Geo log i cal Quar terly, 2021, 65: 52 DOI: http://dx.doi.org/10.7306/gq.1621 Sed i men tary en vi ron ments and stra tig ra phy of the Stipinai For ma tion (Up per Frasnian, north ern Lith u a nia): a sed i men tary re cord of sea-level changes in the Main De vo nian Field of the East Eu ro pean Plat form Piotr JAGLARZ1, *, Tomasz RYCHLINSKI1, Pawe3 FILIPIAK2, Al fred UCHMAN1 and Jul ius VAINORIUS3 1 Jagiellonian Uni ver sity in Krak, Fac ulty of Ge og ra phy and Ge ol ogy, In sti tute of Geo log i cal Sci ences, Gronostajowa 3a, 30-387 Krak, Po land 2 Uni ver sity of Silesia in Katowice, Fac ulty of Nat u ral Sci ences, In sti tute of Earth Sci ences, Bedzika 60, 41-200 Sosnowiec, Po land 3 Šiauliai Aušros Mu seum, Vilniaus St. 74, LT-76283 Šiauliai, Lith u a nia Jaglarz, P., Rychliki, T., Filipiak, P. Uchman, A., Vainorius, J., 2021. Sed i men tary en vi ron ments and stra tig ra phy of theStipinai For ma tion (Up per Frasnian, north ern Lith u a nia): a sed i men tary re cord of sea-level changes in the Main De vo nianField of the East Eu ro pean Plat form. Geo log i cal Quar terly, 65: 52, doi: 10.7306/gq.1621 The Frasnian car bon ate-siliciclastic de pos its of the Stipinai For ma tion ex posed in two quar ries at Petraëinai and Klovainiai (north ern Lith u a nia) show con sid er able ver ti cal fa cies changes. The lower part of this suc ces sion is dom i nated by ar gil la -ceous dolomitic fa cies with sub or di nate fine siliciclastic de pos its. They dis play haloturbation and bioturbation struc tures,rep re sent a hypersaline la goonal en vi ron ment, and re cord the be gin ning of the trans gres sion. The mid dle part of the suc ces -sion con sists of sec ond ary dolostones con tain ing moulds of brachi o pods, tetracorals, stromatoporoids and trace fos sils ofde posit feed ers; these were de pos ited in a shal low subtidal ma rine en vi ron ment and rep re sent the deep est sed i men tary en -vi ron ment of this suc ces sion. This was fol lowed by a la goonal en vi ron ment (ep i sodic hypersaline), rep re sented bydolomudstones and marly dolomudstones. The up per part of the suc ces sion is built of bed ded dolostones which doc u ment ashallowing trend. In ter ca la tions of clays and palaeosol ho ri zons re cord emer gence events. Palynostratigraphic data ten ta -tively in di cate that the Stipinai For ma tion rep re sents the Up per Frasnian. The suc ces sion can be in ter preted as a re cord ofthe up per part of a T-R cy cle (re lated to the semichatovae trans gres sion) in the Main De vo nian Field of the East Eu ro peanPlat form. The Stipinai For ma tion is dis trib uted across west ern and cen tral Lat via and has a cor re la tive in the Pomerania Ba ­sin (north ern Po land). Key words: fa cies, dolostones, rel a tive sea-level changes, palynostratigraphy, Bal tic Ba sin, Up per De vo nian. INTRODUCTION po sures of the Frasnian Stipinai For ma tion in north ern Lith u a -nia stud ied here give an op por tu nity to in ves ti gate Up per De vo -nian fa cies vari abil ity in the Bal tic Ba sin and the causes of The De vo nian Bal tic Ba sin (Pontén and Plink-Bjklund, palaeoenvironmental changes dur ing Frasnian time. The main 2009) or Bal tic De vo nian Ba sin (Lukševies et al., 2011) was goal of the pa per is the de ter mi na tion of age of the Stipinai For -formed as a con se quence of the col li sion of east ern Avalonia ma tion via palynostratigraphy, and in ter pre ta tion of fa cies and Baltica in the Late Or do vi cian (Poprawa et al., 1999). Dur -changes through the suc ces sion. The strati graphi cal data al low ing the De vo nian, its north west ern part was up lifted and eroded, cor re la tion of the Stipinai For ma tion fa cies changes to the while in its cen tral and east ern part, two NE–SW trending global sea-level curve (see Dopieralska et al., 2016). depocentres de vel oped in which in ter mit tent con ti nen tal, deltaic, estuarine, la goonal and shal low ma rine sed i men ta tion took place (e.g., Paškevieius, 1997; ¤saitytA, 2000; Lukševies GEOLOGICAL BACKGROUND et al., 2012; Stinkulis et al., 2020). This sed i men ta tion was con -trolled by eustatic sea level changes at subequatorial lat i tudes The Up per De vo nian sec tions ex am ined are lo cated in (Bachtadse et al., 1995; Be3ka and Narkiewicz, 2008). The ex -north ern Lith u a nia (Fig. 1A) in the west ern part of the Main De -vo nian Field of the East Eu ro pean Plat form (Vodzinskas and Kadnas, 1969). The Main De vo nian Field con sti tutes the larg ­ est De vo nian out crops and subcrops in Eu rope, en com pass ing south ern Es to nia, Lat via, north ern Lith u a nia, as well as the ad ­ * Cor re spond ing au thor, e-mail: piotr.jaglarz@uj.edu.pl ja cent parts of Rus sia and the Bal tic Sea. Struc tur ally, this area Re ceived: April 6, 2021; ac cepted: Oc to ber 23, 2021; first pub lished be longs to the Bal tic Syneclise (Paškevieius, 1997; Be3ka and on line: November 29, 2021 Fig. 1. Lo ca tion of the study area A – palaeogeographic-palaeotectonic sketch-map of northeast ern Eu rope dur ing the Late De vo nian with lo ca tion of the study area: Lt – Lith u a nia, Lv – Lat via, Est – Es to nia (af ter Ziegler, 1988, mod i fied); B – de tailed map with the lo ca tion of the quar ries and sec tions stud ied Narkiewicz, 2008). The study area is lo cated in the south east -ern part of the Bal tic Syneclise, termed the Pol ish-Lith u a nian de pres sion, which was formed dur ing the Late Perm ian (Paške -vieius, 1997). Dur ing the De vo nian, the area of the re cent Main De vo nian Field was a part of the Bal tic Ba sin, which de vel oped in the west ern part of the East Eu ro pean Plat form on the Laurussia con ti nent. Dur ing the ear li est De vo nian, con ti nen tal-la goonal sed i men ta tion pre vailed in the Bal tic Ba sin ex cept for its north -ern part, which was up lifted and eroded (Paškevieius, 1997). Sand stone-dom i nated siliciclastic sed i ments were de pos ited from the Pragian un til the end of the Givetian (Tänavsuu-Milkeviciene et al., 2009). During the Pragian and Emsian, these sed i ments accu mu lated on river del tas and in lakes (Paškevieius, 1997). From the lat est Emsian to Givetian, de po ­ si tion oc curred in a tid ally in flu enced delta or in a tide-domi -nated es tu ary (see Pontén and Plink-Bjklund, 2009; Tänavsuu-Milkeviciene et al., 2009; Lukševies et al., 2012). However, during the Eifelian, siliciclastic de po si tion was in ter -rupted by an ep i sode of mixed carbon ate-siliciclastic ma rine ac -cu mu la tion (Tänavsuu-Milkeviciene et al., 2008, 2009). Fig. 2. Current stra tig ra phy of the Frasnian stage in Lat via and Lith u a nia (com piled from Paškevieius, 1997; Lukševies et al., 2012; Stinkulis et al., 2020) The Frasnian is di vided into sev eral re gional stages (RS; Fig. 2). The lower Frasnian Amata RS is rep re sented by the Amata For ma tion in Lat via and the up per most part of theŠventoji For ma tion in Lith u a nia (Tänavsuu-Milkeviciene et al., 2009; Lukševies et al., 2012; Stinkulis et al., 2020). The suc ces -sion is composed of fine-grained sand stones, siltstones and claystones de pos ited in tide-dom i nated es tu ar ies (Pontén and Plink-Bjklund, 2009; Lukševies et al., 2012). The PlaviÖas RS is rep re sented by the PlaviÖas For ma tion in Lat via and by three for ma tions in Lith u a nia (Paškevieius, 1997; see Fig. 2). The lower part of the suc ces sion con sists of dolomitic marlstones, claystones, sand stones and dolostones, and the up per part of the PlaviÖas For ma tion is domi nated by dolostones. In ver te -brate fos sil-rich lime stones (com monly dolomitized) rep re sent an open ma rine sed i men tary en vi ron ment. By con trast, dolomitic marlstones, dolostones and gyp sum lenses were de -pos ited in hypersaline la goons in a more re stricted part of the ba sin (Paškevieius, 1997; Lukševies et al., 2012). The Salaspilis For ma tion in Lat via and the Pasvalys Beds (lower part of the Tatula Group) in Lith u a nia orig i nated dur ing the Dubnik RS. They are dom i nated by dolostones, dolomitic marlstones, claystones and gyp sum (Paškevieius, 1997). These de pos its were formed in a hypersaline la goon or sabkha (Lukševies et al., 2012). The Daugava RS is rep re sented by the Daugava Forma tion (Latvia) and the up per part of the Tatula Group and the Istras Forma tion (Lith u a nia). The Daugava For­ ma tion con sists of cav ern ous dolostones, organogenic lime -stones, dolomitized lime stones, dolostones, clays, and gyp ­ sum. The Tatula Group is dom i nated by dolostones, dolomitic marlstones, claystones and gyp sum, and the lstras For ma tion is com posed mostly of dolostones and gyp sum (Paškevieius, 1997). The Daugava Forma tion is domi nated by de pos its rep re -sent ing a nearly nor mal sa lin ity shal low-ma rine en vi ron ment, while the Tatula Group con tain ing gyp sum beds rep re sents a hypersaline la goon en vi ron ment (Paškevieius, 1997; Lukševies et al., 2012). De pos its of the lstras For ma tion rep re sent a re -stricted shal low-ma rine en vi ron ment (Paškevieius, 1997). The Katleši RS is rep re sented by the Katleši For ma tion (Paškevieius, 1997; Fig. 2). The lower part of the forma tion com prises five cy cles. Each of these is composed of sand -stones or dolostones in the lower part, and car bon ate clay -stones or dolomitic marlstones in the up per part. The up per ­ most part of the Katleši For ma tion con sists of claystones, clayey siltstones, dolomitic marlstones, and lo cal dolocretes (Lukševies et al., 2012). The Pamis RS is rep re sented by the Ogre For ma tion in Lat via and the Pamis For ma tion in Lith u a -nia (Paškevieius, 1997). The Ogre For ma tion is com posed of sand stones, siltstones and claystones (Lukševies et al., 2011; Stinkulis et al., 2020). These de pos its ac cu mu lated in deltaic or estuarine en vi ron ments (Stinkulis et al., 2020). By contrast, the Pamis Forma tion is com posed of marlstones with interlayers of gyp sum, claystones, siltstones, sand stones, marlstones and dolostones (Lukševies et al., 2012). These de pos its were formed in hypersaline to nor mal sa line la goonal en vi ron ments (Paškevieius, 1997). The Stipinai For ma tion was de pos ited dur -ing the Stipinai RS. Be sides north ern Lith u a nia, this for ma tion is dis trib uted across west ern and cen tral Latvia (Lukševies et al., 2012). The lower part of the suc ces sion is dom i nated by al ter -nat ing dolostones, clayey dolostones and dolomitic marlstones (Paškevieius, 1997; Lukševies et al., 2012), but sand stone and siltstone interlayers oc cur in the lower most part of the Stipinai For ma tion (Lukševies et al., 2012; Rychliki et al., 2014). Dolostones, of ten with skel e tal fos sils (brachi o pods, bryo -zoans, stromatoporoids and rugose cor als), domi nate in the up ­ per part of the Stipinai For ma tion (Paškevieius, 1997). In the up per most part of the suc ces sion, the clay con tent in creases (Lukševies et al., 2012). The Amula RS is rep re sented by the Amula Forma tion and by the Pakruojis For ma tion in Lat via and Lith u a nia, re spec tively (Paškevieius, 1997). The Pakruojis For ­ ma tion is com posed of dolomitic marlstones with gyp sum, dolostones, marlstones, siltstones and sand stones. The Amula For ma tion con sists of silty and sandy dolostones or al ter nat ing sand stones, siltstones and silty dolostones with var ie gated claystones, clayey siltstones, dolomitic marlstones and dolostones. Lay ers of gyp sum-rich dolostone and gyp sum also ap pear in this for ma tion (Lukševies et al., 2012). During Amula RS times, sed i men ta tion took place in a hypersaline la goonal en vi ron ment (Paškevieius, 1997). The lo cal Famennian Stage is com posed of in ter ca lat ing car bo na ceous de pos its (organodetrital lime stones, marlstones and dolostones) and terrigenous siliciclastic de pos its (sand stones and claystones;¤saitytA, 2000). The en tire Up per De vo nian suc ces sion of the Bal tic Ba sin is up to 500 m thick (see Be3ka et al., 2010). The rocks ex am ined are ex posed in the Petraëinai and Klovainiai quar ries (Pakruojis Dis trict, north ern Lith u a nia) and be long to the Up per De vo nian (Frasnian) Stipinai For ma tion (Biekauskas and Radzevieius, 2014). The lower most part of the sec tion is com posed of silty dolostones and cal car e ous silty arenites interlayered with dolomitic marlstones (Fig. 3). The cal ­ car e ous silty arenites in clude well-pre served casts of ha lite crys tals, in di cat ing hypersaline con di tions (Rychliki et al., 2014). The up per part of the sec tion is domi nated by dolostones, and marly dolostones with dolomitic mudstone in ­ ter ca la tions. The dolostones (mainly dolowackestones and dolofloatstones) con tain nor mal ma rine skel e tal fos sils, in clud -ing tetracorals, brachi o pods and gas tro pods (Sorokin, 1978; Paškevieius, 1997). The suc ces sion of the Stipinai For ma tion is topped by dolocretes interlayered with claystones. Marly dolo ­ mud stones occur ring above the de pos its of the Stipinai For ma -tion prob a bly be long to the Pakruojis For ma tion. The thick ness of the Stipinai For ma tion in the study area does not ex ceed 21.5 m (Paškevieius, 1997; Narbutas, 2005). In the study area, the De vo nian rocks are over lain by Qua ter nary sands and till, a few metres thick. Fig. 3. Lithological logs of Frasnian de pos its from the Petraëinai Quarry (W, Wk, S) and Klovainiai Quarry (A–D) and their cor re la tion MATERIALS AND METHODS The suc ces sion was in ves ti gated bed-by-bed in seven in di -vid ual sec tions. Three of these (sec tions W, Wk and S; their GPS co or di nates are: E23°54.344’, N55°59.586’; E23°54.331’, N55°59.620’; E23°54.739’, N55°59.379’, re spec tively) are lo -cated in the Petraëinai Quarry while the next four (sections A, B, C, D; their GPS co or di nates are: E23°56.674’, N55°55.289’; E23°56.633’, N55°55.267’; E23°56.274’, N55°55.281’; E23°56.313’, N55°55.307’, re spec tively) are in the Klovainiai Quarry (Fig. 1B). De tailed lithological logs of these sections are shown in Fig ure 3. The thick ness of the suc ces sion stud ied at -tains 18.5 m. Hand speci mens, col lected bed by bed, were sub -ject to lab o ra tory anal y sis. A hun dred thin sections were made for de tailed microfacies anal y ses. Se lected un cov ered thin sec-tions were im preg nated un der vac uum with blue-stained ep oxy resin, one for stain ing with aliz a rin red S and po tas sium ferri -cyanide so lu tion (Dick son, 1966), and the other for dou ble pol -ish ing and study un der cathodoluminescence (CL). The CL pe -trog ra phy was per formed us ing a Technosyn Model 8200 Mark III cold-cath ode in stru ment (Technosyn Lim ited, Cambridge, UK), mounted on a bin oc u lar petrographic mi cro scope (Nikon Eclipse 50i) equipped with 4x and 10x ob jec tives and a trinocular photohead with 10x ocu lars. It al lows real-time vi sual ex am i na tion and an a logue photomicrography, at mag ni fi ca -tions of 40 to 100. Op er at ing volt ages were held at 14 to 16 kV and gun cur rent lev els at 450 to 550 µA. Dun ham’s (1962) clas ­ si fi ca tion as mod i fied by Embry and Klovan (1971) was used for de scrip tion of car bon ate tex tures. Clas si fi ca tion of do lo mite tex -ture is after Sibley and Gregg (1987) while clas si fi ca tions of brec cia are based on the scheme pro posed by Mor row (1982). The rock speci mens il lus trated are housed in the Na ture Ed u ca -tion Cen tre of the Jagiellonian Univer sity in Krak (CEP) – Mu seum of Ge ol ogy (col lec tion INGUJ267P). A few sam ples of dolostones with bioclasts were dis solved in buf fered for mic acid fol lowing the pro ce dure de scribed by Jeppsson and Anehus (1995) for cono dont ex trac tion. Three of these in cluded cono dont re mains (Fig. 3). The res i dues and ex -tracted cono dont el e ments are housed in the Na ture Ed u ca tion Cen tre of the Jagiellonian Univer sity in Krak (CEP) – Mu -seum of Ge ol ogy (col lec tion INGUJ267P). Seven weakly com pacted clay sam ples (sections: Wk, C and D; Fig. 3) and one car bon ate sam ple (sec tion B; Fig. 3) were pro cessed for palynology. Three of these from the Klovainiai Quarry were pos i tive (sec tion D – 1 and section C – 2, 3; Fig. 3), while five had no organic res i due. The stan dard lab o -ra tory pro ce dure was ap plied, us ing the HCl-HF-HCl acid se -quence (e.g., Wood et al., 1996). The kerogen ob tained was sieved through 20 µm mesh ny lon sieves. In ad di tion, a part of the organics (sam ples 2 and 3) were treated with fuming ni tric acid (100%) to re move amorphous or ganic mat ter (AOM). Petropoxy 154 was used as a mounting agent. Six slides per sam ple were pre pared for palynological stud ies: four with out amor phous sub stance for palynostratigraphy and two with com -plete or ganic con tent for palynofacies ob ser va tion. Gen er ally, the or ganic mat ter is very well pre served. Ob ser va tion and doc ­ u men ta tion were com pleted us ing a trans mit ted light mi cro -scope (Nikon Eclipse 50i with a DS-U3 con trol ler and Nikon NIS-El e ments im ag ing soft ware suite). The res i dues and palynological slides are housed in the In sti tute of Earth Sci -ences (Sosnowiec), Uni ver sity of Silesia in Katowice, Po land. RESULTS FACIES DESCRIPTION The car bon ate rocks in ves ti gated (es pe cially from the mid -dle part of the suc ces sion stud ied) have been sig nif i cantly al -tered by diagenetic pro cesses (dolomitization and dedolomitization, dis so lu tion, sili ci fi ca tion; Fig. 4A, D–F). Dis so ­lu tion vugs are di verse in shape and size, up to 5 cm across with ir reg u lar mar gins, cha ot i cally ar ranged or lo cally par al lel to the bed ding sur faces. Some of the vugs re sulted from dis solved bioclasts, while oth ers may be trans formed burrows. The basal parts of some vugs are filled with marly yel lowish ma te rial. De ­spite the diagenetic trans for ma tions, a few dis tinct lithofacies can be dis tin guished. These are based mostly on mac ro scopic fea tures and are sup ple mented by mi cro scopic data from thin sec tions. Dolowackestones/dolofloatstones. This fa cies are pres -ent in sec tions S, A, B, C and D (Fig. 3). It is rep re sented by grey and yel lowish-grey, me dium to thick-beds of dolostone, which are up to 100 cm thick (Fig. 4A). This fa cies is com posed of recrystallized micrite, brachi o pod shells show ing “ghost” pres er va tion, cor als and stromatoporoids, poorly pre served bioclasts (?foraminifers), peloids and micrite intraclasts. Cono -dont el e ments (Figs. 3 and 5) and small grains of de tri tal quartz (0.025–0.1 mm in di am e ter) are lo cally pres ent. The do lo mite crys tals which have re placed micrite are cloudy, while the crys -tals which have re placed brachi o pod shells are larger and mostly lim pid (Fig. 6B). Vugs are com mon. Some of these are in ter nal moulds of cor als (in places with visi ble mor phol ogy of epitheca and septal fur rows, see Fig. 4D), brachi o pods and gas tro pods (Fig. 4B). Dolomudstones and marly dolomudstones are pres ent in all sec tions (Fig. 7A). This fa cies is built of green ish-grey and yel low ish-grey pla nar-lam i nated micritic dolomudstones, which are bioturbated and nod u lar in places. In sec tion S, they con tain rare pseudo morphs after evaporites (Fig. 3). The con tent of de ­tri tal ma te rial (quartz grains, mus co vite flakes and clay par ti -cles) is vari able, up to 5% of the rock vol ume. The size of quartz grains and musco vite flakes varies from 0.03 to 0.10 mm across. The lam i na tion re sults from the vari able con tent of the de tri tal ma te rial. Bioturbated dolomudstones dom i nate in the up per part of sec tions W and Wk (Fig. 7A, D). They are char ac ter ized by a lack of skel e tal fossils. The de gree of bioturbation is vari able. Usu ally, to tally and par tially bioturbated lay ers al ter nate. In the lat ter, pri mary sed i men tary struc tures, such as pla nar hor i zon ­ tal lam i na tion, are par tially pre served (Fig. 7D–E); the for mer are sim i lar to those from the pre vi ously de scribed fa cies. The dom i nant trace fos sil is Planolites (Fig. 7C), which is filled with yel low ish dolomudstone, and Palaeophycus. Teichichnus, ?Chondrites and ?Rhizocorallium are also present. The bioturbation structures are rel a tively shal low. They pen e trate the sed i ment up to 3 cm from the col o ni za tion sur face (see Fig. 7D). The nod u lar fab ric re sulted from pres sure dis so lu tion of the car bon ates in the part of the rock en riched in clay min er -als and from reprecipitation of car bon ates in the car bon ate-rich parts. The pseudo morphs are small (up to 1.5 mm across), elon -gate, reg u lar in shape and cha ot i cally dis trib uted (Fig. 6A). Al -though pri mary microfeatures are not well pre served, the de ­ Fig. 4. Fa cies char ac ter is tics and diagenetic fea tures of the Stipinai For ma tion A – vug gy dolofloatstones/dolowackestones from the mid dle part of the sec tion S, Petraëinai Quarry; B – strongly po rous nod u lar dolostone with poorly pre served bioclasts (?gas tro pods; ar rows), INGUJ267P9; C – so lu tion-col lapse brec cia from the base of section A. Note the flat bot tom of the brec cia layer. Ar rows in di cate darker zones built of poikilotopic cal cite ce ment, INGUJ267P6; D – vugs af ter the dis solved rugose coral Disphyllum sp. Coral re mains pre served as casts (white ar rows). The pri mary struc ture is partly pre served as in ter nal moulds (white ar rows) or casts (grey ar rows), INGUJ267P8; E – pla nar-e mo saic do lo mite with ad vanced dedolomitization pro gress ing to wards the crys tal edges. Stained thin sec tion (PPL), INGUJ267P11; F – si licified and dedolomitized dolostone. In clu sion-rich quartz crys tals (Q), eu- to subhedral do lo mite crys tals with cloudy dedolomitized cores (D) and non-ferroan cal cite (C) fill ing intercrystal space in the car bon ates. Note cor ro sion of a do lo mite crys tal (ar rows), INGUJ267P13; G – thin sec tion of so lu tion-col lapse brec cia ma trix from Fig ure 4C. Note large crys -tals of poikilotopic cal cite and scat tered small euhedral do lo mite crys tals (XPL), INGUJ267P7; H – CL view of Fig ure 4G with visi ble relicts of large do lo mite crys tals (edges in di cated by ar rows) char ac ter ized by non-lu mi nes cent and bright-lu mi nes cent zones. Such do lo mite is non-mimically re placed by euhedral dolomites and poikilotopic cal cite Fig. 5. Cono dont el e ments A, B – fam ily Ozarkodinidae (cf. Sweet, 1988) – am ber col oured ozarkodinid cono dont Sc el e ments in di cate Cono dont Al ter ation In -dex (CAI) 1 (pers. comm. K. Narkiewicz, 2020); scale bar 500 µm; sec tion S (see Fig. 3); INGUJ267P3 (A), INGUJ267P2 (B) pos its show some fea tures of a pri mary dolomudstone, e.g. rem nants of a micrite fab ric pre served as “clouds” in a non-pla ­nar do lo mite crys tal mo saic. In turn, the do lo mite crys tals that fill pseudo morphs are two fold: they are lim pid along the pseudomorph edges, while the crys tals are cloudy in the cen ­tres of the pseudo morphs. The thick ness of the dolomudstones with pseudo morphs after sulphates does not ex ceed 0.1 m. Silty dolostones and cal care ous silty arenites are re -stricted to sec tions W and Wk. They are light grey or yel lowish and built of grains rang ing from 0.03 mm to 0.13 mm across. The rock frame work con sists of quartz and feld spar grains and sub or di nate mica flakes. The beds show pla nar and wave-rip ple cross lam i na tion, which is dis turbed in places by haloturbation structures such as sink-hole and dewatering pipes. Lo cally, ha ­lite crys tal casts are visi ble on the lower (or rarely up per) bed sur faces. The lam i na tion is empha sized by mica flakes and small py rite crys tals. Com monly, the rocks are ce mented by poikilitopic cal cite crys tals (see Rychliki et al., 2014). Intraformational brec cias are pres ent at the top of sec tion W and Wk. They are char ac ter ized by a mud-sup ported fab ric, monomictic tex ture, dark grey ma trix and sharp, un even ero sive bases (Fig. 7D). The clasts are green-grey, and their max i mum di am e ter does not ex ceed 2 cm. They are built of a nonplanar do lo mite crys tal mo saic, with crys tals which are 50–100 µm across. The dark grey col our of the ma trix re sults from the pres -ence of py rite crys tals dispersed be tween the do lo mite crys tals. In sec tion Wk, two lev els of such brec cias are pres ent. The lower one is a float brec cia which over lies bioturbated dolomudstones (Fig. 7D), and un der lies a floatstone with intraclasts and moulds of dissolved bioclasts (mostly brachi o -pods) while the up per one is a pack brec cia. Some intraclasts in the brec cia are par tially or com pletely pyritized. The intraformational brec cia is up to 5 cm thick. So lu tion-col lapse brec cias (pres ent only in the basal part of sec tion A) are intraformational, monomictic dolomitic brec -cias, up to 10 cm thick (Fig. 4C). They are char ac ter ized by sharp and al most even bases and in dis tinct, ir reg u lar, un du lat -ing tops. Clasts are beige-brown in col our and up to 5 cm across. They are cha ot i cally ar ranged, poorly sorted and ce -mented with a yel lowish dolomitic ma trix and brown-yel lowish cal cite ma trix. Their li thol ogy is the same as that of the un der ly -ing and over ly ing rocks. Some clasts are cracked. The brec cias are grain- to mud-sup ported and, in place, re veal weak graded bed ding. The ma trix is partly re placed by poikilitopic cal cite spar ce ments (Fig. 4G, H). Crys tals of non-ferroan cal cite spar reach up to 3 mm across while smaller (up to 0.1 mm across) pla nar-e (euhedral) cloudy do lo mite crys tals form the “float ing tex ture”. Fig. 6. Microfacies fea tures of the Stipinai For ma tion A – dolomudstone with scat tered pseudo morphs af ter evaporites from the sec tion S, INGUJ267P10; B – recrystallized bioclastic dolowackestone from the low er most part of the sec tion C with a brachi o pod shell re placed by subhedral do lo mite and blocky cal cite spar, INGUJ267P12; C – dolocrete from sec tion C (de tails of Fig. 7F), INGUJ267P15 Fig. 7. Fa cies char ac ter is tics of the Stipinai For ma tion A – low er most part of the suc ces sion stud ied, built of silty dolostones with haloturbation structures and ha lite casts in ter ca lated with dolomitic marlstones (section W); B – up per part of the Stipinai For ma tion – bed ded dolostones in ter ca lated with mudstones (white ar rows), grey ar-rows in di cate po si tion of dolocrete shown in F, sec tion C; C – trace fos sil Planolites, up per most part of sec tion W; D – partly lam i nated dolomudstones with bioturbation structures, ero sive mud-sup ported brec cia and float stone bed – up per most part of the Wk section, INGUJ267P4; E – strongly bioturbated dolomudstones from the up per part of sec tion W, INGUJ267P5; F – dolocrete from the up per most part of sec tion C, INGUJ267P14 Mudstones and claystones are re stricted to the lower and up per parts of the suc ces sion dis cussed. Their thick ness var ies from 2.5 to 15 cm. The mudstones and claystones are mostly green or green-grey, rarely var ie gated or dark grey and brown (in sec tion C) in col our. They are de void of sed i men tary struc -tures, ex cept for var ie gated mudstones which lo cally show pla ­nar lam i na tion. In sec tions C and D, this fa cies overlies dolocretes. Dolocrete fa cies are pres ent in the up per part of the sec -tions C and D (Fig. 7B, F). These fa cies are char ac ter ized by microfabrics re lated to subaerial ex po sure. In thin sec tions, typ i ­ cal fea tures in clude crystallaria and rhombic cal cite crys tals, a dense microfabric and micrite nod ules (Fig. 6C), that char ac ter -ize the al pha-calcretes, and a biogenic fab ric (al ve o lar septal structures) which is typ i cal of the beta-calcretes (Wright, 1990). Rocks of this fa cies are over lain by claystones of the pre vi ously de scribed microfacies. The thick ness of dolocrete beds does not ex ceed 30 cm. PALYNOFACIES Three sam ples from the up per part of the sec tion in ves ti -gated from the Klovainiai Quarry yielded microfloral as sem -blages. Samples 2 and 3 con tain a di verse miospore as sem -blage but sam ple 1 shows less di verse taxa and poorly pre -served miospores (Fig. 3). Be cause sam ple 1 is partly weath -ered, there is little data from this ma te rial. Only sin gle miospores in the res i due were ob served; a marked con cen tra tion of black crys tals pre dom i nates (py rite?), and AOM is ab sent. The miospores ob tained from sam ples 2 and 3 are very sim ­i lar in tax o nomic com po si tion. Among these, Auroraspora spe ­ciosa, Diducites radiatus and Membrabaculisporis radiatus are fre quent. More over, Diducites mucronatus and Kedo sporites imperfectus (Fig. 8) are also pres ent. The miospore assem -blage is char ac ter ised by the dom i nance of Geminonspora spp., e.g. G. aurita, G. notata, G. tuberculata and G. vasjamica. Other miospore spe cies in clude Aneurospora greggsii, Ancyro ­spora voronensis, Contagisporites optivus, Cristatisporites deli -quescens, Diaphanospora rugosa, Dictyotriletes sp., Didu cites poljessicus, Hystricosporites spp., Kedosporites evla nen sis, Stenozonotriletes cornformis and Verrucosisporites grumo sus. Im por tantly, a spec i men sim i lar to Grandispora subsuta (see Fig. 8) was also re corded. A much poorer tax o nomic as sem blage was ob tained from sam ple 1 (Fig. 3), which con tains the miospores Kedosporites sp., Archaeozontriletes sp., Retusotriletes sp., and Gemino ­spora sp. Or ganic mat ter pre served only in sam ples 2 and 3 was an a -lyzed in terms of palynofacies. In both sam ples struc tural or-ganic com po nents and abun dant AOM were noted. Gen er ally miospores pre dom i nated over other palynomorphs (Fig. 8). Phytoplankton is rep re sented by prasinophytes, in clud ing Leiospheridia, Hemiruptia and Pterospermella (Fig. 9). A few al -gae coenobia Musivum gradzinski (Chlorococcales) were also re corded. No acritarchs and scolecodonts were found in the ma te rial an a lyzed. In sam ple 2, very few re mains of ter res trial plant tra cheids are vis i ble (see Fig. 9), but in sam ple 3, higher plant tra cheids are more abun dant but still at a low level; most of these are pre served as char coal par ti cles (Fig. 9). INTERPRETATION SEDIMENTARY ENVIRONMENT In gen eral, most of the fa cies de scribed rep re sent a shal low ma rine, car bon ate plat form en vi ron ment. The low er most part of the suc ces sion de scribed, in clud ing silty dolostones with haloturbation structures and ha lite crys tal casts, lam i nated dolomudstones and bioturbated dolomudstones (lack ing skel e ­tal fossils) in the up per part of sec tions W and Wk rep re sents hypersaline la goonal de pos its. Wave-rip ple cross-lam i nated coarser-grained de pos its with quartz grains and mica flakes which in ter ca late with dolomudstones were de pos ited prob a bly dur ing storms (Rychliki et al., 2014). The high amount of terrigenous ma te rial points to the prox im ity of the source area at that time. Sa lin ity fluc tu a tions in the sed i men tary en vi ron ment are re flected by the oc cur rence of beds with haloturbation struc -tures, bioturbation structures and so lu tion-collapse brec cias in the lower part of the suc ces sion. Trace fossils from the bioturbated beds be long to the impov er ished Cruziana ichnofacies (Pem ber ton et al., 2001; MacEachern et al., 2012). Low-di ver sity trace fos sil as sem blages and the low in ten sity of bioturbation, or high-den sity and the pre dom i nance of a sin gle ichnotaxon, are typ i cal fea tures of ma rine re stricted settings, with sa lini ties higher than nor mal ma rine (de Gibert and Ekdale, 1999, 2002; Mercedes-Mar tin and Buatois, 2021). The for ma -tion of burrows was pos si ble when the sa lin ity de creased from strong hypersaline to mod er ate hypersaline con di tions (cf. Jaglarz and Uchman, 2010). An abrupt change in sed i men tary re gime is in di cated by de ­ po si tion of intraformational brec cias al ter nat ing with float stones in clud ing brachi o pods (the up per part of sec tions W and Wk; Fig. 3). The fair-weather sed i men ta tion of dolomudstones in a hypersaline en vi ron ment was in ter rupted by event de po si tion re ferred to storms, which de liv ered wa ter of nor mal sa lin ity into the ba sin. This might be sup ported by the pres ence of so lu -tion-collapse brec cias in the lower part of sec tion A and by the first ap pear ance of a ma rine skel e tal fauna (sec tion W; Fig. 3). The in flux of nor mal ma rine wa ters caused dis so lu tion of evaporites in the hypersaline la goon en vi ron ment. This might have led to for ma tion of the brec cias (sec tion A; Fig. 4C) which show typ i cal fea tures of so lu tion-col lapse pro cesses. These in -clude li thol ogy of the clasts be ing iden ti cal to the un der- and over ly ing rocks, the sharp and even bases and in dis tinct and ir -reg u lar tops of beds, and the cha otic ar range ment and poor sort ing of clasts (cf. Middle ton, 1961; Eliassen and Tal bot, 2005). The ma trix might have orig i nated by grav i ta tional in fil tra -tion of over ly ing, un con sol i dated, fine-grained sed i ments (Swennen et al., 1990; Jaglarz and Rychliki, 2018). The oc -cur rence of mud-sup ported breccias in di cates that the in fil tra -tion of fines and brecciation pro cesses were si mul ta neous. This shows that the per co la tion of the wa ters into the un der ly ing sed ­ i ment and sub se quent dis so lu tion of the evaporitic beds caused col lapse of the over ly ing early-ce mented car bon ate sed i ments at a rel a tively early stage of diagenesis. Above the brec cia ho ri -zons, the de pos its are domi nated by dolostones con tain ing nor ­ mal ma rine fos sils (e.g. brachi o pods; section S), which points to nor mal ma rine sa lin ity. Dur ing de po si tion of the car bon ates, the in put of de tri tal ma ­ te rial was sig nif i cantly re duced. This cor re sponds to a ma rine trans gres sion and in di cates an in crease in the dis tance from the prov e nance area (comp. Lukševies et al., 2012). Be cause of the later diagenetic pro cesses (mostly dolomitization), fos sils in the dolomitic fa cies are poorly pre served, but cor als, e.g. the tetracoral Disphyllum sp. (Paškevieius, 1997), stromato -poroids, gastro pods, serpulids and brachi o pods among oth ers, e.g. Theodossia semgalensis Delle (Biekauskas and Radzevieius, 2014), which are quite fre quent in the lower part of the dolomitic fa cies, can be rec og nized. The car bon ate de pos -its are bioturbated in places. The pres ence of stenohaline or ­ gan ism re mains (e.g. cor als) in di cates a con tin u a tion of nor mal sa lin ity con di tions. In gen eral, such con di tions per sisted through out the de po si tion of the dolostones of sec tions S, A, B, D and the lower part of the sec tion C though with one ex cep tion, when a few centi metres of dolomudstone with evaporite were Fig. 8. Palynostratigraphically im por tant and com mon miospores from the Klovainiai Quarry (sec tion C) A – Geminospora aurita; B – Auroraspora speciosa; C – Kedosporis imperfectus; D – Verrucosisporites grumosus; E – Diaphanospora sp.; F – Stenozonotriletes conformis; G – Diducites radiatus; H – Cristatisporites deliquescens; I – Grandispora cf. subsuta; J – Diducites mucronatus; K – Membrabaculisporis radiatus; L – Contagisporites optivus; M – Hystricosporites sp.; N – Ancyrospora voronensis; O – Ancyrospora voronensis; scale bar – 50 µm; A, C–F, H–O: sam ple 2; B, G: sam ple 3 Fig. 9. Phytoplankton and palynofacies from the Klovainiai Quarry (sec tion C) A – Musivum gradzinskii; B – Pterospermella sp.; C – Leiospheridia sp.; D – Hemiruptia sp.; E – pic tures of palynofacies, AOM pre dom i nate, some miospores (M) and small black or ganic par ti cles (BP); F – pic tures of palynofacies, AOM pre dom i nate, Musivum gradzinskii (M.g.) and higher plant tra cheids (PT); A–D: scale bar – 50 µm; E–F: scale bar – 100 µm; A–B, F: sam ple 3; C–E: sam ple 2 formed (Fig. 6A). At that time, a short-term re sump tion of hypersaline con di tions is pos tu lated. Af ter de po si tion of the fossiliferous car bon ates, the shal ­ low-wa ter car bon ates were pe ri od i cally emer gent. This is shown by the pres ence of dolocretes with over ly ing lay ers of green and grey claystone, which are pre served at the top of sec tion D and in the up per part of sec tion C. The claystones are char ac ter ized by the pres ence of a strong con cen tra tion of AOM, well-pre served miospores, a small amount of higher plant tra cheids and the ab sence of typ i cal ma rine com po nents such as acritarchs and scolecodonts. Cenobia of chlorophycean al -gae (Chlorococcales) are pres ent; these are gen er ally re garded as a fresh-wa ter in di ca tor (Wood and Turnau, 2001), al though pre vi ous re cords of these al gae also came from ma rine de pos -its of Givetian (Wood and Turnau, 2001) and Emsian age (Filipiak, 2011, 2014). Prasinophytes are re garded as an am ­ big u ous fresh-wa ter sig nal (Strother, 1996). Al though Raskatova and Jurina (2012) es ti mated the amount of acritarchs to be 30% in co eval de pos its (MR Subzone, Stipinai Fm.) of west ern Lat via, they use the term acritarch in a broad sense, also in clud ing prasinophytes (e.g. Leiosphaeridia). A typ i cal acritarch men tioned by them (but with out satis fac tory quan ti ta tive data) is Baltisphaeridium. Thus, the up per part of the suc ces sion re cords shallowing of the sed i men tary en vi ron -ment, which is fur ther in di cated by an in crease in de tri tal con ­ tent. The de vel op ment of pedogenic pro cesses re lated to ep i -sodes of sed i ment emergence re cords a ma rine re gres sion re -sult ing from sea-level fall. Above the youn gest pedogenic ho ri zon in sec tion C, the de -pos its are de vel oped as marly dolostones. These in clude a much greater de tri tal con tent than do the un der ly ing de pos its and prob a bly re cord the be gin ning of an other ma rine trans gres -sion, which is re ferred to the Pakruojis Forma tion of the Amula Re gional Stage (Fig. 2). How ever, this ques tion can not be un -equiv o cally re solved be cause of ero sional trun ca tion and the lack of the youn ger De vo nian de pos its in the re search area. DISCUSSION PALYNOSTRATIGRAPHY The miospores ob tained from sam ples 2 and 3 are very sim i lar in tax o nomic com po si tion. Ac cord ing to Avkhimovitch et al. (1993), Auroraspora speciosa, Diducites radiatus and Mem -brabaculisporis radiatus ap pear for the first time in East ern Eu -rope in the CVe (Cymbosporites vetlasjanicus) Subzone (mid -dle part of the OG (Archaeoperisaccus ovalis – Verrucosis -porites grumosus) Miospore Zone, de fined for the Mid dle Frasnian; Fig. 10) but their con stant, more fre quent pres ence is no ticed from the suc ceed ing MR (Membra baculisporis radiatus) Subzone, un til the end of the Frasnian. More over, Diducites mucronatus and Kedosporites imperfectus (Fig. 8) ap pear for the first time in the MR Subzone (Avkhimovitch et al., 1993). The pres ence of a speci men sim i lar to Grandispora subsuta (see Fig. 8) could in di cate the oc cur rence of the lat est Frasnian DE (Cristatisporites deliquescens – Verrucosisporites evlanensis) Miospore Zone (GS – Grandispora subsuta Sub -zone; Fig. 10) but the sin gle oc cur rence of this im por tant taxon is un cer tain here be cause the spec i men is poorly pre served and other spe cies in dic a tive of this strati graphic level were not re corded. There is an ab sence of the very dis tinc tive Shaded field – strati graphic range of the Stipinai For ma tion; striped field – the age of sam ples an a lyzed from the Klovainiai Quarry; BM, BA, OG, DE – miospore zones; SB, CVe, MR, AS, GS – miospore subzones Archaeoperisaccus. Ac cord ing to Streel et al. (1987) and Rich -ard son and McGregor (1986), this ge nus is typ i cal of, and gen ­ er ally con stantly pres ent in, the Mid dle and in part the Up per Frasnian. However, Avkhimovitch at al. (1993) in di cate that higher in the MR Subzone Archaeoperisaccus be comes less nu mer ous. Raskatova and Jurina (2012) also men tioned the lack of Archaeoperisaccus in the Stipinai For ma tion of west ern Lat via. Sum ma riz ing, the tax o nomic com po si tion of the miospore as sem blage from sam ples 2 and 3 points rather to the MR Subzone (the youn gest level of the OG Miospore Zone; Fig. 10; Avkhimovitch et al., 1993). Based on the cur rent Frasnian miospore zonation up dat ing by Streel et al. (2021), the East ern Eu rope MR Subzone should be cor re lated with the un sep a -rated BM (Verrucosisporites bulliferus–Lophozonotriletes me -dia) / BA? (Rugospora bricei–Cymbosporites acantheus) microfloral level of west ern Eu rope (Fig. 10); and this, in turn, can be ten ta tively cor re lated with the rhenana Cono dont Zone (Ziegler and Sandberg, 1990; for de tails see dis cus sion in Streel et al., 2021: 77). This dat ing is in agree ment with the re sults of Raskatova and Jurina (2012) from the same lithostratigraphical unit (Stipinai Fm.) in west ern Lat via. A sim i lar miospore as sem -blage oc curs in both ar eas with no char ac ter is tic Archeo -perisaccus. The pres ence of Grandispora cf. subsuta in the Klovainiai Quarry (sam ple 2; Fig. 8) may ten ta tively in di cate the youn ger GS Subzone, from the lat est Frasnian. However, this de ter mi na tion is weak ened by the lack of taxa ap pear ing from the AS (Auroraspora speciosa) Subzone and also by the lack of other taxa im por tant for the GS Subzone (for de tail see Avkhimovitch et al., 1993). In gen eral, the small num ber of pos i -tive sam ples from the in ter val stud ied ham pers un equiv o cal res o lu tion of the age. TRANSGRESSIVE-REGRESSIVE TRENDS Well-pre served cono donts seem to be scarce, prob a bly be -cause of ad verse en vi ron men tal con di tions. This pre cludes pre cise de ter mi na tion of the biostratigraphical age of the Stipinai For ma tion on the ba sis of the cono dont zonation, though palynostratigraphy makes this pos si ble. Paškevieius (1997) in cluded the strati graphic range of the lithostratigraphic unit stud ied in the up per Palmatolepis gigas Zone. Ac cord ing to the cur rent cono dont zonation, the P. gigas Zone cor re sponds to the P. rhenana and P. linguiformis zones (Ziegler and Sandberg, 1990; Avkhimovitch et al., 1993; Streel et al., 2021). The tax o nomic compo si tion of the miospore as-sem blage in di cates the MR Subzone (Fig. 10; Avkhimovitch et al., 1993). This subzone can be ten ta tively cor re lated with the rhenana lev els in the cono dont “stan dard” zonation (see Ziegler and Sandberg, 1990; Avkhimovitch et al., 1993; Streel et al., 2021) and there fore it in di cates a Late Frasnian age for the Stipinai Fm. This dat ing is in gen eral agree ment with the re sults of Raskatova and Jurina (2012) from the same lithostratigraphic unit in west ern Lat via. Pre sum ably, the Stipinai For ma tion cor ­ re sponds to the Lower rhenana Zone, the strati graphic range of which co in cides with the du ra tion of the up per part of the T-R cy cle (Fig. 10). The lower part of the suc ces sion rep re sents a transgressive phase (Fig. 11). The dolomudstones and siltstones with haloturbation structures, pla nar lam i na tion and trace fos sils in the up per part of sec tions W and Wk (Fig. 7A, C–E) were de -pos ited in a hypersaline la goonal en vi ron ment. The intrafor -mational brec cias pre served in the up per most part of sec tions W and Wk de fine the first ap pear ance of a skel e tal ma rine fauna, al though there is a small ex po sure gap just above this level. The over ly ing dolofloatstones and dolowackestones rep ­ re sent a nor mal ma rine and rel a tively deeper en vi ron ment. The over ly ing marly dolomudstones and dolomudstones topped by green mudstones con tain ing terrigenous ma te rial (sections S and B) rep re sent a la goonal en vi ron ment re lated to ma rine re ­ gres sion. After that ep i sode, as a re sult of deep en ing, car bon -ate sed i men ta tion re turned. This is man i fested in the ap pear -ance of dolomudstones (in clud ing with pseudo morphs after evaporites; Fig. 6A), passing to wards the se quence top into dolowackestones. The fol low ing re gres sive phase rep re sents dolomudstones with mudstone in ter ca la tions, fi nally over lain by dolocrete ho ri zons (Figs. 6C and 7A, B, F) which are in ter ca -lated with dark grey and green claystones (Figs. 3 and 7B) con -tain ing in dex miospores. The dolocrete and claystone pack age re cords sed i ment emer gence. The over ly ing la goonal marly dolostones re cord a transgressive phase of sea-level change and prob a bly be long to the Pakruojis For ma tion of the Amula Re gional Stage (Paškevieius, 1997). The Stipinai For ma tion cor re sponds to the Lower rhenana Zone (Fig. 10). As in dex miospores were found at the top of the Stipinai For ma tion, it might be con cluded that the forma tion prob a bly rep re sents the up per part of a T-R cy cle cor re spond -ing to the so-called semichatovae trans gres sion (Fig. 10; cf. Dopieralska et al., 2016). in ter pre ta tion of sea-level fluc tu a tions and phases of sea-level change TF – transgressive phase, RF – re gres sive phase; other explanations as on Fig ure 3 Dur ing de po si tion of the Stipinai For ma tion, sed i men ta tion took place in a rel a tively nar row ba sin (Paškevieius, 1997), which was pre sum ably con nected to the ad ja cent, nor mal ma -rine Pomerania Ba sin (Matyja, 2006). In the west ern Pome -rania re gion, plat form and peri-plat form car bon ate de pos its of the Kocza3a For ma tion cor re spond to the Stipinai For ma tion. In the same area, the be gin ning of the fol lowing T-R cy cle is de ter -mined by a drown ing ep i sode of the car bon ate plat form and de ­ po si tion of black offshore shales and deeper-wa ter open shelf de pos its (Matyja, 1993, 2006). A re cord of the Frasnian ma rine trans gres sions is also ob -served in the ar eas ad ja cent to the Main De vo nian Field. In the Cen tral De vo nian Field, they are rep re sented by subtidal de -pos its with ma rine fos sils, which are un der lain and over lain by floodplain and mar ginal ma rine la goonal de pos its, re spec tively (cf. Alekseev et al., 1996; Zatoet al., 2015). CONCLUSIONS Palynostratigraphic data in di cate that the Stipinai For ma tion rep re sents the Up per Frasnian (Lower rhenana Zone) and re -cords the up per part of the T-R cy cles re lated to the semichatovae trans gres sion. Its rocks are ex ten sively al tered by diagenetic pro cesses espe cially dolomitization, dedolo -mitization, disso lu tion and sili ci fi ca tion. The lower part of the for­ma tion was de pos ited in a hypersaline la goon en vi ron ment, the mid dle part in a shal low wa ter nor mal ma rine en vi ron ment (open-ma rine subtidal to la goonal) ex cept for a short ep i sode of higher sa lin ity, while the up per part docu ments ep i sodes of emer gence and palaeosol de vel op ment caused by a sea-level drop. Ver ti cal changes in the fa cies re flect two small-scale trans-gres sion events. The lower, carbon ate-siliciclastic part of the suc ces sion as well as dolowackestones and dolofloatstones with ma rine or gan isms rep re sents a transgressive phase of sea-level change. An ep i sode of rel a tive sea-level fall is re -corded by marly dolomudstones and dolomudstones over lain by green mudstones. The over ly ing marly dolomudstones and mudstones with spo radic pseudo morphs after evaporites pass-ing up wards to dolowackestones re cord rel a tive sea-level rise. The fol lowing re gres sive phase is rep re sented by dolo -mudstones with mudstone in ter ca la tions, fi nally over lain by ho -ri zons of dolocretes al ter nat ing with dark grey or green claysto -nes. Ac knowl edge ments. We would like to thank O. Bábek (PalackUni ver sity Olomouc, Czech Re pub lic), Z. Be3ka (Adam Mickiewicz Uni ver sity, Pozna Po land), A. Spiridonov (Vilnius Uni ver sity, Lith u a nia) and .. Stinkulis (Uni ver sity of Lat via, Riga, Lat via) for crit i cal and help ful re viewer com ments. The au thors are grate ful to M. MeleëytA (Vilnius Uni ver sity, Lith ­u a nia) for lo gis ti cal sup port and to the man age ment of Com ­pany Dolomitas, AB, Petraëinai and SC Klovainiai skalda for grant ing per mis sion for the in ves ti ga tions. The re search was sup ported by the Jagiellonian Uni ver sity in Krak (DS fund). The au thors are grate ful to K. Narkiewicz (Pol ish Geo log i cal In -sti tute – Na tional Re search In sti tute, Warszawa, Poland) for help ful re marks on the cono dont el e ment re mains. REFERENCES Alekseev, A.S., Kononova, L.I., Nikishin, A.M., 1996. The De vo -nian and Car bon if er ous of the Mos cow Syneclise (Rus sian Plat ­form): stra tig ra phy and sea-level changes. Tectonophysics, 268: 149–168. Avkhimovitch, V.I., Tchibrikova, E.V., Obukhovskaya, T.G., Nazarenko, A.M., Umnova, V.T., Raskatova, L.G., Mantsurova, V.N., Loboziak, S., Streel, M., 1993. Mid dle and Up per De vo nian miospore zonation of East ern Eu rope. Bul le tin des Cen tres de Recherches Ex plo ra tion–Pro duc tion Elf Aquitaine, 17: 79–147. Bachtadse, V., Torsvik, T.H., Tait, J.A., Soffle, H.C., 1995. Paleomagnetic con straints on the paleogeographic evo lu tion of Eu rope dur ing the Pa leo zoic. In: Pre-Perm ian Ge ol ogy of Cen -tral and East ern Eu rope (eds. R.D. Dallmeyer, W. Franke and K. Weber): 567–578. Springer, Berlin. Be3ka, Z., Narkiewicz, M., 2008. De vo nian. In: The Ge ol ogy of Cen -tral Eu rope, 1: Pre cam brian and Palaeozoic (ed. T. McCann): 383–410. Geo log i cal So ci ety, Lon don. Be3ka, Z., Devleeschouwer, X., Narkiewicz, M., Piecha, M., Reijers, T.J.A., Ribbert, K.-H., Smith, N.J.P., 2010. De vo nian. In: Pe tro leum Geo log i cal At las of the South ern Perm ian Ba sin Area (eds. J.C. Doornenbal and A.G. Stevenson): 71–79. EAGE Pub li ca tions b.v, Houten. Biekauskas, G., Radzevieius, S., 2014. The Stipinai regional stage (Up per De vo nian) in Petraëinai quarry. Geologija (Vilnius), 56: 53–56. de Gibert, J.M., Ekdale, A.A., 1999. Trace fos sil assem blages refecting stressed en vi ron ments in the Mid dle Ju ras sic Car mel Sea way of cen tral Utah. Jour nal of Pa le on tol ogy, 73: 711–720. de Gibert, J.M., Ekdale, A.A., 2002. Ichnology of a re stricted epicontinental sea, Arpien Shale, Mid dle Ju ras sic, Utah, USA. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 183: 275–286. Dick son, J.A.D., 1966. Car bon ate iden ti fi ca tion and gen e sis as re -vealed by stain ing. Jour nal of Sed i men tary Pe trol ogy, 36: 491–505. Dopieralska, J., Be3ka, Z., Walczak, A., 2016. Nd iso tope com po si -tion of cono donts: An ac cu rate proxy of sea-level fluc tu a tions. Gond wana Re search, 34: 284–295. Dun ham, R.J., 1962. Clas si fi ca tion of car bon ate rocks ac cord ing to depositional tex ture. AAPG Mem oir, 1: 108–121. Eliassen, A., Tal bot, M. R., 2005. So lu tion-col lapse brec cias of the Minkinfjellet and Wordiekammen For ma tions, Cen tral Spitsbergen, Svalbard: a large gyp sum palaeokarst sys tem. Sedimentology, 52: 775–794. Embry, A.F., Klovan, J.E., 1971. A Late De vo nian reef tract on North east ern Banks Is land, NWT. Ca na dian Pe tro leum Ge ol ogy Bul le tin, 19: 730–781. Filipiak, P., 2011. Palynology of the Lower and Mid dle De vo nian de -pos its in south ern and cen tral Po land. Re view of Palaeobotany and Palynology, 166: 213–252. Filipiak, P., 2014. Palynology of the Lower and Mid dle De vo nian clastic rocks from the Trojanowice 2 bore hole (south ern Po land) (in Pol ish with Eng lish sum mary). Biuletyn Patwowego Instytutu Geologicznego, 459: 7–32. Jaglarz, P., Rychliki, T., 2018. So lu tion-col lapse brec cias in the up per Olenekian–Ladinian succes sion, Tatra Mts, Po land. Annales Societatis Geologorum Poloniae, 88: 303–319. Jaglarz, P., Uchman, A., 2010. A hypersaline ichnoassemblage from the Mid dle Tri as sic car bon ate ramp of the Tatricum do main in the Tatra Moun tains, South ern Po land. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 292: 71–81. Jeppsson, L., Anehus, R., 1995. A buffered for mic acid tech nique for cono dont ex trac tion. Jour nal of Pa le on tol ogy, 69: 790–794. Kaufmann, B., 2006. Cal i brat ing the De vo nian Time Scale: a syn ­the sis of U–Pb ID–TIMS ages and cono dont stra tig ra phy. Earth-Sci ence Re views, 76: 175–190. Lukëevies, E., Ahlberg, P. E., Stinkulis, .., Vasilkova, J., ZupiÖë, I., 2011. Frasnian ver te brate taphonomy and sedimentology of macrofossil con cen tra tions from the LangsÂde Cliff, Lat via. Lethaia, 45: 356–370. Lukëevies, E., Stinkulis, .., Mrnieks, A., Popovs, K., 2012. Geo log i cal evo lu tion of the Bal tic Ar te sian Ba sin. In: High lights of Ground wa ter Re search in the Baltic Ar te sian Ba sin (eds. A. DÂliÖa, et al.): 7–52. Uni ver sity of Lat via, Riga. MacEachern, J.A., Bann, K.L., Gingras, M.K., Zonneveld, J.-P., Dashtgard, S.E., Pem ber ton, S.G., 2012. The ichnofacies par ­a digm. De vel op ments in Sedimentology, 64: 103–138. Elsevier, Am ster dam. Mercedes-Mar tin, R., Buatois, L.A., 2021. Microbialites and trace fos sils from a Mid dle Tri as sic re stricted car bon ate ramp in the Cata lan Ba sin, Spain: eval u at ing en vi ron men tal and evo lu tion ­ary con trols in an epicontinental set ting. Lethaia, 54: 4–25. Matyja, H., 1993. Up per De vo nian of West ern Pomerania. Acta Geologica Polonica, 43: 27–94. Matyja, H., 2006. Stra tig ra phy and fa cies de vel op ment of De vo nian and Car bon if er ous de pos its in the Pom er a nian Ba sin and in the west ern part of the Bal tic Ba sin and palaeo ge ogra phy of the north ern TESZ dur ing late Pa leo zoic times (in Pol ish with Eng -lish sum mary). Prace Patwowego Instytutu Geologicznego, 186: 79–122. Middle ton, G.V., 1961. Evaporite so lu tion brec cias from the Missis -sip pian of South west Montana. Jour nal of Sed i men tary Pe trol -ogy, 31: 189–195. Mor row, D.W., 1982. De scrip tive field clas si fi ca tion of sed i men tary and diagenetic brec cia fab rics in car bon ate rocks. Bul le tin of Ca na dian Pe tro leum Ge ol ogy, 30: 227–229. Narbutas, V., 2005. Sedimentological–palaeo geo graphi cal maps for Stipinai age of the Mid dle De vo nian. In: Evo lu tion of Geo log i ­cal En vi ron ment in Lith u a nia (ed. A. Zuzevieius): 308. In sti tute of Ge ol ogy and Ge og ra phy, Vilnius Uni ver sity, Vilnius. Ogg, J.G., Ogg, G.M., Gradstein, F.M., 2016. A Con cise Geo logic Time Scale: 2016. Elsevier, Am ster dam. Paškevieius, J., 1997. The Ge ol ogy of the Bal tic Re pub lics. Geo ­log i cal Sur vey of Lith u a nia, Vilnius. Pem ber ton, S.G., Spila, M., Pulham, A. J., Saunders, T., MacEachern, J.A., Rob bins, D., Sinclair, I.K., 2001. Ichnology and sedimentology of shal low to mar ginal ma rine sys tems: Ben Nevis and Avalon Res er voirs, Jeanne d’Arc Ba sin. Geo log i cal As so ci a tion of Can ada, Short Course Notes, 15: 1–343. Pontén, A., Plink-Bjklund, P., 2009. Re gres sive to transgressive tran sits re flected in tidal bars, Mid dle De vo nian Bal tic Ba sin. Sed i men tary Ge ol ogy, 218: 48–60. Poprawa, P., .liaupa, S., Stephenson, R., LazauskienA, J., 1999. Late Vendian–Early Palaeozoic tec tonic evo lu tion of the Bal tic Ba sin: re gional tec tonic im pli ca tions from sub si dence anal y sis. Tectonophysics, 314: 219–239. Raskatova, M., Jurina, A., 2012. Frasnian miospore as sem blages and zones of South ern Lat via and North-West ern Rus sia (Pskov Re gion). Sci en tific Pa pers Uni ver sity of Lat via – Earth and En vi -ron men tal Sci ences, 783: 24–36. Rich ard son, J.B., McGregor, D.C., 1986. Si lu rian and De vo nian spore zones of the Old Red Sand stone Con ti nent and ad ja cent re gions. Geo log i cal Sur vey of Can ada Bul le tin, 364: 1–79. Rychliki, T., Jaglarz, P., Uchman, A., Vainorius, J., 2014. Un ­usu ally well pre served casts of ha lite crys tals: a case from the Up per Frasnian of north ern Lith u a nia. Sed i men tary Ge ol ogy, 308: 44–52. Sibley, D.F., Gregg, J.M., 1987. Clas si fi ca tion of do lo mite rock tex -tures. Jour nal of Sed i men tary Pe trol ogy, 57: 967–975. Sorokin, V.S., 1978. Etapy razvitiya Severo-zapada Russkoy platformy vo franskom veke (in Rus sian). Zinatne, Riga. Stinkulis, .., Lukëevies, E., Reke, T., 2020. Sedimentology and ver te brate fos sils of the Frasnian Ogre For ma tion, Gurova out -crops, east ern Lat via. Esto nian Jour nal of Earth Sci ences, 69: 248–261. Streel, M., Higgs, K., Loboziak, S., Riegel, W., Steemans, P., 1987. Spore stra tig ra phy and cor re la tion with fau nas and flo ras in the type ma rine De vo nian of the Ardenne-Rhenish regions. Re view Palaeobotany and Palynology, 50: 211–229. Streel, M., Boulvain, F., Dusar, M., Loboziak, S., Steemans, P., 2021. Up dat ing Frasnian miospore zonation from the Boulonnais (North ern France) and com par i son with new data from the Up per Palaeozoic cover on the Brabant Mas sif (West -ern Bel gium). Geologica Belgica, 24: 69-84. Strother, P.K., 1996. Acritarchs. In: Palynology: Prin ci ples and Ap -pli ca tions 1 (eds. J. Jansonius and D.C. McGregor): 81–106. Amer i can As so ci a tion of Strati graphic Paly nolo gists Foun da -tion, Pub lish ers Press, Salt Lake City, Utah. Sweet, W.C., 1988. The Conodonta: Mor phol ogy, Tax on omy, Palaeo ec ol ogy, and Evo lu tion ary His tory of a Long-Ex tinct An i ­mal Phy lum. Ox ford Mono graphs on Ge ol ogy and Geo phys ics, 10, Clar en don Press, Ox ford. Swennen, R., Viaene, W., Cornelissen, C., 1990. Pe trog ra phy and geo chem is try of the Belle Roche brec cia (lower Visean, Bel -gium): ev i dence for brecciation by evaporite dis so lu tion. Sedimentology, 37: 859–878. Tänavsuu-Milkeviciene, K., Plink-Bjklund, P., Kirsimäe, K., 2008. Synsedimentary brecciation in the Eifelian (Mid dle De vo -nian) Bal tic Ba sin: sud den ca tas tro phe or diagenetic collapse? Terra Nova, 20: 449–454. Tänavsuu-Milkeviciene, K., Plink-Bjklund, P., Kirsimäe, K., Ainsaar, L., 2009. Co eval ver sus re cip ro cal mixed car bon -ate–siliciclastic de po si tion, Mid dle De vo nian Bal tic Ba sin, East -ern Eu rope: im pli ca tions from the re gional tec tonic de vel op -ment. Sedimentology, 56: 1250–1274. ¤saitytA, D., 2000. The ge ol ogy of the south east ern Bal tic Sea: a re view. Earth-Sci ence Re views, 50: 137–225. Vodzinskas, E., Kadnas, V., 1969. Car bo na ceous raw ma te rial of the Lith u a nian SSR (dolomites and lime stones) (in Rus sian with Eng lish sum mary). Pub lish ing Of fice “Minitis”, Vilnius. Wood, G.D., Turnau, E., 2001. New De vo nian Cenobial Chlorococcales (Hydrodictyaceae) from the Holy Cross moun -tains and Radom-Lublin re gion of Po land: Their paleoenvironmental and se quence strati graphic im pli ca tions. In: Pro ceed ings of the IX In ter na tional Palynological Con gress, Hous ton, Texas, U.S.A., 1996 (eds. D.K. Good man and R.T. Clark): 53–63. Amer i can As so ci a tion of Strati graphic Paly nolo -gists Foun da tion, Dal las, Texas. Wood, G.D., Ga briel, A.M., Lawson, J.C., 1996. Palynological tech niques – pro cess ing and mi cros copy. In: Palynology: Prin ci -ples and Ap pli ca tions (eds. J. Jansonius and D.C. McGregor), 1: 29–50. Amer i can As so ci a tion of Strati graphic Paly nolo gists Foun da tion, Dal las, Texas. Wright, V.P., 1990. A micromorphological classi fi ca tion of fos sil and re cent calcic and petrocalcic micro struc tures. In: Soil Micromorphology: a Ba sic and Ap plied Sci ence (ed. L.A. Douglas): 401–407. De vel op ments in Soil Sci ence, Elsevier, Am ster dam. Zato M., Borszcz, T., Berkowski, B., Rakociki, M., Zapalski, M.K., Zhuravlev, A.V., 2015. Paleoecology and sed i men tary en vi ron ment of the Late De vo nian coral biostrome from the Cen tral De vo nian Field, Rus sia. Palaeo ge ogra phy, Palaeoclimatology, Palaeo ec ol ogy, 424:61–75. Ziegler, P.A., 1988. Evo lu tion of the Arc tic–North-At lan tic and the West ern Tethys. AAPG Mem oir, 43: 198. Ziegler, W., Sandberg, C.A., 1990. The late De vo nian stan dard cono dont zonation. Cou rier Forschungsinstitut Senckenberg, 121: 1–115.