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Abstract

We have measured the correlation function of Polyakov loops on the lattice in three dimensional SU(3)

gauge theory near its finite temperature phase transition. Using a new and powerful application of finite size
scaling, we furthermore extend the measurements of the critical couplings to considerably larger values of
the lattice sizes, both in the temperature and space directions, than was investigated earlier in this theory.
With the help of these measurements we perform a detailed finite size scaling analysis, showing that for
the critical exponents of the two dimensional three state Potts model the mass and the susceptibility fall on
unique scaling curves. This strongly supports the expectation that the gauge theory is in the same universal-
ity class. The Nambu–Goto string model on the other hand predicts that the exponent ν has the mean field
value, which is quite different from the value in the abovementioned Potts model. Using our values of the
critical couplings we also determine the continuum limit of the value of the critical temperature in terms
of the square root of the zero temperature string tension. This value is very near to the prediction of the
Nambu–Goto string model in spite of the different critical behaviour.
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1. Introduction

Three dimensional SU(3) gauge theory has many properties in common with QCD. Lattice
simulations of the theory show that the static quark potential is linear, implying confinement.
They also give evidence for a mass gap and a nontrivial glue ball spectrum [1]. At finite temper-
ature there is a phase transition to a state in which the energy density is approximately described
by a gluon gas. It can therefore be expected that from this model one obtains important informa-
tion about the mechanism of confinement and the deconfinement transition in QCD. Furthermore,
there exist analytic approximations in three dimensional SU(N) gauge theory which predict the
string tension and the glue ball spectrum at zero temperature [2,3]. These results are in quite good
agreement with lattice calculations [4,5]. It is therefore important to measure the string tension
at finite temperature and the value of the critical temperature, because the analytic calculations
should eventually be extended to these observables.

In a series of papers [6–9], we have investigated the SU(3) gauge theory at finite tempera-
ture in two spatial dimensions using lattice simulations. In [6] we have shown that in the high
temperature phase above approximately 1.5Tc, where Tc is the critical temperature, the theory
can be dimensionally reduced to a gauge-Higgs model in two dimensions, by which one can
give an excellent description of the long distance properties of the full theory. In [7] we have
analysed the two dimensional gauge-Higgs model in great detail. In [8] we have investigated the
thermodynamics of the three dimensional theory in the high temperature phase. We have shown,
in particular, that the trace of the energy momentum tensor has a non-perturbative behaviour in a
region above the phase transition, analogous to the results found in SU(3) in 3+1 dimension [10]
and in full QCD [11,12]. A detailed investigation of the thermodynamics of SU(N) theories in
2 + 1 dimensions with N = 2 to 6 has more recently been performed in Refs. [13,14].

In [9] we studied the theory in the low temperature phase. By measuring the correlation func-
tion of Polyakov loops we obtained the finite temperature string tension. We showed that it can be
very well described by the Nambu–Goto string model, as was predicted in [15,16], but only up to
a temperature T � 0.7Tc, where Tc is the critical temperature. One should remark, however, that
there are analytic calculations for a general fluctuating bosonic string, which in three dimensions
give universal values for the terms in the expansion in (T /Tc)

2 up to (T /Tc)
6 [17–19]. Not only

do these terms, of course, coincide with those from the development of the formula in Nambu–
Goto string model to this order, but their contribution is practically indistinguishable from the
full model up to T � 0.75Tc. However, such a short expansion cannot give any hint about a
phase transition, while the Nambu–Goto model predicts the existence of a critical temperature
Tc at which the string tension vanishes. Moreover, it gives a value for the non-perturbative ratio
Tc/

√
σ0, where σ0 is the zero temperature string tension. The ratio only depends on the num-

ber of transverse dimensions. It does not depend on the group SU(N). In fact, the Nambu–Goto
string model gives a result for the approach of the finite temperature string tension to Tc , which
corresponds to the mean field exponent ν = 1/2. From universality arguments it is, however,
expected that the transition in the SU(3) gauge theory in two spatial dimensions is in the uni-
versality class of the two dimensional three state Potts model [20]. Support for this proposal has
been found in lattice calculations [21].

Other comparisons of the Polyakov loop correlations in SU(3) in two spatial dimensions with
the string model, in particular at lower temperatures, have been performed with a different tech-
nique in [22]. Recently, they have been extended to the group SU(6) [23]. In [13] the string model
is used to estimate the behaviour of the pressure just below the transition. A good agreement with
the numerical data is found.
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In this article we report on an investigation of the model very near to the phase transition,
a region which has not been studied up to now. First we calculate the critical couplings βc(Nτ ),
where Nτ is the lattice extent in the temperature direction, extending earlier calculations [21,
25] to considerably higher statistics and larger lattices. For this purpose we introduce a new
and powerful method based on the work by Binder on finite size scaling [24]. Further, using
results from the literature for a

√
σ0, where a is the lattice spacing we obtain from the continuum

extrapolation a value for Tc/
√

σ0, which can be directly compared with the prediction of the
string model.

We further investigate the correlation function of the Polyakov loops below but near the criti-
cal coupling. We extract the mass and the susceptibility for a large number of spatial lattice sizes
and for a range of couplings near the critical one. We consider the finite size scaling functions
of these observables and find an impressive agreement with the universality class of the two di-
mensional three state Potts model. However, although the string and the gauge models thus have
quite different critical behaviour, we find that their critical temperatures are extremely close to
each other.

The plan of the paper is as follows. The definitions relative to the Polyakov loop correlations,
and the set up for a critical scaling analysis of the mass gap and the susceptibility are given in
Section 2. In Section 3, Tc/g

2 is computed and the scaling properties of the susceptibility and
mass gap as functions of T/Tc exhibited. The ratio Tc/

√
σ0 is finally computed and the gauge

and string models compared. A summary and conclusions are proposed in a last section.

2. The Polyakov loop correlation function. Loop susceptibility and mass gap

A discussion of the simulations was given in [9]. We have used the same algorithm, which was
ported to GPUs (Graphical Processing Units). In this section, we first give the formulae needed
for our new analysis of the physical quantities of interest, and then recall the scaling properties
expected from universality near the transition.

2.1. The model and the correlation function

The action used in the simulations is the standard Wilson lattice gauge action

SW

(
Uμ(x̄, τ )

) = β
∑
P

(
1 − 1

3
Re TrUP

)
, (1)

where Uμ(x̄, τ ) denotes the group element on the link in the direction μ, whose origin is lo-
cated at x̄ = (x1, x2) in space and at τ in the temperature direction. The lattice has extension
N2

S × Nτ . The variables (x1, x2, τ ) are defined on integer values, x1, x2 = 0,1, . . . ,NS − 1 and
τ = 0,1, . . . ,Nτ − 1. The matrix UP is the product of link matrices around a plaquette. The
constant β is the lattice coupling constant. Note that in this article we will never use β to denote
the inverse temperature. The temperature and volume of the lattice are defined by

1

T
= aNτ , (2)

V = (aNS)2, (3)

where a is the lattice spacing. The coupling constant β in the action is related to the coupling
constant g of the continuum action by
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lim
a→0

(aβ) = 6

g2
. (4)

In three space–time dimensions, g2 has dimension of energy, and can thus be used as the energy
scale in the continuum theory.

When NS → ∞ at fixed Nτ there is a phase transition with a critical coupling βc(Nτ ) to a
state where the Z3 symmetry of the theory is broken. This corresponds to a finite temperature
transition into a deconfined state.

To investigate the theory around the phase transition we performed numerical simulations in
the neighbourhood of the transition for a large number of values of the coupling constant β and
lattice extensions NS and Nτ . We study the order parameter, which in this case is the Polyakov
loop. The local Polyakov loops are winding around the temperature direction:

L(x̄) = Tr
Nτ −1∏
τ=0

Uτ (x̄, τ ). (5)

We define the projected correlation function G(z) between two loops at distance z from each
other in the x1 direction by

G(z) = 1

NS

∑
x2

Re
〈
L(0̄)L∗(x̄ = (z, x2)

)〉
. (6)

In our earlier work [9], devoted to couplings well below βc(Nτ ), we have represented this
correlation function by

G(z) = b cosh

[
m

(
NS

2
− z

)]
. (7)

The subtraction of a disconnected part from G(z) would be required above βc(Nτ ). In (7), the
coefficient b and the mass m were fitted to the data at z larger than some short distance cut off z0.
This allowed us to extract the mass gap m and thereby the temperature dependent string tension

σ(T )

T 2
= mNτ . (8)

Fits with Eq. (7) must give stable results with respect to changes of z0, in which case they
directly provide a reliable estimate of m, thus of the largest correlation length ξ = 1/m. It corre-
sponds to the simplest situation where the correlation in z decays as a pure exponential at large
enough distances, and this was the case in the analysis which we reported in [9].

When we approach the phase transition, we find that this procedure does not work. In fact,
making a fit with Eq. (7) the mass m changes whatever z0 we choose. Instead of trying a compli-
cated fit in coordinate space, we prefer to transform the results to momentum space, where the
analysis can be made more systematically.

The correlation function in (7) can be as well represented in momentum space by a simple
pole, in the statistical mechanics called the Ornstein–Zernike (OZ) behaviour. In general, the
analytic behaviour in momentum space on the negative real axis of the square of the momentum
is more complicated, involving, in the continuum limit, several poles and/or cuts.

This is especially so if a continuous phase transition exists in the thermodynamical limit
NS → ∞ at βc(Nτ ). At the transition the correlation function is expected to decrease as a power
in z, characterized by a critical exponent, the anomalous dimension η. As a result, close to βc(Nτ )

and for values of (NS,Nτ ) accessible in practice no simple parametrization of G(z) is available.
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Various parametrizations of its Fourier transform in the continuum limit have been proposed in
the literature (for a review, see Ref. [28]). They share the property that, apart from at βc(Nτ ),
the nearest singularity remains an isolated pole in the complex plane of the momentum squared.
Here, for any finite lattice, we will determine the mass gap squared as the distance to zero of the
nearest pole.

We start by transforming the numerical data for the correlation function to momentum space.
Given G(z) on the integer values z = 0,1, . . . ,NS − 1, we define G̃q via

G(z) =
∑
q

e−iqzG̃q, (9)

where

q = 2πn

NS

; n = 0,1, . . . ,NS − 1. (10)

Using the symmetries of the action, the periodic boundary conditions on the lattice and the reality
of G(z), it is suitable to rename G̃q as G̃(p2), where to q we associate

p = 2 sin

(
q

2

)
. (11)

Given numerical data for G(z) we compute the susceptibility χ of the Polyakov loop and the
inverse of its Fourier transform H(p2),

G̃
(
p2) ≡ 1

NS

NS−1∑
z=0

cos(qz)G(z), (12)

χ = N2
S G̃(0), (13)

H
(
p2) ≡ 1

G̃(p2)
. (14)

For these measurements we restrict ourself to the disordered phase, where the subtraction of
|〈L〉|2 is not necessary. On a finite lattice 〈L〉 = 0 also in the ordered phase in simulations which
are long enough because of tunnelling between the degenerate vacua.

Up to now, the functions G̃(p2) and H(p2) are defined only on the discrete values given in
Eqs. (10), (11). We now extend these functions to arbitrary complex values of p2, and define the
mass m as the first zero of H(p2) on the negative real axis,

H
(−m2) = 0. (15)

In the OZ approximation, we trivially get

HOZ

(
p2) = a0 + a1p

2, (16)

m2 = a0

a1
. (17)

Within our assumptions, the point p2 = −m2, an isolated single pole of G̃(p2), is generically
(in the thermodynamical limit) inside the circle of convergence of the series expansion of H(p2)

around zero. Because on the one hand we focus on the long range properties of the correlation,
and on the other hand wish to eliminate as much as possible discretization effects, we truncate



116 P. Bialas et al. / Nuclear Physics B 871 [FS] (2013) 111–126
the full series of H(p2) to a small order nmax in p2, and determine its coefficients from small p2

data only. We write

H
(
p2) =

nmax∑
n=0

an

(
p2)n

, (18)

and solve for an the system of nmax + 1 equations

nmax∑
n=0

an

(
p2

i

)n = H
(
p2

i

); i = 0,1, . . . , np, (19)

where pi are the discrete values defined by Eqs. (10), (11) and the right hand sides are measured
using Eqs. (11), (12), (14) in np points. Then m2 is the smallest positive solution of Eq. (15).
The case nmax = 1 is the OZ approximation (16); the results presented in Section 3 in the context
of the scaling behaviour of m are those obtained with nmax = 2 and np = 3. The errors quoted
there are statistical errors only, estimated by a bootstrap technique applied to the whole set of
configurations measured.

2.2. The setup for the critical scaling analysis

Near the phase transition one may expect that for given Nτ the theory is described by an
effective Z3 symmetric two dimensional model for the Polyakov loop (5), which is in the same
universality class as the two dimensional three state Potts model [20]. It should therefore have
the same two independent critical exponents ν and η as in the latter model. These are known
from analytic calculations in that model to be

ν = 5/6, (20)

η = 4/15. (21)

The universality hypothesis is supported by the results of [21]. There the critical exponents re-
ported for Nτ = 2,4 and 6 are, within errors, which are around 20% always compatible with the
above expectations.

Using the definitions (12)–(15), we will assume finite size scaling behaviour for NS large
enough. Thus the mass gap and the susceptibility are represented close to the transition by

NSm = f1(s), (22)
χ

N
2−η
S

≡ N
η
S G̃(0) = f2(s), (23)

where

s = N
1/ν
S

(
1 − β/βc(Nτ )

)
, (24)

and

f1(s → ∞) ∝ sν, (25)

f2(s → ∞) ∝ s−ν(2−η). (26)

Here, βc(Nτ ), yet to be determined, denotes the critical value of the gauge coupling in the ther-
modynamic limit. The prefactors on the left hand sides of (22), (23) are such that for β close to
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βc(Nτ ) the correlation length and the susceptibility behave in the NS → ∞ limit as prescribed
by the critical exponents, that is

m ∝ (
1 − β/βc(Nτ )

)ν
, (27)

χ ∝ (
1 − β/βc(Nτ )

)−ν(2−η)
. (28)

In the following analysis, we assume universality to be true and use the values of ν and η

given in Eqs. (20), (21). A posteriori the fact that the data fall on unique scaling curves shows
that these exponents are the correct ones for the SU(3) gauge theory in two spatial dimensions.
For the susceptibility we make a further test of this assumption showing that the data do not fall
on a universal function f2(s) if we assume the mean field exponent η = 0.

In the next section, we use finite size scaling applied to a different quantity, more easily
measurable on the lattice, in order to determine βc(Nτ ) for Nτ = 4,6,8,12. Then the scaling
assumptions of Eqs. (22)–(26) are checked with a high accuracy in the case Nτ = 6, for which
a large density of data points in parameter space has been acquired. Finally an extrapolation of
βc(Nτ ) to the continuum limit Nτ → ∞ is performed, which allows to compare the gauge theory
and the string model near their transition points.

3. Applications of finite size scaling. Critical coupling, universal scaling functions and the
continuum limit compared with the string model

3.1. The critical couplings βc(Nτ )

We recall here the properties of finite size scaling, which we need to determine the critical
coupling. We determine βc(Nτ ) from the condition that the average value ΦL of a classically
dimensionless functional Φ{L} of the effective field L(x̄) defined by Eq. (5) does possess finite
size scaling properties analogous to those of m and χ in Eqs. (22), (23). Generically, we set

N
φ
S ΦL = f (s), (29)

s = N
1/ν
S

(
1 − β/βc(Nτ )

)
,

f (s → ∞) ∝ sρ, (30)

where φ, ν,ρ are critical exponents. The conditions that, in a domain including β = βc(Nτ ),

i) ΦL is well defined on the lattice for any NS ,
ii) ΦL exists in the thermodynamic limit,

imply the relation

ρ = νφ. (31)

In this limit Eq. (29) then gives

ΦL ∝ (
1 − β/βc(Nτ )

)νφ
, (32)

and φ is the anomalous dimension of Φ . If β approaches βc(Nτ ), one may expand f (s) around
zero and rewrite (29) as

N
φ
ΦL = a + bN

1/ν(1 − β/βc(Nτ )
) + · · · , (33)
S S
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Fig. 1. N3η/2
S

L3 as a function of N
1/ν
S

for fixed values of β . The temporal extent is Nτ = 8. The straight lines correspond
to the fits described in the text.

where a and b are constants. The right hand side is thus linear in N
1/ν
S at β fixed, and βc(Nτ )

is that value of β for which the slope b(1 − β/βc(Nτ )) vanishes. The method is, of course,
particularly useful if φ and ν are known.

The order parameter 〈L(x̄)〉, which is classically dimensionless and has an anomalous di-
mension η/2 in two dimensions, does not fulfill the condition i) above since, on the lattice, it
vanishes even in the broken phase, due to fluctuations between degenerate groundstates. For the
same reason the susceptibility, which is quadratic in L and thus has the anomalous dimension η

(see Eqs. (23), (26)), is not suitable because its measurement via the definition (13) requires G̃(0)

to be the connected correlation (by subtracting |〈L〉|2). One could in principle use G̃(0) without
subtraction, but we have found that it is less stable over the transition than the variable defined
below.

In fact, we consider the quantity L3 defined as follows

L = 1

N2
S

∑
x̄

L(x̄), (34)

L3 ≡ Re
〈
L3〉. (35)

This quantity is particularly interesting. L is the lattice average of L(x̄), and its cube is the
monomial of lowest degree that does not suffer from the same disease as 〈L〉 itself: in the ordered
phase L3 fluctuates around the same real value whatever vacuum is chosen during the simulation.
We have checked that the imaginary part of 〈L3〉 is always negligible, due to the reality of the
action, and use its real part in (35) for convenience.

In Fig. 1 we show data obtained for L3 at Nτ = 8 inside a domain in β which strongly suggests
that it contains a value of β such that L3 is independent of NS . More precisely, inside the domain
in {β,NS} shown, it appears that the data are consistent with L3 being linear in N

1/ν
S , as expected

if an expansion of the type of Eq. (33) is valid: The straight lines drawn actually result from
linear fits to the data at β fixed. They are restricted to go through the same point for vanishing
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Fig. 2. The slopes ξ(β) of N
3η/2
S

L3 for Nτ = 8 as a function of β . The curve corresponds to the fit described in the text.

Nτ βc(Nτ )

4 14.7404(7)

6 21.374(3)

8 27.952(4)

12 41.075(7)

argument, as demanded by Eq. (33). Similar results are obtained for the other values of Nτ . In
addition, the same ansatz (33) implies that the slopes of L3 in N

1/ν
S at Nτ fixed are proportional

to 1 − β/βc(Nτ ) near βc . To take care of higher order corrections we fit the slopes, which we
denote by ξ(β), using

ξ(β) = a1(β − βc) + a2(β − βc)
2, (36)

where a1 and a2 are the parameters of the fit. These fits have very good χ2/d.o.f . � 1. In Fig. 2
we show as an example the fit for Nτ = 8, which confirms the nearly linear behaviour of the
slope near βc. The same is true for the other values of Nτ exploited. Those fits then complete
the determination of βc(Nτ ) shown in Table 36. Note that the errors are the statistical ones only.
The critical coupling βc(4) has been determined in two earlier works [21,25]. The values were
14.74(5) and 14.717(17) respectively. The method in these investigations are different from each
other and from ours. Systematic errors have not been taken into account. Therefore the results are
in very good agreement with ours, giving further support to our method. In Ref. [26] still another
method is used to estimate the critical coupling in this theory for Nτ = 4,6,8. For Nτ = 6,8
the values are in agreement with ours within their errors, which are ten times larger. For Nτ = 4
there is a discrepancy, but this may be due to the fact that their procedure has not converged on
the spatial volumes they use, which are considerably smaller than ours.
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Fig. 3. The scaling behaviour of the mass gap at Nτ = 6. The full line is the finite size scaling parametrization discussed
in the text. The dashed line is the asymptotic behaviour given in Eqs. (24), (25).

3.2. Finite size scaling for m and χ

Knowing βc(Nτ ), we are now able to test the universal scaling of the mass gap and the sus-
ceptibility. They are defined in Eqs. (15), (13). Their expected finite size scaling behaviours were
described in Eqs. (22)–(26). Here we illustrate the fact that, apart from a known NS dependent
prefactor, they depend on the two parameters β and NS via a function of the single variable s

of Eq. (24). We have measured the correlations, and thus m and χ for Nτ = 4 and 6. Here we
concentrate on Nτ = 6, our conclusions for Nτ = 4 being identical. We have used values for NS

from 48 to 264, and 20 different β-values between β = 18 and 21.35, just below βc = 21.374.
We start with the mass because in this case only the critical exponent ν enters the analysis

and thus can be probed independently. The scaling properties of the mass described by Eqs. (22),
(24), (25) are illustrated for Nτ = 6 in Fig. 3. The quantity mNS is plotted versus tν/Nτ , where

t = N
1/ν
S (1 − T/Tc). (37)

The temperature T is determined through its definition (2), with the lattice spacing a(β) obtained
from a fit to the zero temperature string tension, given in our earlier paper [9], and also repeated
below in Eqs. (42)–(45). It is clear from the definition in (37) that t � s near the transition, and
thus can be used as a finite size scaling variable. The factor 1/Nτ is inserted because accord-
ing to (8), the continuum limit of the product mNτ depends only on the temperature, and thus
provides the leading term (1 − T/Tc)

ν as Nτ → ∞. The values of mNτ collected in our earlier
paper [9] for Nτ = 4 and 6 are, in fact, found to be close one to the other.

Up to tν/Nτ � 1 (t � 9), the existence of a finite size scaling law is impressively confirmed,
showing a high density of points lying on one single curve. The curve is a fit to a second degree
polynomial in t . This validates the value ν = 5/6 expected from universality. For tν/Nτ � 1 the
data in the figure lie in the neighbourhood of a straight line, corresponding to the asymptotic
behaviour of Eq. (25) with the same value ν = 5/6.



P. Bialas et al. / Nuclear Physics B 871 [FS] (2013) 111–126 121
Fig. 4. The scaling behaviour of the susceptibility at Nτ = 6. The curve corresponds to the fit described in the text.

We now probe the anomalous dimension η = 4/15 appearing in the left hand side of Eq. (23).
This is done in Fig. 4 by plotting χ/N

(2−η)
S against mNS . This choice eliminates the explicit

dependence on the critical exponent ν, and therefore is a direct test of η. As we can see in the
figure all the data fall on a unique scaling curve. This successfully validates η = 4/15. The curve
in the figure corresponds to a fit

χ

N
2−η
S

= b1

1 + (b2mNS)(2−η)
(38)

where b1 = 4.77(5) and b2 = 1.50(1). The form of the function has been chosen to be consistent
with the expected large NS behaviour. This behaviour can be easily derived from Eqs. (22)–(26).

As already mentioned, to measure the mass gap and susceptibility above βc (s < 0) one should
subtract from G(z) the disconnected contribution |〈L〉|2. On a finite lattice 〈L〉 vanishes, because
of the tunnelling between the degenerate vacua. In practice this happens in Monte Carlo simula-
tions near the critical point for NS not too large. A popular way out is to replace |〈L〉|2 by 〈|L|2〉.
We will not use this procedure here. By the way, our choice to use L3 to identify the critical β

was dictated by the need for a control parameter which evolves smoothly across the transition.
The analysis described above, which has also been performed for Nτ = 4 with the same con-

clusions convincingly comforts the expectation that the critical behaviour of the gauge model is
governed by the same exponents as the two dimensional three states Potts model. We have not
tried to determine these exponents a priori from demanding a unique scaling curve for each of the
variables considered, L3,m,χ . But, taking the susceptibility as an example, we show a contrario
in Fig. 5 that choosing the mean field exponent η = 0 is far from giving a unique scaling curve.

3.3. The critical temperature in the continuum compared with the string model

As shown above, for fixed Nτ there is a phase transition at a critical coupling βc(Nτ ) in the
thermodynamic limit NS → ∞. In the continuum theory there is thus a phase transition at the
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Fig. 5. This figure shows the absence of a unique scaling function for the assumption of mean field exponents.

critical temperature Tc, given from Eqs. (2), (4) by

Tc

g2
= lim

Nτ →∞
βc(Nτ )

6Nτ

. (39)

To determine this ratio we use the data given in Table 36, and assume that the approach to the
continuum limit is given by

βc(Nτ )

6Nτ

= Tc

g2

(
1 + b

Nτ

+ c

N2
τ

)
. (40)

From the data for the largest values of Nτ , it is clear that the leading correction is linear in 1/Nτ .
Inserting the values from Table 36 in Eq. (40), we obtain a quite good fit. We obtain

Tc

g2
= 0.5446(4). (41)

Another choice is to use the square root of the zero temperature string tension as energy scale.
This is also what we need to compare our results with the string model. In our earlier paper [9],
we used data in the literature [25,22] to obtain the following parametrization:

a
√

σ0 ≡ Fσ0(β) = h

β

β − z

β − p
(42)

where

h = 3.325(6), (43)

z = 2.0(2), (44)

p = 3.7(1). (45)

The form of the fitting function was chosen from the observation that βFσ0(β) has a finite value
when β → ∞, and is a slowly varying function of β in the region of the data to be fitted. A pos-
teriori we find that the fit is very good and the value of the zero and the pole are far from the
region of the data used.
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Fig. 6. The quantity Tc/
√

σ0 as a function of 1/N2
τ . The full line corresponds to the fit by Eq. (47). The dashed line is

the string model value in Eq. (51).

One should be aware of the fact that the errors on the parameters are strongly correlated. What
is important is the error on the interpolating function Fσ0(β). We found that the absolute value
of the error on 1/Fσ0(β) grows from 0.002 for β = 14 to 0.01 for β = 42. The effect of this error
on Tc/

√
σ0 was estimated using the bootstrap technique.

To obtain the continuum value of
√

σ0 normalized to the scale setting parameter g2, we form
the ratio√

σ0

g2
= lim

β→∞
βFσ0(β)

6
= h

6
= 0.554(1). (46)

This value is in agreement with an earlier investigation which gives a value 0.5528(8) for the
same quantity [27], validating our parametrization of the data.

The ratio Tc/
√

σ0 in the continuum limit is obtained from the ansatz

1

NτFσ0(βc(Nτ ))
= Tc√

σ0

(
1 + c1

N2
τ

+ c2

N4
τ

)
. (47)

We find

Tc√
σ0

= 0.986(1) (48)

with χ2/d.o.f . = 0.07. This is lower than the value Tc/
√

σ0 = 0.999(4) in Ref. [25], where the
same extrapolation formula is used, but for smaller values of Nτ = 2–5.

As can be seen in Fig. 6 the data show clearly that the leading correction to the continuum
value in (47) has to be quadratic in 1/Nτ as expected for a ratio between physical quantities.

In the Nambu–Goto string model, the temperature dependent string tension is predicted to
be [16]

σ(T ) = σ0

√
1 − T 2

T 2
(49)
c
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Fig. 7. The quantity σ(T )/σ0 as a function of T/
√

σ0. The full line corresponds to the string model as described in the
text. The dashed line shows the scaling behaviour near the transition.

where

T 2
c = 3σ0

(D − 2)π
. (50)

Here the constant D is the number of space–time dimensions of the gauge model. The prediction
only depends on the number of transverse dimensions and not on the group SU(N). In our case
which has one transverse dimension it leads to

Tc√
σ0

=
√

3

π
= 0.977 . . . . (51)

Furthermore Eq. (49) shows that the approach to Tc corresponds to the mean field critical expo-
nent ν = 1/2.

It is quite astonishing that the measured value (48) for SU(3) is so close to the theoretical
one (51), in particular as we have shown that there is a scaling region, where the mean field
behaviour of the string model is not valid. In principle it would be interesting to investigate if
the prediction (51) becomes better in SU(N) for larger values of N . It has, however, been shown
that for N � 5 the transition is of the first order [29,30] as is also predicted from the universality
arguments [20]. Then σ(Tc) has a jump, and Eq. (51) is not expected to be valid. Values of
Tc/

√
σ0 have also been obtained for SU(2) and Z2 gauge theories. In these cases the value of

this ratio is quite far from the string value in Eq. (51), being 1.12(1) [30] and 1.237(3) [31,32]
respectively.

Finally, we use the analysis of the correlation functions of the Polyakov loops in the region
18 � β � 21.3 performed in this paper to extend the comparison with the string model in [9] to
the whole range below the transition. In Fig. 7 we have plotted σ(T )/σ0 ≡ m/(Nτ (Fσ0(β))2)

vs T/
√

σ0 ≡ 1/(NτFσ0(β)). In the region near the transition, we only use the largest volume
for each β , and further restrict to those cases where mNS > 2.7 in which case the correspond-
ing points lie along the dashed line in Fig. 3. We compare with the prediction of the string
model given in Eqs. (49), (50), which does not have any free parameters. The agreement is good



P. Bialas et al. / Nuclear Physics B 871 [FS] (2013) 111–126 125
up to T/
√

σ0 ≈ 0.7. Near the phase transition we compare instead with the scaling behaviour
corresponding to m = c(1 − T/Tc)

ν , where c is a free parameter. This description is satisfactory
down to Tc/

√
σ0 ≈ 0.9. If the data in the region in between can be described by some correction

to the simple string picture as discussed in [33,34] is still an open question. Any description of
data like those in Fig. 7 must, however, be aware of the scaling region near the phase transition.

4. Conclusions

In this article we have presented results for the behaviour of three dimensional SU(3) gauge
theory near the finite temperature phase transition. We have introduced a new and powerful appli-
cation of finite size scaling to extract the value of the critical coupling. For this purpose, we have
used the third power of the Polyakov loop, which evolves smoothly over the transition. To extract
βc we assume the critical exponents of the two dimensional three state Potts model, which are
expected to be valid because of universality arguments [20]. Employing this method, we have
determined the critical coupling on considerably larger lattices both in space and temperature
direction than in earlier investigations.

That the phase transition is in the universality class of the abovementioned Potts model is
strongly supported by our finite size scaling analysis of the mass gap and the susceptibility. Their
values were extracted from an analysis of the correlation function of the Polyakov loop in Fourier
space. We used our measured critical couplings and these correlation functions at a large set of
values of the spatial extension and the coupling constant near the transition. In this region all
the data for the mass gap fall within errors on a unique scaling curve, if we assume the critical
exponent ν to be that of the Potts model. This test is sensitive to the exponent ν only. A further
check of the universality, which is sensitive to the exponent η was performed for the susceptibility
in the disordered phase. Also in this case the data fall on a single scaling curve when we use the
expected value η = 4/15. This is not the case if we e.g. assume the mean field value η = 0. This
analysis was performed for Nτ = 4 and 6 with consistent results.

Finally we have used our values for the critical couplings for Nτ = 4,6,8 and 12 and the
zero temperature string tension determined at these values from an interpolation formula of data
in the literature to make an extrapolation to the continuum and obtain the ratio of the critical
temperature to the square root of the zero temperature string tension. We have compared this
ratio to the corresponding result in the Nambu–Goto string model. Although the string model
predicts a temperature dependent string tension which has mean field behaviour in the scaling
region, the critical temperature in this model is, in fact, very close to the lattice result. The ratio
is a non-perturbative and non-universal observable. Thus it is a very important result, which may
imply that the string model describes the spectrum and the multiplicities of the excited states of
the SU(3) gauge model in three space–time dimensions.
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