Regular Article -Experimental Physics Measurements of the Higgs boson inclusive and differential . .ducial cross sections in the 4 decay channel at s =13TeV ATLAS Collaboration CERN, 1211 Geneva 23, Switzerland Received: 8 April 2020 / Accepted: 8 July 2020 © CERN for the beneft of the ATLAS collaboration 2020 Abstract Inclusive and differential fducial cross sections of the Higgs boson are measured in the H › ZZ*› 4 ( = e,µ) decay channel. The results are based on proton-proton collision data produced at the Large Hadron Collider at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, equivalent to an inte­grated luminosity of 139 fb-1. The inclusive fducial cross section for the H › ZZ*› 4 process is measured to be .fd = 3.28 ± 0.32 fb, in agreement with the Standard Model prediction of .fd,SM = 3.41 ± 0.18 fb. Differential fdu­cial cross sections are measured for a variety of observables which are sensitive to the production and decay of the Higgs boson. All measurements are in agreement with the Standard Model predictions. The results are used to constrain anoma­lous Higgs boson interactions with Standard Model particles. Contents 1 Introduction...................... 2 TheATLASdetector ................. 3 Theoretical predictions and event simulation ..... 4 Event reconstruction and selection .......... 5 Fiducial phase space and unfolded observables ... 6 Backgroundestimation ................ 7 Signal extraction and unfolding ............ 8 Systematicuncertainties ............... 8.1 Experimental uncertainties ........... 8.2 Theoretical uncertainties ............ 9 Results ........................ 9.1 Measureddatayields .............. 9.2 Statisticalanalysis ................ 9.3 Inclusive fducial cross-section measurements . 9.4 Differential cross-section measurements .... 10 Interpretation of differential distributions ....... 10.1 Constraints on BSM effects within the pseudo­observablesframework ............. 10.2 Constraints on Yukawa couplings ........ e-mail: atlas.publications@cern.ch 11Summary ....................... Appendix ......................... A Results with regularised unfolding ........... B Invariant mass of the leading lepton pair in same-favour and opposite-favour fnal states .... References......................... 1 Introduction The observation of the Higgs boson by the ATLAS and CMS Collaborations [1,2] using data from proton-proton (pp)col­lisions at the Large Hadron Collider (LHC) recorded in 2011 . and 2012 at centre-of-mass energies of s = 7 TeV and 8 TeV, respectively, was a major step forward in the under­standing of the electroweak (EW) symmetry breaking mech­anism [3–5]. Studies of the spin and parity of the Higgs boson, its coupling structure to other particles, and measurements of fducial and differential cross sections have been performed [6–28]. These show no signifcant deviations from the Stan­dard Model (SM) predictions for the Higgs boson with a mass of 125.09 ± 0.24 GeV [15]. This paper presents updated inclusive and differential cross-section measurements of the Higgs boson in the H › ZZ*› 4 decay channel (where  = eor µ). The full ATLAS Run 2 dataset, consisting of pp collision data . at s = 13 TeV taken between 2015 and 2018, is used for this analysis. The total integrated luminosity after imposing data quality requirements is 139 fb-1, with a data-taking eff­ciency of 91.5%. All measurements are performed with the assumption that the mass of the Higgs boson is 125 GeV, and are compared with SM predictions. The signal is extracted from a binned likelihood ft to the four-lepton invariant mass, m4, distri­bution. All major background processes are estimated from data. In particular, the normalisation of the dominant non­resonant ZZ* background is now constrained from dedicated data sidebands rather than from simulation. Signal events are corrected for detector measurement ineffciency and resolu­ 123 tion by unfolding using the detector response matrix in the likelihood ft, in place of a bin-by-bin correction. Compared with the previous published results [11], this paper also bene­fts from the full LHC Run 2 integrated luminosity, improved event and electron reconstruction [29,30], and improved lep­ton isolation to mitigate the impact of additional pp interac­tions in the same or neighbouring bunch crossing (pile-up). The fducial phase-space defnition has also been updated with respect to the previous publication to harmonise the selection of the leptons. The paper is organised as follows. A brief introduction of the ATLAS detector is given in Sect. 2, while in Sect. 3, the data and simulated signal and background samples are described. The selection of the Higgs boson candidate events is detailed in Sect. 4. Section 5 outlines the fducial phase­space defnition and the observables that are unfolded, while the background modelling is described in Sect. 6. The unfold­ ing strategy is described in Sect. 7. The experimental and theoretical systematic uncertainties, detailed in Sect. 8,are taken into account for the statistical interpretation of the data. The fnal results are presented in Sect. 9 and their interpre­tation to constrain possible beyond the SM (BSM) contact interactions or non-SM values of the b-and c-quark Yukawa couplings are shown in Sect. 10. Concluding remarks are given in Sect. 11. More information about general aspects of the analysis is contained in the concurrent Ref. [31], where, in particular, details of the event selection and background estimation can be found. 2 The ATLAS detector The ATLAS detector [32] is a multipurpose particle detector with a forward–backward symmetric cylindrical geometry1 and a near 4. coverage in solid angle. It consists of an inner tracking detector (ID) surrounded by a thin superconducting solenoid, which provides a 2 T axial magnetic feld, electro­magnetic (EM) and hadron calorimeters, and a muon spec­trometer. The inner tracking detector covers the pseudora­pidity range |.|< 2.5. It consists of a silicon pixel detector, including the newly installed insertable B-layer [33,34], a silicon microstrip detector, and a straw-tube tracking detec­tor featuring transition radiation to aid in the identifcation of electrons. Lead/liquid-argon (LAr) sampling calorime­ters provide electromagnetic energy measurements with high 1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upwards. Cylindrical coordinates (r,.) are used in the transverse plane, . being the azimuthal angle around the z-axis. The pseudorapidity is defned in terms of the polar angle . as 1 . =-ln tan(./2) and the rapidity is defned as y = ln E+pz . Angular 2 E-pz  distance is measured in units of R . (.)2 +(.)2. granularity. A steel/scintillator-tile hadron calorimeter cov­ers the central pseudorapidity range (|.| < 1.7). The end-cap and forward regions are instrumented up to |.|= 4.9 with LAr calorimeters for both the EM and hadronic energy measurements. The calorimeters are surrounded by the muon spectrometer, which has three large air-core toroidal super­conducting magnets with eight coils each. The feld integral of the toroid magnets ranges between 2.0 and 6.0 T m across most of the detector. The muon spectrometer includes a sys­tem of precision tracking chambers and fast detectors for triggering with a coverage of |.|< 2.7. Events are selected using a frst-level trigger implemented in custom electron­ics, which reduces the event rate to a maximum of 100 kHz using a subset of detector information. Software algorithms with access to the full detector information are then used in the high-level trigger to yield a recorded event rate of about 1kHz [35]. 3 Theoretical predictions and event simulation The production of the SM Higgs boson via gluon–gluon fusion (ggF), via vector-boson fusion (VBF), with an asso­ciated vector boson (VH, where V is a W or Z boson), and with a top quark pair (ttH) was modelled with the Powheg-Box v2 Monte Carlo (MC) event generator [36– 43]. Table 1 summarises the predicted SM production cross sections and branching ratios for the H ›ZZ*›4 decay for mH =125 GeV together with their theoretical accuracy. For ggF, the PDF4LHC next-to-next-to-leading-order (NNLO) set of parton distribution functions (PDF) was used, while for all other production modes, the PDF4LHC next-to-leading-order (NLO) set was used [71]. The sim­ulation of ggF Higgs boson production used the Powheg method for merging the NLO Higgs + jet cross section with the parton shower and the MiNLO method [75]tosimul­taneously achieve NLO accuracy for the inclusive Higgs boson production. In a second step, a reweighting procedure (NNLOPS) [76], exploiting the Higgs boson rapidity distri­bution, was applied using the HNNLO program [77,78]to achieve NNLO accuracy in the strong coupling constant .s. The matrix elements of the VBF, qq —›VH and ttH pro­duction mechanisms were calculated to NLO accuracy in QCD. For VH production, the MiNLO method was used to merge 0-and 1-jet events [43,75]. The gg ›ZH contribu­tion was modelled at leading order (LO) in QCD. The production of a Higgs boson in association with a bottom quark pair (bbH) was simulated at NLO with MadGraph5_aMC@NLO v2.3.3 [79], using the CT10 NLO PDF [80]. The production in association with a sin­gle top quark (tH+X where X is either jb or W , defned in the following as tH ) was simulated at NLO with 123 Table 1 Predicted SM Higgs boson production cross sections (.)for ties calculated by adding in quadrature the uncertainties due to missing ggF, VBF and fve associated production modes in pp collisions for higher-order corrections and PDF+.s. The decay branching ratios (B) mH = 125 GeV at . s = 13 TeV [44–74]. For bbH the accuracy of cal-with the associated uncertainty for H › ZZ* and H › ZZ*› 4, culations in the 4-and 5-favour schemes (FS) is reported. The quoted with  = e,µ, are also given uncertainties correspond to the total theoretical systematic uncertain- Production process Accuracy . [pb] ggF (gg › H) N3LO in QCD, NLO in EW 48.6 ± 2.4  VBF qq› Hqq(approximate) NNLO in QCD, NLO in EW 3.78 ± 0.08  WH qq— › WH NNLO in QCD, NLO in EW 1.373 ± 0.028 ZH (qq—/gg › ZH) NNLO in QCD, NLO in EW 0.88 ± 0.04  ttH q —tH NLO in QCD, NLO in EW 0.51 ± 0.05 q/gg › t—  bbH q —bH NNLO (NLO) in QCD for 5FS (4FS) 0.49 ± 0.12 q/gg › b—tH (qq—/gg › tH) NLOinQCD 0.09 ± 0.01 Decay process NLO in QCD, NLO in EW B[· 10-4] H › ZZ* 262 ± 6 H › ZZ*› 4 1.240 ± 0.027 MadGraph5_aMC@NLO v2.6.0 using the NNPDF30 PDF set [74]. For all production mechanisms the Pythia 8[81] gener­ator was used for the H › ZZ*› 4 decay as well as for the parton shower modelling. The AZNLO set of tuned parameters [82] was used, except for ttH, where, like for the tt —samples, the A14 tune [83] was employed. The event gen­erator was interfaced to EvtGen v1.2.0 [84] for simulation of the bottom and charm hadron decays. All signal samples were simulated for a Higgs boson mass mH = 125 GeV. For additional cross-checks, the ggF sample was also gen­erated with MadGraph5_aMC@NLO. This simulation has NLO QCD accuracy for zero, one and two additional par­tons merged with the FxFx merging scheme [85,86], and top and bottom quark mass effects are taken into account [87–89]. Higgs boson are decayed using Madspin [90,91]. Some fnal results are also compared with ggF predictions calculated with RadISH, which provides resummation at N3LL+NNLO accuracy [92–96], and uses MATRIX for the fxed-order calculation [97,98]. Similarly, ggF predictions are also obtained from NNLOJET for distributions of Higgs plus one-or two-jet events [99–101]. Neither of these two predictions are included for the case in which there are zero jets. Additionally, fnal results for several of the variables that probe the kinematics of the Higgs boson decay products include comparisons with Hto4l and Prophecy4f. These two programs include the full NLO electroweak corrections to the Higgs boson decay into four charged leptons [68– 70,102–107]. The samples are normalised to cross sections obtained from the best available predictions as provided in Refs. [44– 46,66,67,72–74,108]. The SM branching ratio prediction, taken from Prophecy4f [68,103], includes the full NLO EW corrections, and interference effects which result in a branch­ing ratio that is 10% higher for same-favour fnal states (4µ and 4e) than for different-favour states (2e2µand 2µ2e). For the BSM interpretation, described in Sect. 10.1,devia­ tions from the SM are studied using a ggF sample generated with MadGraph5_aMC@NLO using the HPOprodMFV UFO model [109] with FeynRules [110] at LO and the NNPDF23 PDF set. The sample was interfaced to Pythia 8 using the A14 parameter set [83]. For studies of the Yukawa couplings described in Sect. 10.2, the gluon-initiated compo­ nent of the prediction was calculated using RadISH, while MadGraph5_aMC@NLO was used for the quark-initiated component with FxFx merging for 0-and 1-jet fnal states. The ZZ* continuum background from quark–antiquark annihilation was modelled using Sherpa 2.2.2 [111–113], which provides a matrix element calculation accurate to NLO in .s for 0-and 1-jet fnal states, and LO accuracy for 2-and 3-jet fnal states. The merging with the Sherpa parton shower [114] was performed using the ME+PS@NLO prescription [115]. The NLO EW corrections were applied as a function of the invariant mass of the ZZ* system mZZ* [116,117]. This process was also simulated using two additional MC genera­tors. The frst is Powheg-Box v2 interfaced to Pythia 8for parton showering and hadronisation, with EvtGen for the simulation of bottom and charm hadron decays. The second is MadGraph5_aMC@NLO with FxFx merging at NLO for 0-and 1-jet fnal states and interfaced to Pythia 8for parton showering. The gluon-induced ZZ* production was modelled by Sherpa 2.2.2 [111–113] at LO in QCD for 0-and 1-jet fnal states. The higher-order QCD effects for the gg › ZZ* 123 continuum production have been calculated for massless quark loops [118–120] in the heavy top-quark approximation [121], including the gg › H*› ZZ processes [122,123]. The gg › ZZ simulation cross section is scaled by a K­factor of 1.7±1.0, defned as the ratio of the higher-order to leading-order cross section predictions. Production of ZZ* via vector-boson scattering was simulated at LO in QCD with the Sherpa 2.2.2 generator. The WZ background was modelled using Powheg-Box v2 interfaced to Pythia 8 and EvtGen v1.2.0 for the simulation of bottom and charm hadron decays. The triboson backgrounds ZZZ, WZZ, and WWZ with four or more prompt leptons (denoted by VVV hereafter) were modelled using Sherpa 2.2.2. The simulation of tt —+ Z events with both top quarks decaying semileptonically and the Z boson decaying leptonically was performed with MadGraph5_aMC@NLO interfaced to Pythia 8. The total cross section is normalised to the prediction of Ref. [62], which includes the two dom­inant terms at both the LO and the NLO in a mixed per­turbative expansion in the QCD and EW couplings. For modelling comparisons, Sherpa 2.2.1 was used to sim­ulate tt —+ Z events at LO. The smaller tW Z, t—, tW+W- ttt—, ttt—t —and tZ background processes were simulated with MadGraph5_aMC@NLO interfaced to Pythia 8. The modelling of events containing Z bosons with asso­ciated jets (Z + jets) was performed using the Sherpa 2.2.1 generator. Matrix elements were calculated for up to two partons at NLO and four partons at LO using Comix [112] and OpenLoops [113], and merged with the Sherpa parton shower [114]usingthe ME+PS@NLO prescription [115]. The NNPDF3.0 NNLO PDF set was used in conjunction with a dedicated set of tuned parton shower parameters. The tt —background was modelled using Powheg-Box v2 interfaced to Pythia 8 for parton showering, hadronisation, and the underlying event, and to EvtGen v1.2.0 for heavy­favour hadron decays. For this sample, the A14 tune was used [124]. Simulated Z+jets and tt —background samples are normalised to the data-driven estimates described in Sect. 6. Generated events were processed through the ATLAS detector simulation [125] within the Geant4 framework [126] and reconstructed in the same way as collision data. Additional pp interactions in the same and nearby bunch crossings are included in the simulation. The pile-up was modelled by overlaying the original hard-scattering event with simulated inelastic pp events generated with Pythia 8 [81] using the NNPDF2.3LO set of PDFs [127] and the A3 tune [128]. 4 Event reconstruction and selection The details of the selection and reconstruction of Higgs boson candidate events are provided in Ref. [31], while a brief description is provided here. Single-lepton, dilepton, and trilepton triggers are employed and ensure a signal selection effciency above 98%. Data events are subjected to quality requirements and are required to have at least one vertex with two associated ID tracks with transverse momentum pT > 500 MeV. The primary interaction vertex is selected  as the one with the largest pT2 of all associated tracks. The lepton identifcation requirements follow the inclu­sive event selection described in Ref. [31]. All muons are required to satisfy pT > 5 GeV and |.| < 2.7, except those that are reconstructed with ID tracks matched to energy deposits in the calorimeter (calorimeter-tagged), which must satisfy pT > 15 GeV and |.| < 0.1. No more than one calorimeter-tagged or stand-alone muon is allowed per event, where stand-alone muons have not been matched to an ID track. Electrons are required to satisfy ET > 7 GeV and |.| < 2.47. Jets are reconstructed using the anti-kt algorithm with a radius parameter R = 0.4 and applied to Particle Flow objects [129]. Jets are required to have pT > 30 GeV and |.| < 4.5. Jets within |.| < 2.5 are identifed as con­taining a b-hadron using the MV2c10 b-tagging algorithm at the 70% effciency working point [130,131]. If a jet overlaps geometrically with a reconstructed muon (electron) within a cone of radial size R = 0.1(0.2), the jet is removed. Same-favour opposite-charge (SFOC) lepton pairs are selected to form Higgs boson candidates. The SFOC lep­ton pair with mass m12 closest to the Z boson mass is called the leading pair, while the other becomes the subleading pair, with mass m34. If multiple combinations of SFOC pairs exist, the Higgs boson candidate with m12 closest to the Z boson mass is chosen. The three leading leptons of each Higgs boson candidate are required to satisfy pT > 20, 15, 10 GeV. Higgs boson candidate events are subjected to further selec­tion requirements on the dilepton masses, lepton separation, J/. veto, impact parameter signifcance (d0/. (d0)), and vertex quality, as outlined in Table 2. In addition, isolation requirements are imposed on the leptons to suppress the tt —and Z + jets reducible backgrounds. If an extra prompt lep­ton with pT > 12 GeV passing all identifcation and isolation requirements detailed previously is present in the event, the fnal Higgs boson candidate is chosen using a method based on the matrix element (ME). The matrix element is calculated at LO using MadGraph5_aMC@NLO and the quadruplet with the highest ME value is chosen. This increases the proba­bility of selecting the correct Higgs boson candidate in cases where the extra lepton comes from the decay of a vector boson or top quark in VH-leptonic or ttH/tH production. The four-lepton mass resolution is improved by accounting for reconstructed fnal-state radiation (FSR) photons in the Z boson decay. After selection criteria are applied, events are divided into bins for each variable of interest for the differen­tial cross-section measurements. Finally, all measurements presented in this paper are performed within a four-lepton 123 Eur. Phys. J. C (2020) 80:942 Page 5 of 67 942 Table 2 A summary of event selection requirements for leptons and Higgs boson candidates outlined in Sect. 4. SFOC lepton pairs are same­ favour opposite-charge lepton pairs. For the mass requirement of the subleading lepton pair, mthreshold is 12 GeV for m4 < 140 GeV, and rises linearly until reaching 50 GeV for m4 = 190 GeV Leptons and jets Muons Electrons Jets pT > 5GeV, |.| < 2.7 ET > 7GeV, |.| < 2.47 pT > 30 GeV, |.| < 4.5 Lepton selection and pairing Lepton kinematics Leading pair (m12) Subleading pair (m34) pT > 20, 15, 10 GeV SFOC lepton pair with smallest |mZ - m| Remaining SFOC lepton pair with smallest |mZ - m| Event selection (at most one Higgs boson candidate per channel) Mass requirements Lepton separation: Lepton/Jet separation J/. veto Impact parameter Mass window Vertex selection: If extra lepton with pT > 12 GeV 50 GeV< m12 < 106 GeV and mthreshold < m34 < 115 GeV R(i , j )> 0.1 R(µi (ei ), jet)> 0.1(0.2) m(i , j )> 5 GeV for all SFOC lepton pairs |d0|/. (d0)< 5(3) for electrons (muons) 105 GeV < m4 < 160 GeV .2/Ndof < 6(9) for 4µ (other channels) Quadruplet with largest matrix element (ME) value mass window of 105 < m4< 160 GeV. The signal selection effciency is about 31%, 21%, 17%, and 16% for the 4µ, 2e2µ,2µ2e, and 4e fnal states, respectively. Here, the frst lepton pair refers to the lepton pair with an invariant mass closest to the Z boson mass. 5 Fiducial phase space and unfolded observables The fducial cross sections are defned using simulation at particle level and the selection requirements outlined in Table 3. In order to minimise model-dependent acceptance extrapolations, these are chosen to closely match the selec­tion requirements of the detector-level analysis after the event reconstruction. The fducial selection is applied to fnal-state electrons and muons that do not originate from hadrons or . -lepton decays, after ‘dressing’ them, i.e., the four-momenta of pho­tons within a cone of size R = 0.1 around the lepton are added to the lepton’s four-momentum. The photons which originate from hadron decays are excluded. Particle-level jets are reconstructed from fnal-state neutral and charged particles using the anti-kt algorithm with radius parameter R = 0.4. Electrons, muons, neutrinos (if they are not from hadron decays) and photons from Higgs decays as well as those used to dress leptons are excluded from the jet clus­tering. A jet is labelled as a b-jet if there is a b-hadron with pT > 5 GeV within a cone of size R = 0.3 around the jet axis. Jets are removed if they are within a cone of size R = 0.1 around a selected lepton. Quadruplet selection using the selected dressed leptons follows the same procedure as for reconstructed events. In the case of VH or ttH production, additional leptons not originating from a Higgs boson decay can induce a ‘lepton mispairing’ when assigning them to the leading and sublead­ing Z bosons. To improve the lepton pairing effciency, the matrix-element-based pairing method as described in Sect. 4 is employed. The variables used in the differential cross­section measurement are calculated using the dressed leptons of the quadruplets. The acceptance of the fducial selection, defned as the ratio of the number of events passing the particle-level selec­tion to the number of events generated in a given bin or fnal state (with respect to the full phase space of H › ZZ*› 22, where , = e or µ), is about 49% for each fnal state for a SM Higgs boson with mH = 125 GeV. The ratio of the number of events passing the selection after detector simu­lation and event reconstruction to those passing the particle­level selection is about 45%. About 1.6% of the events which pass the detector-level selection fail the particle-level selec­tion. This is mostly due to resolution effects for muons. For electrons channels, the difference in the reconstructed and 123 Table 3 List of event selection requirements which defne the fducial phase space for the cross-section measurement. SFOC lepton pairs are same-favour opposite-charge lepton pairs Leptons and jets Leptons Jets pT > 5GeV, |.| < 2.7 pT > 30 GeV, |y| < 4.4 Lepton selection and pairing Lepton kinematics Leading pair (m12) Subleading pair (m34) pT > 20, 15, 10 GeV SFOC lepton pair with smallest |mZ - m| Remaining SFOC lepton pair with smallest |mZ - m| Event selection (at most one quadruplet per event) Mass requirements Lepton separation Lepton/Jet separation J/. veto Mass window If extra lepton with pT > 12 GeV 50 GeV< m12 < 106 GeV and 12 GeV< m34 < 115 GeV R(i, j)> 0.1 R(i, jet)> 0.1 m(i, j)> 5 GeV for all SFOC lepton pairs 105 GeV< m4 < 160 GeV Quadruplet with largest matrix element value fducial phase space defnition, has an additional comparable contribution. Within the fducial phase space defned above, differential cross sections are measured for variables which are sensi­tive to both the production and decay of the Higgs boson. For example, the transverse momentum distribution of the Higgs boson provides a test of perturbative QCD calcula­tions, is sensitive to the structure of the Higgs boson interac­tions and is sensitive to charm and bottom Yukawa couplings. The rapidity of the Higgs boson is sensitive to the choice of parton distribution functions for the colliding protons, and is also infuenced by QCD radiative corrections. The invariant masses of the leading and subleading lepton pair are sen­sitive to higher-order electroweak corrections to the Higgs boson decay, and are sensitive to BSM contributions. These two variables and the angular variables of the Higgs boson decay are also of interest due to their sensitivity to the spin and parity of the Higgs boson, as well as to same-favour pair fnal-state interference and EW corrections. Variables related to jets probe QCD radiation effects and the Higgs boson pro­duction. The jet multiplicity is sensitive to different produc­tion mechanisms and provides sensitivity to the theoretical modelling of high-pT quark and gluon emission. The trans-verse momentum of the jets directly probes the quark and gluon radiation. The invariant mass of the two leading jets is also sensitive to the production mechanisms of the Higgs boson, while the signed angle in the transverse plane of the two leading jets is a test of the spin and parity of the Higgs boson. Jet-related variables, in particular double differential variables, also probe the effects of QCD resummation. Addi­tional variables which combine the properties related to the kinematics of the Higgs boson and the jets are also consid­ered. A summary of all the variables and their descriptions is given in Table 4. 6 Background estimation Non-resonant SM (Z(*)/. * )(Z(*)/. * ) production via qq —annihilation and gluon–gluon fusion, referred to as ZZ* , can result in four prompt leptons in the fnal state and constitutes the largest background for this analysis. While for previous analyses [11,12] both the shape and the normalisation of this background were exclusively estimated with simulation, in this paper the normalisation is constrained with a data-driven technique. The systematic uncertainty is reduced because both the theoretical and luminosity uncertainties no longer contribute to the normalisation uncertainty. The normalisa­tion of the non-resonant ZZ* component, which dominates outside the Higgs boson peak region, is obtained from data by extending the mass interval considered from 115–130 GeV to 105–160 GeV. The increased mass interval allows an esti­mation of this process with minimal impact on the expected sensitivity for the signal process. This contribution is deter­mined as part of the 4 mass ft (discussed in Sect. 7)inthefull four-lepton mass region, with the shape of the background taken from simulation. The ZZ* normalisation is estimated separately in each bin of each differential observable, where a different ZZ* scaling factor is used for each observable bin. In phase-space regions 123 lead. jet sublead. jet lead. jet Table 4 Defnitions of observables for which differential cross sec-p vs. p ,and p vs. |ylead. jet | (where |ylead. jet| is TT T tions are measured. The angular variables are defned as in Ref. [132]. the rapidity of the leading jet). Jet-related variables are inclusive, while In addition to the single observables listed, the following double differ-for the jet multiplicity the results are provided in both the inclusive ential observables are built using variables defned below: m12 vs. m34, and exclusive jet bins. . jj is defned as .lead. jet - .sublead. jet if 4 4 lead. jet 4 4j4 4j .lead. jet >.sublead. jet or as .sublead. jet -.lead. jet if .sublead. jet >.lead. jet. pvs. Njets, pvs. p , pvs. p , pvs. |y4|, p vs. m4j, T TT TTT T If . jj < 0, 2. is added to the value Higgs boson kinematic-related variables 4 pT, |y4| Transverse momentum and rapidity of the four-lepton system m12, m34 Invariant mass of the leading and subleading lepton pair | cos . *| Magnitude of the cosine of the decay angle of the leading lepton pair in the four-lepton rest frame relative to the beam axis cos .1,cos .2 Production angles of the anti-leptons from the two Z bosons, where the angle is relative to the Z vector. ., .1 Two azimuthal angles between the three planes constructed from the Z bosons and leptons in the Higgs boson rest frame. Jet-related variables Njets, Nb-jets Jet and b-jet multiplicity p lead. jet T , p sublead. jet T Transverse momentum of the leading and subleading jet, for events with at least one and two jets, respectively. Here, the leading jet refers to the jet with the highest pT in the event, while subleading refers to the jet with the second-highest pT. mjj, | . jj|, . jj Invariant mass, difference in pseudorapidity, and signed difference in . of the leading and subleading jets for events with at least two jets Higgs boson and jet-related variables 4j p , m4j Transverse momentum and invariant mass of the four-lepton system and leading jet, for events with at T least one jet 4jj p T, m4jj Transverse momentum and invariant mass of the four-lepton system and leading and subleading jets, for events with at least two jets where the ZZ* component in the m4 sidebands is too low to provide a reliable estimate of its contribution, the estimate is evaluated simultaneously for several differential bins.2 Other background processes, such as Z+jets, tt—, and WZ, contain at least one jet, photon or lepton from a hadron decay that is misidentifed as a prompt lepton. These reducible back­grounds are signifcantly smaller than the non-resonant ZZ* background and are estimated using data where possible, fol­lowing slightly different approaches for the  + µµ and  + eefnal states [11,12,31]. In the  + µµ fnal states, the normalisations for the Z + jets and tt —backgrounds are determined by performing fts to the invariant mass of the leading lepton pair in ded­icated independent control regions which target each back­ground process for each bin of the differential observables. Depending on the background process being targeted, the control regions are formed by relaxing the . 2 requirement on the four-lepton vertex ft, and by inverting or relaxing 2 The same normalisation factor is used for neighbouring bins until the increase in uncertainty on the expected cross section in each measured bin is less than 5% of the total uncertainty. isolation and/or impact-parameter requirements on the sub­leading muon pair. Additional control regions (eµµµ and  + µ±µ±) are used to improve the background estimate by reducing the statistical uncertainty of the ftted normalisa­tion. Transfer factors to extrapolate from the control regions to the signal region are obtained separately for tt—and Z+jets using simulation. This method is performed in each differ­ential bin. The m4 shape for both processes in each bin is obtained from simulation. The  + ee control-region selection requires the elec­trons in the subleading lepton pair to have the same charge, and relaxes the identifcation, impact parameter and isola­tion requirements on the electron candidate with the lowest transverse energy. This electron candidate, denoted by X, can be a light-favour jet, an electron from photon conver­sion or an electron from heavy-favour hadron decay. The heavy-favour background is completely determined from simulation, whereas the light-favour and photon conversion background is obtained with the sPlot method [133]. This is based on a ft to the number of hits in the innermost ID layer in the data control region. Transfer factors to extrapo­late from the  + ee control region to the signal region for 123 the light-favour jets and converted photons, obtained from simulated samples, are corrected using a Z + X data con­trol region. The corrected transfer factors are then used to extrapolate the extracted yields to the signal region. Both the extraction of the global yield in the control region and the extrapolation to the signal mass region are performed in bins of the transverse momentum of the electron candidate and the jet multiplicity. In order to extract the shape of the backgrounds from light-favour jets and photon conversions for each observable, a similar method is used, except that the extraction and extrapolation is performed only as a func­tion of the transverse momentum of the electron candidate, ignoring the binning in jet multiplicity. Additional contributions from rare processes, such as tXX (t—tW, tWZand other rare top-associated processes) and tZ, t—VVV are estimated from simulation. 7 Signal extraction and unfolding To extract the number of signal events in each bin of a dif­ferential distribution (or for each decay fnal state for the inclusive fducial cross section), invariant mass templates for the Higgs boson signal and the background processes are ftted to the m4 distribution in data. Compared to the previ­ous analysis [11], the non-resonant ZZ* background is ftted simultaneously with the signal and constrained by extending the m4 ft range from 115–130 GeV to 105–160 GeV. For the total and fducial cross sections in different fnal states, the same normalisation factor is used for the ZZ* con­tribution. For the differential cross-section measurements, multiple ZZ* normalisation factors are introduced in the model, as described in Sect. 6. The reducible background, composed of Z + jets, tt—, and WZ processes, is estimated from dedicated control regions as described in Sect. 6 and its overall normalisation and shape can vary within the asso­ciated systematic uncertainties. Finally, for the differential distributions, no splitting into decay fnal states is performed, and the SM ZZ*› 4 decay fractions are assumed. The number of expected events Ni in each observable reconstruction bin i, expressed as a function of m4,isgiven by  rij · (1 + fnonfd fd Ni(m4) = ) · . · Pi(m4) · L ij j + Nbkg (m4) i with . fd = . j · Aj · B (1) j where Aj is the acceptance in the fducial phase space and . j the total cross section in fducial bin j, Lis the integrated luminosity, B is the branching ratio and Nbkg (m4) is the i background contribution. The index j runs over all observ­able bins in the fducial phase space. The term Pi(m4) is the m4 signal shape containing the fraction of events as a func­tion of m4 expected in each reconstruction bin, taken from MC simulation. The term rij represents the detector response matrix, created with simulated signal samples and averaged across the different production modes using the expected SM cross-sections [108]. These factors correspond to the proba­bility that an event generated within the fducial volume in the observable bin j is reconstructed in bin i. fnonfd The normalisation, i , represents the fraction of events which are outside of the fducial region but are recon­structed within the signal region. This ranges from 1.1% to 1.7% depending on the bin of the unfolded observable or fnal state. The detector response matrix accounts for bin-to-bin migrations in the unfolding of the signal. It was chosen over the bin-by-bin correction factor technique used in the pre­vious analyses [11,12] due to its lower model dependence. Biases introduced via the unfolding method are minimised when using the response matrix; however, matrix unfolding can amplify small fuctuations in data when the response matrix is characterised by a large condition number.3 The binning choice made for all observables ensures a statisti­cal signifcance of more than 2. for the signal process. The binning is also chosen to minimise migrations between bins. In general, the bin width is more than twice the experimen­tal resolution. As a result, the response matrices for all the variables considered are well-conditioned, with a condition number less than 2.5. The fuctuations of the unfolded dis­tribution can be further reduced using regularisation tech­niques. Unfolding tests done with toy data sets indicate that while regularisation provides a modest reduction of the statis­tical uncertainty, this reduction is counterbalanced by the bias introduced by this technique. Therefore, no regularisation of the unfolding was applied. Two of the jet-related variables are also provided in Appendix A using a regularised unfolding method, and are compatible with the matrix-unfolded results presented here. Figure 1 shows the response matrix for the pT4 , Njets, lead. jet 4 p , and m12 vs. m34 observables. For pT , the purity of T the bins ranges from 87% at low pT4 , where the bins are nar­row, to 97% at high pT4 , where wider bins are defned. The purity is defned as the percentage of reconstructed events which match the particle-level events in that bin. For the Njets observable, the migrations are more relevant due to the rela­tively worse jet energy resolution and the presence of pile-up 3 The condition number is defned as the ratio of the maximum and minimum singular values of the matrix. Values close to 1 signify a well-conditioned matrix with low sensitivity to statistical fuctuations on the input. 123 (a) (b) (c) Fig. 1 Response matrices, derived using simulation, for a the trans­ 4 verse momentum of the four-lepton system pT, b the number of jets lead. jet Njets, c the transverse momentum of the leading jet p T ,and d jets in the reconstructed events. This brings the purity for the lead. jet for Njets . 3 bin down to 68%. The p migrations are T similarly larger, with the lowest purity value of 67% occur­ lead. jet ring in the lowest p T bin. The m12 vs. m34 observable, like pT4 , has a higher purity. All bins have a purity of around 90% except the frst bin, which has a purity of 78%. (d) the mass of the leading versus subleading lepton pair m12 vs. m34. Only reconstructed events that were matched to generator-level (‘truth’) events are included. Bins below 0.005 are omitted for clarity 8 Systematic uncertainties The systematic uncertainties include experimental uncertain­ties, such as those in object reconstruction, identifcation, isolation, resolution, and trigger effciencies, as well as theo­retical uncertainties related to the modelling of the signal and background processes. More detail is provided in Ref. [31], while a brief overview of the dominant sources of uncertainty is provided here. The impacts of the experimental and theo­ 123 Table 5 Fractional uncertainties for the inclusive fducial and total cross sections, and ranges of systematic uncertainties for the differen­tial measurements. The columns ‘e/µ’ and ‘Jets’ represent the exper­imental uncertainties in lepton and jet reconstruction and identifca­tion, respectively. The Z + jets, tt—, tXX (Other Bkg.) column includes uncertainties related to the estimation of these background sources. The ZZ* theory (ZZ* th.) uncertainties include the PDF and scale varia­tions. Signal theory (Sig th.) uncertainties include PDF choice, QCD scale, and shower modelling of the signal. Finally, the column labelled ‘Comp.’ contains uncertainties related to production mode composition and unfolding bias which affect the response matrices. The uncertain­ties have been rounded to the nearest 0.5%, except for the luminosity uncertainty, which has been measured to be 1.7% Observable Stat. Syst. Dominant systematic components (%) unc. (%) unc. (%) Lumi. e/µ Jets Other Bkg. ZZ* Th. Sig. Th. Comp. .comb 9 3 1.7 2 < 0.5 < 0.5 1 1.5 < 0.5 .4µ 15 4 1.7 3 < 0.5 < 0.5 1.5 1 < 0.5 .4e 26 8 1.7 7 < 0.5 < 0.5 1.5 1.5 < 0.5 .2µ2e 20 7 1.7 5 < 0.5 < 0.5 2 1.5 < 0.5 .2e2µ 15 3 1.7 2 < 0.5 < 0.5 1 1.5 < 0.5 d. /d p4 T 20–46 2–8 1.7 1–3 1–2 < 0.5 1–6 1–2 < 1 d. /dm12 12–42 3–6 1.7 2–3 < 1 < 0.5 1–2 1–2 < 1 d. /dm34 20–82 3–12 1.7 2–3 < 1 1–2 1–8 1–3 < 1 d. /d|y4| d. /d|cos . *| d. /dcos .1 22–81 23–113 23–44 3–6 3–6 3–6 1.7 1.7 1.7 2–3 2–3 2–3 < 1 < 1 < 1 < 0.5 1–2 < 0.5 1–5 1–7 1–3 1–3 1–3 1–2 < 1 < 0.5 < 1 d. /dcos .2 22–39 3–6 1.7 2–3 < 1 < 0.5 1–3 1–3 < 1 d. /d. 20–29 2–5 1.7 2–3 < 1 < 0.5 1–3 1–2 < 0.5 d. /d.1 22–33 3–6 1.7 2–3 < 1 < 0.5 1–2 1–3 < 0.5 d. /dNjets 15–37 6–14 1.7 1–3 4–10 < 0.5 1–4 3–7 1–4 d. /dNb-jets 15–67 6–15 1.7 1–3 4–5 1–3 1–2 3–9 1–4 d. /d p lead. jet T 15–34 3–13 1.7 1–3 4–10 < 0.5 1–2 1–5 < 0.5 d. /d p sublead. jet T 11–67 5–22 1.7 1–3 2–12 < 1 1–3 2–15 1–5 d. /dmjj 11–50 5–18 1.7 1–3 1–11 < 0.5 1–3 2–15 1–2 d. /d. jj 11–57 5–17 1.7 1–3 2–10 < 0.5 1–2 2–14 1–4 d. /d. jj 11–50 4–18 1.7 1–3 2–9 < 0.5 1–3 2–14 1–6 d. /dm4j 15–66 4–19 1.7 1–3 3–9 < 0.5 1–6 3–14 1–8 d. /dm4jj 11–182 5–67 1.7 1–3 4–24 < 0.5 1–5 2–35 1–9 d. /d p 4j T 15–76 6–13 1.7 1–3 2–8 < 1 1–5 3–9 1–3 d. /d p 4jj T 11–76 5–27 1.7 2–3 2–9 1–2 1–4 3–17 1–12 d2. /dm12dm34 16–65 3–11 1.7 2–3 < 1 1–2 1–9 1–3 1–2 d2. /dp4 T d|y4| d2. /dp4 T dNjets 23–63 23–93 2–13 4–193 1.7 1.7 1–3 2–14 1–2 2–25 < 1 1–3 1–6 1–7 1–5 1–12 1–2 1–92 d2. /dp 4j T dm4j 15–41 4–12 1.7 1–3 2–8 < 0.5 1–5 2–9 < 1 d2. /dp4 T dp 4j T 15–53 3–10 1.7 1–3 2–8 < 1 1–2 2–6 1–2 d2. /dp4 T dp lead. jet T 15–84 3–21 1.7 1–3 2–18 1–10 1–3 2–9 1–3 d2. /dp lead. jet T d|ylead. jet | d2. /dp lead. jet T dp sublead. jet T 15–38 15–63 3–11 5–22 1.7 1.7 1–3 1–3 2–9 4–15 < 0.5 < 0.5 1–2 1–4 1–4 3–11 1–2 1–7 retical uncertainties on the measurements are summarised in 8.1 Experimental uncertainties Table 5. The uncertainty in the predicted yields due to pile-up mod­elling ranges between 1% and 2%. The uncertainty in the integrated luminosity is 1.7% and affects the signal yields 123 and simulated background estimates when not constrained by the sidebands. The electron (muon) reconstruction and identifcation eff­ciency uncertainties are approximately 1.0–2.0% (< 1.0%). The uncertainty in the expected yields due to the muon and electron isolation effciencies is also considered, and is approximately 1%. Lepton energy momentum scale and reso­lution uncertainties have negligible impacts on the presented results. The impact of uncertainties in the jet energy scale and resolution (of between 1 and 3%) is only relevant for the jet­related differential cross-section measurements, where their impact is typically between 3 and 5%, and is negligible in the other measurements. The uncertainty in the performance of the b-tagging algorithm is at the level of a few percent over most of the jet pT range [131]. The impact of the precision of the Higgs boson mass measurement, mH = 125.09 ± 0.24GeV [15], on the signal acceptance due to the signal region mass-window require­ment is negligible. For the data-driven measurement of the reducible back­ground, three sources of uncertainty are considered: statis­tical uncertainty, overall systematic uncertainty for each of  + µµ and  + ee, and a shape systematic uncertainty which varies with the differential variable. Impacts from these sources of uncertainty range from less than 1% to a maximum of around 3%. The inclusive reducible background estimate has a relatively small (3%) statistical uncertainty, which has minimal impact on the cross section. 8.2 Theoretical uncertainties Sources of theoretical uncertainty include missing higher­order corrections, parton shower and underlying event mod­elling, and PDF+.s uncertainties, and these all affect mod­elling of the signal and background processes. For measure­ments of the cross section, the impact of these theory sys­tematic uncertainties on the signal comes from their effects on the response matrix. The prediction of the ggF process in different Njets cat­egories and migration effects on the Njets ggF cross sec­tions are large sources of theoretical uncertainty, which are accounted for using the approach detailed in Ref. [108]. The QCD scale uncertainty from the factorisation and renormal­isation scales, resummation scales, and migrations between N-jet phase-space bins are considered [52,134–137]. The impact of QCD scale variations on the Higgs boson pT dis­tribution as well as the uncertainty of the pT distributioninthe 0-jet bins are also taken into account. Higher-order impacts on the pT distribution predictions due to treating the top quark mass as infnite in the heavy-quark loop are accounted for by comparing these predictions with fnite-mass calculations. For the VBF production mode, the uncertainty due to miss­ing higher orders in QCD are considered, including migration effects in number of jets, transverse momentum of the Higgs boson, transverse momentum of the Higgs boson and leading dijet system, and the invariant mass of the two leading jets as outlined in the scheme presented in Ref. [138]. For production modes other than ggF and VBF, the effects of QCD scale uncertainties are estimated by considering all confgurations of renormalisation and factorisation scales varied by a factor of two. In each experimental bin, the largest difference between all the variations and the nominal confg­uration is assigned as uncertainty. The effects of parton shower and multiple-parton interac­tion modelling uncertainties on the acceptance are estimated using tune eigenvector variations as well as comparisons between acceptances calculated with Pythia 8 and Herwig 7 parton showering algorithms. PDF uncertainty impacts are estimated using the eigen­vector variations of the PDF4LHC_NLO_30 Hessian PDF set, following the PDF4LHC recommendations [71]. For the cross sections extrapolated to the full phase space, an additional uncertainty (2.2%) related to the H › ZZ* branching ratio [68,69] is included in the measurement. Since the ZZ* process normalisation is constrained by performing a simultaneous ft of sideband regions enriched in this contribution together with the signal region, most of the theoretical uncertainty in the normalisation for this back­ground vanishes.4 The uncertainties due to missing higher­order effects in QCD are estimated by varying the factori­sation and renormalisation QCD scales by a factor of two; the impact of the PDF uncertainty is estimated using the MC replicas of the NNPDF 3.0 PDF set. Uncertainties due to the parton shower modelling for the ZZ* process are con­sidered as well. The impact of these uncertainties is below 2% for all the fducial differential cross sections. In addition, the m4 shape obtained from Sherpa is compared with that obtained from Powheg and MadGraph5_aMC@NLO and the difference is taken as an additional source of systematic uncertainty. In each m4 bin, the largest difference between Sherpa and Powheg or MadGraph5_aMC@NLO is used, and the systematic uncertainty is determined by interpolating between these shapes. Typically, Sherpa and Powheg have the largest difference in the predicted m4 shape, with the impact linearly varying from approximately ±10% at low m4 to ±2% at high m4. The uncertainty in the gluon-induced ZZ* process is taken into account as well by changing the relative composition between the quark-initiated and gluon-initiated ZZ* compo­nents according to the theoretical uncertainty in the predicted cross sections. 4 Except in cases where the cross-section bins are merged into a single ZZ* bin, where the relative normalisation uncertainties are included. 123 Table 6 Expected (pre-ft) and observed numbers of events in the Higgs boson events and the estimated background yields is compared four decay fnal states after the event selection, in the mass range with the data. Combined statistical and systematic uncertainties are 115 GeV< m4< 130 GeV. The sum of the expected number of SM included for the predictions (see Sect. 8) Final Signal ZZ* Other Total Observed state background backgrounds expected 4µ 78 ± 5 38.0 ± 2.12.85 ± 0.18 119 ± 5 115 2e2µ 53.0 ± 3.1 26.1 ± 1.42.98 ± 0.19 82.0 ± 3.4 96 2µ2e 40.1 ± 2.9 17.3 ± 1.33.6 ± 0.5 61.0 ± 3.2 57 4e 35.3 ± 2.6 15.0 ± 1.52.91 ± 0.33 53.2 ± 3.1 42 Total 206 ± 13 96 ± 6 12.2 ± 1.0 315 ± 14 310 Finally, unfolding-related uncertainties arise from uncer­tainties in the production mode composition that affect the response matrices, as well as from uncertainties in the bias introduced by the unfolding method. For the former, an uncertainty is assessed by varying the production cross sec­tions within their measured uncertainties taken from Ref. [12], and has an impact of less than 1%. In the latter case, the uncertainty in the bias is obtained independently per bin by comparing the unfolded cross section from simulation with that expected when varying the underlying true cross sections of the simulated data sample within the expected statistical error. The impact of this uncertainty is typically negligible in distributions such as pT4 , where the response matrix is largely diagonal, but can be of the order of 10% in distributions with larger bin migrations, such as Njets. 9 Results Results are presented for the full set of inclusive and differ­ential variables outlined in Sect. 5. Section 9.1 presents the data yields from the full Run 2 data set. Section 9.2 provides details of the statistical procedure used for the extraction of the measurements. Cross-section results, and comparisons with SM predictions, are provided in Sects. 9.3 and 9.4. 9.1 Measured data yields The observed number of events in each of the four decay fnal states, and the expected signal and background yields before ftting to data (pre-ft), are presented in Table 6. These events have passed the event selection and fall in a narrow window around the Higgs boson mass peak (115 < m4< 130 GeV). Figures 2 and 3 show the expected and observed four­lepton invariant mass distributions, inclusively and per fnal state respectively. The m4 distribution shows two clear peaks corresponding to Z › 4 production and the Higgs boson signal with a mass near 125 GeV. The observed and expected distributions of one-dimension­al observables are shown in Figs. 4, 5, 6, 7, 8 and 9. In addi- Fig. 2 The observed and expected (pre-ft) inclusive four-lepton invari­ant mass distributions for the selected Higgs boson candidates, shown for an integrated luminosity of 139 fb-1 and at . s = 13 TeV. The uncer­tainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the signal and the ZZ* background tion, the observed and expected distributions for the two­dimensional observables are shown in Figs. 10, 11, 12, 13, 14, 15, 16 and 17. All these fgures show events selected within an m4 mass range of 115–130 GeV. Further details of the compatibility with the SM are reported in Sect. 9.4. 9.2 Statistical analysis The inclusive fducial and differential cross sections are mea­sured using a binned profle-likelihood-ratio ft [139], taking into account all bins of a given distribution. The likelihood function includes the shape and normalisation uncertainties of the signal and background predictions as nuisance param­eters, as outlined in Sect. 8. The cross sections are extracted by minimising two times the negative logarithm of the profle likelihood ratio, -2ln . In the asymptotic approximation, 123 (a) (c) Fig. 3 The observed and expected (pre-ft) four-lepton invariant mass distribution for the selected Higgs boson candidates, for the different decay fnal states a 4µ, b 2e2µ, c 2µ2e, d 4e. The uncertainty in the i.e. the large sample limit, -2ln  behaves as a . 2 distri­bution with one degree of freedom. The compatibility of a measured cross section and its theoretical prediction is tested by computing a p-value based on the difference between the value of -2ln  at the best-ft value and the value obtained by fxing the cross section in each bin to that predicted by theory. These p-values do not include the uncertainties in the theo­retical predictions. For all measured observables the asymp­totic approximation is validated with pseudo-experiments, and where the number of observed events is less than three, (b) (d) prediction is shown by the hatched band, which includes the theoret­ical uncertainties of the SM cross section for the signal and the ZZ* background the uncertainties are corrected to the values obtained with the pseudo-experiments. For the fducial and differential cross-section measure­ments, the ftted m4 distribution in each fnal state or differ­ential bin is used to extract the measured cross section fol­lowing Eq. (1). The fducial cross sections of the four fnal states can either be summed to obtain an inclusive fducial cross section, or they can be combined assuming the SM ZZ*› 4 relative branching ratios. The latter combina­tion is more model dependent, but benefts from a smaller statistical uncertainty. 123 (a) (b) 4 Fig. 4 The observed and expected (pre-ft) distributions of a pT, b m12,and c m34 in the mass region 115 < m4< 130 GeV, for an integrated luminosity of 139 fb-1 collected at . s = 13 TeV. A SM Higgs boson signal with a mass mH = 125 GeV is assumed. The uncer­ 9.3 Inclusive fducial cross-section measurements The fducial production cross sections of the H › ZZ*› 4 process are presented in Table 7 and Fig. 18. The left panel in Fig. 18a shows the fducial cross sections for the four indi­ vidual decay fnal states: 4µ,4edecays (hereafter referred to as same favour), and 2µ2e,2e2µ decays (hereafter referred to as different favour). The middle panel shows the cross sections for same-and different-favour decays, which can provide a probe of same-favour interference effects, as well (c) tainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the signal and the ZZ* background as the inclusive fducial cross sections obtained by either sum­ming all 4 decay fnal states or combining them assuming relative SM branching ratios. The data are compared with the SM prediction after accounting for the fducial acceptance as determined from the SM Higgs boson simulated samples (see Sect. 3). The combined inclusive fducial cross section is extrapo­lated to the full phase space, as shown in the right panel of Fig. 18, using the fducial acceptance as well as the branch­ ing ratios, with the uncertainties described in Sect. 8.The 123 (a) Fig. 5 The observed and expected (pre-ft) distributions of a |y4| and b |cos . *| in the mass region 115 < m4< 130 GeV, for an integrated luminosity of 139 fb-1 collected at . s = 13 TeV. A SM Higgs boson signal with a mass mH = 125 GeV is assumed. The uncertainty in the total cross section is also compared with the cross sec­tions predicted by NNLOPS, MadGraph5_aMC@NLO-FxFx (MG5-FxFx) and Hres 2.3 [51,140] for ggF, while for all other production modes the predictions described in Sect. 3 are used. For ggF, all generators predict cross sections that are lower than the N3LO calculation. The p-values, cal­culated as described in Sect. 9.2,areshowninTable 7.The probability of compatibility of the measured fducial cross section (.comb) and the Standard Model expectation is at the level of 67%. 9.4 Differential cross-section measurements The measured differential production cross sections for the transverse momentum p4 of the Higgs boson are shown in T Fig. 19, while the measured differential cross sections with respect to the masses of the leading and subleading Z bosons resulting from the Higgs boson decay, m12 and m34, are pro­vided in Fig. 20. Figures 21, 22, and 23 show the measured differential production cross sections with respect to angular variables, |y4|, |cos . *|, cos .1, cos .2, ., and .1, that probe the kinematics of the Higgs boson decay products. Differential production cross-section measurements with respect to variables that probe the jet activity in reconstructed Higgs boson events follow in Figs. 24, 25, 26, 27 and 28. These include the exclusive and inclusive jet multiplicities, Njets,the b-jet multiplicity, Nb-jets, variables measuring the lead. jet sublead. jet transverse momentum of the jets, p T and p T ,as (b) prediction is shown by the hatched band, which includes the theoret­ical uncertainties of the SM cross section for the signal and the ZZ* background well as variables that probe the kinematics of pairs of jets in events with at least two jets, mjj, .jj, and .jj. In addition, differential cross-section measurements are provided for observables aimed at studying the relationship between the reconstructed Higgs boson and accompanying jets. These are presented in Figs. 29 and 30. Finally, the double differential measurements in bins of 4 4 4 4j m12 vs. m34, pvs. |y4|, pvs. Njets, pvs. p , T T TT 4j lead. jet sublead. jet lead. jet p vs. m4j, p vs. p , and p vs. TTT T |ylead. jet| are provided in Figs. 31, 32, 33, 34, 35, 36, 37 and 38. The data are compared with SM expectations con­structed from the ggF predictions provided by NNLOPS and MadGraph5_aMC@NLO-FxFx. Certain distributions related to the production of the Higgs boson also include a comparison with the predictions from NNLOJET and RadISH and some of the measurements related to the Higgs boson decay are compared also with predictions from Hto4l and Prophecy4f. The ggF predictions from Mad-Graph5_aMC@NLO-FxFx and NNLOPS are normalised to the N3LO prediction while the normalisations for NNLO­JET and RadISH are to their respective predicted cross sec­tions. All the other Higgs boson production modes are nor­malised to the most accurate SM predictions, as discussed in Sect. 3. The shaded bands on the expected cross sections indicate the PDF and scale uncertainties.5 The fgures include 5 Given the accuracy of some predictions, this procedure may underes­timate the associated uncertainties. In particular, NNLOPS predictions 123 (a) (c) Fig. 6 The observed and expected (pre-ft) distributions of a cos .1, b cos .2, c .,and d .1 in the mass region 115 < m4< 130 GeV, for an integrated luminosity of 139 fb-1 collected at . s = 13 TeV. A SM Higgs boson signal with a mass mH = 125 GeV is assumed. The uncer­ the p-values quantifying the probability of compatibility of the measurements and the SM predictions and show in addi­tion ftted values of the ZZ* normalisation factors. Finally, the correlation matrices between the measured cross sections and the ZZ* background normalisation factors are shown in all fgures along with the cross-section measurements. for . 3 jets, which are affected in part by additional uncertainties which are not accounted by the procedure described in Sect. 8.2. (b) (d) tainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the signal and the ZZ* background Overall, there is good agreement between measured cross sections and predictions. Small differences between mea­surement and prediction occur in several of the angular observables, as well as in bins of m4jj, and several of the dou­ble differential measurements. For example, the p-value for lead. jet the double differential distribution p vs. |ylead. jet| in T Fig. 38 is particularly low due to the downward fuctuation in bin 2. However, when considering the size of the uncer­tainties these differences are not signifcant. Since no events are observed in the highest bin for pT4 in Fig. 19, an upper 123 (a) (c) Fig. 7 The observed and expected (pre-ft) distributions of a Njets, lead.jet sublead.jet b Nb-jets, c p T ,and d p T in the mass region 115 < m4. <130 GeV, for an integrated luminosity of 139 fb-1 collected at s = 13 TeV. A SM Higgs boson signal with a mass mH = 125 GeV is assumed. In distribution c, the frst bin contains events with zero jets, limit of 27 ab at 95% confdence level (CL) is set on the cross section using CLs [141]. Similarly, a limit of .<38 ab at 4jj 95% CL is also set in the last bin of p T in Fig. 29. (b) (d) while in distribution d, the frst bin contains events with fewer than two jets. In both c and d, all bins except the frst are divided by the bin width. The uncertainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the signal and the ZZ* background 123 (a) (b) (c) Fig. 8 The observed and expected (pre-ft) distributions of a mjj, b the frst bin contains events with fewer than two jets. The uncertainty in .jj,and c .jj in the mass region 115 < m4< 130 GeV, for an inte-the prediction is shown by the hatched band, which includes the theo­grated luminosity of 139 fb-1 collected at . s = 13 TeV. A SM Higgs retical uncertainties of the SM cross section for the signal and the ZZ* boson signal with a mass mH = 125 GeV is assumed. In all distributions, background 123 (a) (b) (c) (d) Fig. 9 The observed and expected (pre-ft) distributions of a m4j, b frst bin in a and c contains events with no jets, while the frst bin in 4j4jj b and (d) contains events with fewer than two jets. The uncertainty in m4jj, c p T ,and d p T in the mass region 115 < m4< 130 GeV, the prediction is shown by the hatched band, which includes the theo­ for an integrated luminosity of 139 fb-1 collected at . s = 13 TeV. A retical uncertainties of the SM cross section for the signal and the ZZ* SM Higgs boson signal with a mass mH = 125 GeV is assumed. The background 123 T Njets bins in the mass region 115 < m4< 130 GeV, for an integrated luminosity of 139 fb-1 collected at . s = 13 TeV. A SM Higgs boson signal with a mass mH = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which includes the theoret­ical uncertainties of the SM cross section for the signal and the ZZ* background Fig. 11 The observed and expected (pre-ft) distributions of p4 in T |y4| bins in the mass region 115 < m4< 130 GeV, for an integrated luminosity of 139 fb-1 collected at . s = 13 TeV. A SM Higgs boson signal with a mass mH = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which includes the theoret­ical uncertainties of the SM cross section for the signal and the ZZ* background 123 Fig. 12 The observed and expected (pre-ft) distribution in bins of the leading vs. subleading Z boson mass, m12 vs. m34. The same distri­bution in the 2D plane is provided in the inset plot, where the black dots depict data and the blue and pink shaded areas represent simulated signal and background, respectively. The red lines depict the bin bound­aries, chosen as described in Sect. 7. These distributions correspond to the mass region 115 < m4< 130 GeV for an integrated luminosity of 139 fb-1 collected at . s = 13 TeV. A SM Higgs boson signal with a mass mH = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the signal and the ZZ* background Fig. 13 The observed and expected (pre-ft) distribution in bins of the transverse momentum of the four-lepton plus leading-jet system vs. 4j the invariant mass of the four-lepton plus leading-jet system, p T vs. m4j. The same distribution in the 2D plane is provided in the inset plot, where the black dots depict data and the blue and pink shaded areas represent simulated signal and background, respectively. The red lines depict the bin boundaries, chosen as described in Sect. 7.These distributions correspond to the mass region 115 < m4< 130 GeV for an integrated luminosity of 139 fb-1 collected at . s = 13 TeV. A SM Higgs boson signal with a mass mH = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the signal and the ZZ* background 123 Fig. 14 The observed and expected (pre-ft) distribution in bins of the transverse momentum of the four-lepton system vs. the transverse momentum of the four-lepton plus leading-jet system, p4 vs. p 4j.The TT same distribution in the 2D plane is shown in the inset plot, where the black dots depict data and the blue and pink shaded areas represent simulated signal and background, respectively. The red lines depict the bin boundaries, chosen as described in Sect. 7. These distributions cor­ respond to the mass region 115 < m4< 130 GeV for an integrated luminosity of 139 fb-1 collected at . s = 13 TeV. A SM Higgs boson signal with a mass mH = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which includes the theoret­ical uncertainties of the SM cross section for the signal and the ZZ* background Fig. 15 The observed and expected (pre-ft) distribution in bins of the transverse momentum of the four-lepton system vs. the transverse 4 lead. jet momentum of the leading jet, pT vs. p T . The same distribution in the 2D plane is provided in the inset plot, where the black dots depict data and the blue and pink shaded areas represent simulated signal and background, respectively. The red lines depict the bin boundaries, chosen as described in Sect. 7. These distributions correspond to the mass region 115 < m4< 130 GeV for an integrated luminosity of 139 fb-1 collected at . s = 13 TeV. A SM Higgs boson signal with a mass mH = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the signal and the ZZ* background 123 Fig. 16 The observed and expected (pre-ft) distribution in bins of the lead. jet transverse momentum of the leading vs. subleading jet, p T vs. sublead. jet p T . The same distribution in the 2D plane is provided in the inset plot, where the black dots depict data and the blue and pink shaded areas represent simulated signal and background, respectively. The red lines depict the bin boundaries, chosen as described in Sect. 7.These distributions correspond to the mass region 115 < m4< 130 GeV for an integrated luminosity of 139 fb-1 collected at . s = 13 TeV. A SM Higgs boson signal with a mass mH = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the lead. jet sublead. jet signal and the ZZ* background. p and p are required TT to have pT greater than 30 GeV Fig. 17 The observed and expected (pre-ft) distribution in bins of the lead. jet transverse momentum vs. the rapidity of the leading jet, p T vs. |ylead. jet |. The same distribution in the 2D plane is provided in the inset plot, where the black dots depict data and the blue and pink shaded areas represent simulated signal and background, respectively. The red lines depict the bin boundaries, chosen as described in Sect. 7.These distributions correspond to the mass region 115 < m4< 130 GeV for an integrated luminosity of 139 fb-1 collected at . s = 13 TeV. A SM Higgs boson signal with a mass mH = 125 GeV is assumed. The uncertainty in the prediction is shown by the hatched band, which includes the theoretical uncertainties of the SM cross section for the signal and the ZZ* background 123 Table 7 The fducial and total cross sections of Higgs boson produc­tion measured in the 4 fnal state. The fducial cross sections are given separately for each decay fnal state, and for same-and different-favour decays. The inclusive fducial cross section is measured as the sum of all fnal states (.sum), as well as by combining the per-fnal-state measure­ments assuming SM ZZ*› 4 relative branching ratios (.comb). For the total cross section (.tot), the Higgs boson branching ratio at mH = 125 GeV is assumed. The total SM prediction is accurate to N3LO in QCD and NLO EW for the ggF process. For the fducial cross-section predictions, the SM cross sections are multiplied by the acceptances determined using the NNLOPS sample for ggF. For all the other pro­duction modes, the cross sections from the samples discussed in Sect. 3 are added. The p-values indicating the probability of compatibility of the measurement and the SM prediction are shown as well. They do not include the systematic uncertainty in the theoretical predictions Cross section Data ( ± (stat.) ± (syst.)) Standard p-value [fb] Model (%) prediction .4µ 0.81 ±0.12 ±0.03 0.90 ± 0.05 46 .4e 0.62 ±0.17 ±0.05 0.90 ± 0.05 14 .2µ2e 0.74 ±0.15 ±0.05 0.80 ± 0.04 67 .2e2µ 1.01 ±0.15 ±0.03 0.80 ± 0.04 15 .4µ+4e 1.43 ±0.21 ±0.05 1.81 ± 0.10 10 .2µ2e+2e2µ 1.75 ±0.21 ±0.06 1.61 ± 0.09 51 .sum 3.18 ±0.31 ±0.11 3.41 ± 0.18 49 .comb 3.28 ±0.30 ±0.11 3.41 ± 0.18 67 .tot [pb] 53.5 ±4.9 ±2.1 55.7 ± 2.8 66 (a) Fig. 18 a The fducial cross sections (left two panels) and total cross section (right panel) of Higgs boson production measured in the 4 fnal state. The fducial cross sections are shown separately for each decay fnal state, and for same-and different-favour decays. The inclu­sive fducial cross section is measured as the sum of all fnal states, as well as by combining the per-fnal-state measurements assuming SM ZZ*› 4 relative branching ratios. The total SM prediction is accu­rate to N3LO in QCD for the ggF process. The cross sections for all other Higgs boson production modes XH are added. For the fducial cross-section predictions, the SM cross sections are multiplied by the (b) acceptances determined using the NNLOPS sample for ggF and the samples discussed in Sect. 3 for the other production modes. For the total cross section, the predictions by the generators NNLOPS, Hres, and MadGraph5_aMC@NLO-FxFx are also shown. The error bars on the data points show the total uncertainties, while the systematic uncertainties are indicated by the boxes. The shaded bands around the theoretical predictions indicate the PDF and scale uncertainties, calcu­lated as described in Sect. 8.2. b The correlation between the fducial cross sections for the four individual decay fnal states and the ZZ* normalisation factor 123 Fig. 19 a Differential fducial cross section for the transverse momen­ 4 tum pT of the Higgs boson, along with b the corresponding correlation matrix between the measured cross sections and the ZZ* background normalisation factors. The measured cross sections are compared with ggF predictions by MadGraph5_aMC@NLO-FxFx, NNLOJET, RadISH,and NNLOPS,where MadGraph5_aMC@NLO-FxFx and NNLOPS are normalised to the N3LO total cross section with the listed K-factors while the normalisations for NNLOJET and RadISH are to their respective predicted cross sections. MC-based predictions for all other Higgs boson production modes XH are normalised to the SM predictions. The error bars on the data points show the total uncer­tainties, while the systematic uncertainties are indicated by the boxes. The shaded bands on the expected cross sections indicate the PDF and scale systematic uncertainties, calculated as described in Sect. 8.2.This includes the uncertainties related to the XHproduction modes. The p­values indicating the probability of compatibility of the measurement and the SM prediction are shown as well. They do not include the sys­tematic uncertainty in the theoretical predictions. The central panel of a shows the ratio of different predictions to the data, and the grey area rep­resents the total uncertainty of the measurement. The bottom panel of a shows the ratios of the ftted values of the ZZ* normalisation factors to the predictions from MC simulation discussed in Sect. 3. As indicated by the horizontal error bars, the ZZ* normalisation is estimated in each of the frst three p4 bins separately, while the next two bins share a T common estimation factor, as do the last fve bins 123 Fig. 20 Differential fducial cross sections for a the invariant mass m12 of the leading Z boson and c the invariant mass m34 of the subleading Z boson, along with the corresponding correlation matrices between the measured cross sections and the ZZ* background normalisation factors (b and d) 123 Fig. 21 Differential fducial cross sections for a the rapidity, |y4|, of the Higgs boson and c the production angle, |cos . *|, of the leading Z boson. The corresponding correlation matrices between the measured cross sections and the ZZ* background normalisation factors are also shown (b and d) 123 Fig. 22 Differential fducial cross sections for a production angle, responding correlation matrices between the measured cross sections cos .1, of the anti-lepton from the leading Zboson and c the production and the ZZ* background normalisation factors are also shown (b and d) angle, cos .2, of the anti-lepton from the subleading Z boson. The cor­ 123 Fig. 23 Differential fducial cross sections for a the azimuthal angle, and the plane formed by its four-momentum and the z-axis. The corre­., between the decay planes of the two reconstructed Z bosons and c sponding correlation matrices between the measured cross sections and the azimuthal angle, .1, between the decay plane of the leading Zboson the ZZ* background normalisation factors are also shown (b and d) 123 Fig. 24 Differential fducial cross sections for a the jet multiplicity, between the measured cross sections and the ZZ* background normal-Njets, in the selected events, and c, the inclusive jet multiplicity. In the isation factors is also shown in b.Inthe Njets distribution in c, all bins Njets distribution in a, the frst three bins are exclusive in number of are inclusive, with the frst bin including all events, the second including jets, while the fourth is inclusive. The corresponding correlation matrix all events with at least one jet, and so on 123 123 Fig. 26 Differential fducial cross sections for a the transverse momen-the highest and second-highest transverse momenta. The frst bin con- lead. jet tum of the leading jet, p , in events with at least one jet, and c tains events which do not pass the jet requirements. The corresponding T sublead. jet correlation matrices between the measured cross sections and the ZZ* the transverse momentum of the subleading jet, p ,inevents T background normalisation factors are also shown (b and d) with at least two jets. Leading and subleading jets refer to the jets with 123 Fig. 27 Differential fducial cross sections for a the invariant mass of the two highest-pT jets, mjj, in events with at least two jets. The corresponding correlation matrix between the measured cross sections and the ZZ* background normalisation factors is also provided (b) 123 Fig. 28 Differential fducial cross sections for a the distance between jets that pass the jet selection requirements. Finally, the corresponding these two jets in pseudorapidity, .jj,and c the distance between the correlation matrices between the measured cross sections and the ZZ* two jets in ., .jj. The frst bin contains events with fewer than two background normalisation factors are provided (b and d) 123 Fig. 29 Differential fducial cross sections for a the transverse momen-in events with at least two jets. The corresponding correlation matrices tum of the four-lepton plus jet system, in events with at least one jet, between the measured cross sections and the ZZ* background normal­and c the transverse momentum of the four-lepton plus dijet system, isation factors are also shown (b and d) 123 Fig. 30 Differential fducial cross sections for a the invariant mass of at least two jets. The corresponding correlation matrices between the the four-lepton plus jet system, in events with at least one jet, and c measured cross sections and the ZZ* background normalisation factors the invariant mass of the four-lepton plus dijet system, in events with are also shown (b and d) 123 123 Fig. 32 Differential fducial cross sections for the leading vs. subleading Z boson mass, m12 vs. m34,in a µµ and b ee fnal states, along with c their corresponding correlation matrix between the measured cross sections and the ZZ* background normalisation factors. The bin boundaries are defned in Fig. 12 123 4 Fig. 33 a Double differential fducial cross sections of the pdistribution in |y4| bins. The corresponding correlation matrix between the measured T 4 cross sections and the ZZ* background normalisation factors is shown in b.The p-values shown are calculated for all bins across both pand T |y4| simultaneously 4 Fig. 34 a Double differential fducial cross sections of the pdistribution in Njets bins. The corresponding correlation matrix between the measured T 4 cross sections and the ZZ* background normalisation factors is shown in b.The p values shown are calculated for all bins across both pand T Njets simultaneously 123 Fig. 35 a Differential fducial cross section for the transverse momen­tum of the four-lepton system vs. the transverse momentum of the four­ 4 4j lepton plus jet system, pT vs. p T and b the corresponding correlation Fig. 36 a Double differential fducial cross section for the transverse momentum of the four-lepton plus jet system vs. the invariant mass of the four-lepton plus jet system, p 4j vs. m4j and b the corresponding T matrix between the measured cross sections and the ZZ* background normalisation factors. The bin boundaries are defned in Fig. 14 correlation matrix between the measured cross sections and the ZZ* background normalisation factors. The bin boundaries are defned in Fig. 13 123 Fig. 37 a Double differential fducial cross section for the transverse matrix between the measured cross sections and the ZZ* background momentum of the four-lepton system vs. the transverse momentum of normalisation factors. The bin boundaries are defned in Fig. 15 4 lead. jet the leading jet, pT vs. p T ,and b the corresponding correlation Fig. 38 a Double differential fducial cross section for the trans-matrix between the measured cross sections and the ZZ* back-verse momentum of the leading jet vs. the rapidity of the lead-ground normalisation factors. The bin boundaries are defned in lead. jet ing jet, p vs. |ylead. jet |,and b the corresponding correlation Fig. 17 T 123 lead. jet sublead. jet momentum of leading vs. subleading jet, p T vs. p T ,and tions and the ZZ* background normalisation factor. The bin boundaries are defned in Fig. 16 123 10 Interpretation of differential distributions The measured differential fducial cross sections can be used to probe possible effects of physics beyond the SM. Two pos­sible interpretations of the results are presented. In Sect. 10.1, the m12 vs. m34 double differential cross section is used to probe several BSM scenarios within the framework of pseudo-observables [142], while in Sect. 10.2,the pT4 differ­ential cross section is used to constrain the Yukawa couplings of the Higgs boson with the b-and c-quarks [143]. 10.1 Constraints on BSM effects within the pseudo-observables framework In this interpretation, the couplings related to the BSM con­tact interactions of the Higgs boson decaying into four lep­tons are considered. As defned in Ref. [109], the pseudo­observables framework introduces modifed contact terms between the Higgs boson, the Z boson, and the left-or right-handed leptons Z,L and Z,R . In order to reduce the number of independent parameters considered in the pseudo­observables framework for the H ›4 decay amplitudes, specifc symmetries are imposed [109]. In all the scenar­ios considered, the parameters associated with other pseudo­ (CP) observables affecting the angular distributions, such as ZZ , (CP)(CP) Z. and .. , are set to zero. Thus, the contact terms con­sidered have the same Lorentz structure as the SM term and only affect the dilepton invariant mass distributions. Four scenarios are investigated [109]. In the frst scenario, referred to as the .avour-universal contact terms, the param­eters of interest are the Z,L and the Z,R couplings, where the interactions described by these contact terms have the same strength for electrons and muons. The second scenario considered is linear EFT-inspired, where lepton-favour uni­versality is again imposed and the Higgs boson is assumed to be part of a SU(2)L doublet. This is refected in the condition R =0.48L [109]. The parameters of interest are L and the coupling strength of the Higgs boson to the Z boson, .ZZ .In the following two scenarios, lepton-favour universality can be violated. For the third scenario, referred to as .avour non­universal vector contact terms, the helicity structure of the couplings is fxed to be vector (Z,eL = Z,eR , Z,µL = Z,µR ) and the independent parameters are the couplings to elec­trons Z,eR and muons Z,µR . Finally, a fourth scenario with .avour non-universal axial-vector contact terms is consid­ered. In this case the helicity structure of the couplings is fxed to be axial-vector, with the parameters of interest being the couplings to electrons Z,eR and muons Z,µR and the condition Z,L =-Z,R is imposed. Using the m12 vs. m34 double differential cross sections for these interpreta­tions provides sensitivity to distinguish between potential contributions from the contact terms and those from changes to the coupling strength of the Higgs boson to the Z boson. The variation of the fducial cross section as a function of the BSM couplings is computed relative to the SM by MadGraph5_aMC@NLO in each of the bins of the mea­sured m12 vs. m34 differential cross section. This is done for a grid of points in the BSM parameter space in each scenario. These relative variations are then ft to a two­dimensional quadratic function. The parameterisation, which also includes any changes in the acceptance, is then encoded into the likelihood and corresponding limits are set for each scenario. Figure 40 shows the limits on BSM interactions of the Higgs boson for the four considered cases. The correspond­ing 95% confdence intervals for each of the parameters are listed in Table 8. 10.2 Constraints on Yukawa couplings Although the couplings of the Higgs boson to the top and bottom quarks have been established recently, obtaining evi­dence for the coupling of the Higgs boson to the charm quark is more challenging. Direct methods are limited either by low branching fraction (H ›J/.. ›µ+µ-. )orby large backgrounds (H ›cc—). Nevertheless, it has been shown recently that it is possible to indirectly constrain H the Yukawa coupling to quarks by analysing the pT spec­trum [19,143]. In particular, the effects of BSM contribu­tions to the coupling modifers for the Higgs boson to charm quarks, .c, and for the Higgs boson to bottom quarks, .b,are investigated. The fducial cross section is parameterised as a function of the .c and .b values in each measured bin of pT4 . Both the gluon-initiated and quark-initiated components of the predic­tion show a larger variation, different in size and shape, of the cross section especially at pT4< 10 GeV. The theoretical uncertainties of these predictions are calculated separately for the gluon-initiated and quark-initiated components by varying the normalisation and factorisation scales by factors of two. The confguration with largest uncertainty across all the pT4 bins across .c .[-10, 10] and .b .[-2, 2] ranges is used to defne the systematic uncertainty for the predic­tions. These uncertainties are uncorrelated for each compo­nent. The impact of this uncertainty is about 20% on the expected limits. Three different scenarios are considered, with an increas­ing level of model dependency. In the frst case, the mod­ifed fducial cross sections in each bin due to the value of the b-and c-quark Yukawa couplings are ft to the data together with a global normalisation factor. The correspond­ing observed limits on .c and .b are shown in Fig. 41a. The sensitivity in this case comes mainly from the modifcation of the shape induced by .c and .b, while possible overall nor­ 123 (a) (c) Fig. 40 Observed limits at 68% and 95% CL on the modifed Higgs boson decays within the framework of the pseudo-observables: a favour universal contact terms; b linear EFT-inspired; c favour non-universal vector contact terms; d favour non-universal axial-vector contact terms. The pvalues shown represent the probability of compatibility between malisation effects are factorised out. In a second scenario, no additional normalisation factor is introduced in the likelihood and the obtained limits for the Yukawa couplings are shown in Fig. 41b. Finally, in a third scenario, a modifcation to the total width, and correspondingly to the branching ratio as function of the modifed Yukawa couplings, is also encoded in the likelihood and the corresponding limits are shown in Fig. 41c. The 95% confdence intervals for the frst and sec­ ond scenarios are also listed in Table 9. These are comparable to results from direct searches in VH, H › cc —[144,145]. Constraining .b to the results from Ref. [146] leads to a less than 5% improvement in the observed limits for .c for the scenarios considered. (b) (d) thedataand the m12 vs. m34 prediction corresponding to the best-ft values of the parameters of interest for each of the four scenarios con­sidered. The SM predictions (*) and the observed best-ft values (+) are indicated on the plots Table 8 Confdence intervals for the scenarios considered in the pseudo-observables framework. Based on the observed 2D exclusion contours, 1D exclusion intervals are provided for the EFT-inspired, favour non-universal vector, and favour non-universal axial-vector sce­narios. The observed limits are calculated while profling the other parameters of interest. For the EFT-inspired interpretation, the limits are derived assuming .ZZ . 0. This constraint has no impact on the limit as the analysis is not sensitive to the sign of this parameter Interpretation Parameter best-ft 95% confdence value interval EFT-inspired L =0.03 [-0.25, 0.17] .ZZ =0.93 [0.51, 1.16] Flavour non-universal Ze = -0.005 [-0.097, 0.082] vector Zµ = 0.054 [-0.131, 0.114] Flavour non-universal Ze = -0.022 [-0.056, 0.012] axial-vector Zµ = 0.008 [-0.016, 0.033] 123 (a) (b) Fig. 41 Observed limits at 95% CL on Yukawa couplings .c and .b for the three scenarios considered: a only the p4 shape is used to constrain T 4 .c and .b; b the predicted pT differential cross section is used; c both the prediction of the pT4 differential cross section and the modifcation Table 9 Confdence intervals for the Yukawa couplings. Based on the observed 2D exclusion contours, 1D exclusion intervals are only pro­vided for interpretations where modifcation to the p4 shape and predic- T tions are considered. The observed limits are calculated while profling the other parameter of interest Interpretation Parameter best-ft 95% confdence value interval Modifcations to only .c =-1.1 [-11.7, 10.5] pT4 shape .b = 0.28 [-3.21, 4.50] Modifcations to .c = 0.66 [-7.46, 9.27] pT4 predictions .b = 0.55 [-1.82, 3.34] (c) to the branching ratio due to the .c and .b values are used. The pvalues shown represent the probability of compatibility between the data and the pT4 prediction corresponding to the best-ft values of .c and .b.The SM predictions (*) and the observed best-ft values (+) are indicated on the plots 11 Summary Fiducial inclusive and differential cross-section measure­ments of the Higgs boson in the H › ZZ*› 4 decay channel are presented. They are based on 139 fb-1 of . s = 13 TeV proton-proton collisions recorded by the ATLAS detector at the LHC in 2015-2018. The inclusive fducial cross section in the H › ZZ*› 4 decay channel is measured to be .fd = 3.28 ± 0.30 (stat.) ± 0.11 (syst.) fb, in agreement with the Standard Model prediction .fd,SM = 3.41 ± 0.18 fb. The measurement is about 40% more pre­cise than the previous ATLAS result. The inclusive fducial cross section is also extrapolated to the full phase space. Differential cross sections defned in a fducial region close 123 to the reconstructed event selection are measured for sev­eral variables sensitive to the Higgs boson production and decay such as the transverse momentum of the Higgs boson, the number of jets produced in association with the Higgs boson, the leading and subleading invariant masses of the lepton pairs. The measured cross sections are compared with different Standard Model predictions and in general good agreement is found. The results are also used to set new and more stringent constraints on BSM scenarios where contact term interactions in the H ›4 amplitudes are introduced. In addition, the p4 spectrum is used to constrain the b-and c- T quark Yukawa couplings of the Higgs boson. In the scenario with minimal assumptions, values of .c outside the range .c .[-12, +11]are excluded at 95% CL. Acknowledgements We thank CERN for the very successful oper­ation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated effciently. We acknowl­edge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIEN­CIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Cen­ter, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, The Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Sk³odowska-Curie Actions and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-fnanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya and PROMETEO Programme Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Den­mark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (The Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of com­puting resources are listed in Ref. [149]. Data Availability Statement This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All ATLAS sci­entifc output is published in journals, and preliminary results are made available in Conference Notes. All are openly available, without restric­tion on use by external parties beyond copyright law and the standard conditions agreed by CERN. Data associated with journal publications are also made available: tables and data from plots (e.g. cross section values, likelihood profles, selection effciencies, cross section limits, ...) are stored in appropriate repositories such as HEPDATA (http:// hepdata.cedar.ac.uk/). ATLAS also strives to make additional material related to the paper available that allows a reinterpretation of the data in the context of new theoretical models. For example, an extended encapsulation of the analysis is often provided for measurements in the framework of RIVET (http://rivet.hepforge.org/)”. This information is taken from the ATLAS Data Access Policy, which is a public docu­ment that can be downloaded from http://opendata.cern.ch/record/413 [opendata.cern.ch].] Open Access This article is licensed under a Creative Commons Attri­bution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, pro-vide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indi­cated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permit­ted use, you will need to obtain permission directly from the copy­right holder. To view a copy of this licence, visit http://creativecomm ons.org/licenses/by/4.0/. Funded by SCOAP3. Appendix A Results with regularised unfolding For all the variables investigated in this paper, the unfold­ing matrix used is well conditioned and no regularisation is required, as discussed in Sect. 7. Nevertheless, a Tikhonov lead. jet regularisation has been tested for the Njets and p T observables where perceptible off-diagonal terms in the response matrix are observed. In the Tikhonov regularisa­tion [147], a prior assumption about the fnal result of the measurement is added to the PDF, where the impact of this assumption is controlled by a tunable parameter, . . In prac-tice, this method is implemented by adding a penalty term to the negative log-likelihood that is minimised in the ft as n-1   2  .i+1 .i .i .i-1 . · --- , .i+1,truth .i,truth .i,truth .i-1,truth i=2 where .i is the cross section in bin i. Therefore, a second­derivative expression for the curvature is used, with the parameters normalised by their expected values from the MC simulation as done in the SVD unfolding method [148]. As is done for the main results, only the signal is unfolded. lead. jet The unfolded Njets and p distributions using the T regularised unfolding with a . parameter set to . =0.6 and 0.7, respectively, are shown in Fig. 42. The uncertainty which accounts for a possible bias in this regularisation ranges from less than 1% to about 10%, depending on the differential bin. As expected, the comparison of Figs. 42a with 24a and Figs. 42c with 26a shows that the regularisation tends to reduce the off-diagonal anti-correlation terms of the corre­lation matrix among the measured cross sections, reducing its uncertainty. Nevertheless, the p-values for the different 123 Fig. 42 a, c Differential fducial cross sections as a function of the jet and 0.7 respectively. The corresponding correlation matrix between the multiplicity, Njets, and leading jet pT in events with at least one jet, measured cross sections and the ZZ* background normalisation factors using a regularised matrix unfolding with the . parameters set to 0.6 are also shown in b and d predictions are close to the ones obtained with the matrix unfolding without any regularisation. 123 B Invariant mass of the leading lepton pair in same-.avour and opposite-.avour .nal states Figure 43 presents results for the invariant mass of the leading lepton pair in same-favour and different-favour fnal states. Fig. 43 Differential fducial cross sections for the invariant mass m12 of the leading Z boson in a the 4µ and 4e decay channels and b the 2e2µ and 2µ2e decay channels. The corresponding correlation matrix is shown in c 123 References 1. ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex] 2. CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). https://doi.org/10.1016/j.physletb.2012.08.021. arXiv:1207.7235 [hep-ex] 3. F. Englert, R. Brout, Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 13, 321 (1964). https://doi.org/ 10.1103/PhysRevLett.13.321 4. P.W. Higgs, Broken symmetries and the masses of gauge Bosons. Phys. Rev. Lett. 13, 508 (1964). https://doi.org/10.1103/ PhysRevLett.13.508 5. G. Guralnik, C. Hagen, T. Kibble, Global conservation laws and massless particles. Phys. Rev. Lett. 13, 585 (1964). https://doi. org/10.1103/PhysRevLett.13.585 6. ATLAS Collaboration, Study of the spin and parity of the Higgs boson in Diboson decays with the ATLAS detector. Eur. Phys. J. C 75, 476 (2015). https://doi.org/10.1140/epjc/ s10052-015-3685-1. arXiv:1506.05669 [hep-ex] [Erratum: Eur. Phys. J. C 76 (2016) 152] 7. CMS Collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys. Rev. D 92, 012004 (2015). https://doi.org/10.1103/ PhysRevD.92.012004. arXiv:1411.3441 [hep-ex] 8. ATLAS Collaboration, Measurements of the Higgs boson pro­duction and decay rates and coupling strengths using pp collision . data at s = 7 and 8 TeV in the ATLAS experiment. Eur. Phys. J. C 76, 6 (2016). https://doi.org/10.1140/epjc/s10052-015-3769-y. arXiv:1507.04548 [hep-ex] 9. CMS Collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur. Phys. J. C 75, 212 (2015). https://doi.org/10.1140/epjc/ s10052-015-3351-7. arXiv:1412.8662 [hep-ex] 10. ATLAS and CMS Collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp colli­ . sion data at s = 7and 8TeV.JHEP 08, 045 (2016). https://doi. org/10.1007/JHEP08(2016)045. arXiv:1606.02266 [hep-ex] 11. ATLAS Collaboration, Measurement of inclusive and differen­tial cross sections in the H › ZZ*› 4 decay channel . in pp collisions at s = 13 TeV with the ATLAS detector. JHEP 10, 132 (2017). https://doi.org/10.1007/JHEP10(2017)132. arXiv:1708.02810 [hep-ex] 12. ATLAS Collaboration, Measurement of the Higgs boson coupling properties in the H › ZZ*› 4 decay channel at . s = 13 TeV with the ATLAS detector. JHEP 03, 095 (2018). https://doi. org/10.1007/JHEP03(2018)095. arXiv:1712.02304 [hep-ex] 13. ATLAS Collaboration, Evidence for the H › bb—decay with the ATLAS detector, JHEP 12, 024 (2017). https://doi.org/10.1007/ JHEP12(2017)024. arXiv:1708.03299 [hep-ex] 14. ATLAS Collaboration, Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detec­tor. Phys. Rev. D 97, 072003 (2018). https://doi.org/10.1103/ PhysRevD.97.072003. arXiv:1712.08891 [hep-ex] 15. ATLAS and CMS Collaborations, Combined Measurement of . the Higgs Boson Mass in pp Collisions at s = 7and 8 TeV with the ATLAS and CMS Experiments. Phys. Rev. Lett. 114, 191803 (2015). https://doi.org/10.1103/PhysRevLett.114. 191803. arXiv:1503.07589 [hep-ex] 16. ATLAS Collaboration, Measurements of Higgs boson proper­ties in the diphoton decay channel with 36 fb-1 of pp colli­ . sion data at s = 13 TeV with the ATLAS detector. Phys. Rev. D 98, 052005 (2018). https://doi.org/10.1103/PhysRevD.98. 052005. arXiv:1802.04146 [hep-ex] 17. CMS Collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton fnal state in pp collisions . at s = 13 TeV. JHEP 11, 047 (2017). https://doi.org/10.1007/ JHEP11(2017)047. arXiv:1706.09936 [hep-ex] 18. CMS Collaboration, Constraints on anomalous Higgs boson cou­plings using production and decay information in the four-lepton fnal state. Phys. Lett. B 775, 1 (2017). https://doi.org/10.1016/j. physletb.2017.10.021. arXiv:1707.00541 [hep-ex] 19. CMS Collaboration, Measurement and interpretation of differen­ . tial cross sections for Higgs boson production at s = 13 TeV. Phys. Lett. B 792, 369 (2019). https://doi.org/10.1016/j.physletb. 2019.03.059. arXiv:1812.06504 [hep-ex] 20. ATLAS Collaboration, Measurement of the production cross sec­tion for a Higgs boson in association with a vector boson in the H › WW*› .. channel in pp collisions at . s = 13 TeV with the ATLAS detector (2019). arXiv:1903.10052 [hep-ex] 21. ATLAS Collaboration, Measurement of the four-lepton invari­ant mass spectrum in 13 TeV proton-proton collisions with the ATLAS detector. JHEP 04, 048 (2019). https://doi.org/10.1007/ JHEP04(2019)048. arXiv:1902.05892 [hep-ex] 22. ATLAS Collaboration, Cross-section measurements of the Higgs boson decaying into a pair of .-leptons in proton-proton col­ . lisions at s = 13 TeV with the ATLAS detector. Phys. Rev. D 99, 072001 (2019). https://doi.org/10.1103/PhysRevD.99. 072001. arXiv:1811.08856 [hep-ex] 23. ATLAS Collaboration, Measurements of gluon-gluon fusion and vector-boson fusion Higgs boson production cross-sections in the . H › WW*› e.µ. decay channel in pp collisions at s = 13 TeV with the ATLAS detector. Phys. Lett. B 789, 508 (2019). https://doi.org/10.1016/j.physletb.2018.11.064. arXiv:1808.09054 [hep-ex] 24. ATLAS Collaboration, Observation of H › bb —decays and VH production with the ATLAS detector, Phys. Lett. B 786, 59 (2018). https://doi.org/10.1016/j.physletb.2018.09.013. arXiv:1808.08238 [hep-ex] 25. ATLAS Collaboration, Constraints on off-shell Higgs boson pro­duction and the Higgs boson total width in ZZ › 4 and ZZ › 22. fnal states with the ATLAS detector. Phys. Lett. B 786, 223 (2018). https://doi.org/10.1016/j.physletb.2018.09.048. arXiv:1808.01191 [hep-ex] 26. ATLAS Collaboration, Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector. Phys. Lett. B 784, 173 (2018). https://doi.org/10.1016/ j.physletb.2018.07.035. arXiv:1806.00425 [hep-ex] 27. ATLAS Collaboration, Measurement of the Higgs boson mass . in the H › ZZ*› 4 and H › .. channels with s = 13 TeV pp collisions using the ATLAS detector. Phys. Lett. B 784, 345 (2018). https://doi.org/10.1016/j.physletb.2018.07.050. arXiv:1806.00242 [hep-ex] 28. ATLAS Collaboration, Combined measurement of differential and total cross sections in the H › .. and the H › ZZ*› 4 . decay channels at s = 13 TeV with the ATLAS detector. Phys. Lett. B 786, 114 (2018). https://doi.org/10.1016/j.physletb.2018. 09.019. arXiv:1805.10197 [hep-ex] 29. ATLAS Collaboration, Electron and photon reconstruction and performance in ATLAS using a dynamical, topologi-cal cell clustering-based approach, ATL-PHYS-PUB-2017-022 (2017).https://cds.cern.ch/record/2298955 30. ATLAS Collaboration, Electron and photon performance mea­surements with the ATLAS detector using the 2015–2017 LHC proton–proton collision data (2019). arXiv:1908.00005 [hep-ex] 31. ATLAS Collaboration, Higgs boson production cross section measurements and their EFT interpretation in the 4 decay chan­ 123 . nel at s = 13 TeV with the ATLAS detector, Eur. Phys. J. C. (2020). https://doi.org/10.1140/epjc/s10052-020-8227-9 32. ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider. JINST 3, S08003 (2008). https://doi.org/ 10.1088/1748-0221/3/08/S08003 33. ATLAS Collaboration, ATLAS Insertable B-Layer Tech­nical Design Report, ATLAS-TDR-19 (2010). https://cds. cern.ch/record/1291633, https://cds.cern.ch/record/1451888 [Addendum: ATLAS-TDR-19-ADD-1, 2012] 34. B. Abbott et al., Production and integration of the ATLAS Insertable B-Layer. JINST 13, T05008 (2018). https://doi.org/10. 1088/1748-0221/13/05/T05008. arXiv:1803.00844 [physics.ins­det] 35. ATLAS Collaboration, Performance of the ATLAS trigger system in 2015, Eur. Phys. J. C 77, 317 (2017). https://doi.org/10.1140/ epjc/s10052-017-4852-3. arXiv:1611.09661 [hep-ex] 36. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo pro­grams: the POWHEG BOX. JHEP 06, 043 (2010). https://doi. org/10.1007/JHEP06(2010)043. arXiv:1002.2581 [hep-ph] 37. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD compu­tations with parton shower simulations: the POWHEG method. JHEP 11, 070 (2007). https://doi.org/10.1088/1126-6708/2007/ 11/070. arXiv:0709.2092 [hep-ph] 38. P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 11, 040 (2004). https://doi.org/10. 1088/1126-6708/2004/11/040. arXiv:hep-ph/0409146 39. E. Bagnaschi, G. Degrassi, P. Slavich, A. Vicini, Higgs produc­tion via gluon fusion in the POWHEG approach in the SM and in the MSSM. JHEP 02, 088 (2012). https://doi.org/10.1007/ JHEP02(2012)088. arXiv:1111.2854 [hep-ph] 40. U. Aglietti, R. Bonciani, G. Degrassi, A. Vicini, Two-loop light fermion contribution to Higgs production and decays. Phys. Lett. B 595, 432 (2004). https://doi.org/10.1016/j.physletb.2004.06. 063. arXiv:hep-ph/0404071 41. K. Hamilton, P. Nason, G. Zanderighi, Finite quark-mass effects in the NNLOPSPOWHEG+MiNLO Higgs generator. JHEP 05, 140 (2015). https://doi.org/10.1007/JHEP05(2015)140. arXiv:1501.04637 [hep-ph] 42. P. Nason, C. Oleari, NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG. JHEP 02, 037 (2010). https://doi.org/10.1007/JHEP02(2010)037. arXiv:0911.5299 [hep-ph] 43. G. Luisoni, P. Nason, C. Oleari, F. Tramontano, HW±/HZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO. JHEP 10, 083 (2013). https:// doi.org/10.1007/JHEP10(2013)083. arXiv:1306.2542 [hep-ph] 44. LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables, CERN­2011-002 (2011). https://doi.org/10.5170/CERN-2011-002. arXiv:1101.0593 [hep-ph] 45. LHC Higgs Cross SectionWorking Group, Handbook of LHC Higgs Cross Sections: 2. Differential Distributions, CERN­2012-002 (2012). https://doi.org/10.5170/CERN-2012-002. arXiv:1201.3084 [hep-ph] 46. LHC Higgs Cross Section Working Group, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, CERN­2013-004 (CERN, Geneva, 2013). https://doi.org/10.5170/ CERN-2013-004. arXiv:1307.1347 [hep-ph] 47. C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, B. Mistlberger, Higgs boson gluon-fusion production in QCD at three loops. Phys. Rev. Lett. 114, 212001 (2015). https://doi.org/10.1103/PhysRevLett. 114.212001. arXiv:1503.06056 [hep-ph] 48. C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC. JHEP 05, 058 (2016). https://doi.org/10.1007/JHEP05(2016)058. arXiv:1602.00695 [hep-ph] 49. S. Actis, G. Passarino, C. Sturm, S. Uccirati, NLO electroweak corrections to Higgs boson production at Hadron colliders. Phys. Lett. B 670, 12 (2008). https://doi.org/10.1016/j.physletb.2008. 10.018. arXiv:0809.1301 [hep-ph] 50. C. Anastasiou, R. Boughezal, F. Petriello, Mixed QCD­electroweak corrections to Higgs boson production in gluon fusion. JHEP 04, 003 (2009). https://doi.org/10.1088/1126-6708/ 2009/04/003. arXiv:0811.3458 [hep-ph] 51. M. Grazzini, H. Sargsyan, Heavy-quark mass effects in Higgs boson production at the LHC. JHEP 09, 129 (2013). https://doi. org/10.1007/JHEP09(2013)129. arXiv:1306.4581 [hep-ph] 52. I.W. Stewart, F.J. Tackmann, Theory uncertainties for Higgs mass and other searches using jet bins. Phys. Rev. D 85, 034011 (2012). https://doi.org/10.1103/PhysRevD.85.034011. arXiv:1107.2117 [hep-ph] 53. M. Ciccolini, A. Denner, S. Dittmaier, Strong and electroweak corrections to the production of a Higgs Boson + 2 jets via weak interactions at the large Hadron collider. Phys. Rev. Lett. 99, 161803 (2007). https://doi.org/10.1103/PhysRevLett.99.161803. arXiv:0707.0381 [hep-ph] 54. M. Ciccolini, A. Denner, S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC. Phys. Rev. D 77, 013002 (2008). https://doi.org/10.1103/ PhysRevD.77.013002. arXiv:0710.4749 [hep-ph] 55. P. Bolzoni, F. Maltoni, S.-O. Moch, M. Zaro, Higgs Boson pro­duction via vector-Boson fusion at next-to-next-to-leading order in QCD. Phys. Rev. Lett. 105, 011801 (2010). https://doi.org/10. 1103/PhysRevLett.105.011801. arXiv:1003.4451 [hep-ph] 56. O. Brein, A. Djouadi, R. Harlander, NNLO QCD corrections to the Higgs-strahlung processes at hadron colliders. Phys. Lett. B 579, 149 (2004). https://doi.org/10.1016/j.physletb.2003.10.112. arXiv:hep-ph/0307206 57. A. Denner, S. Dittmaier, S. Kallweit, A. Mück, Electroweak cor­rections to Higgs-strahlung off W/Z bosons at the Tevatron and the LHC with HAWK. JHEP 03, 075 (2012). https://doi.org/10. 1007/JHEP03(2012)075. arXiv:1112.5142 [hep-ph] 58. L. Altenkamp, S. Dittmaier, R.V. Harlander, H. Rzehak, T.J.E. Zirke, Gluon-induced Higgs-strahlung at next-to-leading order QCD. JHEP 02, 078 (2013). https://doi.org/10.1007/ JHEP02(2013)078. arXiv:1211.5015 [hep-ph] 59. W. Beenakker et al., NLO QCD corrections to t—tH production in hadron collisions. Nucl. Phys. B 653, 151 (2003). https://doi.org/ 10.1016/S0550-3213(03)00044-0. arXiv:hep-ph/0211352 60. S. Dawson, C. Jackson, L. Orr, L. Reina, D. Wackeroth, Associ­ated Higgs production with top quarks at the large hadron collider: NLO QCD corrections. Phys. Rev. D 68, 034022 (2003). https:// doi.org/10.1103/PhysRevD.68.034022. arXiv:hep-ph/0305087 61. Y. Zhang, W.-G. Ma, R.-Y. Zhang, C. Chen, L. Guo, QCD NLO and EW NLO corrections to t— tHproduction with top quark decays at hadron collider. Phys. Lett. B 738, 1 (2014). https://doi.org/10. 1016/j.physletb.2014.09.022. arXiv:1407.1110 [hep-ph] 62. S. Frixione, V. Hirschi, D. Pagani, H.-S. Shao, M. Zaro, Elec­troweak and QCD corrections to top-pair hadroproduction in asso­ciation with heavy bosons. JHEP 06, 184 (2015). https://doi.org/ 10.1007/JHEP06(2015)184. arXiv:1504.03446 [hep-ph] 63. S. Dawson, C. Jackson, L. Reina, D. Wackeroth, Exclusive Higgs boson production with bottom quarks at hadron colliders. Phys. Rev. D 69, 074027 (2004). https://doi.org/10.1103/PhysRevD.69. 074027. arXiv:hep-ph/0311067 64. S. Dittmaier, M. Krämer, M. Spira, Higgs radiation off bottom quarks at the Fermilab Tevatron and the CERN LHC. Phys. Rev. D 70, 074010 (2004). https://doi.org/10.1103/PhysRevD.70. 074010. arXiv:hep-ph/0309204 123 65. R.V. Harlander, W.B. Kilgore, Higgs boson production in bot-tom quark fusion at next-to-next-to leading order. Phys. Rev. D 68, 013001 (2003). https://doi.org/10.1103/PhysRevD.68. 013001. arXiv:hep-ph/0304035 66. A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. 108, 56 (1998). https://doi. org/10.1016/S0010-4655(97)00123-9. arXiv:hep-ph/9704448 67. A. Djouadi, M.M. Mühlleitner, M. Spira, Decays of super­symmetric particles: The Program SUSY-HIT (SUspect-SdecaY­Hdecay-InTerface). Acta Phys. Polon. B 38, 635 (2007). arXiv:hep-ph/0609292 [hep-ph] 68. A. Bredenstein, A. Denner, S. Dittmaier, M.M. Weber, Precise predictions for the Higgs-boson decay H › WW/ZZ › 4 leptons. Phys. Rev. D 74, 013004 (2006). https://doi.org/10.1103/ PhysRevD.74.013004. arXiv:0604011 [hep-ph] 69. A. Bredenstein, A. Denner, S. Dittmaier, M.M. Weber, Radiative corrections to the semileptonic and hadronic Higgs-boson decays H › WW/ZZ › 4 fermions. JHEP 02, 080 (2007). https://doi. org/10.1088/1126-6708/2007/02/080. arXiv:0611234 [hep-ph] 70. S. Boselli, C.M. Carloni Calame, G. Montagna, O. Nicrosini, F. Piccinini, Higgs boson decay into four leptons at NLOPS elec­troweak accuracy. JHEP 06, 023 (2015). https://doi.org/10.1007/ JHEP06(2015)023. arXiv: 1503.07394 [hep-ph] 71. J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G 43, 023001 (2016). https://doi.org/10.1088/ 0954-3899/43/2/023001. arXiv:1510.03865 [hep-ph] 72. S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D 93, 033006 (2016). https://doi.org/10.1103/PhysRevD.93.033006. arXiv:1506.07443 [hep-ph] 73. L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). https://doi.org/10.1140/epjc/ s10052-015-3397-6. arXiv:1412.3989 [hep-ph] 74. R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). https://doi.org/10.1007/JHEP04(2015)040. arXiv:1410.8849 [hep-ph] 75. K. Hamilton, P. Nason, C. Oleari, G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching. JHEP 05, 082 (2013). https://doi.org/ 10.1007/JHEP05(2013)082. arXiv:1212.4504 [hep-ph] 76. K. Hamilton, P. Nason, E. Re, G. Zanderighi, NNLOPS simulation of Higgs boson production. JHEP 10, 222 (2013). https://doi.org/ 10.1007/JHEP10(2013)222. arXiv:1309.0017 [hep-ph] 77. S. Catani, M. Grazzini, Next-to-next-to-leading-order subtrac­tion formalism in Hadron collisions and its application to higgs-Boson production at the large hadron collider. Phys. Rev. Lett. 98, 222002 (2007). https://doi.org/10.1103/PhysRevLett.98.222002. arXiv:hep-ph/0703012 78. M. Grazzini, NNLO predictions for the Higgs boson signal in the H › WW › l.l. and H › ZZ › 4l decay channels. JHEP 02, 043 (2008). https://doi.org/10.1088/1126-6708/2008/02/043. arXiv:0801.3232 [hep-ph] 79. M. Wiesemann et al., Higgs production in association with bottom quarks. JHEP 02, 132 (2015). https://doi.org/10.1007/ JHEP02(2015)132. arXiv:1409.5301 [hep-ph] 80. H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). https://doi.org/10.1103/ PhysRevD.82.074024. arXiv:1007.2241 [hep-ph] 81. T. Sjöstrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008). https:// doi.org/10.1016/j.cpc.2008.01.036. arXiv:0710.3820 [hep-ph] 82. ATLAS Collaboration, Measurement of the Z/. *. boson trans-verse momentum distribution in pp collisions at s = 7TeV with the ATLAS detector. JHEP 09,145 (2014). https://doi.org/ 10.1007/JHEP09(2014)145. arXiv:1406.3660 [hep-ex] 83. ATLAS Collaboration, ATLAS Run 1 Pythia8 tunes, tech. rep. ATL-PHYS-PUB-2014-021, CERN (2014). https://cds.cern.ch/ record/1966419 84. D.J. Lange, The EvtGen particle decay simulation package. Nucl. Instrum. Methods A 462, 152 (2001). https://doi.org/10.1016/ S0168-9002(01)00089-4 85. J. Alwall et al., The automated computation of tree-level and next­to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). https://doi.org/ 10.1007/JHEP07(2014)079. arXiv:1405.0301 [hep-ph] 86. R. Frederix, S. Frixione, Merging meets matching in MC@NLO. JHEP 12, 061 (2012). https://doi.org/10.1007/JHEP12(2012)061. arXiv:1209.6215 [hep-ph] 87. R. Frederix, S. Frixione, E. Vryonidou, M. Wiesemann, Heavy-quark mass effects in Higgs plus jets production. JHEP 08, 006 (2016). https://doi.org/10.1007/JHEP08(2016)006. arXiv:1604.03017 [hep-ph] 88. H. Mantler, M. Wiesemann, Hadronic Higgs production through NLO + PS in the SM, the 2HDM and the MSSM. Eur. Phys. J. C 75, 257 (2015). https://doi.org/10.1140/epjc/s10052-015-3462-1. arXiv:1504.06625 [hep-ph] 89. H. Mantler, M. Wiesemann, Top-and bottom-mass effects in hadronic Higgs production at small transverse momenta through LO+NLL. Eur. Phys. J. C 73, 2467 (2013). https://doi.org/10. 1140/epjc/s10052-013-2467-x. arXiv:1210.8263 [hep-ph] 90. S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, Angular cor­relations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations. JHEP 04, 081 (2007). https://doi.org/ 10.1088/1126-6708/2007/04/081. arXiv:hep-ph/0702198 91. P. Artoisenet, R. Frederix, O. Mattelaer, R. Rietkerk, Auto­matic spin-entangled decays of heavy resonances in Monte Carlo simulations. JHEP 03, 015 (2013). https://doi.org/10.1007/ JHEP03(2013)015. arXiv:1212.3460 [hep-ph] 92. A. Banf, P.F. Monni, G.P. Salam, G. Zanderighi, Higgs­and Z-boson production with a jet veto. Phys. Rev. Lett. 109, 202001 (2012). https://doi.org/10.1103/PhysRevLett.109. 202001. arXiv:1206.4998 [hep-ph] 93. A. Banf et al., Jet-vetoed Higgs cross section in gluon fusion at N3 LO + NNLL with small-R resummation. JHEP 04, 049 (2016). https://doi.org/10.1007/JHEP04(2016)049. arXiv:1511.02886 [hep-ph] 94. P.F. Monni, E. Re, P. Torrielli, Higgs transverse-momentum resummation in direct space. Phys. Rev. Lett. 116, 242001 (2016). https://doi.org/10.1103/PhysRevLett.116.242001. arXiv:1604.02191 [hep-ph] 95. W. Bizon, P.F. Monni, E. Re, L. Rottoli, P. Torrielli, Momentum­space resummation for transverse observables and the Higgs p. at N3 LL + NNLO.JHEP 02, 108 (2018). https://doi.org/10. 1007/JHEP02(2018)108. arXiv:1705.09127 [hep-ph] 96. P.F. Monni, L. Rottoli, P. Torrielli, Higgs transverse momen­tum with a jet veto: a double-differential resummation (2019). arXiv:1909.04704 [hep-ph] 97. M. Grazzini, S. Kallweit, M. Wiesemann, Fully differential NNLO computations with MATRIX. Eur. Phys. J. C 78, 537 (2018). https://doi.org/10.1140/epjc/s10052-018-5771-7. arXiv:1711.06631 [hep-ph] 98. M. Grazzini, S. Kallweit, D. Rathlev, M. Wiesemann, Transverse­momentum resummation for vector-boson pair production at NNLL+NNLO. JHEP 08, 154 (2015). https://doi.org/10.1007/ JHEP08(2015)154. arXiv:1507.02565 [hep-ph] 99. X. Chen, T. Gehrmann, E.W.N. Glover, M. Jaquier, Precise QCD predictions for the production of Higgs + jet fnal states. Phys. Lett. B 740, 147 (2015). https://doi.org/10.1016/j.physletb.2014. 11.021. arXiv:1408.5325 [hep-ph] 123 100. X. Chen, J. Cruz-Martinez, T. Gehrmann, E.W.N. Glover, M. Jaquier, NNLO QCD corrections to Higgs boson production at large transverse momentum. JHEP 10, 066 (2016). https://doi. org/10.1007/JHEP10(2016)066. arXiv:1607.08817 [hep-ph] 101. X. Chen, T. Gehrmann, E.W.N. Glover, A. Huss, Fiducial cross sections for the four-lepton decay mode in Higgs-plus-jet produc­tion up to NNLO QCD. JHEP 07, 052 (2019). https://doi.org/10. 1007/JHEP07(2019)052. arXiv:1905.13738 [hep-ph] 102. S. Boselli et al., Higgs decay into four charged leptons in the pres­ence of dimension-six operators. JHEP 01, 096 (2018). https://doi. org/10.1007/JHEP01(2018)096. arXiv:1703.06667 [hep-ph] 103. A. Bredenstein, A. Denner, S. Dittmaier, M.M. Weber, Precision calculations for the Higgs decays H ›ZZ/WW ›4 leptons. Nucl. Phys. Proc. Suppl. 160, 131 (2006). https://doi.org/10.1016/ j.nuclphysbps.2006.09.104. arXiv:0607060 [hep-ph] 104. L. Altenkamp, S. Dittmaier, H. Rzehak, Renormalization schemes for the two-Higgs-doublet model and applications to h › WW/ZZ ›4 fermions. JHEP 09, 134 (2017). https://doi.org/ 10.1007/JHEP09(2017)134. arXiv:1704.02645 [hep-ph] 105. L. Altenkamp, S. Dittmaier, H. Rzehak, Precision calculations for h ›WW/ZZ ›4 fermions in the Two-Higgs-Doublet Model with Prophecy4f. JHEP 03, 110 (2018). https://doi.org/10.1007/ JHEP03(2018)110. arXiv:1710.07598 [hep-ph] 106. L. Altenkamp, M. Boggia, S. Dittmaier, Precision calculations for h ›WW/ZZ ›4 fermions in a singlet extension of the Stan­dard Model with PROPHECY4F. JHEP 04, 062 (2018). https:// doi.org/10.1007/JHEP04(2018)062. arXiv:1801.07291 [hep-ph] 107. A. Denner, S. Dittmaier, J.-N. Lang, Renormalization of mix­ing angles. JHEP 11, 104 (2018). https://doi.org/10.1007/ JHEP11(2018)104. arXiv:1808.03466 [hep-ph] 108. LHC Higgs Cross SectionWorking Group, Handbook of LHC Higgs Cross Sections: 4. Deciphering the nature of the Higgs sector, CERN-2017-002-M (CERN, Geneva, 2016). https://doi. org/10.23731/CYRM-2017-002. arXiv:1610.07922 [hep-ph] 109. J.S. Gainer et al., Adding pseudo-observables to the four-lepton experimentalist’s toolbox. JHEP 10, 073 (2018). https://doi.org/ 10.1007/JHEP10(2018)073. arXiv:1808.00965 [hep-ph] 110. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, B. Fuks, FeynRules 2.0—A complete toolbox for tree-level phenomenol­ogy, Comput. Phys. Commun. 185, 2250 (2014). arXiv:1310.1921 [hep-ph]. https://doi.org/10.1016/j.cpc.2014.04.012 111. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02, 007 (2009). https://doi.org/10.1088/1126-6708/2009/02/007. arXiv:0811.4622 [hep-ph] 112. T. Gleisberg, S. Höche, Comix, a new matrix element generator. JHEP 12, 039 (2008). https://doi.org/10.1088/1126-6708/2008/ 12/039. arXiv:0808.3674 [hep-ph] 113. F. Cascioli, P. Maierhofer, S. Pozzorini, Scattering amplitudes with open loops. Phys. Rev. Lett. 108, 111601 (2012). https://doi. org/10.1103/PhysRevLett.108.111601. arXiv:1111.5206 [hep­ph] 114. S. Schumann, F. Krauss, A parton shower algorithm based on Catani–Seymour dipole factorisation. JHEP 03, 038 (2008). https://doi.org/10.1088/1126-6708/2008/03/038. arXiv:0709.1027 [hep-ph] 115. S. Höche, F. Krauss, M. Schönherr, F. Siegert, QCD matrix elements + parton showers. The NLO case. JHEP 04, 027 (2013). https://doi.org/10.1007/JHEP04(2013)027. arXiv:1207.5030 [hep-ph] 116. B. Biedermann, A. Denner, S. Dittmaier, L. Hofer, B. Jäger, + Electroweak corrections to pp › µ+µ-ee-+ X at the LHC: A Higgs Boson Background Study. Phys. Rev. Lett. 116, 161803 (2016). https://doi.org/10.1103/PhysRevLett.116. 161803. arXiv:1601.07787 [hep-ph] 117. B. Biedermann, A. Denner, S. Dittmaier, L. Hofer, B. Jäger, Next­to-leading-order electroweak corrections to the production of four charged leptons at the LHC. JHEP 01, 033 (2017). https://doi.org/ 10.1007/JHEP01(2017)033. arXiv:1611.05338 [hep-ph] 118. F. Caola, K. Melnikov, R. Röntsch, L. Tancredi, QCD cor­rections to ZZ production in gluon fusion at the LHC. Phys. Rev. D 92, 094028 (2015). https://doi.org/10.1103/PhysRevD.92. 094028. arXiv:1509.06734 [hep-ph] 119. F. Caola, K. Melnikov, R. Röntsch, L. Tancredi, QCD correc­tions to W+W- production through gluon fusion. Phys. Lett. B 754, 275 (2016). https://doi.org/10.1016/j.physletb.2016.01.046. arXiv:1511.08617 [hep-ph] 120. J.M. Campbell, R.K. Ellis, M. Czakon, S. Kirchner, Two loop cor­rection to interference in gg ›ZZ.JHEP 08, 011 (2016). https:// doi.org/10.1007/JHEP08(2016)011. arXiv:1605.01380 [hep-ph] 121. K. Melnikov, M. Dowling, Production of two Z-bosons in gluon fusion in the heavy top quark approximation. Phys. Lett. B 744, 43 (2015). https://doi.org/10.1016/j.physletb.2015.03.030. arXiv:1503.01274 [hep-ph] 122. M. Bonvini, F. Caola, S. Forte, K. Melnikov, G. Ridolf, Signal­background interference effects for gg ›H ›W+W-beyond leading order. Phys. Rev. D 88, 034032 (2013). https://doi.org/10. 1103/PhysRevD.88.034032. arXiv:1304.3053 [hep-ph] 123. C.S. Li, H.T. Li, D.Y. Shao, J. Wang, Soft gluon resummation in the signal-background interference process of gg(›h* ) ›ZZ. JHEP 08, 065 (2015). https://doi.org/10.1007/JHEP08(2015)065. arXiv:1504.02388 [hep-ph] 124. ATLAS Collaboration, Studies on top-quark Monte Carlo mod­elling for Top2016, ATL-PHYSPUB-2016-020 (2016). https:// cds.cern.ch/record/2216168 125. ATLAS Collaboration, The ATLAS Simulation Infrastructure, Eur. Phys. J. C 70, 823 (2010). https://doi.org/10.1140/epjc/ s10052-010-1429-9. arXiv:1005.4568 [physics.ins-det] 126. S. Agostinelli et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods A 506, 250 (2003). https://doi.org/10.1016/ S0168-9002(03)01368-8 127. R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244 (2013). https://doi.org/10.1016/j.nuclphysb.2012.10. 003. arXiv:1207.1303 [hep-ph] 128. ATLAS Collaboration, The Pythia 8 A3 tune description of ATLAS minimum bias and inelastic measurements incorporating the Donnachie–Landshoff diffractive model. ATL-PHYS-PUB­2016-017 (2016). https://cds.cern.ch/record/2206965 129. ATLAS Collaboration, Jet reconstruction and performance using particle fow with the ATLAS Detector, Eur. Phys. J. C 77, 466 (2017). https://doi.org/10.1140/epjc/s10052-017-5031-2. arXiv:1703.10485 [hep-ex] 130. ATLAS Collaboration, Expected performance of the ATLAS b­tagging algorithms in Run-2. ATL-PHYS-PUB-2015-022 (2015). https://cds.cern.ch/record/2037697 131. ATLAS Collaboration, Measurements of b-jet tagging effciency . with the ATLAS detector using tt —events at s = 13 TeV. JHEP 08, 089 (2018). https://doi.org/10.1007/JHEP08(2018)089. arXiv:1805.01845 [hep-ex] 132. Y. Gao et al., Spin determination of single-produced resonances at Hadron colliders. Phys. Rev. D 81, 075022 (2010). https://doi. org/10.1103/PhysRevD.81.075022. arXiv:1001.3396 [hep-ph] 133. M. Pivk, F.R. Le Diberder, SPlot: A statistical tool to unfold data distributions. Nucl. Instrum. Methods A 555, 356 (2005). https:// doi.org/10.1016/j.nima.2005.08.106. arXiv:physics/0402083 134. I.W. Stewart, F.J. Tackmann, J.R. Walsh, S. Zuberi, Jet pT resummation in Higgs production at NNLL+NNLO.Phys. Rev. D 89, 054001 (2014). https://doi.org/10.1103/PhysRevD.89. 054001. arXiv:1307.1808 [hep-ph] 135. X. Liu, F. Petriello, Reducing theoretical uncertainties for exclu­sive Higgs-boson plus one-jet production at the LHC. Phys. Rev. D 87, 094027 (2013). https://doi.org/10.1103/PhysRevD.87. 094027. arXiv:1303.4405 [hep-ph] 123 136. R. Boughezal, X. Liu, F. Petriello, F.J. Tackmann, J.R. Walsh, 128 (2015). https://doi.org/10.1140/epjc/s10052-015-3345-5. Combining resummed Higgs predictions across jet bins. Phys. arXiv:1412.6038 [hep-ph] Rev. D 89, 074044 (2014). https://doi.org/10.1103/PhysRevD.89. 143. F. Bishara, U. Haisch, P.F. Monni, E. Re, Constraining light­074044. arXiv:1312.4535 [hep-ph] quark Yukawa couplings from Higgs distributions. Phys. Rev. 137. S. Gangal, F.J. Tackmann, Next-to-leading-order uncertainties in Lett. 118, 121801 (2017). https://doi.org/10.1103/PhysRevLett. Higgs+2 jets from gluon fusion. Phys. Rev. D 87, 093008 (2013). 118.121801. arXiv:1606.09253 [hep-ph] https://doi.org/10.1103/PhysRevD.87.093008. arXiv:1302.5437 144. CMS Collaboration, A search for the standard model Higgs boson [hep-ph] decaying to charm quarks (2019). arXiv:1912.01662 [hep-ex] 138. J. Bendavid et al., Les Houches 2017: Physics at TeV colliders 145. ATLAS Collaboration, Search for the Decay of the Higgs Boson standard model working group report (2018). arXiv:1803.07977 to Charm Quarks with the ATLAS Experiment. Phys. Rev. Lett. [hep-ph] 120, 211802 (2018). https://doi.org/10.1103/PhysRevLett.120. 139. G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formu-211802. arXiv:1802.04329 [hep-ex] lae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 146. ATLAS Collaboration, Combined measurements of Higgs boson 1554 (2011). https://doi.org/10.1140/epjc/s10052-011-1554-0. production and decay using up to 80 fb-1 of proton-proton colli­ . arXiv:1007.1727 [hep-ex] [Erratum: Eur. Phys. J. C 73 (2013) sion data at s = 13 TeV collected with the ATLAS experiment 2501] (2019). arXiv:1909.02845 [hep-ex] 140. D. de Florian, G. Ferrera, M. Grazzini, D. Tommasini, Higgs 147. A. Tikhonov, Solution of incorrectly formulated problems and the boson production at the LHC: transverse momentum resum-regularization method. Soviet Math. Dokl. 5, 1035/1038 (1963) mation effects in the H › .., H › WW › .. and 148. A. Höcker, V. Kartvelishvili, SVD approach to data unfolding. H › ZZ › 4 decay modes. JHEP 06, 132 (2012). https:// Nucl. Instrum. Methods Ar53 372, 469 (1996). https://doi.org/ doi.org/10.1007/JHEP06(2012)132. arXiv:1203.6321 [hep-ph] 10.1016/0168-9002(95)01478-0. arXiv: 9509307 [hep-ph] 141. A.L. Read, Presentation of the search results: the CLs technique. 149. ATLAS Collaboration, ATLAS Computing Acknowledgements. J. Phys. G 28, 2693 (2002). https://doi.org/10.1088/0954-3899/ ATL-GEN-PUB-2016-002 (2016). https://cds.cern.ch/record/ 28/10/313 2202407 142. M. González-Alonso, A. Greljo, G. Isidori, D. Marzocca, Pseudo-observables in Higgs decays. Eur. Phys. J. C 75, ATLAS Collaboration G. Aad102 , B. Abbott128 , D. C. Abbott103, A. Abed Abud36 , K. Abeling53 , D. K. Abhayasinghe94 , S. H. Abidi166 , O. S. AbouZeid40 , N. L. Abraham155, H. Abramowicz160 , H. Abreu159 , Y. Abulaiti6 , B. S. Acharya67a,67b,n , B. Achkar53 , L. Adam100 , C. Adam Bourdarios5 , L. Adamczyk84a , L. Adamek166 , J. Adelman121 , M. Adersberger114, A. Adiguzel12c , S. Adorni54 , T. Adye143 , A. A. Affolder145 ,Y. Afk159 , C. Agapopoulou65 ,M. N. Agaras38 , A. Aggarwal119 , C. Agheorghiesei27c , J. A. Aguilar-Saavedra139a,ad,139f , A. Ahmad36, F. Ahmadov80 , W. S. Ahmed104 ,X. Ai18 , G. Aielli74a,74b , S. Akatsuka86 , T.P.A.Akesson97 , E. Akilli54 , A.V.Akimov111, K. Al Khoury65 , G. L. Alberghi23a,23b , J. Albert175 , M. J. Alconada Verzini160 , S. Alderweireldt36 , M. Aleksa36 , I. N. Aleksandrov80 ,C. Alexa27b , T. Alexopoulos10, A. Alfonsi120 , F. Alfonsi23a,23b , M. Alhroob128 ,B. Ali141 ,S. Ali157 , M. Aliev165 , G. Alimonti69a , C. Allaire36 , B. M. M. Allbrooke155 , B.W.Allen131 , P.P.Allport21 , A. Aloisio70a,70b , F. Alonso89 , C. Alpigiani147 , E. Alunno Camelia74a,74b, M. Alvarez Estevez99 , M. G. Alviggi70a,70b , Y. Amaral Coutinho81b , A. Ambler104, L. Ambroz134 , C. Amelung26, D. Amidei106 , S. P. Amor Dos Santos139a , S. Amoroso46 , C. S. Amrouche54, F. An79 , C. Anastopoulos148 , N. Andari144 , T. Andeen11 , J. K. Anders20 , S. Y. Andrean45a,45b , A. Andreazza69a,69b , V. Andrei61a, C. R. Anelli175, S. Angelidakis9 , A. Angerami39 , A. V. Anisenkov122a,122b , A. Annovi72a , C. Antel54 , M. T. Anthony148 , E. Antipov129 , M. Antonelli51 , D.J.A.Antrim170 , F. Anulli73a , M. Aoki82 , J. A. Aparisi Pozo173, M. A. Aparo155, L. Aperio Bella46 , N. Aranzabal Barrio36 , V. Araujo Ferraz81a , R. Araujo Pereira81b, C. Arcangeletti51 , A.T.H.Arce49 , F. A. Arduh89, J-F. Arguin110 , S. Argyropoulos52 , J.-H. Arling46 , A.J.Armbruster36 , A. Armstrong170 , O. Arnaez166 , H. Arnold120 , Z. P. Arrubarrena Tame114, G. Artoni134 , K. Asai126, S. Asai162 , T. Asawatavonvanich164, N. Asbah59 , E. M. Asimakopoulou171 , L. Asquith155 , J. Assahsah35d , K. Assamagan29, R. Astalos28a , R.J.Atkin33a , M. Atkinson172, N. B. Atlay19 , H. Atmani65, K. Augsten141 , V.A.Austrup181 , G. Avolio36 , M. K. Ayoub15a , G. Azuelos110,al , H. Bachacou144 , K. Bachas161 , M. Backes134 , F. Backman45a,45b, P. Bagnaia73a,73b , M. Bahmani85 , H. Bahrasemani151, A. J. Bailey173 , V. R. Bailey172 , J. T. Baines143 , C. Bakalis10, O.K.Baker182 , P. J. Bakker120 , E. Bakos16 , D. Bakshi Gupta8 , S. Balaji156 , E.M.Baldin122a,122b , P. Balek179 , F. Balli144 , W. K. Balunas134 ,J. Balz100 , E. Banas85 , M. Bandieramonte138 , A. Bandyopadhyay24 , Sw. Banerjee180,i , L. Barak160 , W.M.Barbe38 , E. L. Barberio105 , D. Barberis55a,55b , M. Barbero102 , G. Barbour95, T. Barillari115 , M-S. Barisits36 ,J. Barkeloo131 , T. Barklow152 , R. Barnea159, B. M. Barnett143 , R. M. Barnett18 , Z. Barnovska-Blenessy60a , A. Baroncelli60a , G. Barone29 , A.J.Barr134 , L. Barranco Navarro45a,45b , 123 F. Barreiro99 , J. Barreiro Guimaraes da Costa15a ,U. Barron160 , S. Barsov137 , F. Bartels61a , R. Bartoldus152 , G. Bartolini102 ,A. E. Barton90 ,P. Bartos28a , A. Basalaev46 , A. Basan100 , A. Bassalat65,ai , M.J.Basso166 , R. L. Bates57 , S. Batlamous35e, J.R.Batley32 , B. Batool150 , M. Battaglia145, M. Bauce73a,73b , F. Bauer144 , K. T. Bauer170, H.S.Bawa31, A. Bayirli12c , J. B. Beacham49 , T. Beau135 , P. H. Beauchemin169 , F. Becherer52 , P. Bechtle24 , H. C. Beck53, H. P. Beck20,p , K. Becker177 , C. Becot46 , A. Beddall12d, A. J. Beddall12a , V. A. Bednyakov80 , M. Bedognetti120 ,C. P. Bee154 , T. A. Beermann181, M. Begalli81b , M. Begel29 , A. Behera154 , J.K.Behr46 , F. Beisiegel24 ,M. Belfkir5 ,A. S. Bell95 , G. Bella160 , L. Bellagamba23b , A. Bellerive34 , P. Bellos9 , K. Beloborodov122b,122a, K. Belotskiy112 , N. L. Belyaev112 , D. Benchekroun35a , N. Benekos10 , Y. Benhammou160 , D. P. Benjamin6 , M. Benoit54 , J. R. Bensinger26 , S. Bentvelsen120 , L. Beresford134 , M. Beretta51 , D. Berge19 , E. Bergeaas Kuutmann171 , N. Berger5 , B. Bergmann141 , L. J. Bergsten26 , J. Beringer18 , S. Berlendis7 , G. Bernardi135 , C. Bernius152 , F. U. Bernlochner24 ,T. Berry94 ,P. Berta100 , C. Bertella15a , A. Berthold48 , I. A. Bertram90 , O. Bessidskaia Bylund181 , N. Besson144 , A. Bethani101 , S. Bethke115 , A. Betti42 , A.J.Bevan93 , J. Beyer115 , D. S. Bhattacharya176 , P. Bhattarai26, V. S. Bhopatkar6 ,R. Bi138, R. M. Bianchi138 , O. Biebel114 , D. Biedermann19 , R. Bielski36 , K. Bierwagen100 ,N. V. Biesuz72a,72b , M. Biglietti75a , T.R.V.Billoud110 , M. Bindi53 , A. Bingul12d ,C. Bini73a,73b , S. Biondi23a,23b , C. J. Birch-sykes101,M. Birman179 , T. Bisanz53,J. P. Biswal3 ,D. Biswas180,i , A. Bitadze101 , C. Bittrich48 ,K. Bjorke133 , T. Blazek28a , I. Bloch46 , C. Blocker26 ,A. Blue57 , U. Blumenschein93 , G. J. Bobbink120 , V. S. Bobrovnikov122a,122b , S. S. Bocchetta97, D. Boerner46 , D. Bogavac14 , A. G. Bogdanchikov122a,122b , C. Bohm45a, V. Boisvert94 , P. Bokan53,171 ,T. Bold84a ,A. E. Bolz61b , M. Bomben135 , M. Bona93 , J. S. Bonilla131 , M. Boonekamp144, C. D. Booth94, H. M. Borecka-Bielska91 , L. S. Borgna95,A. Borisov123, G. Borissov90 , J. Bortfeldt36 , D. Bortoletto134 , D. Boscherini23b ,M. Bosman14 , J. D. Bossio Sola104 , K. Bouaouda35a , J. Boudreau138 , E. V. Bouhova-Thacker90 , D. Boumediene38 , S.K.Boutle57 , A. Boveia127 ,J. Boyd36 ,D. Boye33c , I. R. Boyko80 , A. J. Bozson94 , J. Bracinik21 , N. Brahimi60d , G. Brandt181, O. Brandt32 ,F. Braren46, B. Brau103 ,J. E. Brau131 , W. D. Breaden Madden57, K. Brendlinger46 , L. Brenner36 , R. Brenner171 , S. Bressler179 , B. Brickwedde100 , D. L. Briglin21 , D. Britton57 , D. Britzger115 , I. Brock24 , R. Brock107 , G. Brooijmans39 , W. K. Brooks146d ,E. Brost29 , P. A. Bruckman de Renstrom85 , B. Brüers46 , D. Bruncko28b , A. Bruni23b , G. Bruni23b , L. S. Bruni120 , S. Bruno74a,74b , M. Bruschi23b , N. Bruscino73a,73b , L. Bryngemark152 , T. Buanes17 , Q. Buat36 , P. Buchholz150 , A. G. Buckley57 , I. A. Budagov80 , M. K. Bugge133 , F. Bührer52 , O. Bulekov112 , B. A. Bullard59 , T.J.Burch121 , S. Burdin91 , C.D.Burgard120 , A. M. Burger129 , B. Burghgrave8 ,J. T. P. Burr46 ,C. D. Burton11 , J. C. Burzynski103, V. Büscher100 , E. Buschmann53, P. J. Bussey57 , J.M.Butler25 , C. M. Buttar57 , J. M. Butterworth95 , P. Butti36, W. Buttinger36 , C. J. Buxo Vazquez107, A. Buzatu157 , A. R. Buzykaev122a,122b , G. Cabras23a,23b , S. Cabrera Urbán173 , D. Caforio56 ,H. Cai138 , V.M.M.Cairo152 , O. Cakir4a , N. Calace36 , P. Calafura18 , G. Calderini135 , P. Calfayan66 , G. Callea57 , L. P. Caloba81b, A. Caltabiano74a,74b, S. Calvente Lopez99 ,D. Calvet38 , S. Calvet38 ,T. P. Calvet102 , M. Calvetti72a,72b , R. Camacho Toro135 , S. Camarda36 , D. Camarero Munoz99 , P. Camarri74a,74b , M. T. Camerlingo75a,75b , D. Cameron133 , C. Camincher36 , S. Campana36, M. Campanelli95 , A. Camplani40 , V. Canale70a,70b , A. Canesse104 , M. Cano Bret78 , J. Cantero129 ,T. Cao160 ,Y. Cao172 , M. D. M. Capeans Garrido36 , M. Capua41b,41a , R. Cardarelli74a , F. Cardillo148 , G. Carducci41a,41b , I. Carli142 ,T. Carli36 , G. Carlino70a , B. T. Carlson138 , E.M.Carlson167a,175 , L. Carminati69a,69b , R. M. D. Carney152 , S. Caron119 , E. Carquin146d ,S. Carrá46 , G. Carratta23a,23b ,J. W. S. Carter166 , T. M. Carter50 , M. P. Casado14,f , A. F. Casha166, F. L. Castillo173 , L. Castillo Garcia14 , V. Castillo Gimenez173 , N. F. Castro139a,139e , A. Catinaccio36 ,J. R. Catmore133, A. Cattai36, V. Cavaliere29 , V. Cavasinni72a,72b , E. Celebi12b, F. Celli134,K. Cerny130 , A. S. Cerqueira81a ,A. Cerri155 , L. Cerrito74a,74b , F. Cerutti18 , A. Cervelli23a,23b , S. A. Cetin12b , Z. Chadi35a, D. Chakraborty121 , J. Chan180 , W.S.Chan120 , W.Y.Chan91 , J. D. Chapman32 , B. Chargeishvili158b , D.G.Charlton21 , T. P. Charman93 , C. C. Chau34 ,S. Che127 , S. Chekanov6 , S. V. Chekulaev167a , G.A.Chelkov80,ag , B. Chen79 , C. Chen60a, C. H. Chen79 , H. Chen29 , J. Chen60a , J. Chen39 , J. Chen26, S. Chen136 , S. J. Chen15c , X. Chen15b, Y. Chen60a , Y-H. Chen46 , H. C. Cheng63a , H. J. Cheng15a , A. Cheplakov80 , E. Cheremushkina123, R. Cherkaoui El Moursli35e , E. Cheu7 , K. Cheung64 , T. J. A. Chevalérias144 , L. Chevalier144 , V. Chiarella51 , G. Chiarelli72a , G. Chiodini68a , A. S. Chisholm21 , A. Chitan27b ,I. Chiu162 ,Y. H. Chiu175 , M. V. Chizhov80 , K. Choi11 , A. R. Chomont73a,73b, Y. S. Chow120, L. D. Christopher33e ,M. C. Chu63a ,X. Chu15a,15d , J. Chudoba140 , J. J. Chwastowski85 , L. Chytka130,D. Cieri115 , K.M.Ciesla85 , D. Cinca47 , V. Cindro92 , I. A. Cioara27b , A. Ciocio18 , 123 F. Cirotto70a,70b , Z. H. Citron179,j , M. Citterio69a , D. A. Ciubotaru27b, B. M. Ciungu166,A. Clark54 , M. R. Clark39 ,P. J. Clark50 ,S. E. Clawson101 , C. Clement45a,45b , Y. Coadou102 , M. Cobal67a,67c , A. Coccaro55b , J. Cochran79, R. Coelho Lopes De Sa103 , H. Cohen160, A.E.C.Coimbra36 ,B. Cole39 , A. P. Colijn120, J. Collot58 , P. Conde Muino139a,139h , S. H. Connell33c , I. A. Connelly57 , S. Constantinescu27b, F. Conventi70a,am , A. M. Cooper-Sarkar134 , F. Cormier174, K.J.R.Cormier166, L. D. Corpe95 , M. Corradi73a,73b , E. E. Corrigan97 , F. Corriveau104,ab ,M. J. Costa173 , F. Costanza5 , D. Costanzo148 ,G. Cowan94 , J. W. Cowley32 , J. Crane101 , K. Cranmer125 , R. A. Creager136 , S. Crépé-Renaudin58 , F. Crescioli135 , M. Cristinziani24 ,V. Croft169 , G. Crosetti41a,41b , A. Cueto5 , T. Cuhadar Donszelmann170 ,H. Cui15a,15d, A. R. Cukierman152 , W. R. Cunningham57 , S. Czekierda85 , P. Czodrowski36 , M. M. Czurylo61b , M. J. Da Cunha Sargedas De Sousa60b , J. V. Da Fonseca Pinto81b ,C. Da Via101 , W. Dabrowski84a , F. Dachs36, T. Dado47 , S. Dahbi33e ,T. Dai106 , C. Dallapiccola103 ,M. Dam40 ,G. D’amen29 , V. D’Amico75a,75b , J. Damp100 , J. R. Dandoy136 , M. F. Daneri30 , M. Danninger151 ,V. Dao36 , G. Darbo55b ,O. Dartsi5, A. Dattagupta131, T. Daubney46,S. D’Auria69a,69b ,C. David167b , T. Davidek142 , D.R.Davis49 ,I. Dawson148 , K. De8 , R. De Asmundis70a , M. De Beurs120,S. De Castro23a,23b , N. De Groot119 , P. de Jong120 , H. De la Torre107 ,A. De Maria15c , D. De Pedis73a , A. De Salvo73a , U. De Sanctis74a,74b , M. De Santis74a,74b, A. De Santo155 , J.B.DeVivie De Regie65 , C. Debenedetti145 , D. V. Dedovich80, A. M. Deiana42 , J. Del Peso99 , Y. Delabat Diaz46 , D. Delgove65 , F. Deliot144 , C. M. Delitzsch7 , M. Della Pietra70a,70b , D. Della Volpe54 , A. Dell’Acqua36 , L. Dell’Asta74a,74b ,M. Delmastro5 , C. Delporte65, P. A. Delsart58 , D. A. DeMarco166 , S. Demers182 , M. Demichev80 , G. Demontigny110, S. P. Denisov123,L. D’Eramo121 , D. Derendarz85 , J. E. Derkaoui35d , F. Derue135 ,P. Dervan91 , K. Desch24 , K. Dette166 , C. Deutsch24 ,M. R. Devesa30, P. O. Deviveiros36 , F.A.DiBello73a,73b , A. Di Ciaccio74a,74b , L. Di Ciaccio5 , W.K.DiClemente136 , C. Di Donato70a,70b , A. Di Girolamo36 , G.DiGregorio72a,72b , B. Di Micco75a,75b , R. Di Nardo75a,75b , K. F. Di Petrillo59 , R. Di Sipio166 , C. Diaconu102 ,F. A. Dias40 ,T. Dias Do Vale139a , M.A.Diaz146a, F. G. Diaz Capriles24 , J. Dickinson18 , M. Didenko165 , E. B. Diehl106 , J. Dietrich19 , S. Díez Cornell46 , A. Dimitrievska18 ,W. Ding15b , J. Dingfelder24, S. J. Dittmeier61b , F. Dittus36 ,F. Djama102 , T. Djobava158b , J. I. Djuvsland17 , M.A.B.DoVale81c , M. Dobre27b , D. Dodsworth26 , C. Doglioni97 , J. Dolejsi142 , Z. Dolezal142 , M. Donadelli81d , B. Dong60c , J. Donini38 , A. D’onofrio15c , M. D’Onofrio91 , J. Dopke143 , A. Doria70a ,M. T. Dova89 ,A. T. Doyle57 , E. Drechsler151 , E. Dreyer151 , T. Dreyer53 , A. S. Drobac169 , D. Du60b ,T. A. du Pree120 , Y. Duan60d , F. Dubinin111 , M. Dubovsky28a , A. Dubreuil54 , E. Duchovni179 , G. Duckeck114 , O. A. Ducu36 , D. Duda115 , A. Dudarev36 , A. C. Dudder100 , E. M. Duffeld18, M. D’uffzi101 , L. Dufot65 , M. Dührssen36 ,C. Dülsen181 , M. Dumancic179 , A. E. Dumitriu27b, M. Dunford61a , A. Duperrin102 , H. Duran Yildiz4a , M. Düren56 , A. Durglishvili158b , D. Duschinger48, B. Dutta46 , D. Duvnjak1, G. I. Dyckes136 , M. Dyndal36 , S. Dysch101 , B. S. Dziedzic85 , M. G. Eggleston49,T. Eifert8 , G. Eigen17 , K. Einsweiler18 ,T. Ekelof171 , H. El Jarrari35e , V. Ellajosyula171 , M. Ellert171 , F. Ellinghaus181 , A. A. Elliot93 , N. Ellis36 , J. Elmsheuser29 , M. Elsing36 , D. Emeliyanov143 ,A. Emerman39 , Y. Enari162 , M. B. Epland49 , J. Erdmann47 , A. Ereditato20 , P. A. Erland85 , M. Errenst36 , M. Escalier65 , C. Escobar173 , O. Estrada Pastor173 , E. Etzion160 , H. Evans66 , M.O.Evans155 , A. Ezhilov137 , F. Fabbri57 , L. Fabbri23b,23a , V. Fabiani119 , G. Facini177 , R. M. Faisca Rodrigues Pereira139a , R. M. Fakhrutdinov123, S. Falciano73a , P. J. Falke24 ,S. Falke36 , J. Faltova142 , Y. Fang15a , Y. Fang15a , G. Fanourakis44 , M. Fanti69a,69b , M. Faraj67a,67c,q , A. Farbin8 , A. Farilla75a , E.M.Farina71a,71b , T. Farooque107 , S. M. Farrington50 , P. Farthouat36 , F. Fassi35e , P. Fassnacht36 , D. Fassouliotis9 , M. Faucci Giannelli50 , W.J.Fawcett32 , L. Fayard65 , O. L. Fedin137,o , W. Fedorko174 , A. Fehr20 , M. Feickert172 , L. Feligioni102 , A. Fell148 , C. Feng60b , M. Feng49 , M. J. Fenton170 , A. B. Fenyuk123, S. W. Ferguson43, J. Ferrando46 , A. Ferrante172, A. Ferrari171 , P. Ferrari120 , R. Ferrari71a , D.E.FerreiradeLima61b , A. Ferrer173 , D. Ferrere54 , C. Ferretti106 , F. Fiedler100 , A. Filipcic92 , F. Filthaut119 , K.D.Finelli25 , M.C.N.Fiolhais139a,139c,a ,L. Fiorini173 , F. Fischer114 , J. Fischer100 , W.C.Fisher107 , T. Fitschen21 , I. Fleck150 , P. Fleischmann106 , T. Flick181 , B. M. Flierl114 ,L. Flores136 , L. R. Flores Castillo63a , F. M. Follega76a,76b ,N. Fomin17 ,J. H. Foo166 , G. T. Forcolin76a,76b , B. C. Forland66, A. Formica144 , F. A. Förster14 ,A. C.Forti101 , E. Fortin102,M.G. Foti134 , D. Fournier65 ,H. Fox90 , P. Francavilla72a,72b , S. Francescato73a,73b , M. Franchini23a,23b , S. Franchino61a , D. Francis36, L. Franco5 , L. Franconi20 , M. Franklin59 , G. Frattari73a,73b ,A. N. Fray93 , P. M. Freeman21, B. Freund110 , W. S. Freund81b , E. M. Freundlich47 , D. C. Frizzell128 , D. Froidevaux36 ,J. A. Frost134 , M. Fujimoto126 , C. Fukunaga163 , E. Fullana Torregrosa173 , T. Fusayasu116, J. Fuster173 , A. Gabrielli23b,23a , A. Gabrielli36 , S. Gadatsch54 , P. Gadow115 , G. Gagliardi55b,55a , L. G. Gagnon110 , G. E. Gallardo134 , 123 E. J. Gallas134 , B.J.Gallop143 , G. Galster40, R. Gamboa Goni93 ,K. K. Gan127 , S. Ganguly179 ,J. Gao60a , Y. Gao50 ,Y. S. Gao31,l , F. M. Garay Walls146a , C. García173 , J. E. García Navarro173 , J. A. García Pascual15a , C. Garcia-Argos52 , M. Garcia-Sciveres18 , R. W. Gardner37 , N. Garelli152 , S. Gargiulo52 , C. A. Garner166, V. Garonne133, S.J.Gasiorowski147 , P. Gaspar81b , A. Gaudiello55a,55b , G. Gaudio71a , I.L.Gavrilenko111 , A. Gavrilyuk124 ,C. Gay174 , G. Gaycken46 , E.N.Gazis10 , A. A. Geanta27b ,C. M. Gee145 , C.N.P.Gee143 , J. Geisen97 ,M. Geisen100 , C. Gemme55b , M. H. Genest58 , C. Geng106, S. Gentile73a,73b , S. George94 , T. Geralis44 , L. O. Gerlach53, P. Gessinger-Befurt100 , G. Gessner47 , S. Ghasemi150 , M. Ghasemi Bostanabad175 , M. Ghneimat150 , A. Ghosh65 , A. Ghosh78 , B. Giacobbe23b , S. Giagu73a,73b , N. Giangiacomi23a,23b , P. Giannetti72a , A. Giannini70a,70b , G. Giannini14, S.M.Gibson94 , M. Gignac145 ,D. T. Gil84b , D. Gillberg34 , G. Gilles181 , D. M. Gingrich3,al , M. P. Giordani67a,67c , P.F.Giraud144 , G. Giugliarelli67a,67c , D. Giugni69a , F. Giuli74a,74b , S. Gkaitatzis161 , I. Gkialas9,g , E. L. Gkougkousis14 , P. Gkountoumis10 , L. K. Gladilin113 ,C. Glasman99 , J. Glatzer14 , P. C. F. Glaysher46 , A. Glazov46, G. R. Gledhill131 , I. Gnesi41b,b , M. Goblirsch-Kolb26 , D. Godin110, S. Goldfarb105 , T. Golling54 , D. Golubkov123 , A. Gomes139a,139b , R. Goncalves Gama53 , R. Gonçalo139a,139c , G. Gonella131 , L. Gonella21 , A. Gongadze80 , F. Gonnella21 , J. L. Gonski39 , S. González de la Hoz173 , S. Gonzalez Fernandez14 , R. Gonzalez Lopez91 , C. Gonzalez Renteria18 , R. Gonzalez Suarez171 , S. Gonzalez-Sevilla54 , G. R. Gonzalvo Rodriguez173 , L. Goossens36 , N. A. Gorasia21, P. A. Gorbounov124, H. A. Gordon29 ,B. Gorini36 ,E. Gorini68a,68b , A. Gorišek92 , A. T. Goshaw49 , M.I.Gostkin80 , C. A. Gottardo119 , M. Gouighri35b , A.G.Goussiou147 , N. Govender33c ,C. Goy5 , I. Grabowska-Bold84a , E. C. Graham91 , J. Gramling170,E. Gramstad133 , S. Grancagnolo19 , M. Grandi155 , V. Gratchev137, P. M. Gravila27f , F. G. Gravili68a,68b ,C. Gray57 , H. M. Gray18 ,C. Grefe24 , K. Gregersen97 , I.M.Gregor46 , P. Grenier152 ,K. Grevtsov46 , C. Grieco14 , N. A. Grieser128, A. A. Grillo145,K. Grimm31,k , S. Grinstein14,w ,J.-F. Grivaz65 ,S. Groh100 , E. Gross179, J. Grosse-Knetter53 , Z.J.Grout95 ,C. Grud106, A. Grummer118 , J. C. Grundy134 , L. Guan106 , W. Guan180 , C. Gubbels174 , J. Guenther36 , A. Guerguichon65 , J. G. R. Guerrero Rojas173 , F. Guescini115 , D. Guest170 , R. Gugel100 , T. Guillemin5, S. Guindon36 ,U. Gul57,J. Guo60c ,W. Guo106 ,Y. Guo60a ,Z. Guo102 , R. Gupta46 , S. Gurbuz12c , G. Gustavino128 ,M. Guth52 , P. Gutierrez128 , C. Gutschow95 , C. Guyot144, C. Gwenlan134 , C. B. Gwilliam91 , E. S. Haaland133 , A. Haas125 , C. Haber18 , H. K. Hadavand8, A. Hadef60a , M. Haleem176 , J. Haley129 ,J. J. Hall148 , G. Halladjian107 , G. D. Hallewell102 , K. Hamano175 , H. Hamdaoui35e , M. Hamer24 , G. N. Hamity50 ,K. Han60a,v ,L. Han60a ,S. Han18 , Y.F.Han166 , K. Hanagaki82,t , M. Hance145 , D. M. Handl114 , M. D. Hank37, R. Hankache135 , E. Hansen97 , J. B. Hansen40 , J. D. Hansen40 , M. C. Hansen24 , P. H. Hansen40 , E. C. Hanson101 ,K. Hara168 , T. Harenberg181 , S. Harkusha108 , P. F. Harrison177, N. M. Hartman152, N. M. Hartmann114 , Y. Hasegawa149 ,A. Hasib50 , S. Hassani144 , S. Haug20 , R. Hauser107 , L. B. Havener39 , M. Havranek141,C. M. Hawkes21 , R. J. Hawkings36 , S. Hayashida117 , D. Hayden107 , C. Hayes106 , R. L. Hayes174 , C. P. Hays134 , J.M.Hays93 , H. S. Hayward91 , S. J. Haywood143 ,F. He60a , Y. He164 , M. P. Heath50 , V. Hedberg97 , S. Heer24 , A. L. Heggelund133 , C. Heidegger52 , K. K. Heidegger52 , W. D. Heidorn79 , J. Heilman34 ,S. Heim46 ,T. Heim18 , B. Heinemann46,aj , J. J. Heinrich131 , L. Heinrich36 , J. Hejbal140 , L. Helary46 ,A. Held125 , S. Hellesund133 , C. M. Helling145 , S. Hellman45a,45b , C. Helsens36 , R. C. W. Henderson90, Y. Heng180, L. Henkelmann32 , A. M. Henriques Correia36, H. Herde26 , Y. Hernández Jiménez33e ,H. Herr100, M. G. Herrmann114 , T. Herrmann48,G. Herten52 , R. Hertenberger114 , L. Hervas36 ,T. C. Herwig136 ,G. G. Hesketh95 , N. P. Hessey167a ,H. Hibi83 , A. Higashida162, S. Higashino82 , E. Higón-Rodriguez173 , K. Hildebrand37, J. C. Hill32 , K. K. Hill29 , K. H. Hiller46, S. J. Hillier21 , M. Hils48 , I. Hinchliffe18 , F. Hinterkeuser24,M. Hirose132 ,S. Hirose52 , D. Hirschbuehl181 , B. Hiti92 , O. Hladik140, D. R. Hlaluku33e , J. Hobbs154 ,N. Hod179 , M. C. Hodgkinson148 , A. Hoecker36 , D. Hohn52 , D. Hohov65, T. Holm24 ,T. R. Holmes37 , M. Holzbock114 , L.B.A.H.Hommels32 , T. M. Hong138 , J. C. Honig52 , A. Hönle115 , B. H. Hooberman172 , W. H. Hopkins6 ,Y. Horii117 ,P. Horn48 , L. A. Horyn37 ,S. Hou157 , A. Hoummada35a,J. Howarth57 ,J. Hoya89 , M. Hrabovsky130 , J. Hrdinka77, J. Hrivnac65, A. Hrynevich109 , T. Hryn’ova5 , P.J.Hsu64 ,S.-C. Hsu147 ,Q. Hu29 ,S. Hu60c ,Y. F. Hu15a,15d,an , D. P. Huang95 , Y. Huang60a, Y. Huang15a , Z. Hubacek141 , F. Hubaut102 , M. Huebner24 , F. Huegging24 , T. B. Huffman134 , M. Huhtinen36 , R. Hulsken58 , R. F. H. Hunter34 ,P. Huo154, N. Huseynov80,ac,J. Huston107 ,J. Huth59 , R. Hyneman106 , S. Hyrych28a , G. Iacobucci54 , G. Iakovidis29 , I. Ibragimov150 , L. Iconomidou-Fayard65 , P. Iengo36 , R. Ignazzi40, O. Igonkina120,y,* , R. Iguchi162,T. Iizawa54 ,Y. Ikegami82, M. Ikeno82 , D. Iliadis161 , N. Ilic119,166,ab, F. Iltzsche48,H. Imam35a , G. Introzzi71a,71b , M. Iodice75a , K. Iordanidou167a , V. Ippolito73a,73b , M. F. Isacson171 ,M. Ishino162 , W. Islam129 , C. Issever19,46 , S. Istin159 ,F. Ito168, J. M. Iturbe Ponce63a , 123 R. Iuppa76a,76b , A. Ivina179 , H. Iwasaki82 , J.M.Izen43 , V. Izzo70a , P. Jacka140 , P. Jackson1 , R. M. Jacobs46 , B. P. Jaeger151 ,V. Jain2 , G. Jäkel181 , K. B. Jakobi100 , K. Jakobs52 , T. Jakoubek179 , J. Jamieson57 , K. W. Janas84a , R. Jansky54 , M. Janus53 , P. A. Janus84a ,G. Jarlskog97 , A. E. Jaspan91 , N. Javadov80,ac,T. Javurek36 , M. Javurkova103 , F. Jeanneau144 , L. Jeanty131 , J. Jejelava158a , P. Jenni52,c , N. Jeong46, S. Jézéquel5 ,H. Ji180,J. Jia154 , H. Jiang79, Y. Jiang60a, Z. Jiang152, S. Jiggins52 , F. A. Jimenez Morales38, J. Jimenez Pena115 ,S. Jin15c , A. Jinaru27b, O. Jinnouchi164 ,H. Jivan33e , P. Johansson148 , K. A. Johns7 , C. A. Johnson66 , R. W. L. Jones90 , S. D. Jones155 , T. J. Jones91 , J. Jongmanns61a , J. Jovicevic36 ,X. Ju18 , J. J. Junggeburth115 , A. Juste Rozas14,w , A. Kaczmarska85 , M. Kado73a,73b, H. Kagan127 , M. Kagan152 , A. Kahn39, C. Kahra100 ,T. Kaji178 , E. Kajomovitz159 , C. W. Kalderon29 , A. Kaluza100, A. Kamenshchikov123 , M. Kaneda162 , N. J. Kang145 , S. Kang79 , Y. Kano117 , J. Kanzaki82, L. S. Kaplan180 ,D. Kar33e ,K. Karava134 , M. J. Kareem167b , I. Karkanias161 , S. N. Karpov80 , Z. M. Karpova80 , V. Kartvelishvili90 , A. N. Karyukhin123 , A. Kastanas45a,45b ,C. Kato60c,60d , J. Katzy46, K. Kawade149 , K. Kawagoe88 , T. Kawaguchi117 , T. Kawamoto144 , G. Kawamura53, E.F.Kay175 , S. Kazakos14 , V. F. Kazanin122b,122a, R. Keeler175 , R. Kehoe42 , J. S. Keller34 , E. Kellermann97,D. Kelsey155 , J.J.Kempster21 , J. Kendrick21 , K. E. Kennedy39, O. Kepka140 , S. Kersten181, B. P. Kerševan92 , S. Ketabchi Haghighat166 , M. Khader172 , F. Khalil-Zada13, M. Khandoga144 , A. Khanov129 , A.G.Kharlamov122a,122b , T. Kharlamova122a,122b , E. E. Khoda174 , A. Khodinov165 , T. J. Khoo54 , G. Khoriauli176 , E. Khramov80 , J. Khubua158b ,S. Kido83 , M. Kiehn54 , C.R.Kilby94 , E. Kim164 , Y.K.Kim37 ,N. Kimura95, A. Kirchhoff53 , D. Kirchmeier48 ,J. Kirk143 , A. E. Kiryunin115 , T. Kishimoto162 , D. P. Kisliuk166, V. Kitali46 , C. Kitsaki10 ,O. Kivernyk24 , T. Klapdor-Kleingrothaus52 , M. Klassen61a , C. Klein34, M. H. Klein106 , M. Klein91 , U. Klein91 , K. Kleinknecht100, P. Klimek121 , A. Klimentov29 , T. Klingl24 , T. Klioutchnikova36 , F. F. Klitzner114 , P. Kluit120 , S. Kluth115 , E. Kneringer77 , E. B. F. G. Knoops102 , A. Knue52 , D. Kobayashi88, T. Kobayashi162, M. Kobel48 , M. Kocian152 , T. Kodama162, P. Kodys142 , D. M. Koeck155 , P. T. Koenig24 ,T. Koffas34 , N. M. Köhler36 ,M. Kolb144 , I. Koletsou5 , T. Komarek130 , T. Kondo82, K. Köneke52 , A.X.Y.Kong1 , A. C. König119 , T. Kono126 , V. Konstantinides95, N. Konstantinidis95 , B. Konya97 , R. Kopeliansky66 , S. Koperny84a ,K. Korcyl85 , K. Kordas161 , G. Koren160,A. Korn95 , I. Korolkov14 , E. V. Korolkova148, N. Korotkova113 , O. Kortner115 , S. Kortner115 , V. V. Kostyukhin148,165 , A. Kotsokechagia65 ,A. Kotwal49 , A. Koulouris10 ,A. Kourkoumeli-Charalampidi71a,71b , C. Kourkoumelis9 , E. Kourlitis6 , V. Kouskoura29 , R. Kowalewski175 , W. Kozanecki101 , A. S. Kozhin123 , V. A. Kramarenko113 , G. Kramberger92, D. Krasnopevtsev60a , M.W.Krasny135 , A. Krasznahorkay36 , D. Krauss115 , J.A.Kremer100 , J. Kretzschmar91 , P. Krieger166 , F. Krieter114 , A. Krishnan61b , K. Krizka18 , K. Kroeninger47 , H. Kroha115 ,J. Kroll140 ,J. Kroll136 , K. S. Krowpman107 , U. Kruchonak80 , H. Krüger24 , N. Krumnack79, M.C.Kruse49 , J. A. Krzysiak85 , O. Kuchinskaia165, S. Kuday4b , J. T. Kuechler46 , S. Kuehn36 , T. Kuhl46 , V. Kukhtin80 , Y. Kulchitsky108,ae , S. Kuleshov146b , Y. P. Kulinich172, M. Kuna58 , T. Kunigo86 , A. Kupco140 , T. Kupfer47, O. Kuprash52 , H. Kurashige83 , L. L. Kurchaninov167a , Y. A. Kurochkin108, A. Kurova112 ,M. G. Kurth15a,15d, E. S. Kuwertz36 , M. Kuze164 ,A. K. Kvam147 , J. Kvita130 ,T. Kwan104 , F. La Ruffa41a,41b , C. Lacasta173 ,F. Lacava73a,73b , D. P. J. Lack101 , H. Lacker19 , D. Lacour135 , E. Ladygin80 , R. Lafaye5 , B. Laforge135 , T. Lagouri146b ,S. Lai53 , I. K. Lakomiec84a , J. E. Lambert128 , S. Lammers66, W. Lampl7 , C. Lampoudis161 , E. Lançon29 , U. Landgraf52 , M. P. J. Landon93 , M. C. Lanfermann54 , V. S. Lang52 , J. C. Lange53 , R. J. Langenberg103 , A. J. Lankford170 , F. Lanni29 , K. Lantzsch24 , A. Lanza71a , A. Lapertosa55a,55b , S. Laplace135 , J. F. Laporte144 ,T. Lari69a , F. Lasagni Manghi23a,23b , M. Lassnig36 , T. S. Lau63a , A. Laudrain65 , A. Laurier34 , M. Lavorgna70a,70b ,S. D. Lawlor94 , M. Lazzaroni69a,69b , B. Le101, E. Le Guirriec102 , A. Lebedev79 , M. LeBlanc7 , T. LeCompte6 , F. Ledroit-Guillon58 , A.C.A.Lee95, C. A. Lee29 , G.R.Lee17 ,L. Lee59 ,S. C. Lee157 ,S. Lee79 , B. Lefebvre167a , H. P. Lefebvre94 , M. Lefebvre175 , C. Leggett18 , K. Lehmann151 , N. Lehmann20 , G. Lehmann Miotto36 , W. A. Leight46 , A. Leisos161,u , M.A.L.Leite81d , C.E.Leitgeb114 , R. Leitner142 , D. Lellouch179,* , K.J.C.Leney42 , T. Lenz24 , S. Leone72a , C. Leonidopoulos50 , A. Leopold135 ,C. Leroy110 ,R. Les107 ,C. G. Lester32 , M. Levchenko137 , J. Leveque5 ,D. Levin106 , L.J.Levinson179 ,D. J. Lewis21 ,B. Li15b ,B. Li106 ,C­ Q. Li60a ,F. Li60c,H. Li60a ,H. Li60b ,J. Li60c ,K. Li147 ,L. Li60c ,M. Li15a,15d,Q. Li15a,15d, Q.Y.Li60a , S. Li60c,60d ,X. Li46 ,Y. Li46 ,Z. Li60b ,Z. Li134 ,Z. Li104, Z. Liang15a , M. Liberatore46 , B. Liberti74a , A. Liblong166 ,K. Lie63c ,S. Lim29,C. Y. Lin32 ,K. Lin107 , R. A. Linck66 , R. E. Lindley7, J. H. Lindon21, A. Linss46 , A. L. Lionti54 , E. Lipeles136 , A. Lipniacka17 , T.M.Liss172,ak , A. Lister174 , J. D. Little8 , B. Liu79 , B.L.Liu6 , H.B.Liu29, J.B.Liu60a ,J. K. K. Liu37 ,K. Liu60d ,M. Liu60a ,P. Liu15a , Y. Liu46 ,Y. Liu15a,15d ,Y. L. Liu106 ,Y. W. Liu60a ,M. Livan71a,71b ,A. Lleres58 , J. Llorente Merino151 , 123 S. L. Lloyd93 ,C. Y. Lo63b , E. M. Lobodzinska46 , P. Loch7 , S. Loffredo74a,74b , T. Lohse19 , K. Lohwasser148 , M. Lokajicek140 , J.D.Long172 , R. E. Long90 , I. Longarini73a,73b , L. Longo36 , K. A. Looper127 , I. Lopez Paz101, A. Lopez Solis148 , J. Lorenz114 , N. Lorenzo Martinez5 , A.M.Lory114 , P. J. Lösel114, A. Lösle52 ,X. Lou46 ,X. Lou15a , A. Lounis65 , J. Love6 , P. A. Love90 , J. J. Lozano Bahilo173 , M. Lu60a , Y.J.Lu64 , H.J.Lubatti147 , C. Luci73a,73b , F. L. Lucio Alves15c , A. Lucotte58 , F. Luehring66 , I. Luise135 , L. Luminari73a, B. Lund-Jensen153 , M.S.Lutz160 , D. Lynn29 , H. Lyons91, R. Lysak140 , E. Lytken97 ,F. Lyu15a, V. Lyubushkin80 , T. Lyubushkina80 ,H. Ma29 ,L. L. Ma60b ,Y. Ma95 , D. M. Mac Donell175 , G. Maccarrone51 , A. Macchiolo115 , C. M. Macdonald148 , J. C. Macdonald148 , J. Machado Miguens136 , D. Madaffari173 , R. Madar38 , W. F. Mader48 , M. Madugoda Ralalage Don129 , N. Madysa48 , J. Maeda83 , T. Maeno29 , M. Maerker48 , V. Magerl52 , N. Magini79, J. Magro67a,67c,q , D. J. Mahon39 , C. Maidantchik81b , T. Maier114,A. Maio139a,139b,139d ,K. Maj84a , O. Majersky28a , S. Majewski131 , Y. Makida82, N. Makovec65 , B. Malaescu135 , Pa. Malecki85 , V. P. Maleev137 , F. Malek58 , D. Malito41a,41b , U. Mallik78 , D. Malon6 , C. Malone32, S. Maltezos10, S. Malyukov80, J. Mamuzic173 , G. Mancini70a,70b , I. Mandi´c92 , L. Manhaes de Andrade Filho81a , I.M.Maniatis161 , J. Manjarres Ramos48 , K. H. Mankinen97 , A. Mann114 , A. Manousos77 , B. Mansoulie144 , I. Manthos161 , S. Manzoni120 , A. Marantis161 , G. Marceca30 , L. Marchese134 , G. Marchiori135 , M. Marcisovsky140 , L. Marcoccia74a,74b , C. Marcon97 , C. A. Marin Tobon36 , M. Marjanovic128 , Z. Marshall18 , M.U.F.Martensson171 , S. Marti-Garcia173 , C. B. Martin127 , T.A.Martin177 , V.J.Martin50 , B. Martin dit Latour17 , L. Martinelli75a,75b , M. Martinez14,w , P. Martinez Agullo173 , V. I. Martinez Outschoorn103 , S. Martin-Haugh143 , V. S. Martoiu27b , A. C. Martyniuk95 , A. Marzin36 , S. R. Maschek115 , L. Masetti100 , T. Mashimo162 , R. Mashinistov111 ,J. Masik101 , A. L. Maslennikov122a,122b , L. Massa23a,23b , P. Massarotti70a,70b , P. Mastrandrea72a,72b , A. Mastroberardino41a,41b , T. Masubuchi162 , D. Matakias29, A. Matic114 , N. Matsuzawa162, P. Mättig24 , J. Maurer27b ,B. Macek92 ,D. A. Maximov122a,122b , R. Mazini157 , I. Maznas161 , S. M. Mazza145 , J. P. Mc Gowan104 ,S. P. Mc Kee106 , T. G. McCarthy115 , W. P. McCormack18 , E. F. McDonald105 , J. A. Mcfayden36 , G. Mchedlidze158b , M. A. McKay42, K. D. McLean175 , S. J. McMahon143, P. C. McNamara105 , C. J. McNicol177 , R. A. McPherson175,ab , J. E. Mdhluli33e , Z. A. Meadows103 , S. Meehan36 ,T. Megy38 , S. Mehlhase114 , A. Mehta91 ,B. Meirose43 , D. Melini159 , B. R. Mellado Garcia33e , J. D. Mellenthin53 , M. Melo28a , F. Meloni46 , A. Melzer24 , E. D. Mendes Gouveia139a,139e , L. Meng36 , X. T. Meng106 , S. Menke115 , E. Meoni41b,41a, S. Mergelmeyer19, S.A.M.Merkt138, C. Merlassino134 ,P. Mermod54 , L. Merola70a,70b , C. Meroni69a ,G. Merz106, O. Meshkov113,111 , J. K. R. Meshreki150 , J. Metcalfe6 , A. S. Mete6 , C. Meyer66 , J-P. Meyer144 , M. Michetti19, R. P. Middleton143 , L. Mijovi´c50 , G. Mikenberg179, M. Mikestikova140 , M. Mikuž92 , H. Mildner148 , A. Milic166 , C. D. Milke42 , D. W. Miller37 , A. Milov179 , D. A. Milstead45a,45b,R. A. Mina152 , A. A. Minaenko123 , I. A. Minashvili158b , A. I. Mincer125 , B. Mindur84a , M. Mineev80 , Y. Minegishi162, L.M.Mir14 , M. Mironova134, A. Mirto68a,68b , K. P. Mistry136 , T. Mitani178 , J. Mitrevski114, V. A. Mitsou173 , M. Mittal60c,O. Miu166 , A. Miucci20 , P. S. Miyagawa93 , A. Mizukami82 , J. U. Mjörnmark97, T. Mkrtchyan61a , M. Mlynarikova142 ,T. Moa45a,45b , S. Mobius53 , K. Mochizuki110 , P. Mogg114 , S. Mohapatra39 , R. Moles-Valls24 , K. Mönig46 , E. Monnier102 , A. Montalbano151 , J. Montejo Berlingen36 , M. Montella95 , F. Monticelli89 , S. Monzani69a , N. Morange65 , D. Moreno22a , M. Moreno Llácer173 , C. Moreno Martinez14 , P. Morettini55b , M. Morgenstern159 , S. Morgenstern48 , D. Mori151 ,M. Morii59 , M. Morinaga178, V. Morisbak133 ,A. K. Morley36 , G. Mornacchi36 , A. P. Morris95 , L. Morvaj154 , P. Moschovakos36 , B. Moser120 , M. Mosidze158b, T. Moskalets144 ,H. J. Moss148 ,J. Moss31,m , E. J. W. Moyse103 , S. Muanza102 , J. Mueller138 , R.S.P.Mueller114, D. Muenstermann90 , G. A. Mullier97 , D. P. Mungo69a,69b , J. L. Munoz Martinez14 , F. J. Munoz Sanchez101 ,P. Murin28b , W.J.Murray177,143 , A. Murrone69a,69b ,J. M. Muse128 , M. Muškinja18 ,C. Mwewa33a, A. G. Myagkov123,ag , A.A.Myers138, J. Myers131 , M. Myska141 , B. P. Nachman18 , O. Nackenhorst47 ,A.Nag Nag48 , K. Nagai134 , K. Nagano82 , Y. Nagasaka62 , J. L. Nagle29 , E. Nagy102 , A.M.Nairz36 , Y. Nakahama117 , K. Nakamura82 , T. Nakamura162 , H. Nanjo132 , F. Napolitano61a , R. F. Naranjo Garcia46 , R. Narayan42 , I. Naryshkin137 , T. Naumann46 , G. Navarro22a , P. Y. Nechaeva111, F. Nechansky46 , T. J. Neep21 ,A. Negri71a,71b ,M. Negrini23b , C. Nellist119 ,C. Nelson104 ,M. E. Nelson45a,45b , S. Nemecek140 , M. Nessi36,e , M. S. Neubauer172 , F. Neuhaus100 , M. Neumann181, R. Newhouse174 , P. R. Newman21 ,C. W. Ng138 ,Y. S. Ng19, Y.W.Y.Ng170, B. Ngair35e , H. D. N. Nguyen102 , T. Nguyen Manh110 , E. Nibigira38 , R. B. Nickerson134, R. Nicolaidou144 , D. S. Nielsen40 , J. Nielsen145 , M. Niemeyer53 , N. Nikiforou11 , V. Nikolaenko123,ag , I. Nikolic-Audit135 , K. Nikolopoulos21 , P. Nilsson29 , H. R. Nindhito54 , Y. Ninomiya82,A. Nisati73a ,N. Nishu60c , R. Nisius115 , 123 I. Nitsche47, T. Nitta178 , T. Nobe162 , D. L. Noel32 , Y. Noguchi86 , I. Nomidis135 , M. A. Nomura29, M. Nordberg36,J. Novak92,T. Novak92 , O. Novgorodova48 , R. Novotny141 , L. Nozka130, K. Ntekas170 , E. Nurse95, F. G. Oakham34,al , H. Oberlack115, J. Ocariz135 , A. Ochi83 , I. Ochoa39 , J. P. Ochoa-Ricoux146a , K. O’Connor26 ,S. Oda88 , S. Odaka82 , S. Oerdek53 , A. Ogrodnik84a ,A. Oh101 , S.H.Oh49 , C. C. Ohm153 ,H. Oide164 , M. L. Ojeda166 ,H. Okawa168 , Y. Okazaki86 , M.W.O’Keefe91, Y. Okumura162 , T. Okuyama82,A. Olariu27b, L. F. Oleiro Seabra139a , S.A.OlivaresPino146a, D. Oliveira Damazio29 ,J. L. Oliver1, M. J. R. Olsson170 , A. Olszewski85 , J. Olszowska85 , O. Öncel24 ,D. C. O’Neil151 , A. P. O’neill134 , A. Onofre139a,139e , P.U.E.Onyisi11 , H. Oppen133, R. G. Oreamuno Madriz121, M.J.Oreglia37 , G. E. Orellana89 , D. Orestano75a,75b , N. Orlando14 , R.S.Orr166 , V. O’Shea57 , R. Ospanov60a , G. Otero y Garzon30 , H. Otono88 ,P. S. Ott61a , G. J. Ottino18, M. Ouchrif35d , J. Ouellette29 , F. Ould-Saada133 , A. Ouraou144 , Q. Ouyang15a , M. Owen57 , R. E. Owen143 , V. E. Ozcan12c , N. Ozturk8 , J. Pacalt130 , H. A. Pacey32 , K. Pachal49 , A. Pacheco Pages14 , C. Padilla Aranda14 , S. Pagan Griso18 , G. Palacino66, S. Palazzo50 , S. Palestini36 , M. Palka84b , P. Palni84a , C. E. Pandini54 , J. G. Panduro Vazquez94 , P. Pani46 , G. Panizzo67a,67c , L. Paolozzi54 , C. Papadatos110 , K. Papageorgiou9,g, S. Parajuli42 , A. Paramonov6 , C. Paraskevopoulos10 , D. Paredes Hernandez63b , S. R. Paredes Saenz134 ,B. Parida179 ,T. H. Park166 , A. J. Parker31 , M.A.Parker32 , F. Parodi55b,55a , E. W. Parrish121 , J.A.Parsons39 , U. Parzefall52 , L. Pascual Dominguez135 , V. R. Pascuzzi18 , J.M.P.Pasner145 , F. Pasquali120 , E. Pasqualucci73a , S. Passaggio55b ,F. Pastore94 , P. Pasuwan45a,45b , S. Pataraia100 , J.R.Pater101 , A. Pathak180,i , J. Patton91, T. Pauly36 , J. Pearkes152, B. Pearson115 , M. Pedersen133 , L. Pedraza Diaz119 , R. Pedro139a , T. Peiffer53 , S. V. Peleganchuk122a,122b , O. Penc140 , H. Peng60a, B. S. Peralva81a , M. M. Perego65 , A. P. Pereira Peixoto139a , L. Pereira Sanchez45a,45b , D. V. Perepelitsa29 , E. Perez Codina167a , F. Peri19 , L. Perini69a,69b , H. Pernegger36 , S. Perrella36 , A. Perrevoort120 , K. Peters46 , R. F. Y. Peters101 , B. A. Petersen36 , T. C. Petersen40 , E. Petit102 , V. Petousis141 , A. Petridis1 , C. Petridou161 , P. Petroff65, F. Petrucci75a,75b , M. Pettee182 , N. E. Pettersson103 , K. Petukhova142 , A. Peyaud144 , R. Pezoa146d , L. Pezzotti71a,71b , T. Pham105 , F. H. Phillips107 , P. W. Phillips143 , M. W. Phipps172 , G. Piacquadio154 , E. Pianori18 , A. Picazio103 , R. H. Pickles101, R. Piegaia30 , D. Pietreanu27b, J. E. Pilcher37 , A. D. Pilkington101 , M. Pinamonti67a,67c , J. L. Pinfold3 , C. Pitman Donaldson95, M. Pitt160 , L. Pizzimento74a,74b ,M.­ A. Pleier29 ,V. Pleskot142 , E. Plotnikova80, P. Podberezko122a,122b , R. Poettgen97 , R. Poggi54 , L. Poggioli135, I. Pogrebnyak107, D. Pohl24 , I. Pokharel53 , G. Polesello71a , A. Poley151,167a , A. Policicchio73a,73b , R. Polifka142 , A. Polini23b , C. S. Pollard46 , V. Polychronakos29 , D. Ponomarenko112 , L. Pontecorvo36 , S. Popa27a , G. A. Popeneciu27d , L. Portales5 , D. M. Portillo Quintero58 , S. Pospisil141 , K. Potamianos46 , I. N. Potrap80 , C. J. Potter32 , H. Potti11 , T. Poulsen97 , J. Poveda173 ,T. D. Powell148 , G. Pownall46, M. E. Pozo Astigarraga36 , P. Pralavorio102 ,S. Prell79 ,D. Price101 ,M. Primavera68a ,M. L. Profftt147 , N. Proklova112 , K. Prokofev63c , F. Prokoshin80 , S. Protopopescu29, J. Proudfoot6 , M. Przybycien84a , D. Pudzha137 , A. Puri172 , P. Puzo65, D. Pyatiizbyantseva112 ,J. Qian106 ,Y. Qin101 , A. Quadt53 , M. Queitsch-Maitland36 , A. Qureshi1, M. Racko28a, F. Ragusa69a,69b , G. Rahal98 , J. A. Raine54 , S. Rajagopalan29 , A. Ramirez Morales93,K. Ran15a,15d , D. M. Rauch46 , F. Rauscher114,S. Rave100 , B. Ravina148 , I. Ravinovich179 , J.H.Rawling101 , M. Raymond36 , A. L. Read133 , N. P. Readioff58 , M. Reale68a,68b , D. M. Rebuzzi71a,71b , G. Redlinger29 ,K. Reeves43 , J. Reichert136 , D. Reikher160 , A. Reiss100,A. Rej150 , C. Rembser36 , A. Renardi46 , M. Renda27b , M. B. Rendel115, S. Resconi69a , E. D. Resseguie18 , S. Rettie95 , B. Reynolds127, E. Reynolds21 , O. L. Rezanova122a,122b , P. Reznicek142 , E. Ricci76a,76b , R. Richter115 , S. Richter46 , E. Richter-Was84b , M. Ridel135 , P. Rieck115 ,O. Rifki46 , M. Rijssenbeek154, A. Rimoldi71a,71b , M. Rimoldi46 , L. Rinaldi23b ,T. T. Rinn172 , G. Ripellino153 ,I. Riu14 , P. Rivadeneira46, J. C. Rivera Vergara175 , F. Rizatdinova129 , E. Rizvi93 , C. Rizzi36 , S. H. Robertson104,ab , M. Robin46 , D. Robinson32 , C. M. Robles Gajardo146d, M. Robles Manzano100 , A. Robson57 , A. Rocchi74a,74b , E. Rocco100 , C. Roda72a,72b , S. Rodriguez Bosca173 , A. M. Rodríguez Vera167b ,S. Roe36, J. Roggel181 , O. Rohne133 , R. Röhrig115 , R.A.Rojas146d , B. Roland52 , C. P. A. Roland66 , J. Roloff29 , A. Romaniouk112 , M. Romano23a,23b , N. Rompotis91 , M. Ronzani125 , L. Roos135 , S. Rosati73a ,G. Rosin103, B. J. Rosser136 , E. Rossi46 , E. Rossi75a,75b , E. Rossi70a,70b , L. P. Rossi55b , L. Rossini69a,69b ,R. Rosten14 , M. Rotaru27b , B. Rottler52 , D. Rousseau65 , G. Rovelli71a,71b ,A. Roy11 ,D. Roy33e , A. Rozanov102 , Y. Rozen159 , X. Ruan33e , F. Rühr52 , A. Ruiz-Martinez173 , A. Rummler36 ,Z. Rurikova52 , N. A. Rusakovich80 , H. L. Russell104 , L. Rustige38,47 , J. P. Rutherfoord7 , E. M. Rüttinger148 , M. Rybar39, G. Rybkin65 , E. B. Rye133 , A. Ryzhov123 , J. A. Sabater Iglesias46 , P. Sabatini53 , L. Sabetta73a,73b , S. Sacerdoti65 , 123 H.F-W. Sadrozinski145 , R. Sadykov80 , F. Safai Tehrani73a , B. Safarzadeh Samani155 , M. Safdari152 , P. Saha121 , S. Saha104 , M. Sahinsoy115 , A. Sahu181 , M. Saimpert36 , M. Saito162 , T. Saito162 , H. Sakamoto162 , D. Salamani54, G. Salamanna75a,75b , A. Salnikov152 , J. Salt173 , A. Salvador Salas14 , D. Salvatore41a,41b , F. Salvatore155 , A. Salvucci63a,63b,63c , A. Salzburger36 , J. Samarati36, D. Sammel52 , D. Sampsonidis161, D. Sampsonidou161 , J. Sánchez173 , A. Sanchez Pineda36,67a,67c , H. Sandaker133 , C. O. Sander46 , I. G. Sanderswood90 , M. Sandhoff181 , C. Sandoval22a , D. P. C. Sankey143 , M. Sannino55a,55b , Y. Sano117 , A. Sansoni51 , C. Santoni38 , H. Santos139a,139b , S. N. Santpur18 , A. Santra173 , K. A. Saoucha148 , A. Sapronov80 , J. G. Saraiva139a,139d , O. Sasaki82 , K. Sato168 , F. Sauerburger52 , E. Sauvan5 ,P.Savard166,al , R. Sawada162 , C. Sawyer143 ,L. Sawyer96,af , I. Sayago Galvan173, C. Sbarra23b ,A. Sbrizzi67a,67c , T. Scanlon95 , J. Schaarschmidt147 , P. Schacht115 , D. Schaefer37 , L. Schaefer136 , S. Schaepe36 , U. Schäfer100 , A. C. Schaffer65 , D. Schaile114 , R. D. Schamberger154 , E. Schanet114 , N. Scharmberg101 , V. A. Schegelsky137 , D. Scheirich142 , F. Schenck19 , M. Schernau170 , C. Schiavi55b,55a , L. K. Schildgen24 , Z. M. Schillaci26 , E. J. Schioppa68a,68b , M. Schioppa41b,41a , K. E. Schleicher52 , S. Schlenker36 , K. R. Schmidt-Sommerfeld115 , K. Schmieden36 , C. Schmitt100 , S. Schmitt46 , J. C. Schmoeckel46 , L. Schoeffel144 , A. Schoening61b , P. G. Scholer52 , E. Schopf134 , M. Schott100 , J. F. P. Schouwenberg119 , J. Schovancova36 , S. Schramm54 , F. Schroeder181 , A. Schulte100 , H-C. Schultz-Coulon61a , M. Schumacher52 , B. A. Schumm145 , Ph. Schune144 , A. Schwartzman152 , T. A. Schwarz106 , Ph. Schwemling144 , R. Schwienhorst107 , A. Sciandra145 , G. Sciolla26 , M. Scornajenghi41a,41b , F. Scuri72a , F. Scutti105, L. M. Scyboz115 , C. D. Sebastiani91 , P. Seema19 , S. C. Seidel118 , A. Seiden145 , B. D. Seidlitz29 , T. Seiss37 , C. Seitz46, J. M. Seixas81b , G. Sekhniaidze70a , S. J. Sekula42 , N. Semprini-Cesari23a,23b , S. Sen49 , C. Serfon29 , L. Serin65 , L. Serkin67a,67b , M. Sessa60a , H. Severini128 ,S. Sevova152 , F. Sforza55a,55b ,A. Sfyrla54 , E. Shabalina53 , J. D. Shahinian145 , N. W. Shaikh45a,45b , D. Shaked Renous179 , L. Y. Shan15a , M. Shapiro18 , A. Sharma134 , A. S. Sharma1 , P. B. Shatalov124 , K. Shaw155 , S. M. Shaw101 , M. Shehade179, Y. Shen128, A. D. Sherman25, P. Sherwood95 , L. Shi95 , S. Shimizu82 , C. O. Shimmin182 , Y. Shimogama178, M. Shimojima116 , I. P. J. Shipsey134 , S. Shirabe164 , M. Shiyakova80,z , J. Shlomi179 , A. Shmeleva111, M. J. Shochet37 , J. Shojaii105 , D. R. Shope128, S. Shrestha127 , E.M.Shrif33e , E. Shulga179 , P. Sicho140 , A. M. Sickles172 , E. Sideras Haddad33e , O. Sidiropoulou36 , A. Sidoti23a,23b , F. Siegert48 , Dj. Sijacki16, M. Jr. Silva180 , M. V. Silva Oliveira36 , S. B. Silverstein45a , S. Simion65, R. Simoniello100 , C. J. Simpson-allsop21,S. Simsek12b , P. Sinervo166 , V. Sinetckii113 , S. Singh151 , M. Sioli23b,23a ,I. Siral131 , S. Yu. Sivoklokov113 , J. Sjölin45a,45b , A. Skaf53 ,E. Skorda97, P. Skubic128 , M. Slawinska85 , K. Sliwa169 ,R. Slovak142 , V. Smakhtin179, B. H. Smart143 ,J. Smiesko28b ,N. Smirnov112 , S. Yu. Smirnov112 ,Y. Smirnov112 ,L. N. Smirnova113,r , O. Smirnova97 , H.A.Smith134 , M. Smizanska90 ,K. Smolek141 , A. Smykiewicz85 , A. A. Snesarev111 , H. L. Snoek120 , I. M. Snyder131 , S. Snyder29 , R. Sobie175,ab , A. Soffer160 , A. Sogaard50 , F. Sohns53 , C. A. Solans Sanchez36 , E. Yu. Soldatov112 , U. Soldevila173 , A. A. Solodkov123 , A. Soloshenko80 , O. V. Solovyanov123 , V. Solovyev137 , P. Sommer148 , H. Son169 , W. Song143 , W. Y. Song167b , A. Sopczak141 , A. L. Sopio95, F. Sopkova28b, S. Sottocornola71a,71b , R. Soualah67a,67c , A. M. Soukharev122a,122b , D. South46 , S. Spagnolo68a,68b , M. Spalla115 , M. Spangenberg177 , F. Spano94 , D. Sperlich52 , T. M. Spieker61a , G. Spigo36 , M. Spina155 , D. P. Spiteri57 , M. Spousta142 , A. Stabile69a,69b ,B. L. Stamas121 ,R. Stamen61a , M. Stamenkovic120 , E. Stanecka85 , B. Stanislaus134 , M. M. Stanitzki46 , M. Stankaityte134 , B. Stapf120 , E. A. Starchenko123 , G.H.Stark145 ,J. Stark58 , P. Staroba140 , P. Starovoitov61a ,S. Stärz104 , R. Staszewski85 , G. Stavropoulos44 , M. Stegler46, P. Steinberg29 , A. L. Steinhebel131 , B. Stelzer151,167a , H. J. Stelzer138 , O. Stelzer-Chilton167a , H. Stenzel56 , T. J. Stevenson155 , G.A.Stewart36 , M. C. Stockton36 , G. Stoicea27b , M. Stolarski139a , S. Stonjek115 , A. Straessner48 , J. Strandberg153 , S. Strandberg45a,45b , M. Strauss128 , T. Strebler102 , P. Strizenec28b , R. Ströhmer176 , D.M.Strom131 , R. Stroynowski42 , A. Strubig50 , S. A. Stucci29 , B. Stugu17 , J. Stupak128 , N.A.Styles46 ,D. Su152 ,W. Su60c,147 , S. Suchek61a , V. V. Sulin111 , M.J.Sullivan91 , D.M.S.Sultan54 , S. Sultansoy4c , T. Sumida86 , S. Sun106 , X. Sun101 , K. Suruliz155 , C.J.E.Suster156 , M. R. Sutton155 , S. Suzuki82 ,M. Svatos140 , M. Swiatlowski167a , S. P. Swift2,T. Swirski176 , A. Sydorenko100, I. Sykora28a , M. Sykora142 , T. Sykora142 ,D. Ta100 , K. Tackmann46,x , J. Taenzer160,A. Taffard170 , R. Tafrout167a , R. Takashima87, K. Takeda83 , T. Takeshita149 , E. P. Takeva50 , Y. Takubo82 , M. Talby102 , A. A. Talyshev122b,122a,K. C. Tam63b, N.M.Tamir160, J. Tanaka162 , R. Tanaka65 , S. Tapia Araya172 , S. Tapprogge100 , A. Tarek Abouelfadl Mohamed107 , S. Tarem159 , K. Tariq60b , G. Tarna27b,d , G. F. Tartarelli69a ,P. Tas142 ,M. Tasevsky140 , T. Tashiro86, E. Tassi41a,41b , A. Tavares Delgado139a, Y. Tayalati35e, A. J. Taylor50 , G. N. Taylor105 , W. Taylor167b , H. Teagle91,A. S. Tee90, 123 R. Teixeira De Lima152 , P. Teixeira-Dias94 ,H. Ten Kate36, J. J. Teoh120 , S. Terada82, K. Terashi162 ,J. Terron99 , S. Terzo14 ,M. Testa51 , R. J. Teuscher166,ab , S. J. Thais182 , N. Themistokleous50 , T. Theveneaux-Pelzer46 , F. Thiele40 , D. W. Thomas94, J. O. Thomas42, J. P. Thomas21 , E. A. Thompson46 , P. D. Thompson21 , E. Thomson136 , E. J. Thorpe93 ,R. E. Ticse Torres53 , V. O. Tikhomirov111,ah , Yu. A. Tikhonov122a,122b , S. Timoshenko112, P. Tipton182 , S. Tisserant102 , K. Todome23a,23b , S. Todorova-Nova142 , S. Todt48, J. Tojo88 , S. Tokár28a , K. Tokushuku82 , E. Tolley127 , R. Tombs32 , K.G.Tomiwa33e , M. Tomoto117 , L. Tompkins152 , P. Tornambe103 , E. Torrence131 ,H. Torres48 , E. Torró Pastor147 , C. Tosciri134 , J. Toth102,aa , D. R. Tovey148 , A. Traeet17, C. J. Treado125 , T. Trefzger176 , F. Tresoldi155 , A. Tricoli29 , I. M. Trigger167a , S. Trincaz-Duvoid135 , D. A. Trischuk174 , W. Trischuk166, B. Trocmé58 , A. Trofymov65 , C. Troncon69a ,F. Trovato155 , L. Truong33c , M. Trzebinski85 , A. Trzupek85 ,F. Tsai46 ,J.C­ L. Tseng134 , P. V. Tsiareshka108,ae, A. Tsirigotis161,u , V. Tsiskaridze154 , E. G. Tskhadadze158a, M. Tsopoulou161, I. I. Tsukerman124 , V. Tsulaia18 , S. Tsuno82 , D. Tsybychev154 ,Y. Tu63b , A. Tudorache27b , V. Tudorache27b , T. T. Tulbure27a, A. N. Tuna59 , S. Turchikhin80 , D. Turgeman179 , I. Turk Cakir4b,s, R. J. Turner21,R. Turra69a , P. M. Tuts39 , S. Tzamarias161,E. Tzovara100 , K. Uchida162,F. Ukegawa168 , G. Unal36 , M. Unal11 , A. Undrus29 , G. Unel170 , F. C. Ungaro105 , Y. Unno82 ,K. Uno162 , J. Urban28b , P. Urquijo105 ,G. Usai8 , Z. Uysal12d , V. Vacek141, B. Vachon104 , K.O.H.Vadla133 , T. Vafeiadis36 , A. Vaidya95 , C. Valderanis114 , E. Valdes Santurio45a,45b , M. Valente54 , S. Valentinetti23a,23b , A. Valero173 , L. Valéry46 , R. A. Vallance21 , A. Vallier36, J.A.VallsFerrer173, T. R. Van Daalen14 , P. Van Gemmeren6 , S. Van Stroud95 , I. Van Vulpen120 , M. Vanadia74a,74b , W. Vandelli36 , M. Vandenbroucke144 , E. R. Vandewall129 , A. Vaniachine165 , D. Vannicola73a,73b ,R. Vari73a , E. W. Varnes7 , C. Varni55a,55b , T. Varol157 , D. Varouchas65 ,K. E. Varvell156 , M. E. Vasile27b , G. A. Vasquez175 , F. Vazeille38 , D. Vazquez Furelos14 , T. Vazquez Schroeder36 , J. Veatch53 , V. Vecchio101 , M.J.Veen120 , L. M. Veloce166, F. Veloso139a,139c , S. Veneziano73a , A. Ventura68a,68b , A. Verbytskyi115 , V. Vercesi71a , M. Verducci72a,72b , C. M. Vergel Infante79, C. Vergis24 ,W. Verkerke120, A. T. Vermeulen120 , J. C. Vermeulen120 , C. Vernieri152 , M. C. Vetterli151,al , N. Viaux Maira146d ,T. Vickey148 , O. E. Vickey Boeriu148 , G. H. A. Viehhauser134 , L. Vigani61b , M. Villa23a,23b , M. Villaplana Perez3 , E. M. Villhauer50, E. Vilucchi51 , M. G. Vincter34 , G. S. Virdee21 , A. Vishwakarma50 , C. Vittori23b,23a , I. Vivarelli155 , M. Vogel181 , P. Vokac141 , S. E. von Buddenbrock33e , E. Von Toerne24 , V. Vorobel142 , K. Vorobev112 ,M. Vos173 , J. H. Vossebeld91 , M. Vozak101, N. Vranjes16 , M. Vranjes Milosavljevic16 ,V. Vrba141, M. Vreeswijk120, R. Vuillermet36 , I. Vukotic37 , S. Wada168 , P. Wagner24 , W. Wagner181 , J. Wagner-Kuhr114 , S. Wahdan181 , H. Wahlberg89 , R. Wakasa168, V. M. Walbrecht115 , J. Walder90 ,R. Walker114 ,S. D. Walker94, W. Walkowiak150 , V. Wallangen45a,45b, A.M.Wang59 , A.Z.Wang180 , C. Wang60a , C. Wang60c , F. Wang180, H. Wang18 , H. Wang3 , J. Wang63a, P. Wang42 , Q. Wang128, R.-J. Wang100 , R. Wang60a , R. Wang6 , S. M. Wang157 , W. T. Wang60a , W. Wang15c , W. X. Wang60a , Y. Wang60a , Z. Wang106 , C. Wanotayaroj46 , A. Warburton104 ,C. P. Ward32 , D. R. Wardrope95 , N. Warrack57 ,A. T. Watson21 ,M. F. Watson21 , G. Watts147 , B. M. Waugh95 , A.F.Webb11 , C. Weber29 , M. S. Weber20 , S. A. Weber34 , S. M. Weber61a , A. R. Weidberg134 , J. Weingarten47 , M. Weirich100 ,C. Weiser52 , P. S. Wells36 , T. Wenaus29 , B. Wendland47 , T. Wengler36 , S. Wenig36 ,N. Wermes24 , M. Wessels61a ,T. D. Weston20, K. Whalen131 , N. L. Whallon147, A. M. Wharton90, A. S. White106 , A. White8 , M.J.White1 , D. Whiteson170 , B.W.Whitmore90 , W. Wiedenmann180 ,C. Wiel48 , M. Wielers143 , N. Wieseotte100, C. Wiglesworth40 , L. A. M. Wiik-Fuchs52 , H. G. Wilkens36 , L. J. Wilkins94 , H. H. Williams136, S. Williams32, S. Willocq103 , P. J. Windischhofer134 , I. Wingerter-Seez5 , E. Winkels155 , F. Winklmeier131 , B. T. Winter52 , M. Wittgen152, M. Wobisch96 , A. Wolf100 ,R. Wölker134 , J. Wollrath52, M.W.Wolter85 , H. Wolters139a,139c , V.W.S.Wong174, N. L. Woods145 , S. D. Worm46 , B.K.Wosiek85 ,K. W. Wo´zniak85 , K. Wraight57 ,S. L. Wu180 ,X. Wu54 ,Y. Wu60a , J. Wuerzinger134 , T. R. Wyatt101 , B. M. Wynne50 , S. Xella40 ,L. Xia177 , J. Xiang63c,X. Xiao106 , X. Xie60a , I. Xiotidis155,D. Xu15a ,H. Xu60a,H. Xu60a ,L. Xu29 ,T. Xu144 ,W. Xu106 ,Z. Xu60b , Z. Xu152 , B. Yabsley156 , S. Yacoob33a , K. Yajima132, D. P. Yallup95 , N. Yamaguchi88 , Y. Yamaguchi164 , A. Yamamoto82 , M. Yamatani162, T. Yamazaki162 , Y. Yamazaki83 ,J. Yan60c,Z. Yan25 , H.J.Yang60c,60d , H. T. Yang18 , S. Yang60a , T. Yang63c , X. Yang60b,58 , Y. Yang162 , Z. Yang60a,W-M. Yao18 ,Y. C. Yap46 , Y. Yasu82 , E. Yatsenko60c ,H. Ye15c ,J. Ye42 ,S. Ye29 , I. Yeletskikh80 ,M. R. Yexley90 , E. Yigitbasi25 , P. Yin39 , K. Yorita178 , K. Yoshihara79 , C. J. S. Young36 , C. Young152 ,J. Yu79 , R. Yuan60b,h ,X. Yue61a , M. Zaazoua35e , B. Zabinski85 , G. Zacharis10 , E. Zaffaroni54 , J. Zahreddine135 , A.M.Zaitsev123,ag , T. Zakareishvili158b , N. Zakharchuk34 , S. Zambito36 , D. Zanzi36 , D.R.Zaripovas57 , S. V. Zeißner47 , C. Zeitnitz181 , G. Zemaityte134 , J.C.Zeng172 , O. Zenin123 , T. Ženiš28a ,D. Zerwas65 , M. Zgubic134 , 123 B. Zhang15c, D. F. Zhang15b , G. Zhang15b , J. Zhang6 , Kaili. Zhang15a , L. Zhang15c , L. Zhang60a , M. Zhang172 , R. Zhang180 , S. Zhang106, X. Zhang60c , X. Zhang60b , Y. Zhang15a,15d , Z. Zhang63a, Z. Zhang65 , P. Zhao49 , Z. Zhao60a, A. Zhemchugov80 , Z. Zheng106, D. Zhong172 , B. Zhou106, C. Zhou180 , H. Zhou7 , M. S. Zhou15a,15d , M. Zhou154 , N. Zhou60c , Y. Zhou7,C. G. Zhu60b ,C. Zhu15a,15d ,H. L. Zhu60a ,H. Zhu15a , J. Zhu106 ,Y. Zhu60a , X. Zhuang15a , K. Zhukov111 , V. Zhulanov122a,122b , D. Zieminska66 , N.I.Zimine80 , S. Zimmermann52 , Z. Zinonos115, M. Ziolkowski150,L. Živkovi´c16 , G. Zobernig180 , A. Zoccoli23a,23b , K. Zoch53 , T. G. Zorbas148 ,R. Zou37 , L. Zwalinski36 1 Department of Physics, University of Adelaide, Adelaide, Australia 2 Physics Department, SUNY Albany, Albany, NY, USA 3 Department of Physics, University of Alberta, Edmonton, AB, Canada 4 (a)Department of Physics, Ankara University, Ankara, Turkey; (b)Application and Research Center for Advanced Studies, Istanbul Aydin University, Istanbul, Turkey; (c)Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey 5 LAPP, Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, Annecy, France 6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA 7 Department of Physics, University of Arizona, Tucson, AZ, USA 8 Department of Physics, University of Texas at Arlington, Arlington, TX, USA 9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece 10 Physics Department, National Technical University of Athens, Zografou, Greece 11 Department of Physics, University of Texas at Austin, Austin, TX, USA 12 (a)Bahcesehir University, Faculty of Engineering and Natural Sciences, Istanbul, Turkey; (b)Faculty of Engineering and Natural Sciences, Istanbul Bilgi University, Istanbul, Turkey; (c)Department of Physics, Bogazici University, Istanbul, Turkey; (d)Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey 13 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan 14 Institut de Física d’Altes Energies (IFAE), Barcelona Institute of Science and Technology, Barcelona, Spain 15 (a)Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b)Physics Department, Tsinghua University, Beijing, China; (c)Department of Physics, Nanjing University, Nanjing, China; (d)University of Chinese Academy of Science (UCAS), Beijing, China 16 Institute of Physics, University of Belgrade, Belgrade, Serbia 17 Department for Physics and Technology, University of Bergen, Bergen, Norway 18 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, CA, USA 19 Institut für Physik, Humboldt Universität zu Berlin, Berlin, Germany 20 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland 21 School of Physics and Astronomy, University of Birmingham, Birmingham, UK 22 (a)Facultad de Ciencias y Centro de Investigaciónes, Universidad Antonio Narino, Bogotá, Colombia; (b)Departamento de Física, Universidad Nacional de Colombia,, Bogotá Colombia, Colombia 23 (a)INFN Bologna and Universita’ di Bologna, Dipartimento di Fisica, Italy; (b)INFN Sezione di Bologna, Bologna, Italy 24 Physikalisches Institut, Universität Bonn, Bonn, Germany 25 Department of Physics, Boston University, Boston, MA, USA 26 Department of Physics, Brandeis University, Waltham, MA, USA 27 (a)Transilvania University of Brasov, Brasov, Romania; (b)Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (c)Department of Physics, Alexandru Ioan Cuza University of Iasi, Iasi, Romania; (d)National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj-Napoca, Romania; (d)University Politehnica Bucharest, Bucharest, Romania; (e)West University in Timisoara, Timisoara, Romania 28 (a)Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic; (b)Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic 29 Physics Department, Brookhaven National Laboratory, Upton, NY, USA 30 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina 31 California State University, CA, USA 32 Cavendish Laboratory, University of Cambridge, Cambridge, UK 123 33 (a)Department of Physics, University of Cape Town, Cape Town, South Africa; (b)iThemba Labs, Western Cape, South Africa; (c)Department of Mechanical Engineering Science, University of Johannesburg, Johannesburg, South Africa; (d)University of South Africa, Department of Physics, Pretoria, South Africa; (e)School of Physics, University of the Witwatersrand, Johannesburg, South Africa 34 Department of Physics, Carleton University, Ottawa, ON, Canada 35 (a)Faculté des Sciences Ain Chock, Réseau Universitaire de Physique des Hautes Energies -Université Hassan II, Casablanca, Morocco; (b)Faculté des Sciences, Université Ibn-Tofail, Kénitra, Morocco; (c)Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco; (d)Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco; (e)Faculté des sciences, Université Mohammed V, Rabat, Morocco 36 CERN, Geneva, Switzerland 37 Enrico Fermi Institute, University of Chicago, Chicago, IL, USA 38 LPC, Université Clermont Auvergne, CNRS/IN2P3, Clermont-Ferrand, France 39 Nevis Laboratory, Columbia University, Irvington, NY, USA 40 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 41 (a)Dipartimento di Fisica, Universita della Calabria, Rende, Italy; (b)Laboratori Nazionali di Frascati, INFN Gruppo Collegato di Cosenza, Cosenza, Italy 42 Physics Department, Southern Methodist University, Dallas, TX, USA 43 Physics Department, University of Texas at Dallas, Richardson, TX, USA 44 National Centre for Scientifc Research “Demokritos”, Agia Paraskevi, Greece 45 (a)Department of Physics, Stockholm University, Stockholm, Sweden; (b)Oskar Klein Centre, Stockholm, Sweden 46 Deutsches Elektronen-Synchrotron DESY, Hamburg and Zeuthen, Germany 47 Lehrstuhl für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany 48 Institut für Kern-und Teilchenphysik, Technische Universität Dresden, Dresden, Germany 49 Department of Physics, Duke University, Durham, NC, USA 50 SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK 51 INFN e Laboratori Nazionali di Frascati, Frascati, Italy 52 Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany 53 II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany 54 Département de Physique Nucléaire et Corpusculaire, Université de Geneve, Geneve, Switzerland 55 (a)Dipartimento di Fisica, Universita di Genova, Genova, Italy; (b)INFN Sezione di Genova, Genoa, Italy 56 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany 57 SUPA -School of Physics and Astronomy, University of Glasgow, Glasgow, UK 58 LPSC, Université Grenoble Alpes, CNRS/IN2P3, Grenoble INP, Grenoble, France 59 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA 60 (a)Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, China; (b)Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao, China; (c)School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shanghai, China; (d)Tsung-Dao Lee Institute, Shanghai, China 61 (a)Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b)Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany 62 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan 63 (a)Department of Physics, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; (b)Department of Physics, University of Hong Kong, Hong Kong, China; (c)Department of Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China 64 Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 65 IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405 Orsay, France 66 Department of Physics, Indiana University, Bloomington, IN, USA 67 (a)INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b)ICTP, Trieste, Italy; (c)Dipartimento Politecnico di Ingegneria e Architettura, Universita di Udine, Udine, Italy 68 (a)INFN Sezione di Lecce, Lecce, Italy; (b)Dipartimento di Matematica e Fisica, Universita del Salento, Lecce, Italy 69 (a)INFN Sezione di Milano, Milan, Italy; (b)Dipartimento di Fisica, Universita di Milano, Milan, Italy 70 (a)INFN Sezione di Napoli, Naples, Italy; (b)Dipartimento di Fisica, Universita di Napoli, Naples, Italy 123 71 (a)INFN Sezione di Pavia, Pavia, Italy; (b)Dipartimento di Fisica, Universita di Pavia, Pavia, Italy 72 (a)INFN Sezione di Pisa, Pisa, Italy; (b)Dipartimento di Fisica E. Fermi, Universita di Pisa, Pisa, Italy 73 (a)INFN Sezione di Roma, Rome, Italy; (b)Dipartimento di Fisica, Sapienza Universita di Roma, Rome, Italy 74 (a)INFN Sezione di Roma Tor Vergata, Rome, Italy; (b)Dipartimento di Fisica, Universita di Roma Tor Vergata, Rome, Italy 75 (a)INFN Sezione di Roma Tre, Rome, Italy; (b)Dipartimento di Matematica e Fisica, Universita Roma Tre, Rome, Italy 76 (a)INFN-TIFPA, Trento, Italy; (b)Universita degli Studi di Trento, Trento, Italy 77 Institut für Astro-und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria 78 University of Iowa, Iowa City, IA, USA 79 Department of Physics and Astronomy, Iowa State University, Ames, IA, USA 80 Joint Institute for Nuclear Research, Dubna, Russia 81 (a)Departamento de Engenharia Elétrica, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Brazil; (b)Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil; (c)Universidade Federal de Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil; (d)Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil 82 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan 83 Graduate School of Science, Kobe University, Kobe, Japan 84 (a)AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland; (b)Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland 85 Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland 86 Faculty of Science, Kyoto University, Kyoto, Japan 87 Kyoto University of Education, Kyoto, Japan 88 Research Center for Advanced Particle Physics and Department of Physics, Kyushu University, Fukuoka, Japan 89 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina 90 Physics Department, Lancaster University, Lancaster, United Kingdom 91 Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK 92 Department of Experimental Particle Physics, Jožef Stefan Institute and Department of Physics, University of Ljubljana, Ljubljana, Slovenia 93 School of Physics and Astronomy, Queen Mary University of London, London, UK 94 Department of Physics, Royal Holloway University of London, Egham, UK 95 Department of Physics and Astronomy, University College London, London, UK 96 Louisiana Tech University, Ruston, LA, USA 97 Fysiska institutionen, Lunds universitet, Lund, Sweden 98 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France 99 Departamento de Física Teorica C-15 and CIAFF, Universidad Autónoma de Madrid, Madrid, Spain 100 Institut für Physik, Universität Mainz, Mainz, Germany 101 School of Physics and Astronomy, University of Manchester, Manchester, UK 102 CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France 103 Department of Physics, University of Massachusetts, Amherst, MA, USA 104 Department of Physics, McGill University, Montreal, QC, Canada 105 School of Physics, University of Melbourne, Victoria, Australia 106 Department of Physics, University of Michigan, Ann Arbor, MI, USA 107 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA 108 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus 109 Research Institute for Nuclear Problems of Byelorussian State University, Minsk, Belarus 110 Group of Particle Physics, University of Montreal, Montreal, QC, Canada 111 P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia 112 National Research Nuclear University MEPhI, Moscow, Russia 113 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia 114 Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany 115 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany 116 Nagasaki Institute of Applied Science, Nagasaki, Japan 117 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan 123 118 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA 119 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands 120 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands 121 Department of Physics, Northern Illinois University, DeKalb, IL, USA 122 (a)Budker Institute of Nuclear Physics and NSU, SB RAS, Novosibirsk, Russia; (b)Novosibirsk State University Novosibirsk, Novosibirsk, Russia 123 Institute for High Energy Physics of the National Research Centre Kurchatov Institute, Protvino, Russia 124 Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of National Research Centre “Kurchatov Institute”, Moscow, Russia 125 Department of Physics, New York University, New York, NY, USA 126 Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, Japan 127 Ohio State University, Columbus, OH, USA 128 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA 129 Department of Physics, Oklahoma State University, Stillwater, OK, USA 130 Palacký University, RCPTM, Joint Laboratory of Optics, Olomouc, Czech Republic 131 Institute for Fundamental Science, University of Oregon, Eugene, OR, USA 132 Graduate School of Science, Osaka University, Osaka, Japan 133 Department of Physics, University of Oslo, Oslo, Norway 134 Department of Physics, Oxford University, Oxford, UK 135 LPNHE, Sorbonne Université, Université de Paris, CNRS/IN2P3, Paris, France 136 Department of Physics, University of Pennsylvania, Philadelphia, PA, USA 137 Konstantinov Nuclear Physics Institute of National Research Centre “Kurchatov Institute”, PNPI, St. Petersburg, Russia 138 Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA 139 (a)Laboratório de Instrumentaçao e Física Experimental de Partículas -LIP, Lisbon, Portugal; (b)Departamento de Física, Faculdade de Ciencias, Universidade de Lisboa, Lisbon, Portugal; (c)Departamento de Física, Universidade de Coimbra, Coimbra, Portugal; (d)Centro de Física Nuclear da Universidade de Lisboa, Lisbon, Portugal; (e)Departamento de Física, Universidade do Minho, Braga, Portugal; (f)Departamento de Física Teórica y del Cosmos, Universidad de Granada, Granada, Spain; (g)Dep Física and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal; (h)Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal 140 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic 141 Czech Technical University in Prague, Prague, Czech Republic 142 Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic 143 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK 144 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France 145 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, CA, USA 146 (a)Departamento de Física, Pontifcia Universidad Católica de Chile, Santiago, Chile; (b)Department of Physics, Universidad Andres Bello, Santiago, Chile; (c)Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile; (d)Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile 147 Department of Physics, University of Washington, Seattle, WA, USA 148 Department of Physics and Astronomy, University of Sheffeld, Sheffeld, UK 149 Department of Physics, Shinshu University, Nagano, Japan 150 Department Physik, Universität Siegen, Siegen, Germany 151 Department of Physics, Simon Fraser University, Burnaby, BC, Canada 152 SLAC National Accelerator Laboratory, Stanford, CA, USA 153 Physics Department, Royal Institute of Technology, Stockholm, Sweden 154 Departments of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA 155 Department of Physics and Astronomy, University of Sussex, Brighton, UK 156 School of Physics, University of Sydney, Sydney, Australia 157 Institute of Physics, Academia Sinica, Taipei, Taiwan 158 (a)E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b)High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia 159 Department of Physics, Technion, Israel Institute of Technology, Haifa, Israel 123 160 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel 161 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece 162 International Center for Elementary Particle Physics and Department of Physics, University of Tokyo, Tokyo, Japan 163 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan 164 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan 165 Tomsk State University, Tomsk, Russia 166 Department of Physics, University of Toronto, Toronto, ON, Canada 167 (a)TRIUMF, Vancouver, BC, Canada; (b)Department of Physics and Astronomy, York University, Toronto, ON, Canada 168 Division of Physics and Tomonaga Center for the History of the Universe, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan 169 Department of Physics and Astronomy, Tufts University, Medford, MA, USA 170 Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA 171 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden 172 Department of Physics, University of Illinois, Urbana, IL, USA 173 Instituto de Física Corpuscular (IFIC), Centro Mixto Universidad de Valencia, CSIC, Valencia, Spain 174 Department of Physics, University of British Columbia, Vancouver, BC, Canada 175 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada 176 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany 177 Department of Physics, University of Warwick, Coventry, UK 178 Waseda University, Tokyo, Japan 179 Department of Particle Physics, Weizmann Institute of Science, Rehovot, Israel 180 Department of Physics, University of Wisconsin, Madison, WI, USA 181 Fakultät für Mathematik und Naturwissenschaften, Fachgruppe Physik, Bergische Universität Wuppertal, Wuppertal, Germany 182 Department of Physics, Yale University, New Haven, CT, USA a Also at Borough of Manhattan Community College, City University of New York, New York NY, USA b Also at Centro Studi e Ricerche Enrico Fermi, Italy c Also at CERN, Geneva, Switzerland d Also at CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France e Also at Département de Physique Nucléaire et Corpusculaire, Université de Geneve, Geneve, Switzerland f Also at Departament de Fisica de la Universitat Autonoma de Barcelona, Barcelona, Spain g Also at Department of Financial and Management Engineering, University of the Aegean, Chios, Greece h Also at Department of Physics and Astronomy, Michigan State University, East Lansing MI, USA i Also at Department of Physics and Astronomy, University of Louisville, Louisville, KY, USA j Also at Department of Physics, Ben Gurion University of the Negev, Beer Sheva, Israel k Also at Department of Physics, California State University, East Bay, USA l Also at Department of Physics, California State University, Fresno, USA m Also at Department of Physics, California State University, Sacramento, USA n Also at Department of Physics, King’s College London, London, UK o Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia p Also at Department of Physics, University of Fribourg, Fribourg, Switzerland q Also at Dipartimento di Matematica, Informatica e Fisica, Universita di Udine, Udine, Italy r Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia s Also at Giresun University, Faculty of Engineering, Giresun, Turkey t Also at Graduate School of Science, Osaka University, Osaka, Japan u Also at Hellenic Open University, Patras, Greece v Also at IJCLab, Université Paris-Saclay, CNRS/IN2P3, 91405, Orsay, France w Also at Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain x Also at Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany y Also at Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands 123 z Also at Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences, Sofa, Bulgaria aa Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary ab Also at Institute of Particle Physics (IPP), Vancouver, Canada ac Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan ad Also at Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid, Spain ae Also at Joint Institute for Nuclear Research, Dubna, Russia af Also at Louisiana Tech University, Ruston LA, USA ag Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia ah Also at National Research Nuclear University MEPhI, Moscow, Russia ai Also at Physics Department, An-Najah National University, Nablus, Palestine aj Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany ak Also at The City College of New York, New York NY, USA al Also at TRIUMF, Vancouver BC, Canada am Also at Universita di Napoli Parthenope, Napoli, Italy an Also at University of Chinese Academy of Sciences (UCAS), Beijing, China *Deceased 123