Simple view
Full metadata view
Authors
Statistics
Dynamical properties of a perceptron learning process : structural stability under numerics and shadowing
dynamical system
topological conjugacy
shadowing
inverse shadowing
robustness
perceptron learning process
gradient differential equation
Runge-Kutta methods
In this paper two aspects of numerical dynamics are used for an artificial neural network (ANN) analysis. It is shown that topological conjugacy of gradient dynamical systems and both the shadowing and inverse shadowing properties have nontrivial implications in the analysis of a perceptron learning process. The main result is that, generically, any such process is stable under numerics and robust. Implementation aspects are discussed as well. The analysis is based on the theorem concerning global topological conjugacy of cascades generated by a gradient flow on a compact manifold without a boundary.
cris.lastimport.wos | 2024-04-09T19:05:30Z | |
dc.abstract.en | In this paper two aspects of numerical dynamics are used for an artificial neural network (ANN) analysis. It is shown that topological conjugacy of gradient dynamical systems and both the shadowing and inverse shadowing properties have nontrivial implications in the analysis of a perceptron learning process. The main result is that, generically, any such process is stable under numerics and robust. Implementation aspects are discussed as well. The analysis is based on the theorem concerning global topological conjugacy of cascades generated by a gradient flow on a compact manifold without a boundary. | pl |
dc.affiliation | Wydział Matematyki i Informatyki : Instytut Matematyki | pl |
dc.contributor.author | Bielecki, Andrzej - 127319 | pl |
dc.contributor.author | Ombach, Jerzy - 131170 | pl |
dc.date.accessioned | 2019-05-16T08:31:48Z | |
dc.date.available | 2019-05-16T08:31:48Z | |
dc.date.issued | 2011 | pl |
dc.date.openaccess | 0 | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.version | ostateczna wersja wydawcy | |
dc.identifier.articleid | 21:579 | |
dc.identifier.doi | 10.1007/s00332-011-9094-1 | pl |
dc.identifier.eissn | 1432-1467 | pl |
dc.identifier.issn | 0938-8974 | pl |
dc.identifier.project | ROD UJ / OP | pl |
dc.identifier.uri | https://ruj.uj.edu.pl/xmlui/handle/item/74829 | |
dc.language | eng | pl |
dc.language.container | eng | pl |
dc.rights | Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne 4.0 Międzynarodowa | * |
dc.rights.licence | CC-BY-NC | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/legalcode.pl | * |
dc.share.type | inne | |
dc.subject.en | dynamical system | pl |
dc.subject.en | topological conjugacy | pl |
dc.subject.en | shadowing | pl |
dc.subject.en | inverse shadowing | pl |
dc.subject.en | robustness | pl |
dc.subject.en | perceptron learning process | pl |
dc.subject.en | gradient differential equation | pl |
dc.subject.en | Runge-Kutta methods | pl |
dc.subtype | Article | pl |
dc.title | Dynamical properties of a perceptron learning process : structural stability under numerics and shadowing | pl |
dc.title.journal | Journal of Nonlinear Science | pl |
dc.type | JournalArticle | pl |
dspace.entity.type | Publication |
* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.
Views
3
Views per month
Views per city
Downloads
Open Access