\end{align*}
$$

lub, po uwzględnieniu tożsamości $k = \frac{K}{L}$, gdzie k to techniczne uzbrojenie pracy:

$$
\begin{align*}
(c(t))^\sigma &= \lambda_K (t)L(t)
(1 - \alpha)\lambda_K (t)(k(t))^a (\Xi(t))^{-\alpha} L(t) = \kappa \lambda_h (t)(h(t))^{2-\beta}
- \alpha \lambda_K (t)(k(t))^a (\Xi(t))^\alpha - \alpha L(t)(h(t))^{1-\alpha} L(t) + (\rho + \delta) \lambda_K (t) = \hat{\lambda}_K (t)
- (1 - \alpha + \beta)\lambda_K (t)(k(t))^a (\Xi(t)L(t))^{\alpha - \alpha} (h(t))^{1-\alpha} L(t) - \alpha \lambda_h (t)h(t) = \kappa (1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_h (t)
- \lambda_K (t)(1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_K (t)
- \lambda_K (t)(1 - \Xi(t)) + \rho \lambda_h (t) = \hat{\lambda}_h (t)
\end{align*}
$$

(10.49)

Ponieważ układ równań (10.49) jest układem sześciu równań (w tym czterech równań różniczkowych) z sześcioma niewiadomymi, zatem wyznaczenie jego ogólnego rozwiązania (o ile będzie istniało) może być skomplikowane matematycznie. Dlatego też w modelu wzrostu Lucasa czyni się dodatkowe założenia. Po pierwsze, zakłada się, iż racjonalny konsument dąży do tego, by stopy wzrostu strumienia produktu, strumienia konsumpcji oraz zasobu kapitału rzeczowego były sobie równe (implicite oznacza to tyle, że analizowany konsument dąży do tego, by udział konsumpcji w produkcji nie
ulegał zmianom w czasie). Po drugie, przyjmuje się założenie, że wydajność pracy \(y = \frac{Y}{L} \), konsumpcja na pracującego \(c \), techniczne uzbrojenie pracy \(k \) i kapitał ludzki \(h \) rosną według pewnych, stałych stóp wzrostu (oznaczanych jako \(\dot{y} = \frac{k}{k} = \frac{\dot{c}}{c} = g \) oraz \(\frac{\dot{h}}{h} = g_h \)). Po trzecie, zakłada się również, iż udział czasu przeznaczonego na pracę bezpośrednio produkcyjną \(\Xi \) jest stały w czasie. Powyższe dodatkowe założenia, przyjmowane w modelu wzrostu Lucasa, można formalnie zapisać następująco:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{y}(t)}{y(t)} = \frac{k(t)}{k(t)} = \frac{\dot{c}(t)}{c(t)} = g, \tag{10.50a}
\]

\[
\forall t \in [0;+\infty) \quad \frac{\dot{h}(t)}{h(t)} = g_h \tag{10.50b}
\]

oraz:

\[
\forall t \in [0;+\infty) \quad \Xi(t) = \Xi \in (0;1). \tag{10.50c}
\]

Dzieląc szóste z równań układu (10.49) przez \(h > 0 \), mamy:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{h}(t)}{h(t)} = \kappa[1 - \Xi(t)],
\]

a stąd oraz z zależności (10.50bc) otrzymujemy związek:

\[
g_h = \kappa(1 - \Xi). \tag{10.51}
\]

Z piątego z równań układu (10.49) wynika, że stopa wzrostu kapitału rzeczowego \(\frac{\dot{K}}{K} \) dana jest wzorem:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{K}(t)}{K(t)} = (K(t))^{a-1} (\Xi(t))^{1-a} (L(t))^{1-a} (h(t))^{1-a+\beta} - \frac{c(t)L(t)}{K(t)} - \delta,
\]

a stąd:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{K}(t)}{K(t)} = (K(t))^{a-1} (\Xi(t))^{1-a} (h(t))^{1-a+\beta} - \frac{c(t)}{K(t)/L(t)} - \delta
\]

lub, po uwzględnieniu tożsamości technicznego uzbrojenia pracy \(k = \frac{K}{L} \) i związku (10.50c):

\[
\forall t \in [0;+\infty) \quad \frac{\dot{K}(t)}{K(t)} = (k(t))^{a-1} \Xi^{1-a} (h(t))^{1-a+\beta} - \frac{c(t)}{k(t)} - \delta. \tag{10.52}
\]
Ponieważ \(K = kL \), zatem \(\frac{\dot{K}}{K} = \frac{\dot{k}}{k} + \frac{\dot{L}}{L} \) lub (po uwzględnieniu tego, że techniczne uzbrojenie pracy i liczba pracujących rosną według stop wzrostu równych \(g \) i \(n \)) mamy:

\[
\frac{\dot{K}}{K} = g + n.
\]

Stąd oraz z równania (10.52) wynika, iż zachodzi związek:

\[
\forall t \in [0;+\infty) \quad g + n = (k(t))^{a-1} \Xi^{\frac{1-a}{n}} (h(t))^{1-a+\beta} \frac{c(t)}{k(t)} - \delta,
\]

który można zapisać również następująco:

\[
\forall t \in [0;+\infty) \quad g + n + \delta + \frac{c(t)}{k(t)} = (k(t))^{a-1} \Xi^{\frac{1-a}{n}} (h(t))^{1-a+\beta}. \quad (10.53)
\]

Ponieważ dla każdego \(k > 0 \) i \(h > 0 \) prawa strona równania (10.53) jest dodatnia, zatem również lewa strona owego równania musi być dodatnia. Wynika stąd, iż równanie to można zlogarytmować stronami logaryfmem naturalnym i zapisać jako:

\[
\forall t \in [0;+\infty) \quad \ln \left(g + n + \delta + \frac{c(t)}{k(t)} \right) = -(1-\alpha)\ln(k(t)) + (1-\alpha)\ln(\Xi) + (1-\alpha+\beta)\ln(h(t)).
\]

Różniczkując powyższy związek względem czasu \(t \in [0;+\infty) \), uzyskujemy:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{c}(t)k(t) - c(t)\dot{k}(t)}{(k(t))^2} = -(1-\alpha)\frac{\dot{k}(t)}{k(t)} + (1-\alpha+\beta)\frac{\dot{h}(t)}{h(t)},
\]

co implikuje zależność:

\[
\forall t \in [0;+\infty) \quad -(1-\alpha)\frac{\dot{k}(t)}{k(t)} + (1-\alpha+\beta)\frac{\dot{h}(t)}{h(t)} = \frac{\dot{c}(t)}{k(t)} \frac{c(t)}{k(t)} \frac{\dot{k}(t)}{k(t)} = \frac{c(t)}{k(t)} \frac{\dot{c}(t)}{c(t)} \frac{\dot{k}(t)}{k(t)} = \frac{c(t)}{k(t)} \frac{\dot{c}(t)}{c(t)} \frac{\dot{k}(t)}{k(t)} \frac{c(t)}{k(t)} \frac{\dot{k}(t)}{k(t)}
\]

lub, po uwzględnieniu związku (10.50ab):
\[\forall t \in [0;+\infty) \quad -(1-\alpha)g + (1-\alpha+\beta)g_h = \frac{c(t)}{k(t)}(g-g) \]

a więc:

\[-(1-\alpha)g + (1-\alpha+\beta)g_h = 0. \quad (10.54) \]

Z równania (10.54) wynika, że spełniony jest związek:

\[(1-\alpha+\beta)g_h = (1-\alpha)g, \]

a stąd:

\[g_h = \frac{1-\alpha}{1-\alpha+\beta} g. \quad (10.55) \]

Związek (10.55) prowadzi do wniosku, że jeśli stopa wzrostu technicznego uzbrojenia pracy \(\frac{\dot{k}}{k} = g \) w gospodarce Lucasa jest dodatnia, to stopa wzrostu kapitału ludzkiego na pracującego \(\frac{\dot{h}}{h} = g_h \) jest niższa od stopy wzrostu technicznego uzbrojenia pracy (gdzie przy \(\alpha, \beta \in (0;1) \frac{1-\alpha}{1-\alpha+\beta} < 1 \)). Wniosek ten zasadniczo różni model wzrostu gospodarczego Lucasa od analizowanego w poprzednich rozdziałach modelu Mankiw-Romera-Weila, w którym w długim okresie techniczne uzbrojenie pracy i kapitał ludzki na pracującego rosły według tych samych stóp wzrostu (równych stopień harrodianńskiego postępu technicznego).

Logarytmując stronami pierwsze z równań układu (10.49), otrzymujemy zależność:

\[\forall t \in [0;+\infty) \quad -\sigma \ln\left(c(t)\right) = \ln\left(\lambda_K(t)\right) + \ln\left(L(t)\right), \]

a stąd, po zróżniczkowaniu powyższego związku względem czasu \(t \in [0;+\infty) \), mamy:

\[\forall t \in [0;+\infty) \quad -\sigma \frac{\dot{c}(t)}{c(t)} = \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} + \frac{\dot{L}(t)}{L(t)} \]

lub, po uwzględnieniu tego, że \(\frac{\dot{c}}{c} = g \) i \(\frac{\dot{L}}{L} = n \):

\[\forall t \in [0;+\infty) \quad -\sigma g = \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} + n, \]

co można zapisać także wzorem\(^9\):

\(^9\) Całkując równanie (10.56) względem czasu \(t \in [0;+\infty) \), otrzymujemy:

\[\forall t \in [0;+\infty) \quad \int \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} \dot{t} = -\int \left(\sigma g + n\right) \dot{t}, \]
\begin{align*}
\forall t \in [0; +\infty) \quad \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} &= -(\sigma g + n). \quad (10.56) \\

Z drugiego z równań układu (10.49) dochodzimy do związku:
\begin{align*}
\forall t \in [0; +\infty) \quad \frac{\lambda_K(t)}{\lambda_h(t)} &= \frac{\kappa (k(t))^{-\alpha} (h(t))^{\alpha-\beta} (\Xi(t))^{\alpha}}{(1-\alpha)L(t)} \\

lub, po uwzględnieniu zależności (10.50c), otrzymujemy:
\begin{align*}
\forall t \in [0; +\infty) \quad \frac{\lambda_K(t)}{\lambda_h(t)} &= \frac{\kappa (k(t))^{-\alpha} (h(t))^{\alpha-\beta} (\Xi(t))^{\alpha}}{(1-\alpha)L(t)}. \quad (10.57) \\

Logarytmując stronami zależność (10.57), uzyskujemy związek:
\begin{align*}
\forall t \in [0; +\infty) \quad \ln(\lambda_K(t)) - \ln(\lambda_h(t)) &= \ln \left(\frac{\kappa (k(t))^{-\alpha} (h(t))^{\alpha-\beta} (\Xi(t))^{\alpha}}{(1-\alpha)L(t)} \right) - \alpha \ln(k(t)) + (\alpha - \beta) \ln(h(t)) - \ln(L(t)),
\end{align*}
która, po zróżniczkowaniu względem czasu \(t \in [0; +\infty) \), możemy zapisać następująco:
\begin{align*}
\forall t \in [0; +\infty) \quad \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} - \frac{\dot{\lambda}_h(t)}{\lambda_h(t)} &= -\alpha \frac{\dot{k}(t)}{k(t)} + (\alpha - \beta) \frac{\dot{h}(t)}{h(t)} - \frac{\dot{L}(t)}{L(t)}.
\end{align*}

Wstawiając do powyższego równania związki (10.44), (10.50ab) i (10.56), otrzymujemy zależność:
\begin{align*}
\forall t \in [0; +\infty) \quad -(\sigma g + n) - \frac{\dot{\lambda}_h(t)}{\lambda_h(t)} &= -\alpha g + (\alpha - \beta) g_n - n,
\end{align*}
a stąd:
\begin{align*}
\forall t \in [0; +\infty) \quad \frac{\dot{\lambda}_h(t)}{\lambda_h(t)} &= (\alpha - \sigma) g - (\alpha - \beta) g_h. \quad (10.58)
\end{align*}

Czwarte z równań układu (10.49) prowadzi do zależności:
\begin{align*}
\forall t \in [0; +\infty) \quad \frac{\dot{\lambda}_h(t)}{\lambda_h(t)} &= -(1 - \alpha + \beta) \frac{\lambda_K(t)}{\lambda_h(t)} (k(t))^{\alpha} (\Xi(t))^{1-\alpha} L(t)(h(t))^{-\alpha+\beta} - \kappa [1 - \Xi(t)] + \rho
\end{align*}
a stąd:
\begin{align*}
\forall t \in [0; +\infty) \quad \ln |\lambda_K(t)| &= -(\sigma g + n) t + F,
\end{align*}
gdzie \(F \in \mathbb{R} \) jest stałą całkowania. Z powyższego związku wynika, iż mnożnik Lagrange’a \(\lambda_K \) można zapisać wzorem:
\begin{align*}
\forall t \in [0; +\infty) \quad \lambda_K(t) &= \pm e^{F-(\sigma g + n) t},
\end{align*}
co oznacza, iż:
\begin{align*}
\lim_{t \to +\infty} (\lambda_K(t) e^{-pt}) &= \pm \lim_{t \to +\infty} (e^{F-(\sigma g + n) t} e^{-pt}) = \pm \lim_{t \to +\infty} (e^{F-(\sigma g + n + p) t}) = 0,
\end{align*}
czyli spełniony jest warunek transwersalności (10.47g).
lub, po uwzględnieniu związku (10.50c):
\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_h(t)}{\lambda_h(t)} = -(1 - \alpha + \beta) \frac{\lambda_k(t)}{\lambda_h(t)} (k(t))^{\alpha} \tilde{\Xi}^{1-\alpha} L(t)(h(t))^{\alpha + \beta} - \kappa [1 - \tilde{\Xi}] + \rho. \quad (10.59)\]

Wstawiając do równania (10.59) iloraz mnożników Lagrange’a \(\frac{\lambda_k}{\lambda_h} \) z równania (10.57), uzyskujemy:
\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_h(t)}{\lambda_h(t)} = -(1 - \alpha + \beta) \frac{\kappa(k(t))^{-\alpha} (h(t))^{\alpha + \beta}}{(1 - \alpha)L(t)} (k(t))^{\alpha} \tilde{\Xi}^{1-\alpha} L(t)(h(t))^{\alpha + \beta} - \kappa [1 - \tilde{\Xi}] + \rho, \]

a stąd:
\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_h(t)}{\lambda_h(t)} = -\frac{(1 - \alpha + \beta)\kappa \tilde{\Xi}}{1 - \alpha} - \kappa [1 - \tilde{\Xi}] + \rho. \quad (10.60)\]

Z równań (10.58) i (10.60) wynika, iż zachodzi zależność:
\[(\alpha - \sigma)g - (\alpha - \beta)g_h = -\frac{(1 - \alpha + \beta)\kappa \tilde{\Xi}}{1 - \alpha} - \kappa [1 - \tilde{\Xi}] + \rho\]

lub, po uwzględnieniu równania (10.51):
\[(\alpha - \sigma)g - (\alpha - \beta)g_h = -\frac{(1 - \alpha + \beta)\kappa \tilde{\Xi}}{1 - \alpha} - g_h + \rho\]

bądź też:
\[(\alpha - \sigma)g + (1 - \alpha + \beta)g_h + \frac{(1 - \alpha + \beta)\kappa \tilde{\Xi}}{1 - \alpha} = \rho. \quad (10.61)\]

Zależności (10.51), (10.54) i (10.61) tworzą następujący liniowy układ równań (względem \(g_h, g_h \) i \(\tilde{\Xi} \)):
\[
\begin{align*}
g_h + \kappa \tilde{\Xi} &= \kappa \\
(1 - \alpha)g - (1 - \alpha + \beta)g_h &= 0 \\
(\alpha - \sigma)g + (1 - \alpha + \beta)g_h + \kappa \frac{1 - \alpha + \beta}{1 - \alpha} \tilde{\Xi} &= \rho
\end{align*}
\]
który można zapisać również macierzowo:
\[
\begin{bmatrix}
0 & 1 \\
1 - \alpha & -(1 - \alpha + \beta) \\
\alpha - \sigma & 1 - \alpha + \beta
\end{bmatrix}
\begin{bmatrix}
g \\
g_h \\
\tilde{\Xi}
\end{bmatrix}
= \begin{bmatrix}
\kappa \\
0 \\
\rho
\end{bmatrix}.
\quad (10.62)
\]
Układ równań (10.62) można rozwiązać, korzystając z metody wyznaczników Cramera. Kolejne wyznaczniki Cramera owego układu równań dane są wzorami:

\[
W = \begin{vmatrix}
1 & (1-\alpha + \beta) & \kappa \\
1-\alpha & -1 & 0 \\
-\alpha & 1 & \frac{1-\alpha + \beta}{1-\alpha}
\end{vmatrix} = (1-\alpha)(1-\alpha + \beta)\kappa + \kappa(1-\alpha + \beta)(\alpha - \sigma) + \\
-\kappa \frac{1-\alpha + \beta}{1-\alpha}(1-\alpha) = (1-\alpha + \beta)\kappa(1-\alpha + \alpha - \sigma) - \kappa(1-\alpha + \beta) = -\kappa(1-\alpha + \beta)(1-1+\sigma),
\]

czyli:

\[
W = -\sigma\kappa(1-\alpha + \beta) < 0, \quad (10.63a)
\]

\[
W_g = \begin{vmatrix}
\kappa & 1 & \kappa \\
0 & -(1-\alpha + \beta) & 0 \\
\rho & 1 & \frac{1-\alpha + \beta}{1-\alpha}
\end{vmatrix} = -\kappa^2 \frac{(1-\alpha + \beta)^2}{1-\alpha} + \kappa \rho(1-\alpha + \beta),
\]

a więc:

\[
W_g = \frac{\kappa(1-\alpha + \beta)[(1-\alpha)\rho - (1-\alpha + \beta)\kappa]}{1-\alpha}, \quad (10.63b)
\]

\[
W_{gh} = \begin{vmatrix}
0 & \kappa & \kappa \\
1-\alpha & 0 & 0 \\
-\alpha & \rho & \frac{1-\alpha + \beta}{1-\alpha}
\end{vmatrix} = (1-\alpha)\rho\kappa - \kappa \frac{1-\alpha + \beta}{1-\alpha} \kappa(1-\alpha) = (1-\alpha)\rho\kappa - (1-\alpha + \beta)\kappa^2,
\]

co implikuje, że:

\[
W_{gh} = \kappa[(1-\alpha)\rho - (1-\alpha + \beta)\kappa] \quad (10.63c)
\]

oraz:

\[
W_\xi = \begin{vmatrix}
0 & 1 & \kappa \\
1-\alpha & -(1-\alpha + \beta) & 0 \\
-\alpha & 1-\alpha + \beta & \rho
\end{vmatrix} = (1-\alpha)(1-\alpha + \beta)\kappa + \kappa(1-\alpha + \beta)(\alpha - \sigma) - \rho(1-\alpha),
\]

a stąd:

\[
W_\xi = (1-\alpha + \beta)(1-\sigma)\kappa - (1-\alpha)\rho. \quad (10.63d)
\]

Ze związków (10.63abcd) wyciągnąć można wniosek, iż rozwiązanie układu równań (10.62) opisują następujące wzory:

\[
g = \frac{W_g}{W} = \frac{\kappa(1-\alpha + \beta)[(1-\alpha)\rho - (1-\alpha + \beta)\kappa]}{-\sigma\kappa(1-\alpha + \beta)} = \frac{(1-\alpha + \beta)\kappa - (1-\alpha)\rho}{(1-\alpha)\sigma}
\]
Równanie (10.64c) jest interpretowalne ekonomicznie jedynie przy \(0 < \tilde{\Xi} < 1 \). Oznacza to, iż muszą zachodzić nierówności:

\[
0 < \frac{(1-\alpha)\rho - (1-\alpha + \beta)(1-\sigma)\kappa}{\sigma\kappa(1-\alpha + \beta)} < 1,
\]

które można zapisać również następująco:

\[
0 < (1-\alpha)\rho - (1-\alpha + \beta)(1-\sigma)\kappa + (1-\alpha)\rho - (1-\alpha + \beta)(1-\sigma)\kappa < \sigma\kappa(1-\alpha + \beta),
\]

a stąd:

\[
(1-\alpha + \beta)(1-\sigma)\kappa < (1-\alpha)\rho + (1-\alpha + \beta)(1-\sigma)\kappa < \sigma\kappa(1-\alpha + \beta),
\]

czyli:

\[
\frac{(1-\alpha + \beta)(1-\sigma)\kappa}{1-\alpha} < \rho < \frac{(1-\alpha + \beta)\kappa}{1-\alpha},
\]

a więc:

\[
\rho \in \left(\frac{(1-\alpha + \beta)(1-\sigma)\kappa}{1-\alpha}; \frac{(1-\alpha + \beta)\kappa}{1-\alpha} \right).
\]

Jeśli zaś przy \(\rho \in \left(\frac{(1-\alpha + \beta)(1-\sigma)\kappa}{1-\alpha}; \frac{(1-\alpha + \beta)\kappa}{1-\alpha} \right) \) spełniona jest nierówność \(0 < \tilde{\Xi} < 1 \), to spełniony jest również warunek transwersalności (10.47h). Dzieje się tak dlatego, że jeśli scałkujemy stronami równanie (10.60) względem czasu \(t \in [0;+\infty) \), to uzyskamy związek:

\[
\forall t \in [0;+\infty) \quad \int_{\lambda_h(t)}^{\lambda_{h+1}(t)} dt = \int \left(\frac{(1-\alpha + \beta)\kappa}{1-\alpha} \tilde{\Xi} + \kappa(1-\Xi) - \rho \right) dt
\]

lub:

\[
\forall t \in [0;+\infty) \quad \ln|\lambda_h(t)| = \left(\frac{(1-\alpha + \beta)\kappa}{1-\alpha} \tilde{\Xi} + \kappa(1-\Xi) - \rho \right) t + F,
\]

skąd wynika, że:

\[
\lambda_h(t) = \pm e^{\left(\frac{(1-\alpha + \beta)\kappa}{1-\alpha} \tilde{\Xi} + \kappa(1-\Xi) - \rho \right) t} + F,
\]

gdzie \(F \in \Re \) jest stałą całkowania. Z powyższego związku wynika zaś, że przy \(0 < \tilde{\Xi} < 1 \) spełniony jest wspomniany uprzednio warunek transwersalności, gdyż:
\[
\Xi = \frac{W_\Xi}{W} = \frac{(1-\alpha + \beta)(1-\sigma)\kappa - (1-\alpha)\rho}{-\sigma\kappa(1-\alpha + \beta)} = \frac{(1-\alpha)\rho - (1-\alpha + \beta)(1-\sigma)\kappa}{\sigma\kappa(1-\alpha + \beta)} = 1 - g_h.
\]

(10.64c)

Z równań (10.64abc) oraz dodatkowego założenia, że \(\rho \in \left(\frac{(1-\alpha + \beta)(1-\sigma)\kappa}{1-\alpha}, \frac{(1-\alpha + \beta)(1-\sigma)\kappa}{1-\alpha} \right) \), płyną następujące wnioski:

- Stopy wzrostu wydajności pracy, technicznego uzbrojenia pracy i konsumpcji na pracującego (równe \(g \)), stopa wzrostu kapitału ludzkiego na pracującego (\(g_h \)) oraz optymalny udział czasu przeznaczonego na pracę bezpośrednio produkcyjną (\(\Xi \)) w modelu wzrostu gospodarczego Lucasa zależne są od parametrów \(\alpha \) i \(\beta \) funkcji produkcji (10.41), maksymalnej, możliwej do uzyskania stopy wzrostu kapitału ludzkiego \(\kappa \) oraz od stopy dyskontowej \(\rho \) i odwrotności międzyokresowej substytucji konsumpcji \(\sigma \) typowego konsumenta w gospodarce Lucasa.

- Różniczkując równania (10.64abc) względem elastyczności \(\alpha \) produkcji \(Y \) względem nakładów kapitału rzeczowego \(K \), okazuje się, iż:

\[
\frac{\partial g}{\partial \alpha} = \frac{\partial}{\partial \alpha} \left[\frac{1}{\sigma} \left(\frac{1-\alpha + \beta}{1-\alpha} \kappa - \rho \right) \right] = \frac{\kappa}{\sigma} \cdot \frac{\partial}{\partial \alpha} \left(\frac{1-\alpha + \beta}{1-\alpha} \right) = \frac{\kappa}{\sigma} \cdot \frac{-1 + \alpha + 1 - \alpha + \beta}{(1-\alpha)^2} \frac{\beta \kappa}{\sigma(1-\alpha)^2} > 0
\]

\[
\frac{\partial g_h}{\partial \alpha} = \frac{\partial}{\partial \alpha} \left[\frac{1}{\sigma} \left(\frac{1-\alpha + \beta}{1-\alpha + \beta} \kappa - \rho \right) \right] = -\frac{\rho}{\sigma} \cdot \frac{\partial}{\partial \alpha} \left(\frac{1-\alpha + \beta}{1-\alpha + \beta} \right) = \frac{-\rho}{\sigma} \cdot \frac{-1 + \alpha - \beta + 1 - \alpha}{(1-\alpha + \beta)^2} \frac{\beta \rho}{\sigma(1-\alpha + \beta)^2} > 0
\]

oraz:

\[
\frac{\partial \Xi}{\partial \alpha} = \frac{\partial}{\partial \alpha} (1 - g_h) = -\frac{\partial g_h}{\partial \alpha} < 0.
\]

Z powyższych związków wynika, że im wyższa jest elastyczność produkcji względem nakładów kapitału rzeczowego, tym wyższe są stopy wzrostu \(g \) i \(g_h \) oraz niższy jest optymalny udział czasu przeznaczonego na pracę bezpośrednio produkcyjną \(\Xi \).

- Stąd, że:

\[
\frac{\partial g}{\partial \beta} = \frac{\partial}{\partial \beta} \left[\frac{1}{\sigma} \left(\frac{1-\alpha + \beta}{1-\alpha} \kappa - \rho \right) \right] = \frac{\kappa}{\sigma} \cdot \frac{\partial}{\partial \beta} \left(\frac{1-\alpha + \beta}{1-\alpha} \right) = \frac{\kappa}{\sigma(1-\alpha)} > 0,
\]

\[
\lim_{t \to +\infty} \left(\lambda_h(t)e^{-\rho t} \right) = \lim_{t \to +\infty} \left(\pm e^{-\left((1-\alpha + \beta)\kappa - \rho \right) t} \right) = \pm \lim_{t \to +\infty} \left(e^{-\left((1-\alpha + \beta)\kappa - \rho \right) t} \right) = 0.
\]
\[
\begin{align*}
\frac{\partial g_h}{\partial \beta} &= \frac{\partial}{\partial \beta} \left[\frac{1}{\sigma} \left(\kappa - \frac{1-\alpha + \beta}{1-\alpha} \rho \right) \right] = -\frac{(1-\alpha)\rho}{\sigma} \cdot \frac{\partial}{\partial \beta} \left(\frac{1}{1-\alpha + \beta} \right) = \\
&= -\frac{(1-\alpha)\rho}{\sigma} \cdot \frac{-1}{(1-\alpha + \beta)^2} = \frac{(1-\alpha)\rho}{\sigma(1-\alpha + \beta)} > 0
\end{align*}
\]

i:
\[
\frac{\partial \Delta}{\partial \beta} = \frac{\partial}{\partial \beta} (1 - g_h) = -\frac{\partial g_h}{\partial \beta} < 0,
\]

płynie wniosek, że silnym efektem zewnętrznym akumulacji kapitału ludzkiego (czyli wysokiej wartości parametru \(\beta\) w funkcji produkcji (10.41)) towarzyszą wysokie stopy wzrostu wydajności pracy, technicznego uzbrojenia pracy, konsumpcji na pracującego (g) i kapitału ludzkiego na pracującego (gh) oraz niski udział czasu przeznaczonego na pracę bezpośrednio produkcyjną (\(\Xi\)).

- Wysokiej, maksymalnej możliwej do uzyskania stopie wzrostu kapitału ludzkiego \(\kappa\) odpowiadają wysokie stopy wzrostu g i gh oraz niski udział \(\Xi\). Wynika to stąd, iż:
\[
\begin{align*}
\frac{\partial g}{\partial \kappa} &= \frac{\partial}{\partial \kappa} \left[\frac{1}{\sigma} \left(\frac{1-\alpha + \beta}{1-\alpha} \kappa - \rho \right) \right] = \frac{1-\alpha + \beta}{(1-\alpha)\sigma} > 0, \\
\frac{\partial g_h}{\partial \kappa} &= \frac{\partial}{\partial \kappa} \left[\frac{1}{\sigma} \left(\frac{1-\alpha}{1-\alpha + \beta} \rho \right) \right] = \frac{1}{\sigma} > 0
\end{align*}
\]
oraz:
\[
\frac{\partial \Delta}{\partial \kappa} = \frac{\partial}{\partial \kappa} (1 - g_h) = -\frac{\partial g_h}{\partial \kappa} < 0.
\]

- Ponieważ:
\[
\begin{align*}
\frac{\partial g}{\partial \rho} &= \frac{\partial}{\partial \rho} \left[\frac{1}{\sigma} \left(\frac{1-\alpha + \beta}{1-\alpha} \kappa - \rho \right) \right] = -\frac{1}{\sigma} < 0, \\
\frac{\partial g_h}{\partial \rho} &= \frac{\partial}{\partial \rho} \left[\frac{1}{\sigma} \left(\frac{1-\alpha}{1-\alpha + \beta} \rho \right) \right] = -\frac{1-\alpha}{(1-\alpha + \beta)\sigma} < 0
\end{align*}
\]
i:
\[
\frac{\partial \Delta}{\partial \rho} = \frac{\partial}{\partial \rho} (1 - g_h) = -\frac{\partial g_h}{\partial \rho} > 0,
\]

więc wysokiej stopie dyskontowej \(\rho\) typowego konsumenta w gospodarce Lucasa towarzyszą niskie stopy wzrostu rozważanych tu zmiennych makroekonomicznych i wysoki udział czasu przeznaczonego na pracę bezpośrednio produkcyjną.

- Przy \(\rho < \frac{(1-\alpha + \beta)\kappa}{1-\alpha}\) zachodzą związki:
\[\frac{\partial g}{\partial \sigma} = \frac{\partial}{\partial \sigma} \left[\frac{1}{\sigma} \left(1 - \alpha + \beta \kappa - \rho \right) \right] = -\frac{1}{\sigma^2} \left(1 - \alpha + \beta \kappa - \rho \right) < 0, \]
\[\frac{\partial g_h}{\partial \sigma} = \frac{\partial}{\partial \sigma} \left[\frac{1}{\sigma} \left(\kappa - \frac{1 - \alpha}{1 - \alpha + \beta} \rho \right) \right] = -\frac{1}{\sigma^2} \left(\kappa - \frac{1 - \alpha}{1 - \alpha + \beta} \rho \right) < 0 \]

oraz:
\[\frac{\partial \hat{\lambda}}{\partial \sigma} = \frac{\partial}{\partial \sigma} (1 - g_h) = -\frac{\partial g_h}{\partial \sigma} > 0, \]

z których wynika, że im wyższa jest odwrotność międzyokresowej substytucji konsumpcji \(\sigma \) typowego konsumenta w analizowanym tu modelu wzrostu gospodarczego, tym niższe są stopy wzrostu wydajności pracy, technicznego uzbrojenia pracy, konsumpcji na pracującego i kapitału ludzkiego na pracującego oraz tym wyższy jest udział czasu przeznaczony na działalność produkcyjną.

- Z dwóch ostatnich wniosków wynika również, że im bardziej typowy konsument w gospodarce Lucasa ceni konsumpcję bieżącą w stosunku do konsumpcji przyświlnej (czyli im wyższe są wartości parametrów \(\rho \) i \(\sigma \)), tym wolniej rozwija się ta gospodarka.

10.4. MODEL ROMERA

Kolejnym modelem optymalnego sterowania, który będziemy rozważali w rozdziale dziesiątym skryptu, jest model wzrostu gospodarczego Romera. W modelu tym przyjmuje się następujące założenia opisujące funkcjonowanie gospodarki:

1. W gospodarce istnieje pewien, stały w czasie zasób kapitału ludzkiego \(H > 0 \), który jest dzielony na kapitał ludzki \(H_Y > 0 \) zaangażowany w produkcji dóbr i usług oraz kapitał ludzki \(H_A > 0 \) wykorzystywany w sferze kreacji nowej wiedzy naukowo-technicznej. Wynika stąd, że:
 \[\forall t \in [0;+\infty) \quad H = H_Y(t) + H_A(t). \] (10.65)

2. Zasób wiedzy naukowo-technicznej \(\Lambda \) zmienia się zgodnie z następującym równaniem różniczkowym:
 \[\forall t \in [0;+\infty) \quad \dot{\Lambda}(t) = \kappa H_A(t) \Lambda(t), \] (10.66)
 gdzie \(\kappa > 0 \) jest współczynnikiem opisującym efektywność nakładów kapitału ludzkiego w sferze kreacji wiedzy naukowo-technicznej. Wynika to stąd, iż im wyższą wartość przyjmuje parametr \(\kappa \), tym (przy danych nakładach kapitału ludzkiego \(H_A \)) wyższa jest stopa wzrostu wiedzy naukowo-technicznej \(\frac{\dot{\Lambda}}{\Lambda} = \kappa H_A \).

3. Strumień produkcji \(Y \) opisany jest przez zmodyfikowaną funkcję produkcji Cobba-Douglasa daną wzorem:
\[\forall t \in [0;+\infty) \quad Y(t) = (H_Y(t))^\beta L^\alpha \int_0^{\Lambda(t)} [x(i)]^{1-\alpha-\beta} \, di, \quad (10.67) \]

gdzie \(x(i) \) jest nakładem \(i \)-tego dobra kapitałowego, zaś \(i \in (0;\Lambda) \), co oznacza, że ilość dóbr kapitałowych w gospodarce, czyli \(i \), zależna jest od istniejącego w niej zasobu wiedzy \(\Lambda \). Natomiast parametry \(\alpha, \beta \) i \(1-\alpha-\beta \) należące do przedziału \((0;1)\) są elastycznościami produktu \(Y \) względem \(L, H_Y \) i \(x(i) \). Powyższa funkcja produkcji

różni się od standardowych funkcji produkcji tylko założeniem o stopniu, w jakim poszczególne dobra kapitałowe są substytutami w procesie produkcyjnym. W konwencjonalnym ujęciu [funkcji produkcji – przyp. aut.] łączny kapitał \(K \) jest *implicit* definiowany jako wielkość proporcjonalna do sumy poszczególnych dóbr kapitałowych, które są doskonałymi substytutami (Romer, 1990: 80–81).

Przy funkcji produkcji (10.67) zaś poszczególne dobra kapitałowe \(x(i) \), wchodzące w skład \(K \), mogą charakteryzować się różnymi produkcyjnościami krajowymi, a zatem nie są doskonałymi substytutami w procesie tworzenia produktu \(Y \).

Oznaczając przez \(\bar{x} = x(i) \), dla każdego \(i \in (0;\Lambda) \), przeciętne dobro kapitałowe funkcję produkcji (10.67) możemy zapisać następująco:

\[\forall t \in [0;+\infty) \quad Y(t) = (H_Y(t))^\beta L^\alpha \int_0^{\Lambda(t)} [\bar{x}]^{1-\alpha-\beta} \, di = (H_Y(t))^\beta L^\alpha \int_0^{\Lambda(t)} \bar{x}^{1-\alpha-\beta} \, di = (H_Y(t))^\beta L^\alpha \bar{x}^{1-\alpha-\beta} \cdot i|_{0}^{\Lambda(t)} = (H_Y(t))^\beta L^\alpha \bar{x}^{1-\alpha-\beta} (\Lambda(t) - 0), \]
a stąd:

\[\forall t \in [0;+\infty) \quad Y(t) = L^\alpha \bar{x}^{1-\alpha-\beta} (H_Y(t))^\beta \Lambda(t). \quad (10.68) \]

4. Łączny zasób kapitału rzeczowego \(K \) w gospodarce jest sumą dóbr kapitałowych \(x(i) \). Oznacza to, że:

\[\forall t \in [0;+\infty) \quad K(t) = \int_0^{\Lambda(t)} x(i) \, di = \bar{x} \int_0^{\Lambda(t)} \, di = \bar{x} \cdot i|_{0}^{\Lambda(t)} = \bar{x} (\Lambda(t) - 0) = \bar{x} \Lambda(t), \]
a stąd:

\[\forall t \in [0;+\infty) \quad \bar{x} = \frac{K(t)}{\Lambda(t)} \quad (10.69) \]

5. Przyrost zasobu kapitału rzeczowego \(\dot{K} \) jest różnicą między produkcją \(Y \) a konsumpcją \(C \) (dla uproszczenia rozważań w modelu wzrostu Romera pomija się deprecję kapitału). Wynika stąd, że spełniony jest związek:

\[\forall t \in [0;+\infty) \quad \dot{K}(t) = Y(t) - C(t). \]
Stąd zaś oraz z równań (10.68–10.69) płynie wniosek, że:

\[\forall t \in [0;+\infty) \quad \dot{K}(t) = L^a \left(K(t) \right)^{1-a-\beta} (H_Y(t))^{\beta} \Lambda(t) - C(t) = \]

\[= L^a (K(t))^{1-a-\beta} \left(\Lambda(t) \right)^{a+\beta-1} (H_Y(t))^{\beta} \Lambda(t) - C(t) = \]

\[= L^a (K(t))^{1-a-\beta} \left(\Lambda(t) \right)^{a+\beta} (H_Y(t))^{\beta} - C(t) \]

lub, po uwzględnieniu wynikającej z równania (10.65) równości \(H_Y = H - H_A \):

\[\forall t \in [0;+\infty) \quad \dot{K}(t) = L^a (K(t))^{1-a-\beta} \left(\Lambda(t) \right)^{a+\beta} (H - H_A(t))^{\beta} - C(t). \] (10.70)

6. Zasób pracy w gospodarce Romera jest stały w czasie i w każdym momencie \(t \in [0;+\infty) \) równy jest \(L > 0 \).

7. Celem działania typowego konsumenta, podobnie jak w modelach Ramseya i Lucasa, jest maksymalizacja sumy zdyskontowanej użyteczności konsumpcji postaci\(^{11}\):

\[\int_0^\infty \frac{(C(t))^{\sigma-1}}{1-\sigma} e^{-\rho t} dt, \]

(10.71)

gdzie parametry \(\sigma \in (0;1) \cup (1;+\infty) \) oraz \(\rho > 0 \) interpretuje się tak, jak w modelach wzrostu Ramseya i Lucasa. Całkę preferencji (10.71) typowy konsument maksymalizuje względem konsumpcji \(C \) oraz kapitału ludzkiego \(H_A \) zaangażowanego w sferze kreacji nowej wiedzy.

Założenie 7 wraz z równaniami (10.66) i (10.77) można sprowadzić do następującego zadania sterowania optymalnego Pontriagina:

\[\max_{C(t), H_A(t)} \int_0^\infty \frac{(C(t))^{\sigma-1}}{1-\sigma} e^{-\rho t} dt \]

\[\dot{K}(t) = L^a (K(t))^{1-a-\beta} \left(\Lambda(t) \right)^{a+\beta} (H - H_A(t))^{\beta} - C(t) \]

\[\Lambda(t) = k H_A(t) \Lambda(t) \]

\[K(0) = K_0 \quad \Lambda(0) = \Lambda_0 \] (10.72)

gdzie \(K_0 > 0 \) i \(\Lambda_0 > 0 \) to (odpowiednio) zasoby kapitału rzeczowego i wiedzy w momencie \(t = 0 \).

Bieżący hamiltonian \(\bar{H} \) dla zadania sterowania optymalnego (10.72) dany jest wzorem:

\[\forall t \in [0;+\infty) \quad \bar{H}(K(t), \Lambda(t), C(t), H_A(t), \lambda_K(t), \lambda_A(t), t) = \frac{(C(t))^{\sigma-1}}{1-\sigma} + \]

\[+ \lambda_K(t) \cdot L^a (K(t))^{1-a-\beta} \left(\Lambda(t) \right)^{a+\beta} (H - H_A(t))^{\beta} - C(t) + \lambda_A(t) k H_A(t) \Lambda(t), \] (10.73)

\(^{11}\) Ponieważ, na mocy założenia 6 modelu Romera, \(L = \text{const} \), zatem maksymalizacja sumy zdyskontowanej użyteczności konsumpcji całej gospodarki, opisanej przez całkę niewłaściwą (10.71), tożsama jest z maksymalizacją sumy zdyskontowanej użyteczności konsumpcji na pracującego.
gdzie \(\lambda_K \) i \(\lambda_\Lambda \) to, różniczkowalne względem czasu \(t \in [0;+\infty) \), mnożniki Lagrange'a hamiltonianu (10.73).

Warunki konieczne istnienia niebrzegowego maksimum Pontriagina (10.72) określają równania:

\[
\forall t \in [0;+\infty) \quad \frac{\partial \tilde{H}(t)}{\partial C(t)} = 0, \quad (10.74a)
\]

\[
\forall t \in [0;+\infty) \quad \frac{\partial \tilde{H}(t)}{\partial H_\Lambda(t)} = 0, \quad (10.74b)
\]

\[
\forall t \in [0;+\infty) \quad -\frac{\partial \tilde{H}(t)}{\partial K(t)} + \rho \lambda_K(t) = \dot{\lambda}_K(t), \quad (10.74c)
\]

\[
\forall t \in [0;+\infty) \quad -\frac{\partial \tilde{H}(t)}{\partial \Lambda(t)} + \rho \lambda_\Lambda(t) = \dot{\lambda}_\Lambda(t), \quad (10.74d)
\]

\[
\forall t \in [0;+\infty) \quad \frac{\partial \tilde{H}(t)}{\partial \lambda_K(t)} = \dot{\lambda}_K(t), \quad (10.74e)
\]

\[
\forall t \in [0;+\infty) \quad \frac{\partial \tilde{H}(t)}{\partial \lambda_\Lambda(t)} = \dot{\lambda}_\Lambda(t) \quad (10.74f)
\]

oraz warunki transwersalności:

\[
\lim_{t \to +\infty} \left(\lambda_K(t) e^{-\rho t} \right) = 0, \quad (10.74g)
\]

\[
\lim_{t \to +\infty} \left(\lambda_\Lambda(t) e^{-\rho t} \right) = 0. \quad (10.74h)
\]

Pochodne cząstkowe bieżącego hamiltonianu (10.73) dane są wzorami:

\[
\frac{\partial \tilde{H}}{\partial C} = \frac{\partial}{\partial C} \left(\frac{C^{1-\alpha} - 1}{1 - \sigma} + \lambda_K L^\alpha K^{1-\alpha-\beta} \Lambda^{\alpha+\beta} (H - H_\Lambda)^\beta - \lambda_K C + \lambda_\Lambda k H_\Lambda \Lambda \right) =
\]

\[
= \frac{(1-\sigma)C^{-\sigma}}{1-\sigma} - \lambda_K ,
\]

czyli:

\[
\frac{\partial \tilde{H}}{\partial C} = C^{-\sigma} - \lambda_K , \quad (10.75a)
\]

\[
\frac{\partial \tilde{H}}{\partial H_\Lambda} = \frac{\partial}{\partial H_\Lambda} \left(\frac{C^{1-\alpha} - 1}{1 - \sigma} + \lambda_K L^\alpha K^{1-\alpha-\beta} \Lambda^{\alpha+\beta} (H - H_\Lambda)^\beta - \lambda_K C + \lambda_\Lambda k H_\Lambda \Lambda \right) =
\]
\[\lambda_K L^a K^{1-a-b} \Lambda^a \beta (H - H_A)^{\beta-1}(-1) + \lambda_\Lambda \kappa \Lambda, \]
a stąd:
\[\frac{\partial \hat{H}}{\partial H_\Lambda} = \kappa \lambda_\Lambda \Lambda - \beta L \lambda_K K^{1-a-b} \Lambda^a \beta (H - H_A)^{\beta-1}, \]
(10.75b)
\[\frac{\partial \hat{H}}{\partial K} = \frac{\partial}{\partial K} \left(\frac{C^{1-a} - 1}{1 - \sigma} + \lambda_K L^a K^{1-a-b} \Lambda^a \beta (H - H_A)^{\beta} - \lambda_K C + \lambda_\Lambda \kappa H_\Lambda \Lambda \right) = \]
\[= \lambda_K L^a (1 - \alpha - \beta) K^{\alpha - a - \beta} \Lambda^{a + \beta} (H - H_A)^{\beta} \]
lub:
\[\frac{\partial \hat{H}}{\partial K} = (1 - \alpha - \beta) L \lambda_K K^{\alpha - a - \beta} \Lambda^{a + \beta} (H - H_A)^{\beta}, \]
(10.75c)
\[\frac{\partial \hat{H}}{\partial \Lambda} = \frac{\partial}{\partial \Lambda} \left(\frac{C^{1-a} - 1}{1 - \sigma} + \lambda_K L^a K^{1-a-b} \Lambda^a \beta (H - H_A)^{\beta} - \lambda_K C + \lambda_\Lambda \kappa H_\Lambda \Lambda \right) = \]
\[= \lambda_K L^a K^{1-a-b} (\alpha + \beta) \Lambda^{a + \beta - 1} (H - H_A)^{\beta} + \lambda_\Lambda \kappa H_\Lambda, \]
a więc:
\[\frac{\partial \hat{H}}{\partial \Lambda} = (\alpha + \beta) L \lambda_K K^{1-a-b} \Lambda^{a + \beta - 1} (H - H_A)^{\beta} + \kappa \lambda_\Lambda H_\Lambda, \]
(10.75d)
\[\frac{\partial \hat{H}}{\partial \lambda_K} = \frac{\partial}{\partial \lambda_K} \left(\frac{C^{1-a} - 1}{1 - \sigma} + \lambda_K L^a K^{1-a-b} \Lambda^a \beta (H - H_A)^{\beta} - \lambda_K C + \lambda_\Lambda \kappa H_\Lambda \Lambda \right) = \]
\[= L^a K^{1-a-b} \Lambda^a \beta (H - H_A)^{\beta} - C \]
(10.75e)
oraz:
\[\frac{\partial \hat{H}}{\partial \lambda_\Lambda} = \frac{\partial}{\partial \lambda_\Lambda} \left(\frac{C^{1-a} - 1}{1 - \sigma} + \lambda_K L^a K^{1-a-b} \Lambda^a \beta (H - H_A)^{\beta} - \lambda_K C + \lambda_\Lambda \kappa H_\Lambda \Lambda \right) = \kappa H_\Lambda \Lambda. \]
(10.75f)
Ze związków (10.74abcdef) i (10.75abcdef) wynika, iż warunki konieczne istnienia niebrzegowego maksimum Pontriagina można zapisać za pomocą następującego układu równań:
\[(C(t))^{-\sigma} - \lambda_K(t) = 0\]
\[
\begin{align*}
\kappa \lambda_A(t) \Lambda(t) - \beta L^a \lambda_K(t)(K(t))^{1-\alpha} (\Lambda(t))^{\alpha+\beta} (H - H_A(t))^{\beta-1} & = 0 \\
(1 - \alpha - \beta) L^a \lambda_K(t)(K(t))^{1-\alpha} (\Lambda(t))^{\alpha+\beta} (H - H_A(t))^{\beta} + \rho \lambda_K(t) & = \dot{\lambda}_K(t) \\
(\alpha + \beta) L^a \lambda_K(t)(K(t))^{1-\alpha} (\Lambda(t))^{\alpha+\beta-1} (H - H_A(t))^{\beta} - \kappa \lambda_A(t) H_A(t) + \rho \lambda_A(t) & = \dot{\lambda}_A(t) \\
L^a (K(t))^{1-\alpha} (\Lambda(t))^{\alpha+\beta} (H - H_A(t))^{\beta} - C(t) & = K(t) \\
\kappa H_A(t) \Lambda(t) & = \dot{\Lambda}(t)
\end{align*}
\]

lub:
\[
\begin{align*}
(C(t))^{-\sigma} & = \lambda_K(t) \\
\kappa \lambda_A(t) \Lambda(t) & = \beta L^a \lambda_K(t)(K(t))^{1-\alpha} (\Lambda(t))^{\alpha+\beta} (H - H_A(t))^{\beta-1} \\
\dot{\lambda}_K(t) & = (1 - \alpha - \beta) L^a \lambda_K(t)(K(t))^{1-\alpha} (\Lambda(t))^{\alpha+\beta} (H - H_A(t))^{\beta} + \rho \lambda_K(t) \\
\dot{\lambda}_A(t) & = (\alpha + \beta) L^a \lambda_K(t)(K(t))^{1-\alpha} (\Lambda(t))^{\alpha+\beta-1} (H - H_A(t))^{\beta} - \kappa \lambda_A(t) H_A(t) + \rho \lambda_A(t) \\
\dot{K}(t) & = L^a (K(t))^{1-\alpha} (\Lambda(t))^{\alpha+\beta} (H - H_A(t))^{\beta} - C(t) \\
\dot{\Lambda}(t) & = \kappa H_A(t) \Lambda(t)
\end{align*}
\]

bądź też:
\[
\begin{align*}
(C(t))^{-\sigma} & = \lambda_K(t) \\
\kappa \lambda_A(t) \Lambda(t) & = \beta L^a \lambda_K(t)(K(t))^{1-\alpha} (\Lambda(t))^{\alpha+\beta} (H - H_A(t))^{\beta-1} \\
\dot{\lambda}_K(t) & = (1 - \alpha - \beta) L^a \lambda_K(t)(K(t))^{1-\alpha} (\Lambda(t))^{\alpha+\beta} (H - H_A(t))^{\beta} + \rho \lambda_K(t) \\
\dot{\lambda}_A(t) & = (\alpha + \beta) L^a \lambda_K(t)(K(t))^{1-\alpha} (\Lambda(t))^{\alpha+\beta-1} (H - H_A(t))^{\beta} - \kappa \lambda_A(t) H_A(t) + \rho \lambda_A(t) \\
\frac{\dot{K}(t)}{K(t)} & = L^a (K(t))^{1-\alpha} (\Lambda(t))^{\alpha+\beta} (H - H_A(t))^{\beta} - \frac{C(t)}{K(t)} \\
\frac{\dot{\Lambda}(t)}{\Lambda(t)} & = \kappa H_A(t)
\end{align*}
\]

(10.76)

Ponadto w modelu wzrostu gospodarczego Romera przyjmuje się również, iż wie- dza naukowo-techniczna \(\Lambda \), konsumpcja \(C \) i kapitał rzeczowy \(K \) rosną według tej sa- mej stopy wzrostu (równej \(G \)) oraz że zasób kapitału ludzkiego wykorzystywany w sferze kreacji wiedzy w każdym momencie \(t \in [0;+\infty) \) równy jest \(H_A^* \in (0;H) \). Za-łożyćenia te można formalnie zapisać następująco:
\[
\forall t \in [0;+\infty) \quad \frac{\dot{\Lambda}(t)}{\Lambda(t)} = \frac{\dot{C}(t)}{C(t)} = \frac{\dot{K}(t)}{K(t)} = G
\]

i:
\[
\forall t \in [0;+\infty) \quad H_A(t) = H_A^*.
\]

Z szóstego z równań układu (10.76) oraz ze związków (10.77ab) otrzymujemy zależność:
G = \kappa H^*_\Lambda > 0. \hspace{1cm} (10.78)

Natomiast z pierwszego z równań układu (10.76) mamy:

\forall t \in [0;+\infty) \hspace{1cm} -\sigma \ln(C(t)) = \ln(\lambda_K(t))

lub, po zróżniczkowaniu względem czasu \(t \in [0;+\infty) \):

\forall t \in [0;+\infty) \hspace{1cm} -\sigma \frac{\dot{C}(t)}{C(t)} = \frac{\dot{\lambda}_K(t)}{\lambda_K(t)},

a stąd, po uwzględnieniu zależności (10.77a)^12:

\forall t \in [0;+\infty) \hspace{1cm} \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} = -\sigma G. \hspace{1cm} (10.79)

Drugie z równań układu (10.76) implikuje, że iloraz mnożników Lagrange’a \(\frac{\lambda_K}{\lambda_\Lambda} \) można zapisać następująco:

\forall t \in [0;+\infty) \hspace{1cm} \frac{\lambda_K(t)}{\lambda_\Lambda(t)} = \frac{\kappa \Lambda(t)}{\beta L^\alpha (K(t))^{1-\alpha-\beta} (\Lambda(t))^{\alpha+\beta} (H - H_\Lambda(t))^{\beta-1}} =

= \frac{\kappa}{\beta L^\alpha} \left(\frac{\Lambda(t)}{K(t)} \right)^{1-\alpha-\beta} (H - H_\Lambda(t))^{1-\beta}

lub, po uwzględnieniu związku (10.77b):

\forall t \in [0;+\infty) \hspace{1cm} \frac{\lambda_K(t)}{\lambda_\Lambda(t)} = \frac{\kappa}{\beta L^\alpha} (H - H_\Lambda^*)^{1-\beta} \left(\frac{\Lambda(t)}{K(t)} \right)^{1-\alpha-\beta}. \hspace{1cm} (10.80)

Logarytmując stronami równanie (10.80), otrzymujemy:

\forall t \in [0;+\infty) \hspace{1cm} \ln(\lambda_K(t)) - \ln(\lambda_\Lambda(t)) = \ln \left(\frac{\kappa}{\beta L^\alpha} (H - H_\Lambda^*)^{1-\beta} \right) + (1 - \alpha - \beta)(\ln[\Lambda(t)] - \ln[K(t)]).

Różniczkując tę zależność względem czasu \(t \in [0;+\infty) \), dochodzimy do związku:

\hspace{1cm}^12 Z równania (10.79) wynika, że spełniony jest warunek transwersalności (10.74g). Dzieje się tak dlatego, że całkując związek (10.79) względem czasu \(t \in [0;+\infty) \), otrzymujemy:

\forall t \in [0;+\infty) \hspace{1cm} \int \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} dt = -\sigma G \int dt,

a stąd:

\forall t \in [0;+\infty) \hspace{1cm} \ln[\lambda_K(t)] - \ln[\lambda_\Lambda(t)] = -\sigma G t + F \Rightarrow \lambda_K(t) = \pm e^{-\sigma G t + F},

gdzie F \in \mathbb{R} jest stałą całkowania. Z powyższego związku wynika zaś, że zachodzi warunek transwersalności (10.74g), gdyż:

\lim_{t \to +\infty} \left(\lambda_K(t) e^{-pt} \right) = \lim_{t \to +\infty} \left(\pm e^{-\sigma G t + F} e^{-pt} \right) = \pm \lim_{t \to +\infty} \left(e^{-(\sigma G + p)t + F} \right) = 0.
\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} - \frac{\dot{\lambda}_\Lambda(t)}{\lambda_\Lambda(t)} = \left(1 - \alpha - \beta\right) \left(\frac{\Lambda(t)}{\lambda_\Lambda(t)} - \frac{K(t)}{\Lambda(t)}\right), \]

który, po uwzględnieniu równań (10.77a) oraz (10.79), możemy zapisać następująco:

\[\forall t \in [0;+\infty) \quad -\sigma G - \frac{\dot{\lambda}_\Lambda(t)}{\lambda_\Lambda(t)} = \left(1 - \alpha - \beta\right)(G - G) = 0, \]

a stąd\(^{13}\):

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_\Lambda(t)}{\lambda_\Lambda(t)} = -\sigma G. \quad (10.81) \]

Dzieląc stronami czwarte z równań układu (10.76) przez mnożyk Lagrange'a \(\lambda_\Lambda\) oraz uwzględniając to, że \(H_\Lambda = H_\Lambda^*\), uzyskujemy równanie:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_\Lambda(t)}{\lambda_\Lambda(t)} = \rho - \kappa H_\Lambda^* - (\alpha + \beta) L^a \left(H - H_\Lambda^*\right) \frac{\dot{\lambda}_K(t)}{\lambda_\Lambda(t)} \left(\frac{K(t)}{\Lambda(t)}\right)^{1-\alpha-\beta}. \]

Wstawiając do powyższego równania związki (10.80−10.81), możemy je zapisać następująco:

\[-\sigma G = \rho - \kappa H_\Lambda^* - (\alpha + \beta) L^a \left(H - H_\Lambda^*\right) \frac{\kappa}{\beta L^a} \left(H - H_\Lambda^*\right)^{1-\beta} \left(\frac{\Lambda(t)}{\lambda_\Lambda(t)}\right)^{1-\alpha-\beta} \left(\frac{K(t)}{\Lambda(t)}\right)^{1-\alpha-\beta},\]

lub:

\[-\sigma G = \rho - \kappa H_\Lambda^* - \frac{(\alpha + \beta)\kappa}{\beta} \left(H - H_\Lambda^*\right),\]

a stąd, po uwzględnieniu tego, że \(G = \kappa H_\Lambda^*\), mamy:

\[-\sigma\kappa H_\Lambda^* = \rho - \kappa H_\Lambda^* - \frac{(\alpha + \beta)\kappa}{\beta} \left(H - H_\Lambda^*\right),\]

czyli:

\[(1 - \sigma)\kappa H_\Lambda^* = \rho - \frac{(\alpha + \beta)\kappa}{\beta} \left(H - H_\Lambda^*\right). \quad (10.82)\]

Równanie (10.82) można również zapisać następująco:

\[(1 - \sigma)\kappa H_\Lambda^* = \rho - \frac{(\alpha + \beta)\kappa}{\beta} \left(H - H_\Lambda^*\right) + \frac{(\alpha + \beta)\kappa}{\beta} H_\Lambda^*,\]

co, po przemnożeniu przez \(\beta\), prowadzi do związku:

\[(1 - \sigma)\beta\kappa H_\Lambda^* = \beta\rho - (\alpha + \beta)\kappa H + (\alpha + \beta)\kappa H_\Lambda^*,\]

\(^{13}\) Równanie (10.81) implikuje, że spełniony jest warunek transwersalności (10.74h), co uzasadnia się analogicznie do tego, iż związek (10.79) gwarantuje spełnienie warunku transwersalności (10.74g).
który można zapisać także wzorem:

\[(\alpha + \beta)\kappa H - \beta \rho = \kappa H_A^* (\alpha + \beta - \beta \sigma) = \kappa H_A^* (\alpha + \beta \sigma)\]

lub\(^{14}\):

\[H_A^* = \frac{(\alpha + \beta)\kappa H - \beta \rho}{(\alpha + \beta \sigma)\kappa}. \quad (10.83a)\]

Równanie (10.83a) wyznacza optymalną wielkość kapitału ludzkiego, który zaangażowany jest w sferze kreacji wiedzy naukowo-technicznej w modelu wzrostu gospodarczego Romera.

Wstawiając zależność (10.83a) do związku (10.78), dochodzimy do optymalnych stóp wzrostu wiedzy, konsumpcji i kapitału postaci:

\[\forall t \in [0; +\infty) \quad \frac{\dot{\Lambda}(t)}{\Lambda(t)} = \frac{\dot{C}(t)}{C(t)} = \frac{\dot{K}(t)}{K(t)} = G = \kappa \frac{(\alpha + \beta)\kappa H - \beta \rho}{(\alpha + \beta \sigma)\kappa} = \frac{(\alpha + \beta)\kappa H - \beta \rho}{\alpha + \beta \sigma}. \quad (10.83b)\]

Z równań (10.83ab) oraz nierówności \(\rho < \frac{(\alpha + \beta)\kappa H}{\beta}\) płyną następujące wnioski:

- Optymalny zasób kapitału ludzkiego kierowany do sfery kreacji wiedzy (\(H_A^*\)) oraz optymalne stopy wzrostu (\(G\)) podstawowych zmiennych makroekonomicznych w modelu wzrostu gospodarczego Romera zależne są od elastyczności \(\alpha\) i \(\beta\) makroekonomicznej funkcji produkcji (10.68), współczynnika \(\kappa\), opisującego efektywność nakładów kapitału ludzkiego w sferze kreacji wiedzy naukowo-technicznej, łącznego zasobu kapitału ludzkiego \(H\) w gospodarce, stopy dyskontowej \(\rho\) oraz odwrotności międzyokresowej substytucji konsumpcji \(\sigma\) typowego konsumenta w gospodarce Romera.

- Ponieważ:

\[\frac{\partial H_A^*}{\partial \alpha} = \frac{\partial}{\partial \alpha} \left(\frac{(\alpha + \beta)\kappa H - \beta \rho}{(\alpha + \beta \sigma)\kappa} \right) = \frac{1}{\kappa} \frac{\kappa H(\alpha + \beta \sigma) - ((\alpha + \beta)\kappa H - \beta \rho)}{(\alpha + \beta \sigma)^2} = \frac{\kappa H(\alpha + \beta \sigma) - (\alpha + \beta)\kappa H + \beta \rho}{\kappa(\alpha + \beta \sigma)^2} = \frac{\beta(\rho - (1 - \sigma)\kappa H)}{\kappa(\alpha + \beta \sigma)^2}
\]

i (analogicznie):

\[\frac{\partial G}{\partial \alpha} = \frac{\beta(\rho - (1 - \sigma)\kappa H)}{(\alpha + \beta \sigma)^2},\]

zatem jeśli stopa dyskontowa \(\rho\) typowego konsumenta w gospodarce Romera jest mniejsza (większa) od \((1 - \sigma)\kappa H\), to pochodne cząstkowe \(\frac{\partial H_A^*}{\partial \alpha}\) i \(\frac{\partial G}{\partial \alpha}\) są ujemne (dodatnie) i wysokiej elastyczności \(\alpha\) funkcji produkcji (10.68) odpowiadają niska (wyso-

\(^{14}\) Ponieważ, zgodnie z założeniami modelu Romera, \(H_A^* > 0\), zatem stopa dyskontowa \(\rho\) musi być niższa od \(\frac{(\alpha + \beta)\kappa H}{\beta}\).
ka) wielkość kapitału ludzkiego kierowanego do sfery kreacji wiedzy H^*_A oraz niskie (wysokie) stopy wzrostu G zmiennych makroekonomicznych rozważanych w modelu wzrostu Romera.

- Pochodne cząstkowe $\frac{\partial H^*_A}{\partial \alpha}$ i $\frac{\partial G}{\partial \alpha}$ dane są wzorami:

$$
\frac{\partial H^*_A}{\partial \beta} = \frac{\partial}{\partial \beta} \left(\frac{(\alpha + \beta)\kappa H - \beta \rho}{(\alpha + \beta \sigma)\kappa} \right) = \frac{1}{\kappa} \left(\kappa H(\alpha + \beta \sigma) - (\alpha + \beta)\kappa H - \beta \rho \right) = \frac{\beta \sigma - (\alpha \sigma + \beta \sigma - \alpha - \beta \sigma)\kappa H}{\kappa(\alpha + \beta \sigma)^2}
$$

oraz (analogicznie):

$$
\frac{\partial G}{\partial \beta} = \frac{\beta \sigma + (1 - \sigma)\alpha \kappa H}{(\alpha + \beta \sigma)^2}.
$$

Płynie stąd wniosek, że jeśli stopa dyskontowa ρ jest mniejsza (większa) od wielkości $
\frac{(\sigma - 1)\alpha \kappa H}{\beta \sigma}$, to analizowane tu pochodne cząstkowe są ujemne (dodatnie) i wysokiej elastyczności β funkcji produkcji (10.68) towarzyszą niskie (wysokie) wartości kapitału ludzkiego H^*_A kierowanego do sfery tworzenia wiedzy naukowo-technicznej oraz niska (wysoka) stopa wzrostu gospodarczego G.

- Im wyższy jest współczynnik κ, opisujący efektywność wykorzystania kapitału ludzkiego w sferze kreacji wiedzy, tym wyższy jest zarówno zasób kapitału ludzkiego zaangażowany w tej sferze, jak i stopa wzrostu gospodarczego w modelu wzrostu Romera. Wynika to stąd, iż:

$$
\frac{\partial H^*_A}{\partial \kappa} = \frac{\partial}{\partial \kappa} \left(\frac{(\alpha + \beta)\kappa H - \beta \rho}{(\alpha + \beta \sigma)\kappa} \right) = \frac{\partial}{\partial \kappa} \left(\frac{(\alpha + \beta)\kappa H}{\alpha + \beta \sigma} - \frac{\beta \rho}{(\alpha + \beta \sigma)\kappa} \right) = -\frac{\beta \rho}{(\alpha + \beta \sigma)\kappa} \frac{\partial}{\partial \kappa} \left(\frac{1}{\kappa} \right) = \frac{\beta \rho}{(\alpha + \beta \sigma)^2} > 0
$$

oraz:

$$
\frac{\partial G}{\partial \kappa} = \frac{\partial}{\partial \kappa} \left(\frac{(\alpha + \beta)\kappa H - \beta \rho}{\alpha + \beta \sigma} \right) = \frac{(\alpha + \beta)\kappa H}{\alpha + \beta \sigma} > 0.
$$

- Licząc pochodne cząstkowe H^*_A i G po zasobie kapitału ludzkiego H, okazuje się, że:

$$
\frac{\partial H^*_A}{\partial H} = \frac{\partial}{\partial H} \left(\frac{(\alpha + \beta)\kappa H - \beta \rho}{\alpha + \beta \sigma} \right) = \frac{(\alpha + \beta)\kappa}{(\alpha + \beta \sigma)\kappa} > 0
$$
i:

\[\frac{\partial G}{\partial H} = \frac{\partial}{\partial H} \left(\frac{(\alpha + \beta)kH - \beta \rho}{\alpha + \beta \sigma} \right) = \frac{(\alpha + \beta)k}{\alpha + \beta \sigma} > 0. \]

Płynie stąd wniosek, iż im wyższy jest łączny zasób kapitału ludzkiego \(H \) w gospodarce Romera, tym wyższy jest zarówno kapitał ludzki kierowany do tworzenia nowej wiedzy \(H^*_A \), jak i stopy wzrostu wiedzy, konsumpcji i kapitału rzecznego (G).

- Stąd zaś, że:

\[\frac{\partial H^*_A}{\partial \rho} = \frac{\partial}{\partial \rho} \left(\frac{(\alpha + \beta)kH - \beta \rho}{(\alpha + \beta \sigma) \kappa} \right) = \frac{\beta}{(\alpha + \beta \sigma) \kappa} < 0, \]

\[\frac{\partial G}{\partial \rho} = \frac{\partial}{\partial \rho} \left(\frac{(\alpha + \beta)kH - \beta \rho}{\alpha + \beta \sigma} \right) = \frac{\beta}{\alpha + \beta \sigma} < 0 \]

oraz przy \(\rho < \frac{(\alpha + \beta)kH}{\beta} \):

\[\frac{\partial H^*_A}{\partial \sigma} = \frac{\partial}{\partial \sigma} \left(\frac{(\alpha + \beta)kH - \beta \rho}{(\alpha + \beta \sigma) \kappa} \right) = \frac{(\alpha + \beta)kH - \beta \rho}{(\alpha + \beta \sigma) \kappa} \cdot \frac{1}{\kappa} \]

\[= \frac{(\alpha + \beta)kH - \beta \rho}{(\alpha + \beta \sigma)^2} < 0 \]

i (analogicznie):

\[\frac{\partial G}{\partial \sigma} = \frac{-\beta((\alpha + \beta)kH - \beta \rho)}{(\alpha + \beta \sigma)^2} < 0, \]

wynika, iż im wyższa jest stopa dyskontowa \(\rho \) lub odwrotność międzyokresowej substytucji konsumpcji \(\sigma \) typowego konsumenta, tym mniejszy jest zasób kapitału ludzkiego wykorzystywany w sferze wiedzy i niższa jest stopa wzrostu gospodarczego. Wyciągnąć stąd można wniosek, że (podobnie jak w modelu wzrostu Lucasa) im silniej konsumenci w gospodarce Romera preferują konsumpcję bieżącą, w stosunku do konsumpcji przyszłej, tym wolniej rozwija się analizowana tu gospodarka.

10.5. OPTYMALNE STOPY INWESTYCJI W MODELU TYPU MANKIWA-ROMERA-WEILA

W poprzednich punktach (tj. w punktach 10.2–10.4) rozdziały dziesiątego skryptu analizowaliśmy modele optymalnego sterowania Ramseya, Lucasa i Romera. W punkcie 10.5 sformułujemy pewne zadanie optymalnego sterowania na gruncie (rozważanego uprzednio) modelu typu Mankiwa-Romera-Weila. W modelu tym poczynimy następujące założenia dotyczące funkcjonowania gospodarki:
1. Proces produkcyjny opisany jest przez rozszerzoną funkcję produkcji Cobba-Dougłasa daną wzorem:
\[
\forall t \in [0;+\infty) \quad Y(t) = (K(t))^\alpha (H(t))^\beta (\Lambda(t)L(t))^{1-\alpha-\beta},
\]
gdzie zmienne \(Y, K, H, \Lambda, L\) > 0 oraz parametry \(\alpha, \beta, (1-\alpha-\beta) \in (0;1)\) interpretuje się tak jak w oryginalnym modelu Mankiwa-Romera-Weila (por. model z punktu 3.2 skryptu).

2. Przyrosty zasobów kapitału rzeczowego \(K\) i ludzkiego \(H\) opisane są przez następujące równania różniczkowe:
\[
\forall t \in [0;+\infty) \quad \dot{K}(t) = s_K(t)Y(t) - \delta_K K(t),
\]
\[
\forall t \in [0;+\infty) \quad \dot{H}(t) = s_H(t)Y(t) - \delta_H H(t),
\]
przy czym \(s_K(t)\) i \(s_H(t)\) to stopy inwestycji w kapitał rzeczowy i ludzki w momencie \(t \in [0;+\infty)\). O stopach tych zakłada się, że w każdym momencie \(t \in [0;+\infty)\) \(s_K, s_H \in (0;1)\) oraz \((s_K + s_H) \in (0;1)\). \(\delta_K\) i \(\delta_H\) natomiast są stopami deprecjacji owych zasobów kapitału, o których zakłada się, iż są one zmiennymi egzogenicznymi należącymi do przedziału \((0;1)\).

3. Zasoby wiedzy \(A\) i pracy \(L\) opisane są przez następujące równania:
\[
\forall t \in [0;+\infty) \quad \Lambda(t) = \Lambda_0 e^{gt},
\]
oraz:
\[
\forall t \in [0;+\infty) \quad L(t) = L_0 e^{nt},
\]
gdzie \(\Lambda_0\) i \(L_0\) > 0 to zasoby wiedzy i pracy w momencie \(t = 0\), \(g > 0\) jest stopą harrodianańskiego postępu technicznego, zaś \(n > 0\) to stopa wzrostu liczby pracujących.

4. Celem działania typowego konsumenta jest znalezienie takich ścieżek czasowych stóp inwestycji \(s_K(t)\) i \(s_H(t)\), które maksymalizują całkę preferencji typowego konsumenta daną wzorem:
\[
\int_0^{+\infty} \frac{(c(t))^{1-\rho}}{1-\sigma} e^{-\rho t} dt,
\]
gdzie \(c = \frac{C}{L}\) to konsumpcja na pracującego, zaś parametry \(\sigma \in (0;1) \cup (1;+\infty)\) i \(\rho > 0\) interpretuje się ekonomicznie tak, jak ma to miejsce w analizowanych uprzednio modelach optymalnego sterowania Ramseya, Lucasa i Romera.

Ponieważ techniczne uzbrojenie pracy \(k\) dane jest wzorem:
\[
\forall t \in [0;+\infty) \quad k(t) = \frac{K(t)}{L(t)},
\]
kapitał ludzki natomiast na pracującego \(h\) można zapisać następująco:
\[\forall t \in [0;+\infty) \quad h(t) = \frac{H(t)}{L(t)}, \]

zatem, różniczkując powyższe związki względem czasu \(t \in [0;+\infty) \), uzyskujemy:

\[\forall t \in [0;+\infty) \quad \dot{k}(t) = \frac{\dot{K}(t) - L(t) \dot{L}(t)}{(L(t))^2} = \frac{\dot{K}(t) - K(t) \dot{L}(t)}{L(t)} = \frac{\dot{K}(t)}{L(t)} - k(t) \frac{\dot{L}(t)}{L(t)} \]

i (analogicznie):

\[\forall t \in [0;+\infty) \quad \dot{h}(t) = \frac{\dot{H}(t)}{L(t)} - h(t) \frac{\dot{L}(t)}{L(t)}. \]

Różniczkując zaś zależność (10.86b) względem czasu \(t \in [0;+\infty) \), otrzymujemy:

\[\forall t \in [0;+\infty) \quad \dot{L}(t) = \frac{d}{dt} (L_0 e^{nt}) = n L_0 e^{nt} = n L(t) \]

lub:

\[\forall t \in [0;+\infty) \quad \frac{\dot{L}(t)}{L(t)} = n. \]

Wstawiając równanie (10.89) do związków (10.88ab), mamy:

\[\forall t \in [0;+\infty) \quad \dot{k}(t) = \frac{\dot{K}(t)}{L(t)} - nk(t) \]

i (analogicznie):

\[\forall t \in [0;+\infty) \quad \dot{h}(t) = \frac{\dot{H}(t)}{L(t)} - nh(t), \]

a stąd oraz z zależności (10.85ab) uzyskujemy:

\[\forall t \in [0;+\infty) \quad \dot{k}(t) = \frac{s_K(t) Y(t) - \delta_K K(t)}{L(t)} - nk(t) = s_K(t) \frac{Y(t)}{L(t)} - \delta_K \frac{K(t)}{L(t)} - nk(t), \]

czyli:

\[\forall t \in [0;+\infty) \quad \dot{k}(t) = s_K(t) y(t) - (\delta_K + n) k(t), \]

oraz (podobnie):

\[\forall t \in [0;+\infty) \quad \dot{h}(t) = s_H(t) y(t) - (\delta_H + n) h(t), \]

gdzie \(y = \frac{Y}{L} \) to poziom wydajności pracy.

Dzieląc funkcję produkcji (10.84) przez liczbę pracujących \(L > 0 \), uzyskujemy:

\[\forall t \in [0;+\infty) \quad y(t) = \frac{Y(t)}{L(t)} = \frac{(K(t))^\alpha (H(t))^\beta (L(t))^{1-\alpha-\beta}}{(L(t))^{\alpha+\beta} (L(t))^{1-\alpha-\beta}} = (\Lambda(t))^{1-\alpha-\beta} \left(\frac{K(t)}{L(t)} \right)^\alpha \left(\frac{H(t)}{L(t)} \right)^\beta, \]
a stąd:
\[\forall t \in [0;+\infty) \quad y(t) = (\Lambda(t))^{1-\alpha-\beta} (k(t))^{\alpha} (h(t))^{\beta} \]
lub, po uwzględnieniu równania (10.86a):
\[\forall t \in [0;+\infty) \quad y(t) = (\Lambda_0 e^{\lambda t})^{1-\alpha-\beta} (k(t))^{\alpha} (h(t))^{\beta} = \Lambda_0^{1-\alpha-\beta} e^{(1-\alpha-\beta)\lambda t} (k(t))^{\alpha} (h(t))^{\beta} \]
bądź też:
\[\forall t \in [0;+\infty) \quad y(t) = \tilde{\Lambda} e^{(1-\alpha-\beta)\lambda t} (k(t))^{\alpha} (h(t))^{\beta}, \quad (10.91) \]
gdzie \(\tilde{\Lambda} = \Lambda_0^{1-\alpha-\beta} > 0 \). Wstawiając funkcję wydajności pracy (10.91) do równań (10.90ab), mamy:
\[\forall t \in [0;+\infty) \quad \dot{k}(t) = \tilde{\Lambda} e^{(1-\alpha-\beta)\lambda t} s_K(t)(k(t))^{\alpha} (h(t))^{\beta} - (\delta_K + n)k(t) \quad (10.92a) \]
i:
\[\forall t \in [0;+\infty) \quad \dot{h}(t) = \tilde{\Lambda} e^{(1-\alpha-\beta)\lambda t} s_H(t)(k(t))^{\alpha} (h(t))^{\beta} - (\delta_H + n)h(t). \quad (10.92b) \]
Równania różniczkowe (10.92ab) uzależniają przyrosty technicznego uzbrojenia pracy \(k \) i kapitału ludzkiego na pracującego \(h \) m.in. od wartości owych zasobów \(k \) i \(h \), stop inwestycji w kapitał rzeczowy \(s_k \) i ludzki \(s_h \), stop ich deprecjacji \(\delta_K \) i \(\delta_H \) oraz elastyczności \(\alpha \) i \(\beta \) funkcji produkcji Cobba-Douglasa.

Ponieważ konsumpcja \(C \) jest różnicą między produkcją \(Y \) a inwestycjami w kapitał rzeczowy \(s_k \) \(Y \) i w kapitał ludzki \(s_h \) \(Y \), zatem:
\[\forall t \in [0;+\infty) \quad C(t) = Y(t) - s_K(t)Y(t) - s_H(t)Y(t) = [1 - s_K(t) - s_H(t)]Y(t) \]
lub, po podzieleniu powyższego związku przez \(L > 0 \):
\[\forall t \in [0;+\infty) \quad c(t) = \frac{C(t)}{L(t)} = [1 - s_K(t) - s_H(t)] \frac{Y(t)}{L(t)} = [1 - s_K(t) - s_H(t)]y(t), \]
skąd wynika, iż całkę preferencji typowego konsumenta, daną wzorem (10.87), można zapisać następująco:
\[\int_{0}^{\infty} (c(t))^{1-\sigma} - \frac{L(t)}{1-\sigma} e^{-\rho t} dt = \int_{0}^{\infty} \frac{[1 - s_K(t) - s_H(t)]y(t))^{1-\sigma} - \frac{L(t)}{1-\sigma} e^{-\rho t} dt. \quad (10.93) \]

Zachowujący się racjonalnie konsument szuka takich ścieżek czasowych \(s_k(t) \) i \(s_h(t) \), które maksymalizują całkę preferencji (10.93) przy ograniczeniu równaniami różniczkowymi (10.90ab). Oznacza to, że problem, przed którym stoi ów konsument (po uwzględnieniu funkcji wydajności pracy (10.91)), można zapisać jako następujące zadanie sterowania optymalnego (maksimum Pontriagina):
max_{s_K(t), s_H(t)} \int_0^{+\infty} \frac{[l-s_K(t)-s_H(t)]y(t)]^{l-\sigma} - 1}{1-\sigma} e^{-\rho t} dt
\begin{align*}
k(t) &= \tilde{\lambda} e^{(l-\alpha-\rho)\tilde{s}_K(t)} y(t) - (\delta_K + n) k(t) \\
h(t) &= \tilde{\lambda} e^{(l-\alpha-\rho)\tilde{s}_H(t)} y(t) - (\delta_H + n) h(t) \\
y(t) &= \tilde{\lambda} e^{(l-\alpha-\rho)\tilde{s}_K(t)} [k(t)]^\alpha (h(t))^\beta \\
k(0) &= k_0 \quad \text{a} \quad h(0) = h_0
\end{align*}
(10.94)

gdzie \(k_0 \) i \(h_0 > 0 \) to zasoby technicznego uzbrojenia pracy i kapitału ludzkiego na pracującego w momencie \(t = 0 \). Bieżący hamiltonian \(\tilde{H} \) dla zadania sterowania optymalnego (10.94) dany jest wzorem:

\begin{align*}
\forall t \in [0;+\infty) \quad \tilde{H}(k(t), h(t), s_K(t), s_H(t), \lambda_K(t), \lambda_H(t), t) &= \frac{[l-s_K(t)-s_H(t)]y(t)]^{l-\sigma} - 1}{1-\sigma} + \\
&+ \lambda_K(t) \cdot [s_K(t) y(t) - (\delta_K + n) k(t)] + \lambda_H(t) \cdot [s_H(t) y(t) - (\delta_H + n) h(t)],
\end{align*}
(10.95)

gdzie \(\lambda_K \) i \(\lambda_H \) to, różniczkowalne względem czasu \(t \in [0;+\infty) \), mnożniki Lagrange'a hamiltonianu (10.95).

Warunki konieczne istnienia niebrzegowego maksimum Pontriagina (10.94) określają równania:

\begin{align*}
\forall t \in [0;+\infty) & \quad \frac{\partial \tilde{H}(t)}{\partial s_K(t)} = 0, \quad (10.96a) \\
\forall t \in [0;+\infty) & \quad \frac{\partial \tilde{H}(t)}{\partial s_H(t)} = 0, \quad (10.96b) \\
\forall t \in [0;+\infty) & \quad -\frac{\partial \tilde{H}(t)}{\partial k(t)} + \rho \lambda_K(t) = \dot{\lambda}_K(t), \quad (10.96c) \\
\forall t \in [0;+\infty) & \quad -\frac{\partial \tilde{H}(t)}{\partial h(t)} + \rho \lambda_H(t) = \dot{\lambda}_H(t), \quad (10.96d) \\
\forall t \in [0;+\infty) & \quad \frac{\partial \tilde{H}(t)}{\partial \lambda_K(t)} = \dot{k}(t), \quad (10.96e) \\
\forall t \in [0;+\infty) & \quad \frac{\partial \tilde{H}(t)}{\partial \lambda_H(t)} = \dot{h}(t) \quad (10.96f)
\end{align*}
oraz warunki transwersalności:

\[
\lim_{t \to +\infty} \left(\lambda_K (t)e^{-\rho t} \right) = 0, \quad (10.96g)
\]

\[
\lim_{t \to +\infty} \left(\lambda_H (t)e^{-\rho t} \right) = 0. \quad (10.96h)
\]

Pochodne cząstkowe bieżącego hamiltoniana (10.95) dane są wzorami:

\[
\frac{\partial H}{\partial s_K} = \frac{\partial}{\partial s_K} \left(\frac{\left([1-s_K-s_H] y \right)^{1-\sigma} - 1}{1-\sigma} + \lambda_K [s_K y - (\delta_K + n) k] + \lambda_H [s_H y - (\delta_H + n) h] \right) = \\
= \frac{(1-\sigma)\left([1-s_K-s_H] y \right)^{1-\sigma} \cdot (-y) + \lambda_K y}{1-\sigma}
\]
lub:

\[
\frac{\partial H}{\partial s_K} = -\left([1-s_K-s_H] y \right)^{1-\sigma} y^{1-\sigma} + \lambda_K y \quad (10.97a)
\]
i (analogicznie):

\[
\frac{\partial H}{\partial s_H} = -\left([1-s_K-s_H] y \right)^{1-\sigma} y^{1-\sigma} + \lambda_H y, \quad (10.97b)
\]

\[
\frac{\partial H}{\partial k} = \frac{\partial}{\partial k} \left(\frac{\left([1-s_K-s_H] y \right)^{1-\sigma} - 1}{1-\sigma} + \lambda_K [s_K y - (\delta_K + n) k] + \lambda_H [s_H y - (\delta_H + n) h] \right) = \\
= \frac{(1-\sigma)\left([1-s_K-s_H] y \right)^{1-\sigma} \cdot \left[-\frac{\partial y}{\partial k} \right] + \lambda_K \left[s_K \frac{\partial y}{\partial k} - (\delta_K + n) \right] + \lambda_H s_H \frac{\partial y}{\partial k} \right),
\]
a zatem:

\[
\frac{\partial H}{\partial k} = \left([1-s_K-s_H] y \right)^{1-\sigma} y^{1-\sigma} \frac{\partial y}{\partial k} + \lambda_K \left[s_K \frac{\partial y}{\partial k} - (\delta_K + n) \right] + \lambda_H s_H \frac{\partial y}{\partial k} \quad (10.97c)
\]

oraz podobnie:

\[
\frac{\partial H}{\partial h} = \left([1-s_K-s_H] y \right)^{1-\sigma} y^{1-\sigma} \frac{\partial y}{\partial h} + \lambda_K s_K \frac{\partial y}{\partial h} + \lambda_H \left[s_H \frac{\partial y}{\partial h} - (\delta_H + n) \right], \quad (10.97d)
\]

\[
\frac{\partial H}{\partial \lambda_K} = \frac{\partial}{\partial \lambda_K} \left(\frac{\left([1-s_K-s_H] y \right)^{1-\sigma} - 1}{1-\sigma} + \lambda_K [s_K y - (\delta_K + n) k] + \lambda_H [s_H y - (\delta_H + n) h] \right),
\]
czyli:

\[
\frac{\partial H}{\partial \lambda_K} = s_K y - (\delta_K + n) k \quad (10.97e)
\]
i:

\[\frac{\partial H}{\partial \lambda_H} = s_H y - (\delta_H + n) h. \] (10.97f)

Z równań (10.96a) i (10.97a) wynika, że spełniony jest związek:

\[\forall t \in [0;+\infty) \quad -(1-s_K(t)-s_H(t))^{\sigma} (y(t))^1 - \sigma + \lambda_H(t) y(t) = 0, \]

który prowadzi do zależności:\(^{15}\)

\[\forall t \in [0;+\infty) \quad \lambda_K(t) = [(1-s_K(t)-s_H(t)) y(t)]^{-\sigma}. \] (10.98a)

Postępując analogicznie z równaniami (10.96b) i (10.97b), dochodzimy do zależności:

\[\forall t \in [0;+\infty) \quad \lambda_H(t) = [(1-s_K(t)-s_H(t)) y(t)]^{-\sigma}. \] (10.98b)

Z równań (10.98ab) wynika, że w warunkach optymalnego wyboru typowego konsumenta musi być spełniony związek:

\[\forall t \in [0;+\infty) \quad \lambda_K(t) = \lambda_H(t) = [(1-s_K(t)-s_H(t)) y(t)]^{-\sigma}. \] (10.99)

Logarytmując stronami zależność (10.99), uzyskujemy równość:

\[\forall t \in [0;+\infty) \quad \ln(\lambda_K(t)) = \ln(\lambda_H(t)) = -\sigma \ln(1-s_K(t)-s_H(t)) - \sigma \ln(y(t)), \]

która, po zróżniczkowaniu względem czasu \(t \in [0;+\infty) \), prowadzi do związku:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_K(t)}{\dot{\lambda}_H(t)} = \frac{\dot{\lambda}_H(t)}{\dot{\lambda}_H(t)} = -\sigma \left(\frac{\dot{s}_K(t)+\dot{s}_H(t)}{1-s_K(t)-s_H(t)} - \frac{\dot{y}(t)}{y(t)} \right), \]

co implikuje równanie:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_K(t)}{\dot{\lambda}_H(t)} = \frac{\dot{\lambda}_H(t)}{\dot{\lambda}_H(t)} = \sigma \left(\frac{\dot{s}_K(t)+\dot{s}_H(t)}{1-s_K(t)-s_H(t)} - \frac{\dot{y}(t)}{y(t)} \right). \] (10.100)

Jeśli przyjmiemy dodatkowe założenie, że analizowany przez nas typowy konsument (spośród dostępnych mu ścieżek czasowych stóp inwestycji \(s_K \) i \(s_H \)) wybiera stałe w czasie stopy inwestycji (co oznacza, że dla każdego \(t \in [0;+\infty) \) \(s_K(t) = \hat{s}_K, \)

\(s_H(t) = \hat{s}_H \) oraz \(\dot{s}_K(t) = \dot{s}_H(t) = 0, \) przy czym \(\hat{s}_K, \hat{s}_H \) i \((\hat{s}_K + \hat{s}_H) \in (0;1) \), to równanie (10.100) można zapisać następująco:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_K(t)}{\dot{\lambda}_H(t)} = \frac{\dot{\lambda}_H(t)}{\dot{\lambda}_H(t)} = -\sigma \frac{\dot{y}(t)}{y(t)}. \] (10.101)

Logarytmując stronami funkcję wydajności pracy (10.91), otrzymujemy związek:

\(^{15}\) Równanie \(- (1-s_K-s_H)^{-\sigma} y^{1-\sigma} + \lambda_K y = 0\) posiada również rozwiązanie \(y = 0 \), jednak jest ono sprzeczne z założeniem, że w każdym momencie \(t \in [0;+\infty) \) \(k(t) > 0 \) i \(h(t) > 0. \) Uzasadnienie tego pozostawiamy Czytelnikom.
\[\forall t \in [0;+\infty) \quad \ln(y(t)) = \ln(\Lambda) + (1 - \alpha - \beta)gt + \alpha \ln(k(t)) + \beta \ln(h(t)), \]
który, po zróżniczkonaniu względem czasu \(t \in [0;+\infty) \), można zapisać następująco:

\[\forall t \in [0;+\infty) \quad \frac{\dot{y}(t)}{y(t)} = (1 - \alpha - \beta)g + \alpha \frac{\dot{k}(t)}{k(t)} + \beta \frac{\dot{h}(t)}{h(t)}. \] (10.102)

Z równań (10.101-10.102) wynika, że spełniona jest zależność:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} = \frac{\dot{\lambda}_H(t)}{\lambda_H(t)} = -\sigma \left[(1 - \alpha - \beta)g + \alpha \frac{\dot{k}(t)}{k(t)} + \beta \frac{\dot{h}(t)}{h(t)} \right]. \] (10.103)

Wstawiając pochodną cząstkową (10.97e) do warunku (10.96e), otrzymujemy:

\[\forall t \in [0;+\infty) \quad \dot{k}(t) = s_K(t)y(t) - (\delta_K + n)k(t) \]

lub, po uwzględnieniu tego, że w każdym momencie \(t \in [0;+\infty) \) \(s_K(t) = \tilde{s}_K \) :

\[\forall t \in [0;+\infty) \quad \dot{k}(t) = \tilde{s}_K y(t) - (\delta_K + n)k(t), \]
a stąd, po podzieleniu powyższego równania przez \(k > 0 \), mamy:

\[\forall t \in [0;+\infty) \quad \frac{\dot{k}(t)}{k(t)} = \frac{\dot{\tilde{s}}_K}{\tilde{s}_K} \frac{y(t)}{k(t)} - (\delta_K + n), \]

co implikuje związek:

\[\forall t \in [0;+\infty) \quad \frac{\dot{k}(t)}{k(t)} = \frac{\dot{\tilde{s}}_K}{\tilde{s}_K} \frac{y(t)}{k(t)} + \delta_K + n, \]

który, po podzieleniu przez \(\tilde{s}_K > 0 \), prowadzi do zależności:

\[\forall t \in [0;+\infty) \quad \frac{y(t)}{k(t)} = \frac{\dot{k}(t)}{k(t)} + \delta_K + n. \] (10.104a)

Postępując analogicznie z równaniami (10.97f) i (10.96f), dochodzimy do równania:

\[\forall t \in [0;+\infty) \quad \frac{y(t)}{h(t)} = \frac{\dot{h}(t)}{h(t)} + \delta_H + n. \] (10.104b)

Wstawiając pochodną cząstkową (10.97c) i równania \(s_K(t) = \tilde{s}_K \) oraz \(s_H(t) = \tilde{s}_H \) do warunku (10.96c), otrzymujemy:

\[\forall t \in [0;+\infty) \quad -((1 - \tilde{s}_K - \tilde{s}_H))^{\sigma - \sigma} (y(t))^{-\sigma} \frac{\partial y(t)}{\partial k(t)} = \lambda_K(t) \left[\lambda_K(t) \frac{\partial y(t)}{\partial k(t)} + (\delta_K + n) \right]. \]
\[-\lambda_H(t)\delta_H \frac{\partial y(t)}{\partial k(t)} + \rho \lambda_K(t) = \dot{\lambda}_K(t) \]

lub:

\[\forall t \in [0;+\infty) \quad \dot{\lambda}_K(t) = (\rho + \delta_K + n)\lambda_K(t) - (1 - \tilde{s}_K - \tilde{s}_H) \cdot [(1 - \tilde{s}_K - \tilde{s}_H)y(t)]^{-\sigma} \frac{\partial y(t)}{\partial k(t)} + \]

\[-\tilde{s}_K \lambda_K(t) \frac{\partial y(t)}{\partial k(t)} - \tilde{s}_H \lambda_H(t) \frac{\partial y(t)}{\partial k(t)} , \]

co oznacza, że zachodzi związek:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} = \rho + \delta_K + n - (1 - \tilde{s}_K - \tilde{s}_H) \frac{[(1 - \tilde{s}_K - \tilde{s}_H)y(t)]^{-\sigma}}{\lambda_K(t)} \frac{\partial y(t)}{\partial k(t)} + \]

\[-\frac{\tilde{s}_K}{\lambda_K(t)} \frac{\partial y(t)}{\partial k(t)} - \frac{\tilde{s}_H}{\lambda_K(t)} \frac{\lambda_K(t)}{\lambda_K(t)} \frac{\partial y(t)}{\partial h(t)} . \]

Dokonując podobnych operacji na równaniach (10.97d) oraz (10.96d), otrzymujemy:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_K(t) - \lambda_K(t)}{\lambda_K(t)} = \rho + \delta_K + n - (1 - \tilde{s}_K - \tilde{s}_H) \frac{[(1 - \tilde{s}_K - \tilde{s}_H)y(t)]^{-\sigma}}{\lambda_K(t)} \frac{\partial y(t)}{\partial h(t)} + \]

\[-\frac{\tilde{s}_K}{\lambda_K(t)} \frac{\partial y(t)}{\partial h(t)} - \frac{\tilde{s}_H}{\lambda_K(t)} \frac{\lambda_K(t)}{\lambda_K(t)} \frac{\partial y(t)}{\partial h(t)} . \]

Wstawiając do dwóch powyższych równań związek (10.99), mamy:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} = \rho + \delta_K + n - (1 - \tilde{s}_K - \tilde{s}_H) \frac{\partial y(t)}{\partial k(t)} - \tilde{s}_K \frac{\partial y(t)}{\partial k(t)} - \tilde{s}_H \frac{\partial y(t)}{\partial k(t)} \]

lub:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} = \rho + \delta_K + n - \frac{\partial y(t)}{\partial k(t)} \quad (10.105a) \]

oraz:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} = \rho + \delta_K + n - \frac{\partial y(t)}{\partial h(t)} . \quad (10.105b) \]

Ponieważ z funkcji wydajności pracy (10.91) wynika, że:

\[\forall t \in [0;+\infty) \quad \frac{\partial y(t)}{\partial k(t)} = \frac{\partial}{\partial k(t)} \left(\tilde{\Lambda} e^{(l-\alpha-\beta)k(t)} (k(t))^\alpha (h(t))^\beta \right) = \]

\[= \alpha \tilde{\Lambda} e^{(l-\alpha-\beta)k(t)} (k(t))^\alpha (h(t))^\beta = \alpha \frac{y(t)}{k(t)} \]

i (analogicznie):
\[\forall t \in [0;+\infty) \quad \frac{\partial y(t)}{\partial h(t)} = \beta \frac{y(t)}{h(t)}, \]

zatem równania (10.105ab) można zapisać następująco:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} = \rho + \delta_K + n - \alpha \frac{y(t)}{k(t)} \]

(10.106a)

oraz:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_H(t)}{\lambda_H(t)} = \rho + \delta_H + n - \beta \frac{y(t)}{h(t)}. \]

(10.106b)

Wstawiając równanie (10.104a) do związku (10.106a), otrzymujemy:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} = \rho + \delta_K + n - \alpha \frac{\dot{k}(t)}{\dot{s}_K} \]

Uwzględniając zaś zależność (10.103), powyższe równanie można zapisać następująco:

\[\forall t \in [0;+\infty) \quad -\sigma \left[(1-\alpha-\beta)g + \alpha \frac{\dot{k}(t)}{k(t)} + \beta \frac{\dot{h}(t)}{h(t)} \right] = \rho + \delta_K + n - \alpha \frac{\dot{k}(t)}{\dot{s}_K} \]

co implikuje związek:

\[\forall t \in [0;+\infty) \quad -\sigma(1-\alpha-\beta)g - \sigma \alpha \frac{\dot{k}(t)}{k(t)} - \sigma \beta \frac{\dot{h}(t)}{h(t)} = \rho + \delta_K + n - \alpha \frac{\dot{k}(t)}{\dot{s}_K} - \alpha (\delta_K + n), \]

który można zapisać również następująco:

\[\forall t \in [0;+\infty) \quad \alpha \frac{1-\sigma \dot{s}_K}{\dot{s}_K} \cdot \frac{\dot{k}(t)}{k(t)} - \beta \sigma \frac{\dot{h}(t)}{h(t)} = \rho + \sigma(1-\alpha-\beta)g + \frac{\dot{s}_K - \alpha}{\dot{s}_K} (\delta_K + n). \]

(10.107a)

Postępując analogicznie z równaniami (10.104b), (10.106b) i (10.103), mamy:

\[\forall t \in [0;+\infty) \quad -\alpha \sigma \frac{\dot{k}(t)}{k(t)} + \beta \frac{1-\sigma \dot{s}_H}{\dot{s}_H} \cdot \frac{\dot{h}(t)}{h(t)} = \rho + \sigma(1-\alpha-\beta)g + \frac{\dot{s}_H - \beta}{\dot{s}_H} (\delta_H + n). \]

(10.107b)

Równania (10.107ab) można zapisać macierzowo jako układ równań, względem stóp wzrostu \(\frac{\dot{k}}{k} \) i \(\frac{\dot{h}}{h} \), następująco:

\[
\begin{bmatrix}
\alpha \frac{1-\sigma \dot{s}_K}{\dot{s}_K} & -\beta \sigma \\
-\alpha \sigma & \beta \frac{1-\sigma \dot{s}_H}{\dot{s}_H}
\end{bmatrix}
\begin{bmatrix}
\frac{\dot{k}(t)}{k(t)} \\
\frac{\dot{h}(t)}{h(t)}
\end{bmatrix}
=
\begin{bmatrix}
\rho + \sigma(1-\alpha-\beta)g + \frac{\dot{s}_K - \alpha}{\dot{s}_K} (\delta_K + n) \\
\rho + \sigma(1-\alpha-\beta)g + \frac{\dot{s}_H - \beta}{\dot{s}_H} (\delta_H + n)
\end{bmatrix}.
\]

(10.108)
Jeśli wyznacznik:

\[
\tilde{W} = \begin{vmatrix}
\alpha - \sigma \hat{s}_k & -\beta \\
-\alpha \sigma & \beta - \sigma \hat{s}_H
\end{vmatrix}
= \alpha \beta \left(1 - \sigma \hat{s}_k \right) \left(1 - \sigma \hat{s}_H \right) - \alpha \beta \sigma^2 = \alpha \beta \left(\frac{1 - \sigma \hat{s}_k}{\hat{s}_k \hat{s}_H} \right) \left(\frac{1 - \sigma \hat{s}_H}{\hat{s}_k \hat{s}_H} \right)
\]

jest różny od zera, to układ równań (10.108) ma dokładnie jedno rozwiązanie względem stóp wzrostu \(\frac{\dot{k}}{k} \) i \(\frac{\dot{h}}{h} \). Płynie stąd wniosek, że przy \(\hat{s}_k + \hat{s}_H \neq \frac{1}{\sigma} \) wyznacznik \(\tilde{W} \) jest różny od zera i istnieją pewne, stałe w czasie, stopy wzrostu zasobów technicznego uzbrojenia pracy \(g_k = \frac{\dot{k}(t)}{k(t)} \) i kapitału ludzkiego na pracującego \(g_h = \frac{\dot{h}(t)}{h(t)} \).

Jeśli zaś istnieją stałe w czasie stopy wzrostu \(g_k \) i \(g_h \), rozwiązujące układ równań (10.108), to równania (10.104ab) można zapisać następująco:

\[
\forall t \in [0;+\infty) \quad \frac{y(t)}{k(t)} = \frac{g_k + \delta_k + n}{\hat{s}_k} \quad \text{(10.109a)}
\]

i:

\[
\forall t \in [0;+\infty) \quad \frac{y(t)}{h(t)} = \frac{g_h + \delta_H + n}{\hat{s}_H} \quad \text{(10.109b)}
\]

Logarytmując stronami związki (10.109ab), uzyskujemy:

\[
\forall t \in [0;+\infty) \quad \ln(y(t)) - \ln(k(t)) = \ln \left(\frac{g_k + \delta_k + n}{\hat{s}_k} \right)
\]

oraz:

\[
\forall t \in [0;+\infty) \quad \ln(y(t)) - \ln(h(t)) = \ln \left(\frac{g_h + \delta_H + n}{\hat{s}_H} \right),
\]

a stąd, po zróżniczkwaniu powyższych zależności względem czasu \(t \in [0;+\infty) \), otrzymujemy:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{y}(t)}{y(t)} - \frac{\dot{k}(t)}{k(t)} = 0
\]

i:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{y}(t)}{y(t)} - \frac{\dot{h}(t)}{h(t)} = 0
\]

lub, po uwzględnieniu związku (10.102):
oraz:
$$\forall t \in [0;+\infty) \quad (1-\alpha-\beta)g + \alpha \frac{k(t)}{k(t)} + \beta \frac{h(t)}{h(t)} - \frac{k(t)}{k(t)} = 0$$

oraz:
$$\forall t \in [0;+\infty) \quad (1-\alpha-\beta)g + \alpha \frac{k(t)}{k(t)} + \beta \frac{h(t)}{h(t)} - \frac{h(t)}{h(t)} = 0,$$

co implikuje, że:
$$\forall t \in [0;+\infty) \quad (1-\alpha)\frac{k(t)}{k(t)} - \beta \frac{h(t)}{h(t)} = (1-\alpha-\beta)g$$

i:
$$\forall t \in [0;+\infty) \quad -\alpha \frac{k(t)}{k(t)} + (1-\beta)\frac{h(t)}{h(t)} = (1-\alpha-\beta)g$$

bądź, po uwzględnieniu tożsamości $g_k \equiv \frac{k(t)}{k(t)}$ oraz $g_h \equiv \frac{h(t)}{h(t)}$, mamy:
$$\begin{align*}
(1-\alpha)g_k - \beta g_h &= (1-\alpha-\beta)g \\
-\alpha g_k + (1-\beta)g_h &= (1-\alpha-\beta)g
\end{align*}$$

Powyższy układ równań można też zapisać w postaci macierzowej następująco:
$$\begin{bmatrix}
1-\alpha & -\beta \\
-\alpha & 1-\beta
\end{bmatrix}
\begin{bmatrix}
g_k \\
g_h
\end{bmatrix}
= \begin{bmatrix}
(1-\alpha-\beta)g \\
(1-\alpha-\beta)g
\end{bmatrix}. \quad (10.110)$$

Rozwiązanie układu równań (10.110) wyznacza stopy wzrostu technicznego uzbrojenia pracy g_k i kapitału ludzkiego na pracującego g_h spełniające warunki konieczne istnienia niebrzegowego maksimum Pontriagina (10.94). Stosując metodę wyznaczników Cramer, okazuje się, że:

$$W = \begin{vmatrix}
1-\alpha & -\beta \\
-\alpha & 1-\beta
\end{vmatrix} = (1-\alpha)(1-\beta) - \alpha\beta = 1-\alpha-\beta + \alpha\beta - \alpha\beta = 1-\alpha-\beta \in (0;1),$$

$$W_k = \begin{vmatrix}
(1-\alpha-\beta)g & -\beta \\
(1-\alpha-\beta)g & 1-\beta
\end{vmatrix} = (1-\alpha-\beta)g(1-\beta) + (1-\alpha-\beta)\beta = (1-\alpha-\beta)g$$

oraz:
$$W_h = \begin{vmatrix}
1-\alpha & (1-\alpha-\beta)g \\
-\alpha & (1-\alpha-\beta)g
\end{vmatrix} = (1-\alpha)(1-\alpha-\beta)g + \alpha(1-\alpha-\beta)g = (1-\alpha-\beta)g,$$

co implikuje, że:
$$\forall t \in [0;+\infty) \quad \frac{\dot{k}(t)}{k(t)} = g_k = \frac{W_k}{W} = \frac{(1-\alpha-\beta)g}{1-\alpha-\beta} = g \quad (10.111a)$$

i:
\[\forall t \in [0;+\infty) \quad \frac{\dot{h}(t)}{h(t)} = g_k = \frac{W_h}{W} = \frac{(1-\alpha-\beta)g}{1-\alpha-\beta} = g. \quad (10.111b) \]

Co więcej, z równania (10.102) wynika, że stopę wzrostu wydajności pracy \(g_y \) można zapisać wzorem:

\[g_y = (1-\alpha-\beta)g + \alpha g_k + \beta g_h, \]

a stąd oraz z równań (10.111ab) otrzymujemy:

\[g_y = (1-\alpha-\beta)g + \alpha g + \beta g, \]

czyli:

\[\forall t \in [0;+\infty) \quad \frac{\dot{y}(t)}{y(t)} = g_y = g. \quad (10.111c) \]

Z równań (10.111abc) wynika, że stopy wzrostu wydajności pracy, technicznego uzbrojenia pracy i kapitału ludzkiego na pracującego (w rozważanym w tej części skryptu modelu wzrostu gospodarczego) równe są stopie harrodiańskiego postępu technicznego, czyli tej stopie wzrostu, która występuje w długookresowej równowadze oryginalnego modelu Mankiwa-Romera-Weila.

Wstawiając równanie (10.111c) do związków (10.101), dochodzimy do zależności:

\[\forall t \in [0;+\infty) \quad \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} = -\sigma g \quad \wedge \quad \frac{\dot{\lambda}_H(t)}{\lambda_H(t)} = -\sigma g. \quad (10.112) \]

Całkując powyższe równania względem czasu \(t \in [0;+\infty) \), uzyskujemy związki:

\[\forall t \in [0;+\infty) \quad \int \frac{\dot{\lambda}_K(t)}{\lambda_K(t)} dt = -\sigma g \int dt \quad \wedge \quad \int \frac{\dot{\lambda}_H(t)}{\lambda_H(t)} dt = -\sigma g \int dt, \]

które prowadzą do równań:

\[\forall t \in [0;+\infty) \quad \ln|\lambda_K(t)| = -\sigma gt + F_K \quad \wedge \quad \ln|\lambda_H(t)| = -\sigma gt + F_H, \]

gdzie \(F_K, F_H \in \mathbb{R} \) to stałe całkowania. Z powyższych związków wynika, iż zachodzą zależności:

\[\forall t \in [0;+\infty) \quad \lambda_K(t) = \pm e^{-\sigma gt + F_K} \quad \wedge \quad \lambda_H(t) = \pm e^{-\sigma gt + F_H}, \]

co implikuje, że spełnione są warunki transversalności (10.96gh), gdyż:

\[\lim_{t \to +\infty} (\lambda_K(t)e^{-pt}) = \lim_{t \to +\infty} (\pm e^{-\sigma gt + F_K e^{-pt}}) = \pm \lim_{t \to +\infty} (e^{-\sigma gt + F_K}) = 0 \]

oraz:

\[\lim_{t \to +\infty} (\lambda_H(t)e^{-pt}) = \lim_{t \to +\infty} (\pm e^{-\sigma gt + F_H e^{-pt}}) = \pm \lim_{t \to +\infty} (e^{-\sigma gt + F_H}) = 0. \]
Wstawiając równania (10.111ab) do związku (10.107a), dochodzimy do zależności:

\[
\alpha \frac{1 - \alpha S_k}{S_k} g - \beta g = \rho + \sigma(1 - \alpha - \beta)g + \frac{\tilde{S}_k - \alpha}{\tilde{S}_k}(\delta_k + n),
\]
którną można zapisać także następująco:

\[
\alpha \frac{1 - \alpha S_k}{S_k} g = \rho + \sigma(1 - \alpha)g + \frac{\tilde{S}_k - \alpha}{\tilde{S}_k}(\delta_k + n)
\]
lub:

\[
\alpha g - \sigma \alpha S_k g = (\rho + \sigma(1 - \alpha)g)S_k + \tilde{S}_k (\delta_k + n) - \alpha(\delta_k + n),
\]
a stąd:

\[
\alpha(g + \delta_k + n) = (\rho + \delta_k + n + \sigma g)\tilde{S}_k,
\]
co oznacza, że:

\[
\tilde{S}_k = \frac{\alpha(g + \delta_k + n)}{\rho + \delta_k + n + \sigma g}.
\]

(10.113a)

Dokonując analogicznych przekształceń na równaniach (10.111ab) i (10.107b), otrzymujemy:

\[
\tilde{S}_H = \frac{\beta(g + \delta_H + n)}{\rho + \delta_H + n + \sigma g}.
\]

(10.113b)

Równania (10.113ab) wyznaczają stopy inwestycji \(\tilde{S}_k \) i \(\tilde{S}_H \), które spełniają warunki konieczne istnienia maksimum Pontriagina (10.94).

Z równań tych wyciągnąć można następujące wnioski:

- Optymalne stopy inwestycji \(\tilde{S}_k \) i \(\tilde{S}_H \) zależne są od elastyczności \(\alpha \) i \(\beta \) funkcji produkcji Cobba-Douglasa (10.84), stóp deprecjacji \(\delta_k \) i \(\delta_H \) zasobów kapitału rzeczowego i ludzkiego, stopy wzrostu liczby pracujących n, stopy harrodiańskiego postępu technicznego g oraz stopy dyskontowej \(\rho \) i odwrotności międzyokresowej substytucji konsumpcji \(\sigma \) typowego konsumenta w analizowanym tu modelu wzrostu gospodarczego.
- Im wyższa jest elastyczność \(\alpha (\beta) \) produktu Y względem nakładów kapitału rzeczowego K (ludzkiego H), tym wyższa jest optymalna stopa inwestycji w kapitał rzeczowy \(\tilde{S}_k \) (ludzki \(\tilde{S}_H \)). Wynika to stąd, iż:

\[
\left. \frac{\partial \tilde{S}_k}{\partial \alpha} = \frac{\partial}{\partial \alpha} \left(\frac{\alpha(g + \delta_k + n)}{\rho + \delta_k + n + \sigma g} \right) = \frac{g + \delta_k + n}{\rho + \delta_k + n + \sigma g} > 0, \right.
\]

\[
\left. \frac{\partial \tilde{S}_H}{\partial \beta} = \frac{\partial}{\partial \beta} \left(\frac{\beta(g + \delta_H + n)}{\rho + \delta_H + n + \sigma g} \right) = \frac{g + \delta_H + n}{\rho + \delta_H + n + \sigma g} > 0. \right.
\]

- Licząc pochodne cząstkowe równań (10.113ab) względem, odpowiednio, \(\delta_k \) i \(\delta_H \), okazuje się, że pochodne te opisują związki:
\[
\frac{\partial s_K}{\partial \delta_K} = \frac{\partial}{\partial \delta_K} \left(\frac{\alpha(g + \delta_K + n)}{\rho + \delta_K + n + \sigma g} \right) = \alpha \frac{\rho + \delta_K + n + \sigma g - g - \delta_K - n}{(\rho + \delta_K + n + \sigma g)^2} = \\
= \alpha \frac{\rho + (\sigma - 1)g}{(\rho + \delta_K + n + \sigma g)^2}
\]

oraz (analogicznie):
\[
\frac{\partial s_H}{\partial \delta_H} = \frac{\partial}{\partial \delta_H} \left(\frac{\beta(g + \delta_H + n)}{\rho + \delta_H + n + \sigma g} \right) = \beta \frac{\rho + (\sigma - 1)g}{(\rho + \delta_H + n + \sigma g)^2}.
\]

Z powyższych zależności wynika, że przy \(\rho > (1 - \sigma)g\) spełniona jest nierówność: \(\frac{\partial s_K}{\partial \delta_K} > 0\) (\(\frac{\partial s_H}{\partial \delta_H} > 0\)) i wysokiej stopie deprecjacji kapitału rzeczowego (ludzkiego) odpowiada wysoka stopa inwestycji w kapitał rzeczowy (ludzki). Natomiast przy \(\rho < (1 - \sigma)g\) zachodzi: \(\frac{\partial s_K}{\partial \delta_K} < 0\) (\(\frac{\partial s_H}{\partial \delta_H} > 0\)), co implikuje, iż wówczas im wyższa jest stopa deprecjacji kapitału rzeczowego (ludzkiego), tym niższa jest stopa inwestycji w ów kapitał. Gdyby zaś zdarzyło się tak, iż \(\rho = (1 - \sigma)g\), to pochodna cząstkowa \(\frac{\partial s_K}{\partial \delta_K}\) (\(\frac{\partial s_H}{\partial \delta_H}\)) równa jest zeru i stopa deprecjacji kapitału rzeczowego (ludzkiego) nie od-

działuje na stopę inwestycji w kapitał rzeczowy (ludzki).

- Różniczkując równania (10.113ab) względem stopy wzrostu liczby pracujących \(n\), dochodzimy do zależności:

\[
\frac{\partial s_K}{\partial n} = \frac{\partial}{\partial n} \left(\frac{\alpha(g + \delta_K + n)}{\rho + \delta_K + n + \sigma g} \right) = \alpha \frac{\rho + \delta_K + n + \sigma g - (g + \delta_K + n)}{(\rho + \delta_K + n + \sigma g)^2} = \\
= \alpha \frac{\rho + (\sigma - 1)g}{(\rho + \delta_K + n + \sigma g)^2}
\]

i (analogicznie):
\[
\frac{\partial s_H}{\partial n} = \frac{\partial}{\partial n} \left(\frac{\beta(g + \delta_H + n)}{\rho + \delta_H + n + \sigma g} \right) = \beta \frac{\rho + (\sigma - 1)g}{(\rho + \delta_H + n + \sigma g)^2}.
\]

Powyższe pochodne cząstkowe interpretuje się ekonomicznie analogicznie do interpretacji pochodnych cząstkowych \(\frac{\partial s_K}{\partial \delta_K}\) i \(\frac{\partial s_H}{\partial \delta_H}\). Dlatego też interpretację tę pozostawiamy

Czytelnikom.

- Ponieważ:

\[
\frac{\partial s_K}{\partial g} = \frac{\partial}{\partial g} \left(\frac{\alpha(g + \delta_K + n)}{\rho + \delta_K + n + \sigma g} \right) = \alpha \frac{\rho + \delta_K + n + \sigma g - (g + \delta_K + n)\sigma}{(\rho + \delta_K + n + \sigma g)^2} = \\
\]
oraz:

\[\frac{\partial \tilde{s}_H}{\partial g} = \frac{\partial}{\partial g} \left(\frac{\beta (g + \delta_H + n)}{\rho + \delta_K + n + \sigma g} \right) = \frac{\beta (1 - \sigma)(\rho + \delta_K + n) + \sigma g}{(\rho + \delta_K + n + \sigma g)^2}, \]

zatem jeśli stopa postępu technicznego w sensie Harroda \(g \) jest wyższa od \(\frac{(\sigma - 1)(\rho + \delta_K + n)}{\sigma} \left(\frac{(\sigma - 1)(\rho + \delta_H + n)}{\sigma} \right) \), to \(\frac{\partial s_K}{\partial g} > 0 \left(\frac{\partial \tilde{s}_H}{\partial g} > 0 \right) \) i wysokiej stopie owego postępu odpowiada wysoka stopa inwestycji w kapitał rzeczowy (людżki). Przy \(g < \frac{(\sigma - 1)(\rho + \delta_K + n)}{\sigma} \left(\frac{(\sigma - 1)(\rho + \delta_H + n)}{\sigma} \right) \) zachodzi nierówność \(\frac{\partial s_K}{\partial g} < 0 \)

\[\left(\frac{\partial \tilde{s}_H}{\partial g} < 0 \right) \] i im wyższa jest stopa harrodiańskiego postępu technicznego, tym niższa jest optymalna stopa inwestycji w kapitał rzeczowy (людżki). W przypadku zaś, w którym \(g = \frac{(\sigma - 1)(\rho + \delta_K + n)}{\sigma} \left(\frac{(\sigma - 1)(\rho + \delta_H + n)}{\sigma} \right) \), stopa postępu technicznego nie oddziałuje na optymalną stopę inwestycji w kapitał rzeczowy (людżki), gdyż wówczas \(\frac{\partial s_K}{\partial g} = 0 \left(\frac{\partial \tilde{s}_H}{\partial g} = 0 \right) \).

Po policzeniu pochodnych cząstkowych równań (10.113ab) względem stopy dyskontowej \(\rho \) i odwrotności międzyokresowej substytucji konsumpcji \(\sigma \) typowego konsumenta okazuje się, że:

\[\frac{\partial \tilde{s}_K}{\partial \rho} = \frac{\partial}{\partial \rho} \left(\frac{\alpha (g + \delta_K + n)}{\rho + \delta_K + n + \sigma g} \right) = - \frac{\alpha (g + \delta_K + n)}{(\rho + \delta_K + n + \sigma g)^2} < 0, \]

\[\frac{\partial \tilde{s}_K}{\partial \sigma} = \frac{\partial}{\partial \sigma} \left(\frac{\alpha (g + \delta_K + n)}{\rho + \delta_K + n + \sigma g} \right) = - \frac{\alpha (g + \delta_K + n)g}{(\rho + \delta_K + n + \sigma g)^2} < 0, \]

\[\frac{\partial \tilde{s}_H}{\partial \rho} = \frac{\partial}{\partial \rho} \left(\frac{\beta (g + \delta_H + n)}{\rho + \delta_H + n + \sigma g} \right) = - \frac{\beta (g + \delta_H + n)}{(\rho + \delta_H + n + \sigma g)^2} < 0 \]

oraz:

\[\frac{\partial \tilde{s}_H}{\partial \sigma} = \frac{\partial}{\partial \sigma} \left(\frac{\beta (g + \delta_H + n)}{\rho + \delta_H + n + \sigma g} \right) = - \frac{\beta (g + \delta_H + n)g}{(\rho + \delta_H + n + \sigma g)^2} < 0. \]

Z powyższych nierówności płynie wniosek, że im bardziej typowy konsument w analizowanym tu modelu wzrostu gospodarczego ceni konsumpcję bieżącą, w stosunku do
konsumpcji przyszłej, czyli im wyższą wartość przyjmują parametry ρ i σ, tym niższe są optymalne stopy inwestycji \(\hat{s}_K \) i \(\hat{s}_H \) w zasoby kapitału rzeczkowego i ludzkiego.

10.6. OPTYMALNE STOPY INWESTYCJI W MODELU TYPU NONNEMANA-VANHOUDTA

Narzutnym rozszerzeniem modelu optymalnego sterowania w punkcie 10.5 skryptu jest model, w którym proces produkcyjny opisany jest przez funkcję produkcyjną uwzględniającą N różnych nakładów kapitału \(K_1, K_2, \ldots, K_N \) oraz nakłady efektywnej pracy \(\bar{L} = \Lambda L \). Jest to więc model bazujący na opisanym w punkcie 3.5 modelu wzrostu gospodarczego Nonnemana-Vanhoudta. W modelu tym przyjmowaliśmy następujące założenia\(^{16}\):

1. Proces produkcyjny opisuje rozszerzona funkcja produkcji Cobba-Douglasza połączonej z punktem 3.5 skryptu:

\[
\forall t \in [0;+\infty) \quad Y(t) = \prod_{i=1}^{N} (K_i(t))^{a_i} \cdot (\Lambda(t)L(t))^{1-\sum_{i=1}^{N} a_i}, \quad (10.114)
\]

gdzie zmienne \(Y, K_i \) (dla \(i = 1, 2, \ldots, N \)), \(\Lambda, L > 0 \) i parametry \(a_1, a_2, \ldots, a_N, \left(1 - \sum_{i=1}^{N} a_i\right) \in (0;1) \) interpretuje się ekonomicznie tak, jak w oryginalnym modelu Nonnemana-Vanhoudta.

2. Przyrosty każdego z zasobów kapitału \(\dot{K}_i \) opisują następujące równania różniczkowe:

\[
\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N \quad \dot{K}_i(t) = s_i(t)Y(t) - \delta_i K_i(t), \quad (10.115)
\]

gdzie \(s_i(t) \) to stopa inwestycji w i-ty zasób kapitału, zaś \(\delta_i \) jest stopą deprecjacji owego zasobu (dla każdego \(i = 1, 2, \ldots, N \)). O stopach \(s_i \) oraz \(\delta_i \) zakładamy, że:

\[
\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N \quad s_i(t) > 0 \land \delta_i > 0.
\]

oraz:

\[
\forall i = 1, 2, \ldots, N \quad \delta_i \in (0;1).
\]

3. Ścieżki czasowe zasobów wiedzy \(\Lambda \) i pracy \(L \) opisują równania (10.86ab). Oznacza to, że zasoby te rosną według stop wzrostu równych \(g \) i \(n > 0 \).

4. Typowy konsument szuka takich ścieżek czasowych stóp inwestycji \(s_1, s_2, \ldots, s_N \), które maksymalizują całkę preferencji (10.87).

\(^{16}\) Rozszerzenie prowadzonych w tej części skryptu rozważań (na przykład, w którym gospodarka charakteryzuje się efektami skali funkcji produkcji) Czytelnicy znajdą w artykule Tokarskiego (2007).
Dzieląc funkcję produkcji (10.114) przez liczbę pracujących \(L > 0 \), otrzymujemy funkcję wydajności pracy w postaci:

\[
\forall t \in [0;+\infty) \quad y(t) = \frac{Y(t)}{L(t)} = \frac{\prod_{i=1}^{N} (K_i(t))^{a_i} \cdot (\Lambda(t)L(t))^{1-\sum_{i=1}^{N} a_i}}{L(t)} = \frac{\prod_{i=1}^{N} (K_i(t))^{a_i} \cdot (\Lambda(t)L(t))^{1-\sum_{i=1}^{N} a_i}}{(L(t))^{1-\sum_{i=1}^{N} a_i} \cdot (L(t))^{1-\sum_{i=1}^{N} a_i}} = \frac{\prod_{i=1}^{N} (K_i(t))^{a_i} \cdot (\Lambda(t))^{1-\sum_{i=1}^{N} a_i}}{\prod_{i=1}^{N} (L(t))^{a_i}} = (\Lambda(t))^{1-\sum_{i=1}^{N} a_i} \prod_{i=1}^{N} \left(\frac{K_i(t)}{L(t)} \right)^{a_i},
\]

lub, po uwzględnieniu tożsamości \(k_i = \frac{K_i}{L} \) (dla każdego \(i = 1, 2, \ldots, N \)):

\[
\forall t \in [0;+\infty) \quad y(t) = (\Lambda(t))^{1-\sum_{i=1}^{N} a_i} \prod_{i=1}^{N} (k_i(t))^{a_i}, \quad (10.116)
\]

gdzie \(k_i \) (dla \(i = 1, 2, \ldots, N \)) to nakłady i-tego zasobu kapitału przypadające na jednego pracującego. Funkcja wydajności pracy opisuje relacje, które zachodzą między owymi nakładami, zasobem wiedzy \(\Lambda \) a wielkością uzyskiwanej w gospodarce wydajności pracy. Wstawiając równanie (10.86a) do funkcji wydajności pracy (10.116), otrzymujemy związek:

\[
\forall t \in [0;+\infty) \quad y(t) = (\Lambda_0 e^{gt})^{1-\sum_{i=1}^{N} a_i} \prod_{i=1}^{N} (k_i(t))^{a_i} = \Lambda_0^{-\sum_{i=1}^{N} a_i} e^{\left(1-\sum_{i=1}^{N} a_i \right) gt} \prod_{i=1}^{N} (k_i(t))^{a_i},
\]

który można zapisać również następująco:

\[
\forall t \in [0;+\infty) \quad y(t) = \Lambda e^{\left(1-\sum_{i=1}^{N} a_i \right) gt} \prod_{i=1}^{N} (k_i(t))^{a_i}, \quad (10.117)
\]

gdzie \(\Lambda = \Lambda_0^{-\sum_{i=1}^{N} a_i} > 0 \). Logarytmując stronami funkcję (10.117), otrzymujemy:

\[
\forall t \in [0;+\infty) \quad \ln(y(t)) = \ln(\Lambda) + \left(1-\sum_{i=1}^{N} a_i \right) gt + \sum_{i=1}^{N} (\alpha_i \ln(k_i(t))),
\]

co, po zróżniczkowaniu względem czasu \(t \in [0;+\infty) \), prowadzi do związku:

\[
\forall t \in [0;+\infty) \quad \frac{\dot{y}(t)}{y(t)} = \left(1-\sum_{i=1}^{N} a_i \right) g + \sum_{i=1}^{N} \left(\alpha_i \frac{k_i(t)}{k_i(t)} \right). \quad (10.118)
\]
Konsumpcję C w skali całej gospodarki można zapisać jako różnicę między produkcją Y a sumą inwestycji \(\sum_{i=1}^{N} s_i Y \), czyli:

\[
\forall t \in [0;+\infty) \quad C(t) = \left(1 - \sum_{i=1}^{N} s_i(t)\right)Y(t).
\]

Dzieląc stronami powyższe równanie przez liczbę pracujących \(L > 0 \), dochodzimy do równania konsumpcji na pracującego \(c = \frac{C}{L} \) postaci:

\[
\forall t \in [0;+\infty) \quad c(t) = \frac{C(t)}{L(t)} = \left(1 - \sum_{i=1}^{N} s_i(t)\right)\frac{Y(t)}{L(t)} = \left(1 - \sum_{i=1}^{N} s_i(t)\right)y(t).
\]

Stąd zaś wynika, iż całkę preferencji (10.87) typowego konsumenta możemy zapisać następująco:

\[
\int_{0}^{\infty} \left(\frac{(c(t))^{\gamma-1}}{1-\sigma} - 1\right)e^{-\rho t} dt = \int_{0}^{\infty} \left(\frac{\left(1 - \sum_{i=1}^{N} s_i(t)\right)y(t)}{1-\sigma} - 1\right)e^{-\rho t} dt.
\]

Różniczkując tożsamości \(k_i = \frac{K_i}{L} \) (dla każdego \(i = 1, 2, \ldots, N \)) względem czasu \(t \in [0;+\infty) \), uzyskujemy:

\[
\forall t \in [0;+\infty) \wedge i = 1, 2, \ldots, N \quad \dot{k}_i(t) = \frac{\dot{K}_i(t)L(t) - K_i(t)\dot{L}(t)}{(L(t))^2} = \frac{\dot{K}_i(t)}{L(t)} - \frac{K_i(t)}{L(t)} \cdot \frac{\dot{L}(t)}{L(t)}
\]

lub, po uwzględnieniu tożsamości \(k_i = \frac{K_i}{L} \) oraz tego, iż z równania (10.86b) wynika, że \(\frac{\dot{L}}{L} = n \):

\[
\forall t \in [0;+\infty) \wedge i = 1, 2, \ldots, N \quad \dot{k}_i(t) = \frac{\dot{K}_i(t)}{L(t)} - nk_i(t).
\]

Wstawiając do równań (10.120) związki (10.115), uzyskujemy:

\[
\forall t \in [0;+\infty) \wedge i = 1, 2, \ldots, N
\]

\[
\dot{k}_i(t) = \frac{s_i(t)Y(t) - \delta_i K_i(t)}{L(t)} - nk_i(t) = s_i(t)Y(t) - \delta_i K_i(t) - nk_i(t).
\]

lub, po uwzględnieniu tożsamości \(y = \frac{Y}{L} \) oraz \(k_i = \frac{K_i}{L} \) (dla każdego \(i = 1, 2, \ldots, N \)):

\[
\forall t \in [0;+\infty) \wedge i = 1, 2, \ldots, N \quad \dot{k}_i(t) = s_i(t)y(t) - (\delta_i + n)k_i(t).
\]
Z równań (10.117), (10.119) oraz (10.121) wynika, że problem optymalnego sterowania (maksimum Pontriagina), przed którym stoi typowy konsument w analizowanym tu modelu wzrostu gospodarczego, można zapisać następująco:

\[
\begin{align*}
\max_{s_1(t), s_2(t), \ldots, s_N(t)} & \int_0^\infty \left[\left(\frac{1 - \sum_{i=1}^N s_i(t)}{1 - \sigma} \right) \frac{y(t)}{y(t)} \right]^{1-\sigma} e^{-pt} dt \\
\forall i & = 1, 2, \ldots, N \quad \dot{k}_i(t) = s_i(t) y(t) - (\delta_i + n) k_i(t) \\
y(t) & = \Lambda e^{\left(\sum_{i=1}^N \alpha_i \right) g t} \prod_{i=1}^N (k_i(t))^{\alpha_i} \\
k_i(0) & = k_i^0 \land k_2(0) = k_2^0 \land \ldots \land k_N(0) = k_N^0
\end{align*}
\]

gdzie \(k_i^0 > 0\) to zaśob i-tego kapitału na pracującego w momencie \(t = 0\) (dla każdego \(i = 1, 2, \ldots, N\)). Bieżący hamiltonian \(\tilde{H}\) dla każdego \(t \in [0;+\infty)\) dany jest wzorem:

\[
\tilde{H}(k_1(t), k_2(t), \ldots, k_N(t), s_1(t), s_2(t), \ldots, s_N(t), \lambda_1(t), \lambda_2(t), \ldots, \lambda_N(t), t) = \\
\left[\left(1 - \sum_{i=1}^N s_i(t) \right) y(t) \right]^{1-\sigma} - 1 \sum_{i=1}^N \left(\lambda_i(t) \cdot \left(s_i(t) y(t) - (\delta_i + n) k_i(t) \right) \right) = \\
\left[\left(1 - \sum_{i=1}^N s_i(t) \right) y(t) \right]^{1-\sigma} - 1 \sum_{i=1}^N \left(\lambda_i(t) s_i(t) y(t) \right) - \sum_{i=1}^N \left(\lambda_i(t) (\delta_i + n) k_i(t) \right),
\]

gdzie \(\lambda_1, \lambda_2, \ldots, \lambda_N\) to, różniczkowalne względem czasu \(t \in [0;+\infty)\), mnoźniki Lagrange’a hamiltonianu (10.123).

Warunki konieczne istnienia niebrzegowego maksimum Pontriagina określają równania:

\[
\begin{align*}
\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N & \quad \frac{\partial \tilde{H}(t)}{\partial s_i(t)} = 0, \quad (10.124a) \\
\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N & \quad - \frac{\partial \tilde{H}(t)}{\partial k_i(t)} + p \lambda_i(t) = \dot{\lambda}_i(t), \quad (10.124b) \\
\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N & \quad \frac{\partial \tilde{H}(t)}{\partial \lambda_i(t)} = k_i(t) \quad (10.124c)
\end{align*}
\]

oraz warunki transwersalności:

\[
\forall i = 1, 2, \ldots, N \quad \lim_{t \to +\infty} \left(\lambda_i(t) e^{-pt} \right) = 0. \quad (10.124d)
\]

Licząc pochodne cząstkowe hamiltonianu (10.123), okazuje się, iż dane są one wzorami:
\[\forall i = 1, 2, \ldots, N \quad \frac{\partial \tilde{H}}{\partial s_i} = \frac{\partial}{\partial s_i} \left(\frac{\left(1 - \sum_{j=1}^{N} s_j \right)^{1-\sigma} - 1}{1 - \sigma} + \sum_{j=1}^{N} \lambda_j s_j y - \sum_{j=1}^{N} [\lambda_j (\delta_j + n) k_j] \right) = \]

\[= \frac{\partial}{\partial s_i} \left(\frac{\left(1 - \sum_{j=1}^{N} s_j \right)^{1-\sigma} - 1}{1 - \sigma} \right) + \frac{\partial}{\partial s_i} \left(\sum_{j=1}^{N} [\lambda_j s_j y] \right) - \frac{\partial}{\partial k_i} \left(\sum_{j=1}^{N} [\lambda_j (\delta_j + n) k_j] \right) = \]

\[= \frac{\partial}{\partial k_i} \left(\frac{\left(1 - \sum_{j=1}^{N} s_j \right)^{1-\sigma} - 1}{1 - \sigma} \right) + \frac{\partial}{\partial k_i} \left(\sum_{j=1}^{N} [\lambda_j s_j y] \right) = \]

\[= \frac{(1-\sigma) \left(1 - \sum_{j=1}^{N} s_j \right)^{\sigma} \left(1 - \sum_{j=1}^{N} s_j \right) \frac{\partial y}{\partial k_i}}{1 - \sigma} + \sum_{j=1}^{N} [\lambda_j s_j \frac{\partial y}{\partial k_i}] - \lambda_i (\delta_i + n), \]

a zatem:

\[\forall i = 1, 2, \ldots, N \quad \frac{\partial \tilde{H}}{\partial k_i} = \left[\left(1 - \sum_{j=1}^{N} s_j \right) y \right]^{1-\sigma} \left(1 - \sum_{j=1}^{N} s_j \right) \frac{\partial y}{\partial k_i} + \sum_{j=1}^{N} [\lambda_j s_j \frac{\partial y}{\partial k_i}] - \lambda_i (\delta_i + n) \]

(10.125b)
oraz:

$$\forall i = 1, 2, ..., N \quad \frac{\partial \hat{H}}{\partial \lambda_i} = \frac{\partial}{\partial \lambda_i} \left(\left[\left(1 - \sum_{j=1}^{N} s_j \right) y \right]^{1-\sigma} - 1 + \sum_{j=1}^{N} \lambda_j s_j y - \sum_{j=1}^{N} \lambda_j (\delta_j + n) k_j \right) =$$

$$\frac{\partial}{\partial \lambda_i} \left(\sum_{j=1}^{N} \lambda_j s_j y \right) - \frac{\partial}{\partial \lambda_i} \left(\sum_{j=1}^{N} \lambda_j (\delta_j + n) k_j \right),$$

czyli:

$$\forall i = 1, 2, ..., N \quad \frac{\partial \hat{H}}{\partial \lambda_i} = s_i y - (\delta_i + n) k_i. \quad (10.125c)$$

Z równań (10.124a) i (10.125a) wynika, że spełnione są związki:

$$\forall t \in [0;+\infty) \wedge i = 1, 2, ..., N \quad y(t) \left(\lambda_i(t) - \left[\left(1 - \sum_{j=1}^{N} s_j(t) \right) y(t) \right]^{-\sigma} \right) = 0,$$

które implikują równania\(^{17}\):

$$\forall t \in [0;+\infty) \wedge i = 1, 2, ..., N \quad \lambda_i(t) = \left[\left(1 - \sum_{j=1}^{N} s_j(t) \right) y(t) \right]^{-\sigma} \quad (10.126)$$

Logarytmując stronami zależności (10.126), uzyskujemy:

$$\forall t \in [0;+\infty) \wedge i = 1, 2, ..., N \quad \ln [\lambda_i(t)] = -\sigma \left(\ln \left(1 - \sum_{j=1}^{N} s_j(t) \right) + \ln [y(t)] \right),$$

a stąd, po zróżniczkowaniu powyższych związków względem czasu \(t \in [0;+\infty) \):

$$\forall t \in [0;+\infty) \wedge i = 1, 2, ..., N \quad \frac{\dot{\lambda}_i(t)}{\lambda_i(t)} = -\sigma \left(\frac{-\sum_{j=1}^{N} \dot{s}_j(t)}{1 - \sum_{j=1}^{N} s_j(t)} + \frac{\dot{y}(t)}{y(t)} \right) = -\sigma \left(\frac{\dot{y}(t)}{y(t)} - \frac{\sum_{j=1}^{N} \dot{s}_j(t)}{1 - \sum_{j=1}^{N} s_j(t)} \right). \quad (10.127)$$

\(^{17}\) Równania \(y \left(\lambda_i - \left[\left(1 - \sum_{j=1}^{N} s_j \right) y \right]^{-\sigma} \right) = 0 \) (dla każdego \(i = 1, 2, ..., N \)) posiadają również rozwiązańy \(y = 0 \). Jednak rozwiązania te sprzeczne są z założeniem, że \(k_1, k_2, ..., k_N > 0 \), co winni uzasadnić samodzielnie Czternkę.
Jeśli (podobnie jak w modelu wzrostu gospodarczego z punktu 10.5 skryptu) założymy, że analizowany przez nas konsument spośród dostępnych mu ścieżek czasowych stóp inwestycji $s_1(t), s_2(t), \ldots, s_N(t)$ wybiera te ścieżki, które charakteryzują się stałymi stopami inwestycji $s_1(t) = \tilde{s}_1, s_2(t) = \tilde{s}_2, \ldots, s_N(t) = \tilde{s}_N$ w każdym momencie $t \in [0;+\infty)$ (przy czym $\tilde{s}_1, \ldots, \tilde{s}_2, \ldots, \tilde{s}_N, \sum_{i=1}^{N} \tilde{s}_i \in (0;1)$), to $\dot{s}_1(t) = \dot{s}_2(t) = \ldots = \dot{s}_N(t) = 0$ i wówczas równania (10.127) możemy zapisać następująco:

$$\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N \quad \frac{\dot{\lambda}_i(t)}{\lambda_i(t)} = -\sigma \frac{\dot{y}(t)}{y(t)}. \quad (10.128)$$

Z równań (10.124b) oraz (10.125b) wynika, iż:

$$\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N$$

$$- \left[\left(1 - \sum_{j=1}^{N} s_j(t) \right) y(t) \right]^\sigma \left(1 - \sum_{j=1}^{N} s_j(t) \right) \frac{\partial y(t)}{\partial k_i(t)} - \frac{\partial y(t)}{\partial k_i(t)} \sum_{j=1}^{N} \left[\lambda_j(t) s_j(t) \right] +$$

$$+ \lambda_i(t) (\delta_i + n) + \rho \lambda_i(t) = \lambda_i(t)$$

a stąd, po podzieleniu powyższego równania przez $\lambda_i > 0$ (dla każdego $i = 1, 2, \ldots, N$):

$$\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N \quad \frac{\dot{\lambda}_i(t)}{\lambda_i(t)} = \rho + \delta_i + n +$$

$$\left[\left(1 - \sum_{j=1}^{N} s_j(t) \right) y(t) \right]^{-\sigma} \left(1 - \sum_{j=1}^{N} s_j(t) \right) \frac{\partial y(t)}{\partial k_i(t)} \sum_{j=1}^{N} \left[\lambda_j(t) s_j(t) \right]$$

$$\frac{\partial y(t)}{\partial k_i(t)} \sum_{j=1}^{N} \lambda_j(t) s_j(t)$$

lub, po uwzględnieniu tego, że — zgodnie z równaniem (10.126) — dla każdego $t \in [0;+\infty)$ oraz dla każdego $i = 1, 2, \ldots, N$ zachodzi równość: $\lambda_i = \left[\left(1 - \sum_{j=1}^{N} s_j(t) \right) y(t) \right]^{-\sigma}$

i dla każdego $i, j = 1, 2, \ldots, N$ spełniony jest związek: $\frac{\lambda_j}{\lambda_i} = 1$, mamy:

$$\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N \quad \frac{\dot{\lambda}_i(t)}{\lambda_i(t)} = \rho + \delta_i + n - \left(1 - \sum_{j=1}^{N} s_j(t) \right) \frac{\partial y(t)}{\partial k_i(t)} - \frac{\partial y(t)}{\partial k_i(t)} \sum_{j=1}^{N} s_j(t),$$

czyli:

$$\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N \quad \frac{\dot{\lambda}_i(t)}{\lambda_i(t)} = \rho + \delta_i + n - \frac{\partial y(t)}{\partial k_i(t)}. \quad (10.129)$$

Różniczkując funkcję wydajności pracy (10.117) względem k_i (dla każdego $i = 1, 2, \ldots, N$), dochodzimy do związków:
\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{\partial y(t)}{\partial k_i(t)} = \frac{\partial}{\partial k_i(t)} \left(\tilde{\Lambda} e^{\left(1 - \sum_{j=1}^{N} \alpha_j \right) t} \prod_{j=1}^{N} (k_j(t))^{\alpha_j} \right) = \]

\[= \alpha_i (k_i)^{\alpha_i - 1} \tilde{\Lambda} e^{\left(1 - \sum_{j=1}^{N} \alpha_j \right) t} \prod_{j=1; j \neq i}^{N} (k_j(t))^{\alpha_j} = \alpha_i \frac{\tilde{\Lambda} e^{\left(1 - \sum_{j=1}^{N} \alpha_j \right) t} \prod_{j=1}^{N} (k_j(t))^{\alpha_j}}{k_i(t)}, \]

a stąd:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{\partial y(t)}{\partial k_i(t)} = \alpha_i \frac{y(t)}{k_i(t)}. \quad (10.130) \]

Z równań (10.129–10.130) wynika, iż:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{\dot{x}_i(t)}{\lambda_i(t)} = \rho + \delta_i + n - \alpha_i \frac{y(t)}{k_i(t)}. \quad (10.131) \]

Z zależności (10.131) oraz (10.128) mamy:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad -\sigma \frac{\dot{y}(t)}{y(t)} = \rho + \delta_i + n - \alpha_i \frac{y(t)}{k_i(t)}, \]

a stąd oraz ze związku (10.118) uzyskujemy:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad -\sigma \left[\left(1 - \sum_{j=1}^{N} \alpha_j \right) g + \sum_{j=1}^{N} \left(\alpha_j \frac{\dot{k}_j(t)}{k_j(t)} \right) \right] = \rho + \delta_i + n - \alpha_i \frac{y(t)}{k_i(t)}. \quad (10.132) \]

Równania (10.124c) i (10.125c) można również zapisać następująco:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \dot{k}_i(t) = s_i(t) y(t) - (\delta_i + n) k_i(t), \]

a stąd:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{\dot{k}_i(t)}{k_i(t)} = s_i(t) \frac{y(t)}{k_i(t)} - (\delta_i + n), \]

czyli:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad s_i(t) \frac{y(t)}{k_i(t)} = \frac{\dot{k}_i(t)}{k_i(t)} + \delta_i + n \]

lub:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{y(t)}{k_i(t)} = \frac{\dot{k}_i(t)}{s_i(t)} + \delta_i + n \]
bądź po podstawieniach \(s_1(t) = \tilde{s}_1, s_2(t) = \tilde{s}_2, ..., s_N(t) = \tilde{s}_N \):
\[
\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{y(t)}{k_i(t)} = \frac{\dot{k}_i(t) + \delta_i + n}{\tilde{s}_i}. \tag{10.133}
\]

Z równań (10.131) wynikają następujące zależności:
\[
\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \alpha_i \frac{y(t)}{k_i(t)} = \rho + \delta_i + n - \frac{\dot{x}_i(t)}{\lambda_i(t)},
\]

a stąd:
\[
\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{y(t)}{k_i(t)} = \frac{\rho + \delta_i + n - \frac{\dot{x}_i(t)}{\lambda_i(t)}}{\alpha_i}. \tag{10.134}
\]

Wstawiając do równań (10.134) zależności (10.128), uzyskujemy związki:
\[
\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{y(t)}{k_i(t)} = \frac{\alpha_i}{\rho + \delta_i + n + \sigma \frac{y(t)}{y(t)}}.
\]

Po podstawieniu do powyższych zależności równania (10.118) dochodzimy do związków:
\[
\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{y(t)}{k_i(t)} = \frac{\rho + \delta_i + n + \sigma \left(1 - \sum_{j=1}^{N} \frac{\alpha_j}{\alpha_i} \right) g + \sum_{j=1}^{N} \left(\frac{\alpha_j}{k_j(t)} \right) \dot{k}_j(t) \right]}{\alpha_i},
\]

które implicują zależności:
\[
\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{y(t)}{k_i(t)} = \frac{\rho + \delta_i + n + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g + \sigma \sum_{j=1}^{N} \left(\frac{\alpha_j}{k_j(t)} \right) \dot{k}_j(t) \right]}{\alpha_i}. \tag{10.135}
\]

Lewe strony związków (10.133) i (10.135) są sobie równe, co prowadzi do wniosku, że:
\[
\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{\dot{k}_i(t)}{k_i(t)} + \delta_i + n = \frac{\rho + \delta_i + n + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g + \sigma \sum_{j=1}^{N} \left(\frac{\alpha_j}{k_j(t)} \right) \dot{k}_j(t) \right]}{\alpha_i}. \tag{10.136}
\]
a stąd:

$$\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N \quad \alpha_i \frac{\dot{k}_i(t)}{k_i(t)} + \alpha_i (\delta_i + n) =$$

$$= \tilde{s}_i \left[\rho + \delta_i + n + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g \right] + \sigma \tilde{s}_i \sum_{j=1}^{N} \left(\alpha_j \frac{\dot{k}_j(t)}{k_j(t)} \right)$$

lub:

$$\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N \quad \alpha_i \frac{\dot{k}_i(t)}{k_i(t)} - \sigma \tilde{s}_i \sum_{j=1, j\neq i}^{N} \left(\alpha_j \frac{\dot{k}_j(t)}{k_j(t)} \right) =$$

$$= \tilde{s}_i \left[\rho + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g \right] + (\tilde{s}_i - \alpha_i)(\delta_i + n),$$

co oznacza, że spełnione są związki:

$$\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N \quad \alpha_i (1 - \sigma \tilde{s}_i) \frac{\dot{k}_i(t)}{k_i(t)} - \sigma \tilde{s}_i \sum_{j=1, j\neq i}^{N} \left(\alpha_j \frac{\dot{k}_j(t)}{k_j(t)} \right) =$$

$$= \tilde{s}_i \left[\rho + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g \right] + (\tilde{s}_i - \alpha_i)(\delta_i + n)$$

bądź też:

$$\forall t \in [0;+\infty) \land i = 1, 2, \ldots, N \quad \alpha_i \frac{1 - \sigma \tilde{s}_i}{\tilde{s}_i} \frac{\dot{k}_i(t)}{k_i(t)} - \sigma \sum_{j=1, j\neq i}^{N} \left(\alpha_j \frac{\dot{k}_j(t)}{k_j(t)} \right) =$$

$$= \rho + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g + \frac{(\tilde{s}_i - \alpha_i)(\delta_i + n)}{\tilde{s}_i}.$$

Powyższe zależności prowadzą do następującego układu równań:

$$\begin{align*}
\alpha_1 \frac{1 - \sigma \tilde{s}_1}{\tilde{s}_1} \frac{\dot{k}_1(t)}{k_1(t)} - \sigma \sum_{j=2}^{N} \left(\alpha_j \frac{\dot{k}_j(t)}{k_j(t)} \right) &= \rho + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g + \frac{(\tilde{s}_1 - \alpha_1)(\delta_1 + n)}{\tilde{s}_1} \\
\alpha_2 \frac{1 - \sigma \tilde{s}_2}{\tilde{s}_2} \frac{\dot{k}_2(t)}{k_2(t)} - \sigma \sum_{j=1, j\neq 2}^{N} \left(\alpha_j \frac{\dot{k}_j(t)}{k_j(t)} \right) &= \rho + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g + \frac{(\tilde{s}_2 - \alpha_2)(\delta_2 + n)}{\tilde{s}_2} \\
&\vdots \\
\alpha_N \frac{1 - \sigma \tilde{s}_N}{\tilde{s}_N} \frac{\dot{k}_N(t)}{k_N(t)} - \sigma \sum_{j=1}^{N-1} \left(\alpha_j \frac{\dot{k}_j(t)}{k_j(t)} \right) &= \rho + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g + \frac{(\tilde{s}_N - \alpha_N)(\delta_N + n)}{\tilde{s}_N}
\end{align*}$$
lub, w postaci macierzowej:

\[
\begin{bmatrix}
\alpha_1 \frac{1-\sigma \hat{s}_1}{\hat{s}_1} & -\sigma \alpha_2 & -\sigma \alpha_N \\
-\sigma \alpha_1 & \alpha_2 \frac{1-\sigma \hat{s}_2}{\hat{s}_2} & \cdots & -\sigma \alpha_N \\
-\sigma \alpha_1 & -\sigma \alpha_2 & \cdots & \alpha_N \frac{1-\sigma \hat{s}_N}{\hat{s}_N}
\end{bmatrix}
\begin{bmatrix}
\frac{k_1(t)}{k_1(t)} \\
\frac{k_2(t)}{k_2(t)} \\
\vdots \\
\frac{k_N(t)}{k_N(t)}
\end{bmatrix} =
\]

\[
\begin{bmatrix}
\rho + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g + \left(\hat{s}_1 - \alpha_1 \right) \left(\delta_1 + n \right) \\
\rho + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g + \left(\hat{s}_2 - \alpha_2 \right) \left(\delta_2 + n \right) \\
\vdots \\
\rho + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g + \left(\hat{s}_N - \alpha_N \right) \left(\delta_N + n \right)
\end{bmatrix}
\]

Jeżeli wyznacznik:

\[
\tilde{W} = \begin{bmatrix}
\alpha_1 \frac{1-\sigma \hat{s}_1}{\hat{s}_1} & -\sigma \alpha_2 & -\sigma \alpha_N \\
-\sigma \alpha_1 & \alpha_2 \frac{1-\sigma \hat{s}_2}{\hat{s}_2} & \cdots & -\sigma \alpha_N \\
-\sigma \alpha_1 & -\sigma \alpha_2 & \cdots & \alpha_N \frac{1-\sigma \hat{s}_N}{\hat{s}_N}
\end{bmatrix}
\]

jest różny od zera, to układ równań (10.137) ma dokładnie jedno rozwiązanie ze względu na stopy wzrostu \(\frac{k_1}{k_1}, \frac{k_2}{k_2}, ..., \frac{k_N}{k_N} \). Wyznacznik (10.138) można zapisać również następująco:

\[
\tilde{W} = \alpha_1 \frac{1-\sigma \hat{s}_1}{\hat{s}_1} \cdot \alpha_2 \frac{1-\sigma \hat{s}_2}{\hat{s}_2} \cdots \alpha_N \frac{1-\sigma \hat{s}_N}{\hat{s}_N}
\]

\[
= \prod_{i=1}^{N} \left(\frac{\alpha_i}{\hat{s}_i} \right)
\]

\[
= \begin{bmatrix}
1-\sigma \hat{s}_1 & -\sigma \hat{s}_2 & \cdots & -\sigma \hat{s}_N \\
-\sigma \hat{s}_1 & 1-\sigma \hat{s}_2 & \cdots & -\sigma \hat{s}_N \\
-\sigma \hat{s}_1 & -\sigma \hat{s}_2 & \cdots & 1-\sigma \hat{s}_N
\end{bmatrix}
\]

\[18\] Czytelnicy powinni samodzielnie uzasadnić to, iż układ równań (10.137) jest uogólnieniem układu równań (10.108) z modelu z punktu 10.5 skryptu.
Dodając drugą, trzecią, ..., N-tą kolumnę wyznacznika \(\tilde{W} \) do jego kolumny pierwszej, otrzymujemy:

\[
\tilde{W} = \prod_{i=1}^{N} \left(\frac{\alpha_i}{s_i} \right) \cdot \left| \begin{array}{ccc}
1 - \sigma \sum_{i=1}^{N} \tilde{s}_i & -\sigma \tilde{s}_2 & -\sigma \tilde{s}_N \\
1 - \sigma \sum_{i=1}^{N} \tilde{s}_i & 1 - \sigma \tilde{s}_2 & -\sigma \tilde{s}_N \\
\vdots & \vdots & \vdots \\
1 - \sigma \sum_{i=1}^{N} \tilde{s}_i & -\sigma \tilde{s}_2 & 1 - \sigma \tilde{s}_N \\
\end{array} \right|,
\]

a stąd:

\[
\tilde{W} = \left(1 - \sigma \sum_{i=1}^{N} \tilde{s}_i \right) \cdot \prod_{i=1}^{N} \left(\frac{\alpha_i}{s_i} \right) \cdot \left| \begin{array}{ccc}
1 & -\sigma \tilde{s}_2 & \cdots & -\sigma \tilde{s}_N \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
\end{array} \right|.
\] (10.139)

Odejmując od drugiego, trzeciego, N-tego wiersza wyznacznika (10.139) wiersz pierwszy, mamy:

\[
\tilde{W} = \left(1 - \sigma \sum_{i=1}^{N} \tilde{s}_i \right) \cdot \prod_{i=1}^{N} \left(\frac{\alpha_i}{s_i} \right) \cdot \left| \begin{array}{ccc}
1 & -\sigma \tilde{s}_2 & \cdots & -\sigma \tilde{s}_N \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
\end{array} \right|
\]

lub:

\[
\tilde{W} = \left(1 - \sigma \sum_{i=1}^{N} \tilde{s}_i \right) \cdot \prod_{i=1}^{N} \left(\frac{\alpha_i}{s_i} \right).
\] (10.140)

Z równania (10.140) wynika, iż wyznacznik (10.138) jest różny od zera wtedy i tylko wtedy, gdy \(\sigma \neq \frac{1}{\sum_{i=1}^{N} \tilde{s}_i} \). (10.141)

Jeśli zachodzi zaś związek \(\sigma \neq \frac{1}{\sum_{i=1}^{N} \tilde{s}_i} \) i wyznacznik \(\tilde{W} \neq 0 \), to dla każdego \(t \in [0;+\infty) \) oraz \(i = 1, 2, \ldots, N \) \(g_i(t) = \frac{k_i(t)}{k_i(t)} \), co oznacza, że zgodnie z równaniem (10.135) zachodzą związki:

19 Uzasadnienie tego pozostawiamy Czytelnikom.
\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{y(t)}{k_i(t)} = \frac{\rho + \delta_i + n + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g + \sigma \sum_{j=1}^{N} (\alpha_j g_j)}{\alpha_i}. \]

Logarytmując powyższe równanie logarytmem naturalnym, dochodzimy do związków:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \ln(y(t)) - \ln(k_i(t)) = \ln \left(\frac{\rho + \delta_i + n + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right) g + \sigma \sum_{j=1}^{N} (\alpha_j g_j)}{\alpha_i} \right), \]

a stąd, po zróżniczkowaniu powyższych zależności względem czasu \(t \in [0;+\infty) \), mamy:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \frac{\dot{y}(t)}{y(t)} - \frac{\dot{k}_i(t)}{k_i(t)} = 0. \quad (10.142) \]

Wstawiając do zależności (10.142) związki (10.118), otrzymujemy:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \left(1 - \sum_{i=1}^{N} \alpha_i \right) g + \sum_{j=1}^{N} \left(\alpha_j g_j \right) \frac{\dot{k}_j(t)}{k_j(t)} - \frac{\dot{k}_i(t)}{k_i(t)} = 0, \]

lub, po uwzględnieniu tego, że dla każdego \(t \in [0;+\infty) \) \(i = 1, 2, ..., N \) \(g_i \equiv \frac{\dot{k}_i(t)}{k_i(t)} \), mamy:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad \left(1 - \sum_{i=1}^{N} \alpha_i \right) g + \sum_{j=1}^{N} (\alpha_j g_j) - g_i = 0, \]

a zatem:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad g_i - \sum_{j=1}^{N} (\alpha_j g_j) = \left(1 - \sum_{i=1}^{N} \alpha_i \right) g, \]

lub:

\[\forall t \in [0;+\infty) \land i = 1, 2, ..., N \quad (1 - \alpha_i)g_i - \sum_{j=1, j \neq i}^{N} (\alpha_j g_j) = \left(1 - \sum_{i=1}^{N} \alpha_i \right) g, \]

czyli:
lub (w postaci macierzowej):

\[
\begin{bmatrix}
1 - \alpha_1 & -\alpha_2 & \cdots & -\alpha_N \\
-\alpha_1 & 1 - \alpha_2 & \cdots & -\alpha_N \\
\vdots & \vdots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \cdots & 1 - \alpha_N
\end{bmatrix}
\begin{bmatrix}
g_1 \\
g_2 \\
\vdots \\
g_N
\end{bmatrix}
=
\begin{bmatrix}
1 - \sum_{j=1}^{N} \alpha_j \\
1 - \sum_{j=1}^{N} \alpha_j \\
\vdots \\
1 - \sum_{j=1}^{N} \alpha_j
\end{bmatrix}
\begin{bmatrix}
g_1 \\
g_2 \\
\vdots \\
g_N
\end{bmatrix}.
\]

(10.143)

Układ równań (10.143) można rozwiązać metodą wyznaczników Cramera. Wyznaczniki Cramera owego układu równań można zapisać następująco:

\[
W = \begin{vmatrix}
1 - \alpha_1 & -\alpha_2 & \cdots & -\alpha_N \\
-\alpha_1 & 1 - \alpha_2 & \cdots & -\alpha_N \\
\vdots & \vdots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \cdots & 1 - \alpha_N
\end{vmatrix},
\]

(10.144a)

i:

\[
\forall i = 1, 2, \ldots, N \ W_i =
\begin{vmatrix}
1 - \alpha_1 & -\alpha_2 & -\alpha_{i-1} & (1 - \sum_{j=1}^{N} \alpha_j) g & -\alpha_{i+1} & -\alpha_N \\
-\alpha_1 & 1 - \alpha_2 & -\alpha_{i-1} & (1 - \sum_{j=1}^{N} \alpha_j) g & -\alpha_{i+1} & -\alpha_N \\
\vdots & \vdots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \cdots & 1 - \alpha_{i-1} & (1 - \sum_{j=1}^{N} \alpha_j) g & -\alpha_{i+1} \\
-\alpha_1 & -\alpha_2 & -\alpha_{i-1} & (1 - \sum_{j=1}^{N} \alpha_j) g & 1 - \alpha_{i+1} & -\alpha_N \\
-\alpha_1 & -\alpha_2 & -\alpha_{i-1} & (1 - \sum_{j=1}^{N} \alpha_j) g & -\alpha_{i+1} & \cdots & 1 - \alpha_N
\end{vmatrix}.
\]

(10.144b)
Wyznacznik (10.144a), po dodaniu do jego pierwszej kolumny wszystkich następnych kolumn, można również zapisać następująco:

\[
W = \begin{vmatrix}
1 - \sum_{i=1}^{N} \alpha_i & -\alpha_2 & -\alpha_N \\
1 - \sum_{i=1}^{N} \alpha_i & 1 -\alpha_2 & \cdots & -\alpha_N \\
- \sum_{i=1}^{N} \alpha_i & -\alpha_2 & \cdots & 1 -\alpha_N \\
\end{vmatrix}
\]

Odejmując teraz od drugiego, trzeciego, ..., N-ego wiersza powyższego wyznacznika wiersz pierwszy, otrzymujemy:

\[
W = \left(1 - \sum_{i=1}^{N} \alpha_i\right) \begin{vmatrix}
1 & -\alpha_2 & \cdots & -\alpha_N \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 \\
\end{vmatrix},
\]

co oznacza, że:

\[
W = 1 - \sum_{i=1}^{N} \alpha_i. \quad (10.145a)
\]

Natomiast wyznaczniki Cramera (10.144b) można również zapisać wzorem:

\[
\forall i = 1, 2, ..., N \quad W_i = \left(1 - \sum_{j=1}^{N} \alpha_j\right) \begin{vmatrix}
1 -\alpha_1 & -\alpha_2 & \cdots & -\alpha_{i-1} & 1 & -\alpha_{i+1} & \cdots & -\alpha_N \\
-\alpha_1 & 1 -\alpha_2 & \cdots & -\alpha_{i-1} & 1 & -\alpha_{i+1} & \cdots & -\alpha_N \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \cdots & 1 -\alpha_{i-1} & 1 & -\alpha_{i+1} & \cdots & -\alpha_N \\
-\alpha_1 & -\alpha_2 & \cdots & -\alpha_{i-1} & 1 & -\alpha_{i+1} & \cdots & -\alpha_N \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
-\alpha_1 & -\alpha_2 & \cdots & -\alpha_{i-1} & 1 & -\alpha_{i+1} & \cdots & 1 -\alpha_N \\
\end{vmatrix},
\]

Odejmując od pierwszych, drugich, ..., (i-1)-szych, (i+1)-szych, ..., N-tych wierszy powyższych wyznaczników wiersze i-te, okazuje się, iż wyznaczniki \(W_i \) można zapisać następująco:

\[
\forall i = 1, 2, ..., N \quad W_i = \left(1 - \sum_{j=1}^{N} \alpha_j\right) \begin{vmatrix}
1 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1 \\
\end{vmatrix}.
\]
Dodając zaś od i-tych wierszy wyznaczników \(W_i \) wiersze j-te (dla \(j \neq i \)) przemnożone przez \(\alpha_j \), dochodzimy do związków:

\[
\forall i = 1, 2, \ldots, N \quad W_i = \left(1 - \sum_{j=1}^{N} \alpha_j \right) g,
\]

z których wynika, że:

\[
\forall i = 1, 2, \ldots, N \quad W_i = \left(1 - \sum_{j=1}^{N} \alpha_j \right) g. \tag{10.145b}
\]

Z równań (10.145ab) i wzorów Cramera wynika, iż stopy wzrostu kolejnych zasobów kapitału \(g_1, g_2, \ldots, g_N \), będące rozwiązaniem układu równań (10.143), dane są wzorami:

\[
\forall i = 1, 2, \ldots, N \quad g_i = \frac{W_i}{W} = \frac{\left(1 - \sum_{j=1}^{N} \alpha_j \right) g}{1 - \sum_{j=1}^{N} \alpha_j} = g. \tag{10.146}
\]

Z równań (10.146) płynie wniosek, że w rozważanym tu modelu wzrostu gospodarczego w każdym momencie \(t \in [0;+\infty) \) stopa wzrostu kolejnych zasobów kapitału (\(g_1, g_2, \ldots, g_N \)) równe są stopie harrodiańskiego postępu technicznego \(g \).

Z równania (10.146) oraz związku (10.118) wynika, że w każdym momencie \(t \in [0;+\infty) \) stopa wzrostu wydajności pracy \(g_y \) dana jest wzorem:

\[
\forall t \in [0;+\infty) \quad g_y = \frac{\dot{y}(t)}{y(t)} = \left(1 - \sum_{i=1}^{N} \alpha_i \right) g + \sum_{i=1}^{N} \left(\alpha_i \frac{k_i(t)}{k_i(t)} \right) \left(1 - \sum_{i=1}^{N} \alpha_i \right) g + \sum_{i=1}^{N} (\alpha_i g_i),
\]

czyli:

\[
\forall t \in [0;+\infty) \quad g_y = \left(1 - \sum_{i=1}^{N} \alpha_i \right) g + \sum_{i=1}^{N} (\alpha_i g) = \left(1 - \sum_{i=1}^{N} \alpha_i \right) g + g \sum_{i=1}^{N} \alpha_i
\]

albo:

\[g_y = g, \]

co oznacza, iż w analizowanym tu modelu wzrostu gospodarczego w każdym momencie \(t \in [0;+\infty) \) także stopa wzrostu wydajności pracy \(g_y \) równa jest stopie postępu technicznego w sensie Harroda \(g \).
Uwzględniając zaś związek (10.146), równania (10.136) można zapisać następująco:

\[\forall i = 1, 2, ..., N \quad \frac{g + \delta_i + n}{\tilde{s}_i} = \frac{\rho + \delta_i + n + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right)}{\alpha_i} (g + \sigma \sum_{j=1}^{N} \alpha_j) \]

lub:

\[\forall i = 1, 2, ..., N \quad \frac{g + \delta_i + n}{\tilde{s}_i} = \frac{\rho + \delta_i + n + \sigma \left(1 - \sum_{j=1}^{N} \alpha_j \right)}{\alpha_i} \sum_{j=1}^{N} \alpha_j \]

czyli:

\[\forall i = 1, 2, ..., N \quad \frac{g + \delta_i + n}{\tilde{s}_i} = \frac{\rho + \delta_i + n + \sigma g}{\alpha_i} \sum_{j=1}^{N} \alpha_j \]
a stąd:

\[\forall i = 1, 2, ..., N \quad \tilde{s}_i = \alpha_i \frac{g + \delta_i + n}{\rho + \delta_i + n + \sigma g} . \] (10.147)

Równania (10.147) wyznaczają stopy inwestycji w kolejne zasoby kapitału, które spełniają warunki konieczne istnienia niebrzegowego maksimum Pontriagina (10.122).

Z równań tych wynika, co następuje (por. też związki (10.113ab) i wnioski, które z nich płyną):

- Optymalne stopy inwestycji \(\tilde{s}_i \) (dla każdego \(i = 1, 2, ..., N \)), w modelu optymalnego sterowania typu Nonnemana-Vanhoudta, zdeterminowane są przez elastyczności \(\alpha_i \) (produkci Y względem kolejnych nakładów kapitału \(K_i \)), stopę deprecjacji \(\delta_i \) owych zasobów kapitału, stopę wzrostu liczby pracujących \(n \), stopy postępu technicznego w sensie Harroda \(g \), stopy dyskontowej \(\rho \) oraz odwrotności międzyokresowej substytucji konsumpcji \(\sigma \) typowego konsumenta w gospodarce.

- Stąd, że zachodzą zależności:

\[\forall i = 1, 2, ..., N \quad \frac{\partial \tilde{s}_i}{\partial \alpha_i} = \frac{\partial}{\partial \alpha_i} \left(\frac{\alpha_i g + \delta_i + n}{\rho + \delta_i + n + \sigma g} \right) = \frac{g + \delta_i + n}{\rho + \delta_i + n + \sigma g} > 0 , \]

wynika, iż im wyższa jest elastyczność \(\alpha_i \) produktu Y względem nakładów i-tego kapitału \(K_i \) (dla każdego \(i = 1, 2, ..., N \), tym wyższa jest optymalna stopa inwestycji \(\tilde{s}_i \) w ów zasób kapitału.

- Ponieważ:

\[\forall i = 1, 2, ..., N \quad \frac{\partial \tilde{s}_i}{\partial n} = \frac{\partial}{\partial n} \left(\frac{\alpha_i g + \delta_i + n}{\rho + \delta_i + n + \sigma g} \right) = \alpha_i \frac{\rho + \delta_i + n + \sigma g - g - \delta_i - n}{(\rho + \delta_i + n + \sigma g)^2} = \alpha_i \frac{\rho + \sigma g - g}{(\rho + \delta_i + n + \sigma g)^2} = \alpha_i \frac{\rho + (\sigma - 1)g}{(\rho + \delta_i + n + \sigma g)^2} , \]
zatem jeśli \(\rho > (1 - \sigma)g \) \((\rho < (1 - \sigma)g)\), to dla każdego \(i = 1, 2, \ldots, N \) \(\frac{\partial \tilde{s}_i}{\partial n} > 0 \left(\frac{\partial \tilde{s}_i}{\partial n} < 0 \right) \)
i wysokiej stopie wzrostu liczby pracujących n towarzyszą wysokie (niskie) stopy inwestycji \(\tilde{s}_i \). Gdyby zaś zdarzyło się tak, iż \(\rho = (1 - \sigma)g \), to dla każdego \(i = 1, 2, \ldots, N \) \(\frac{\partial \tilde{s}_i}{\partial n} = 0 \) i stopa wzrostu liczby pracujących nie oddziałuje wówczas na stopy inwestycji \(\tilde{s}_i \).

- Różniczkując równania (10.147) względem stóp deprecjacji kolejnych zasobów kapitału \(\delta_i \), uzyskujemy:

\[
\forall i = 1, 2, \ldots, N \quad \frac{\partial \tilde{s}_i}{\partial \delta_i} = \frac{\partial}{\partial \delta_i} \left(\alpha_i \frac{g + \delta_i + n}{\rho + \delta_i + n + \sigma g} \right) = \alpha_i \frac{\rho + \delta_i + n + \sigma g - g - \delta_i - n}{(\rho + \delta_i + n + \sigma g)^2} = \alpha_i \frac{\rho + \sigma g - g}{(\rho + \delta_i + n + \sigma g)^2} = \alpha_i \frac{\rho + (\sigma - 1)g}{(\rho + \delta_i + n + \sigma g)^2}.
\]

Powyższe związki interpretuje się ekonomicznie analogicznie do pochodnych cząstkowych \(\frac{\partial \tilde{s}_i}{\partial n} \). Dlatego też interpretację tę pozostawiamy Czytelnikom.

- Stąd, że:

\[
\forall i = 1, 2, \ldots, N \quad \frac{\partial \tilde{s}_i}{\partial \rho} = \frac{\partial}{\partial \rho} \left(\alpha_i \frac{g + \delta_i + n}{\rho + \delta_i + n + \sigma g} \right) = -\alpha_i \frac{g + \delta_i + n}{(\rho + \delta_i + n + \sigma g)^2} < 0
\]

i:

\[
\forall i = 1, 2, \ldots, N \quad \frac{\partial \tilde{s}_i}{\partial \sigma} = \frac{\partial}{\partial \sigma} \left(\alpha_i \frac{g + \delta_i + n}{\rho + \delta_i + n + \sigma g} \right) = -\alpha_i \frac{(g + \delta_i + n)g}{(\rho + \delta_i + n + \sigma g)^2} < 0,
\]

wyciągnąć można wniosek, że wysokiej stopie dyskontowej \(\rho \) i/lub wysokiej odwrotności międzyokresowej substytucji konsumpcji \(\sigma \) typowego konsumenta (w analizowanym tu modelu wzrostu gospodarczego) odpowiadają niskie stopy inwestycji \(\tilde{s}_i \) (dla \(i = 1, 2, \ldots, N \)) w kolejne zasoby kapitału.

10.7. PODSUMOWANIE

Prowadzone w rozdziale dziesiątym analizy można podsumować następująco:

I. W modelach wzrostu gospodarczego opartych na matematycznej teorii optymalnego sterowania zazwyczaj szuka się takich ścieżek czasowych zasobów czynników produkcji (kapitału rzecowego, kapitału ludzkiego i/lub wiedzy naukowo-technicznej), które maksymalizują sumę zdyskontowanej użyteczności typowego konsumenta w gospodarce (czyli, innymi słowy, maksymalizują całkę preferencji
typowego konsumenta). Optymalizacja ta odbywa się w nieskończonym horyzoncie czasowym.

II. W modelu wzrostu gospodarczego Ramseya szuka się takich ścieżek czasowych technicznego uzbrojenia pracy i konsumpcji na pracującego, przy których maksymalizowana jest całka preferencji typowego konsumenta. Z równania ruchu modelu Ramseya wynika, iż optymalizacja dynamiczna w tym modelu wzrostu gospodarczego prowadzi do diagramu fazowego z punktem siodłowym. Oznacza to, iż jeśli gospodarka znajduje się na trajektoriach wiodących do punktu siodłowego, to istnieje niebrzegowe maksimum Pontriagina dla tego zadania sterowania optymalnego. Jeśli zaś gospodarka nie znajduje się na owych trajektoriach, to nie ma niebrzegowego maksimum Pontriagina w tym modelu wzrostu gospodarczego.

III. Jeśli istnieje niebrzegowe maksimum Pontriagina w modelu wzrostu gospodarczego Ramseya, to podstawowe zmienne makroekonomiczne w tym modelu wzrostu (wydajność pracy i techniczne uzbrojenie pracy) rosną według stopy wzrostu równej stopie postępu technicznego w sensie Harroda. Położenie zaś ścieżek wzrostu owych zmiennych makroekonomicznych zależy jest m.in. od stopy dyskontowej i odwrotności międzyokresowej substytucji konsumpcji typowego konsumenta w gospodarce. Co więcej, im wyższe są stopy dyskontowej i odwrotność międzyokresowej substytucji konsumpcji, tym niższe położone są ścieżki czasowe wydajności pracy i technicznego uzbrojenia pracy w równowadze Ramseya.

IV. W modelu wzrostu Lucasa szuka się zaś takich ścieżek czasowych konsumpcji na pracującego i udziału czasu przeznaczonego na pracę, które maksymalizują sumę zdyskontowanej użyteczności konsumpcji w nieskończonym horyzoncie czasowym. Z modelu tego wynika m.in., że długookresowe stopy wzrostu podstawowych zmiennych makroekonomicznych (wydajności pracy, technicznego uzbrojenia pracy, konsumpcji na pracującego oraz kapitału ludzkiego na pracującego) zdeterminowane są przez stopę dyskontową i odwrotność międzyokresowej substytucji konsumpcji typowego konsumenta w gospodarce. Im bardziej analizowany w modelu wzrostu gospodarczego Lucasa konsument ceni konsumpcję bieżącą w stosunku do konsumpcji przyszłej, czyli im wyższe są stopy dyskontowa i odwrotność międzyokresowej substytucji konsumpcji typowego konsumenta w gospodarce, tym niższe są stopy wzrostu analizowanych w modelu Lucasa zmiennych makroekonomicznych.

V. W modelu Romera natomiast maksymalizuje się całkę preferencji (w nieskończonym horyzoncie czasowym) względem ścieżek czasowych konsumpcji i kapitału ludzkiego kierowanego do sfery kreacji wiedzy naukowo-technicznej. Z modelu tego, podobnie jak z modelu Lucasa, płynie wniosek, iż stopy wzrostu podstawowych zmiennych makroekonomicznych zależne są od stopy dyskontowej i odwrotności międzyokresowej substytucji konsumpcji typowego konsumenta w gospodarce. Im bardziej konsument ów ceni konsumpcję przyszłą w stosunku do konsumpcji bieżącej, tym szybciej rozwija się gospodarka Romera.

VI. W modelu optymalnego sterowania opartym na neoklasycznym modelu wzrostu gospodarczego Mankiwa-Romera-Weila szuka się takich ścieżek czasowych stóp inwestycji w kapitał rzeczowy i ludzki, które maksymalizują sumę zdyskontowa-
nej użyteczności konsumpcji w nieskończonym horyzoncie czasowym. Z modelu tego wynika m.in., iż stopy wzrostu podstawowych zmiennych makroekonomicznych (wydajności pracy, technicznego uzbrojenia pracy i kapitału ludzkiego na pracującego) zależne są od stopy postępu technicznego w sensie Harroda. Natomiast optymalne stopy inwestycji w kapitał rzeczowy i ludzki zależne są od parametrów opisujących preferencje konsumpcji bieżącej w stosunku do przyszłej. Im bardziej typowy konsument ceni konsumpcję bieżącą w stosunku do konsumpcji przyszłej, tym niższe są optymalne stopy inwestycji w kapitał rzeczowy i ludzki.

VII. Wnioski z modelu optymalnego sterowania opartego na modelu wzrostu typu Mankiwa-Romera-Weila można również uogólnić na N-kapitałowy model optymalnego sterowania typu Nonnemana-Vanhoudta.
LITERATURA

Książka Matematyczne modele wzrostu gospodarczego (ujęcie neoklasyczne) zawiera prezentację podstawowych, neoklasycznych modeli wzrostu gospodarczego. Prowadzone w książce rozważania koncentrują się na ważnych determinantach długookresowego wzrostu gospodarczego analizowanych (głównie) z wykorzystaniem modeli wzrostu Solowa, Mankiwa-Romera-Weila oraz Nonnemana-Vanhoudta z elementami teorii optymalnego sterowania. Publikacja stanowi autorski wykład dotyczący teoretycznych, makroekonomicznych, matematycznych modeli wzrostu gospodarczego, prowadzony na kierunku ekonomia na Uniwersytecie Jagiellońskim. Może być również użyteczna zarówno jako materiał do wykładu monograficznego z modeli wzrostu gospodarczego, jak i materiał pomocniczy do makroekonomii lub ekonomii matematycznej.