Dynamical properties of a perceptron learning process : structural stability under numerics and shadowing

2011
journal article
article
9
cris.lastimport.wos2024-04-09T19:05:30Z
dc.abstract.enIn this paper two aspects of numerical dynamics are used for an artificial neural network (ANN) analysis. It is shown that topological conjugacy of gradient dynamical systems and both the shadowing and inverse shadowing properties have nontrivial implications in the analysis of a perceptron learning process. The main result is that, generically, any such process is stable under numerics and robust. Implementation aspects are discussed as well. The analysis is based on the theorem concerning global topological conjugacy of cascades generated by a gradient flow on a compact manifold without a boundary.pl
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematykipl
dc.contributor.authorBielecki, Andrzej - 127319 pl
dc.contributor.authorOmbach, Jerzy - 131170 pl
dc.date.accessioned2019-05-16T08:31:48Z
dc.date.available2019-05-16T08:31:48Z
dc.date.issued2011pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.versionostateczna wersja wydawcy
dc.identifier.articleid21:579
dc.identifier.doi10.1007/s00332-011-9094-1pl
dc.identifier.eissn1432-1467pl
dc.identifier.issn0938-8974pl
dc.identifier.projectROD UJ / OPpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/74829
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa - Użycie niekomercyjne 4.0 Międzynarodowa*
dc.rights.licenceCC-BY-NC
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/legalcode.pl*
dc.share.typeinne
dc.subject.endynamical systempl
dc.subject.entopological conjugacypl
dc.subject.enshadowingpl
dc.subject.eninverse shadowingpl
dc.subject.enrobustnesspl
dc.subject.enperceptron learning processpl
dc.subject.engradient differential equationpl
dc.subject.enRunge-Kutta methodspl
dc.subtypeArticlepl
dc.titleDynamical properties of a perceptron learning process : structural stability under numerics and shadowingpl
dc.title.journalJournal of Nonlinear Sciencepl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T19:05:30Z
dc.abstract.enpl
In this paper two aspects of numerical dynamics are used for an artificial neural network (ANN) analysis. It is shown that topological conjugacy of gradient dynamical systems and both the shadowing and inverse shadowing properties have nontrivial implications in the analysis of a perceptron learning process. The main result is that, generically, any such process is stable under numerics and robust. Implementation aspects are discussed as well. The analysis is based on the theorem concerning global topological conjugacy of cascades generated by a gradient flow on a compact manifold without a boundary.
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorpl
Bielecki, Andrzej - 127319
dc.contributor.authorpl
Ombach, Jerzy - 131170
dc.date.accessioned
2019-05-16T08:31:48Z
dc.date.available
2019-05-16T08:31:48Z
dc.date.issuedpl
2011
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.version
ostateczna wersja wydawcy
dc.identifier.articleid
21:579
dc.identifier.doipl
10.1007/s00332-011-9094-1
dc.identifier.eissnpl
1432-1467
dc.identifier.issnpl
0938-8974
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/74829
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne 4.0 Międzynarodowa
dc.rights.licence
CC-BY-NC
dc.rights.uri*
http://creativecommons.org/licenses/by-nc/4.0/legalcode.pl
dc.share.type
inne
dc.subject.enpl
dynamical system
dc.subject.enpl
topological conjugacy
dc.subject.enpl
shadowing
dc.subject.enpl
inverse shadowing
dc.subject.enpl
robustness
dc.subject.enpl
perceptron learning process
dc.subject.enpl
gradient differential equation
dc.subject.enpl
Runge-Kutta methods
dc.subtypepl
Article
dc.titlepl
Dynamical properties of a perceptron learning process : structural stability under numerics and shadowing
dc.title.journalpl
Journal of Nonlinear Science
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
3
Views per month
Views per city
Ashburn
1
Downloads
bielecki_ombach_dynamical_properties_of_a_perceptron_learning_2011.pdf
16
bielecki_ombach_dynamical_properties_of_a_perceptron_learning_2011.odt
3