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Abstract

A computational procedure to search for selective ligands for structurally related protein
targets was developed and verified for serotonergic 5-HT,/5-HT o receptor ligands. Start-
ing from a set of compounds with annotated activity at both targets (grouped into four clas-
ses according to their activity: selective toward each target, not-selective and not-
selective but active) and with an additional set of decoys (prepared using DUD methodol-
ogy), the SVM (Support Vector Machines) models were constructed using a selective sub-
set as positive examples and four remaining classes as negative training examples.
Based on these four component models, the consensus classifier was then constructed
using a data fusion approach. The combination of two approaches of data representation
(molecular fingerprints vs. structural interaction fingerprints), different training set sizes
and selection of the best SVM component models for consensus model generation, were
evaluated to determine the optimal settings for the developed algorithm. The results
showed that consensus models with molecular fingerprints, a larger training set and the
selection of component models based on MCC maximization provided the best predictive
performance.

Introduction

The identification of ligands that display a high affinity for one protein target and that are sig-
nificantly less active for another or a group of closely related members of a given family is of
high relevance for modern drug discovery. Apart from using selective ligands as leads in drug
design workflows, they can also be applied as molecular probes for studying, e.g., cellular func-
tions [1]. Because the validation of compound selectivity requires significant experimental
efforts and financial resources, fast and accurate computational methods to predict ligand
selectivity are highly desirable.

In recent years, diverse computational ligand- and/or structure-based approaches to explain
the molecular mechanism of selectivity and/or to predict compound selectivity have been
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developed. The most prominent example reported on molecular dynamic simulations com-
bined with free energy calculations to study mechanisms underlying the selectivity of tyrosine
phosphatases PTP1B/TCPTP/SHP-2 [2], phosphatidylinositol-3-kinases PI3Ko/PI3Ky [3] and
phosphodiesterase PDE5/PDES6 [4]. Other studies have described QSAR modeling to predict
the ligand selectivity for serotonin 5-HT,¢/5-HT;g[5] or dopamine D,/D; receptors [6] and for
a panel of 45 different kinases [7]. Yet other investigations used machine learning (ML) meth-
ods to construct selectivity prediction models, e.g., ML based on neural networks to generate
structure-selectivity relationship models [8], the binary classification SVM (Support Vector
Machines) algorithm to solve multiclass predictions and compound ranking to distinguish
between selective, active but non-selective, and inactive compounds [9], and the LICABEDS
(Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps) algorithm to model can-
nabinoid CB,/CB; selectivity [10].

Among fourteen 5-HT receptor (5-HTR) subtypes, 5-HT,R represents the most recent
addition to a subfamily of G-protein-coupled receptors (GPCRs). Distribution studies
revealed a correlation between the localization of 5-HT,Rs in the CNS (especially in the
suprachiasmatic nucleus) and their function, suggesting that they are involved in the regula-
tion of circadian rhythm, learning and memory processes, as well as in pathological processes
such as affective disorders, neurodegenerative diseases, and cognitive decline [11]. A large
body of evidence has demonstrated that the clinically established antidepressant effects of
atypical antipsychotics, i.e., amisulpiride, lurasidone and aripiprazole, are mediated by antag-
onism at 5-HT,Rs [12,13]. Several preclinical studies support the hypothesis that 5-HT,R
antagonists may produce beneficial pro-cognitive effects and ameliorate negative symptoms
of schizophrenia in animal models [14-17]. On the other hand, potential application for
5-HT,R agonists has been proposed for the treatment of dysfunctional memory in age-
related decline and Alzheimer’s disease [18], diabetic neuropathy and neuropathic pain
[19,20]. Moreover, recent preclinical findings have demonstrated novel therapeutic applica-
tions of 5-HT,R agonists for the treatment of fragile X syndrome, ADHD and other attention
deficit-related diseases [21,22].

Despite a great interest in 5-HTR since the 1990s, its function remains incompletely under-
stood. Apart from fundamental criteria for the classification of receptors, i.e., primary amino
acid sequence and signal transduction (G-protein, B-arrestin or MAPK/ERK pathways),
5-HT,R displays structural features that are similar to those of 5-HT; 4R [23-26]. Although
this similarity hampers the design of selective ligands of 5-HT,R [27,28], the situation appears
to be even more complicated when considering the co-localization and functional interplay
between 5-HT; and 5-HT 4Rs (i.e., homo/hetero dimerization, receptor desensitization and/or
internalization) [23,29].

Considering the aforementioned findings regarding the clinical significance of 5-HTR, the
elaboration of new algorithms to support the design of selective 5-HT,R agents (as an alterna-
tive to those reported in the literature—Fig 1) appears to be critical to obtain a more detailed
understanding of the pharmacological function of 5-HT,Rs.

Here, we developed and investigated the algorithm (based on SVM [38] classification mod-
els of ligands showing different affinity/selectivity relationships for 5-HT,/5-HT 5 receptors
and a data fusion approach) for its application to predict ligand selectivity between both targets
(Fig 2). The performance of this algorithm was compared to a simple ranking strategy and the
best in-class component SVM models. Furthermore, ligand- (molecular fingerprints) and
structure-based (Structural Interaction Fingerprint, SIFt) data representations, as well as per-
formance metrics (AUC and MCC), were evaluated to select the best SVM models.
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Fig 1. Chemical structure of different chemical classes of selective 5-HT-R ligands [30-37].
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Materials and Methods
Data sets and definition of training classes

The compounds with activity determined for both 5-HT, 4 and 5-HT receptors were retrieved
from the ChEMBL v17 database [39]. The parameters (Kj, ICs and pK;) describing the ligand
affinity were used to define four subsets of compounds (Table 1), i.e., selective toward 5-HT,R
(Selective) or 5-HT oR (Revsel), not-selective but active (Nselbact) and not-selective (Notsel).
The list of compound ChEMBL IDs belonging to a given subset is provided in the Supporting
Information (S2 File).

The pK; and ICs, values were recalculated to the K; using the following expressions: K; = 10~
PKiand K; = ICs0/2. The conversion factor of 2 was suggested by Kalliokoski et al. [40] and has
been applied successfully in similar studies [41,42]. In addition, for each selective ligand, 50
decoys with similar 1D physicochemical properties to remove bias (e.g., molecular weight,
logP) and a dissimilar 2D topology to be likely non-binders, were generated using DUD-e ser-
vice [43]. Accordingly defined sets were further used to construct component (class-specific)
SVM models by combining the Selective subset (positive learning examples) with DUD, Revsel,
Notsel and Nselbact (negative learning examples).

Data representation

Two approaches, i.e., ligand-based and structure-based approaches were tested to identify the
optimal way for constructing selectivity prediction models. In the ligand-based approach, the
structure of a molecule was encoded by three different molecular fingerprints (FP): hashed FP
[44] (CDK FP, 1024 bits), Klekota-Roth FP [45] (KlekFP, 4860 bits) and MACCS FP [46]
(MACCSEFP, 166 bits), which were calculated using PaDEL-Descriptor software [47].

In the structure-based approach (Fig 3), Structural Interaction Fingerprint profiles (SIFt-p)
were used [48,49]. They were obtained by docking all the defined subsets of ligands to different
conformations of 5-HT 4 and 5-HT,Rs homology models [26,50] with and without extracellu-
lar loops (EL). The 3-dimensional structures of the ligands were prepared using LigPrep v3.6
[51], and the appropriate ionization states at pH = 7.4 were assigned using Epik v3.4 [52]. The
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Fig 2. Schematic of the algorithm. The ChEMBL database was filtered out to extract the compounds with
annotated activity for both 5-HT, and 5-HT A receptors. Next, the obtained set of compounds was divided into
four subsets using defined rules (Table 1). Additionally, using the DUD-e web service, the decoys for the
Selective set were generated. The compounds from each subset were next encoded in binary string format
using a set of molecular (ligand-based approach) and interaction fingerprints (SIFt-p, structure-based
approach). Next, for each representation, the Selective subset was merged with one from the remaining sets
to generate four groups for use in independent training and testing of RBF SVM models (10 trials perissue).
The best in-class SVM models were selected based on AUC and MCC values. The final ranking was
obtained by application of the SUM rule of data fusion, in which the scores of component SVM models were
summed. Abbreviations used: Revsel—reversed selective, i.e., at least 5-fold more active for 5-HT; AR than
5-HT7; Nselbact—not selective but active, i.e., dual ligands; Notsel—not selective, i.e., the remaining
compounds; SIFt-p—Structural Interaction Fingerprints profile (calculated by averaging the SIFts obtained for
the docking of a given compound to three target conformations); SVM RBF—Support Vector Machines with
radial basis function kernel.

doi:10.1371/journal.pone.0156986.g002

Table 1. Definitions of SVM training sets used for component model generation.

Set Description/Conditions used to generate the set Size SVM Inter-class Tc
Name class similarity®
Selective Selective ligands for 5-HT;R:K;(5-HT) < 100 nM & K;(5-HTA)/K;(5-HT7) > 5 69 Positive 0.33
DUD Decoy set generated for selective set using DUD-e service 5198 Negative 0.25
Revsel Reverse selective ligands (selective ligands for 5-HT;AR):Ki(5-HT14) < 100 nM & K;(5-HT7)/ 124 Negative 0.29
Ki(5-HT1a) > 5
Nselbact Active ligands for both receptors simultaneously:K;(5-HT) & K;(5-HT14) < 100 nM 89 Negative 0.31
Notsel Ligands that do not meet the condition of selectivity:0.20 < Ki(5-HT)/Ki(5-HT7) <5 440 Negative 0.29

& An average Tanimoto coefficient obtained by pairwise comparison (compounds encoded by CDK fingerprint) for each molecule of the Selective subset
with each molecule of the remaining subsets. All average pairwise intra- and inter-class Tc are presented as a heat map in S1 Fig.

doi:10.1371/journal.pone.0156986.1001
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Fig 3. Schematic of the structure-based approach. In the first stage, all subsets of compounds were docked (Glide SP mode) to the three
conformations of the 5-HT; 4R and 5-HT;R homology models (generated on 5-HTgR and D3R templates). Next, the interaction fingerprints (SIFt)
were calculated for all obtained ligand-receptor complexes. The interaction analysis resulted in the selection of 34 common amino acids that
formed any type of interaction with the ligands. For a given compound, the SIFts were recalculated (independently for each receptor and
template) and averaged (SIFt-p). Finally, for each compound, the reduced SIFt profile (concatenating dockings to 5-HT4 5 and 5-HT- receptors to
a single vector) was used as an input to SVM.

doi:10.1371/journal.pone.0156986.9003

Protein Preparation Wizard was used to assign the bond orders, appropriate amino acid ioniza-
tion states and to check for steric clashes. The receptor grid was generated (OPLS_2005 force
field) by centering the grid box with a size of 15 A on Asp3.32. Automated docking was per-
formed using Glide v6.9 at the SP level with the flexible docking option turned on [53]. Five
poses per ligand were generated, but only the one with the best Glide Score was used for SIFt
generation.

The SIFt encodes the 3D ligand-protein complex in the form of a 1D binary string, in which
a nine-bit pattern is used to describe the interaction type: any contact, backbone, side chain,
polar, aromatic, hydrophobic interaction, hydrogen bond donor/acceptor and charged [54].

PLOS ONE | DOI:10.1371/journal.pone.0156986 June 7,2016 5/18



@’PLOS ‘ ONE

Identification of Selective Ligands

0.9 1

0.8

0.7

0.6

0.5

The SIFt-p were created by calculating the mean value for each position in three fingerprint
strings obtained for a given compound in three conformations of a given receptor model.
Based on the docking of all compounds and sequence alignment of 5-HT 5 and 5-HT} recep-
tors, a set of 34 common amino acids (sharing the same sequence position and having any con-
tact with the docked set of ligands) was defined, and the reduced SIFt-p were created. Finally,
for each compound, the reduced SIFt profiles from docking to 5-HT 4 and 5-HT; receptors
were concatenated to a single vector that handles information regarding averaged interactions
between a particular ligand and both receptors.

Optimization of SVM learning parameters

The molecular fingerprints and concatenated SIFt-p were used as input to generate classifica-
tion models using the SVM algorithm. To select the classification model with the best perfor-
mance for a given training class, a bootstrapping procedure was used. All classes were divided
into training and test sets using two ratios: 0.40 and 0.60 (i.e., 40% and 60% of all examples,
respectively, were used for training, while the remaining ones constituted the testing set). For
each ratio, 10-trials of resampling with replacement of the original sets was performed to opti-
mize the kernel parameters in the SVM classification model. The models were constructed
using the SVMlight library and radial base function (RBF, the Gaussian function) [55]. For
each run, a grid search was performed for two parameters: a penalty of the error term C €
{107%,107%,107% 0.5, 0.1, 1, 5, 10, 100, 500, 1000} and gamma coefficient for the radial base
function y € {1077,1075,107%,107%,107%,107%,107", 0, 1, 5, 10, 100}. The example distribution
of AUC and MCC values for the 10 best SVM models optimized for a training ratio of 0.40 and
MACCS FP is presented in Fig 4.

CScore model generation

For each set of optimized SVM component models, the threshold (boundary value that sepa-
rates positive and negative classes) for which MCC was highest was determined by sampling

AUC MCC

0.7

0.6

0.5

- '

0.2 -

0.1

0.0

DUD

Revsel -
Notsel
Nselbact |

DUD +
Revsel -
Notsel

Nselbact

Fig 4. Box plots illustrating differences in performance (AUC and MCC) of 10 optimized SVM component models built for
all training classes generated for MACCS FP and a training ratio of 0.40.

doi:10.1371/journal.pone.0156986.9004
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Fig 5. Example illustration of CScore model generation using component models. The ROC curves were used to show the performance of the
component and CScore models and the thresholds (red circles) used to determine the classification (A—for MACCS FP and a training ratio of 0.40; B—
for SIFt-p generated using the 5-HT4gR template with loops and a training ratio of 0.40).

doi:10.1371/journal.pone.0156986.9005

the range of the RBF decision function with a step of 0.1. Next, the best SVM models were iden-
tified and used to build the consensus score (CScore) classifiers (Fig 5). Two criteria were used
to select the best in-class SVM model—the highest AUC or MCC values. The set of best com-
ponent models and their thresholds were then used to perform the new classification. The
CScore model was created by applying the SUM rule from the data fusion [56] merging the
outputs of the individual component classifiers by summing the predictions that were calcu-
lated using the thresholds obtained for each component model.

The performance measures

The recall (1), precision (2), Mathews Correlation Coefficient—MCC (3), area under the
receiver operator characteristic (ROC) curve (AUC) and the Boltzmann-Enhanced
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Discrimination of ROC (BEDROC) metrics were used to assess the classification effectiveness

of trained SVM models.
TP
R=—— 1
TP + FN (1)
TP
P=—""— (2)
TP + FP

e — TP-TN — FP - FN )
/(TP +FP)- (TP + FN) - (IN + FP) - (IN + FN)

= ysinh(*/,) 1
BEDROC = = — - x N 2 T
((:“7:,,1)) COSh(Q/Q) - COSh(1/3 - O‘”/N) 1— e’“(]ﬁ)

(4)

Z|s

where TP denotes the number of true positives (actives labeled as actives), TN-true negatives,
FP-false positives (inactives labeled as actives), FN-false negatives, # is the number of actives
among N compounds, 7i is the rank of the i-th active and o is a parameter that assigns a weight
towards compounds the top of the ranked list.

Recall measures the number of correctly identified positive examples, precision describes
the correctness of positive predictions and MCC is a balanced measure of the binary classifica-
tion effectiveness, ranging from -1 to 1, with 1 indicating a perfect prediction. The ROC pres-
ents the variation in the number of correctly classified positive examples with the number of
incorrectly predicted negative examples. The BEDROC was introduced by Truchon and Bayly
[57] to address the problem of "early recognition” in virtual screening. It can be interpreted as
the probability that an active is ranked before a randomly selected compound that is exponen-
tially distributed with parameter o, which controls the earliness of "early recognition” to test
whether a ranking method is useful in the context of VS. The BEDROC metric ranges from 0
to 1, and it was calculated for o = 20 in the present study, as previously suggested [58].

The ROC curves and AUC values were calculated using the ROCR [59] package in R [60].
The BEDROC was also calculated in R using the enrichvs package [61].

Results

It should be emphasized that in the present analysis we focused on comparing the performance
of the designed algorithm in different settings (i.e., representations, selection of the best com-
ponent models) in terms of its ability to distinguish Selective from not-selective, inactive, decoy
and multimodal (dual) compounds for the virtual screening of molecular databases. Moreover,
the classification obtained by combining the SVM and binary molecular fingerprints cannot be
interpreted at the level of chemical features that may be responsible for compound selectivity.

Initially, the performance of the CScore, the best component and Classical (trained on the
Selective subset as positive class and on the sum of the Revsel, Notsel and Nselbact subsets as
negative classes) were compared. The AUC, BEDROC and MCC parameters were calculated
(Table 2) for ligand-based and structure-based approaches.

Interestingly, to address the “early recognition” problem (BEDROC value), the CScore mod-
els always demonstrated superior performance for recognizing selective over not-selective
compounds in comparison to any single SVM-based ranking strategy (i.e., Classical and best
component). However, considering the global performance (MCC, AUC), a single strategy

PLOS ONE | DOI:10.1371/journal.pone.0156986 June 7,2016 8/18
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Table 2. Performance of CScore models obtained for the 0.40 training ratio and AUC and MCC strategies compared with the best single models
trained in the classical manner and the best in-class component models. The median values for the Classical and best component strategies (ten trials
were performed) are presented in parentheses.

Fingerprint Strategy BEDROC MCC AUC
CDK FP
MCC Best Classical 0.82 (0.72) 0.60 (0.55) 0.97 (0.92)
Best component (notsel) 0.77 (0.74) 0.64 (0.53) 0.94 (0.91)
CScore 0.93 0.65 0.93
AUC Best Classical 0.84 (0.73) 0.53 (0.52) 0.96 (0.91)
Best component (dud) 0.72 (0.68) 0.48 (0.55) 0.95 (0.94)
CScore 0.92 0.52 0.96
MACCS FP
MCC Best Classical 0.81 (0.76) 0.66 (0.61) 0.93 (0.91)
Best component (notsel) 0.77 (0.70) 0.64 (0.50) 0.90 (0.92)
CScore 0.95 0.72 0.94
AUC Best Classical 0.76 (0.75) 0.68 (0.66) 0.92 (0.91)
Best component (dud) 0.82 (0.78) 0.66 (0.57) 0.98 (0.97)
CScore 0.93 0.74 0.95
KlekR FP
MCC Best Classical 0.78 (0.76) 0.69 (0.61) 0.90 (0.89)
Best component (dud) 0.77 (0.75) 0.72 (0.60) 0.93 (0.93)
CScore 0.91 0.69 0.88
AUC Best Classical 0.82 (0.81) 0.60 (0.61) 0.95 (0.94)
Best component (dud) 0.86 (0.80) 0.63 (0.60) 0.97 (0.96)
CScore 0.90 0.69 0.96
SIFt-p_Ds_loop
MCC Best Classical 0.12 (0.11) 0.17 (0.05) 0.61 (0.55)
Best component (notsel) 0.45 (0.13) 0.33 (0.17) 0.60 (0.59)
CScore 0.90 0.50 0.92
AUC Best Classical 0.12 (0.11) 0.07 (0.05) 0.68 (0.63)
Best component (dud) 0.24 (0.22) 0.15 (0.13) 0.71 (0.68)
CScore 0.67 0.13 0.77
SIFt-p_D3_nloop
MCC Best Classical 0.16 (0.13) 0.09 (0.05) 0.61 (0.55)
Best component (nselbact) 0.41 (0.35) 0.43 (0.25) 0.46 (0.42)
CScore 0.71 0.27 0.81
AUC Best Classical 0.15(0.13) 0.09 (0.05) 0.65 (0.60)
Best component (revsel) 0.40 (0.39) 0.25 (0.21) 0.71 (0.64)
CScore 0.53 0.11 0.75
SIFt-p_5-HT1g_loop
MCC Best Classical 0.65 (0.22) 0.59 (0.13) 0.85 (0.77)
Best component (revsel) 0.56 (0.16) 0.39 (0.11) 0.82 (0.68)
CScore 0.81 0.50 0.90
AUC Best Classical 0.63 (0.22) 0.65 (0.11) 0.82 (0.76)
Best component (dud) 0.39 (0.37) 0.20 (0.22) 0.83 (0.80)
CScore 0.75 0.53 0.90
SIFt-p_5-HT4g_nloop
MCC Best Classical 0.12 (0.14) 0.12 (0.06) 0.65 (0.65)
Best component (revsel) 0.49 (0.44) 0.37 (0.34) 0.51 (0.50)
CScore 0.72 0.39 0.85
(Continued)
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Table 2. (Continued)

Fingerprint Strategy BEDROC MccC AUC
AUC Best Classical 0.23 (0.14) 0.12 (0.06) 0.69 (0.61)
Best component (dud) 0.40 (0.37) 0.17 (0.11) 0.81 (0.77)
CScore 0.67 0.24 0.82

doi:10.1371/journal.pone.0156986.t002

0.77
A M -

sometimes provided better results than a consensus approach. In should be noted that use of
MCC as the SVM model selection strategy consistently provided better CScores than AUC.

To evaluate global performance, the CScore was compared with all component models. Fig
6 shows an example panel of heat maps comparing the results obtained for ligand-based (Fig
6A) and structure-based (Fig 6B) approaches. As expected, in the majority of cases, the CScore
models were better than any of the component models. The CScore models optimized for AUC
and MCC ranked first in 56.7% and 40% of the analyzed cases, respectively (Fig 7).

Additionally, to study the relationships between CScore and component models, the cluster-
ing of rows (represented by vectors containing four performance parameters) using the com-
plete linkage method with Euclidean distance measure was performed (all of the mentioned
heat maps are available in S1 File). The global analysis of dendrograms revealed that the

L1 AUC mMcc
0.2 0.6 1
0.72 0.47 0.58 - 0.7 0.53 0.6 DUD

0.29 0.64 0.43 0.86 0.42 0.67 0.53 Revsel
0.55 0.76 0.64 0.55 0.76 0.64 Notsel

0.38 0.48 0.42 0.77 0.38 0.42 Nselbact

0.48
0.2 0.83 0.5 - 0.2 DUD

0.69 0.53 0.31 0.39 0.69 0.53 0.31 0.39 Revsel

072 CScore

o
&8
e
o

0.74 0.53 0.35 0.42 0.7 0.5 0.6 0.54 Notsel
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Precision
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Fig 6. Heat maps comparing CScore with their component models for two strategies of selecting the
best component models (highest AUC and MCC) and input data representations (A—for MACCS FP and
a training ratio of 0.40; B—for SIFt-p generated using a 5-HTgR template with loops and a training ratio
of 0.40).

doi:10.1371/journal.pone.0156986.9006
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Fig 7. The ranking percentage (from 1 —best to 5 —worst) of a given SVM component and CScore
model counted for AUC and MCC strategy.

doi:10.1371/journal.pone.0156986.g007

Percentage of a given ranking score

performance of the CScore models was coupled with component models on different levels of
performance similarity. For example, considering the highest level of similarity (i.e., the short-
est Euclidean distance between two models), the performance of the CScore model was most
similar to DUD, Revsel, Notsel and Nselbact in eight, six, eight and one cases, respectively. In
the five remaining cases, CScore was coupled on the second level (i.e., with a cluster formed by
two component models). Interestingly, eight cases had singleton component models (Nselbact
and Notsel in six and two, respectively) and generally displayed poor performance.

Comparison of the approaches used to generate the input data (Fig 8) revealed that signifi-
cantly better CScore models were obtained for ligand-based (average BEDROC = 0.95,

MCC =0.67 and AUC = 0.96) compared with structure-based (average BEDROC = 0.79,

MCC =0.38, and AUC = 0.86) approaches. Among all the molecular fingerprints that were uti-
lized, MACCS FP (BEDROC = 0.94, MCC = 0.70 and AUC = 0.95) and KlekFP (BED-

ROC =0.95, MCC = 0.69 and AUC = 0.95) performed at a comparable level that was greater
than that of CDKFP (average BEDROC = 0.94, MCC = 0.61 and AUC = 0.95).

Regarding the homology modeling approach, the results showed that for both 5-HTgR and
D;R templates, slightly better CScore models were obtained when homology models with
extracellular loops were used for SIFt-p generation (MCC for both models = 0.50, Fig 8). Addi-
tionally, the template also appears to influence the performance of the CScore models—better
results were obtained for more homologous 5-HT;gR template.

The CScore models obtained for component models selected using MCC criteria were
slightly more efficient than those constructed using component models with the best AUC val-
ues. Because we optimized MCC to identify the threshold enabling the best classification effec-
tiveness for each component model, the approach based on CScore model generation for MCC
provides, globally, SVM models with the highest performance on classification tasks.
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Fig 8. Heat maps comparing the performance of CScore models obtained for all the studied cases,
i.e., representation of the data (three molecular fingerprints and SIFt-p for models with and without
loops) and strategy for component models selection (AUC, MCC).

doi:10.1371/journal.pone.0156986.g008

Finally, increasing the size of the training set (from 40% to 60% actives) improved the per-
formance of both component and CScore models in the majority of cases (Fig 9), which is con-
sistent with our previous findings [62,63].

Discussion
Selectivity threshold

As demonstrated in the present analysis, machine learning classification models trained on a
set of ligands with different selectivity and activity profiles can provide a consensus model, the
performance of which is significantly better than the component models. It must be stressed
that the ligand was regarded as selective for 5-HTR as long as the ratio of K;(5-HT;,)/
K;(5-HT;) was greater than 5. The rationale for this criterion was based on a close investigation
of the data retrieved from ChEMBL database v17, which showed that there were 69 compounds
for selectivity threshold > 5, whereas there were only 34 compounds for threshold > 20 that
could be used for training and testing of the SVM models (S2 Fig). It should be noted that dif-
ferent thresholds for the selectivity index and rationale for their assessment have been used in
similar studies, however, a quantitative definition is lacking. For example, Ma et al. used a
selectivity index > 10, which was selected based on the findings for the selective CB,/CB, can-
nabinoid ligand by ].W. Huffman [10]. However, Wang et al. used a threshold for the selectiv-
ity index > 3 for the kNN QSAR Classification model for 5-HT;g/5-HT receptor selectivity
[5]. To minimize errors resulting from, e.g., uncertainty regarding K; values, they tested four
selectivity thresholds and demonstrated that a threshold higher than 3 led to unacceptable
models, generally due to a number of selective ligands that was too small. However, a higher
selectivity index threshold was used by Wassermann [9] and Ning (50-fold) [8].

Performance of the CScore

To test general performance, as well as the “early recognition” preferences of the proposed
algorithm, different performance metrics were applied. Although widely used, AUC is not a
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Fig 9. Comparison of the influence of training set size on the performance of separate models for
MACCS FP.

doi:10.1371/journal.pone.0156986.g009

sufficient metric to address the "early recognition" problem specific to VS [57,58]. Additionally,
the application of AUC to rank any database necessitates the selection of a decision threshold
that enables binary classification (e.g., active/inactive or selective/not-selective). Consequently,
different metrics can potentially be used to identify the optimal threshold. For example, Alvars-
son et al. used net reclassification improvement (NRI) [41]. Because MCC is a more balanced
summary statistic of the confusion matrix when unbalanced classes (see Table 1) are used [57],
we decided to apply it in our algorithm.

Our analyses revealed that significantly better CScore models were obtained when the com-
ponent models with the best MCC compared with the best AUC value were selected. This
observation is explained in Fig 5, in which red circles on ROC curves depict the decision
thresholds that were determined by maximizing MCC. These circles are localized in the area of
the curve in which the number of true positives is ranked before false positives, which in some
cases corresponds to the “early recognition” of the BEDROC.

Fingerprint influence

The influence of diverse parameters on the performance of the proposed algorithm was tested.
Interestingly, CScore models based on the molecular fingerprints showed better performance
than averaged interaction fingerprints (SIFt-p). All of the used fingerprints have different
lengths, ranging from 166 (MACCS FP) to 4860 bits (Klekota-Roth FP), whereas concatenated
SIFt-p had lengths of 1494 and 1458 bits for receptors with and without EL, respectively. There
was no correlation between the length of the representation and the performance of the CScore
model. The superior performance of ML models based on molecular rather than on interaction
fingerprints in retrieving selectivity patterns may be due to uncertainty in predicting the correct
binding mode by docking. It should be noted that because models obtained for receptors with
EL showed better performance than those without loops, these additional four amino acids
belonging to EL could play a role in the recognition of selective ligands.
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The method presented herein could be especially useful for the virtual screening of chemical
databases and for assessing combinatorial libraries to prioritize compounds for synthesis. It
also offers more control capabilities in virtual screening searches for selective ligands because it
enables the construction of a CScore model using different classification thresholds and perfor-
mance parameters, e.g., one can generate a CScore model to optimize its performance for recall
or precision. Additionally, the proposed algorithm is flexible, and after redefining the training
classes, it can be used to, e.g., predict multimodal ligands.

Conclusions

In this study, a new algorithm is presented to identify new target-selective ligands and is evalu-
ated based on its selectivity prediction for 5-HT; receptor ligands over the 5-HT  subtype.
We adopted data fusion and SVM component models (class-specific) that were trained on four
datasets, i.e., selective toward 5-HTR (Selective) or 5-HT; 4R (Revsel), not-selective (Notsel)
and not-selective but active (Nselbact), to construct the consensus classifier—CScore. The pri-
mary objective of this study was to obtain a virtual screening algorithm, which was evaluated in
terms of its “early recognition” performance using the BEDROC metric. The analyses showed
that the CScore was a significantly better scoring strategy than the best single models trained in
a classical manner and the best in-class component models. The selection of component mod-
els to construct the consensus classifier is crucial and is significantly influenced by the molecu-
lar representation and performance parameter applied. In all studied cases, selection of the
component models with the best MCC versus AUC value improved “early recognition” (mea-
sured by BEDROC).

Considering the successful implementation of the proposed algorithm, it will be incorpo-
rated into our screening protocol [64] and applied to analyze combinatorial libraries to priori-
tize the synthesis of selective 5-HTR ligands. Further improvements in the functionality of the
algorithm will be conducted to improve its utility for other research groups (S2 File).

Supporting Information

S1 Fig. Heat map showing all average pairwise intra- and inter-class similarities calculated
using the Tanimoto metric and CDK FP.
(TTF)

S2 Fig. Histogram of the compound selectivity index.
(TIF)

S1 File. Heat maps with row clustering comparing the CScore and component models
developed for all ligand- and structure-based approaches to the data representation.
(PDF)

S2 File. A zip file containing scripts, datasets and optimized SVM models used in this
study.
(ZIP)
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