Simple view
Full metadata view
Authors
Statistics
Resolution invariant wavelet features of melanoma studied by SVM classifiers
This article refers to the Computer Aided Diagnosis of the melanoma skin cancer. We derive wavelet-based features of melanoma from the dermoscopic images of pigmental skin lesions and apply binary C-SVM classifiers to discriminate malignant melanoma from dysplastic nevus. The aim of this research is to select the most efficient model of the SVM classifier for various image resolutions and to search for the best resolution-invariant wavelet bases. We show AUC as a function of the wavelet number and SVM kernels optimized by the Bayesian search for two independent data sets. Our results are compatible with the previous experiments to discriminate melanoma in dermoscopy images with ensembling and feed-forward neural networks.
dc.abstract.en | This article refers to the Computer Aided Diagnosis of the melanoma skin cancer. We derive wavelet-based features of melanoma from the dermoscopic images of pigmental skin lesions and apply binary C-SVM classifiers to discriminate malignant melanoma from dysplastic nevus. The aim of this research is to select the most efficient model of the SVM classifier for various image resolutions and to search for the best resolution-invariant wavelet bases. We show AUC as a function of the wavelet number and SVM kernels optimized by the Bayesian search for two independent data sets. Our results are compatible with the previous experiments to discriminate melanoma in dermoscopy images with ensembling and feed-forward neural networks. | pl |
dc.affiliation | Wydział Fizyki, Astronomii i Informatyki Stosowanej : Zakład Technologii Informatycznych | pl |
dc.contributor.author | Surówka, Grzegorz - 100453 | pl |
dc.contributor.author | Ogorzałek, Maciej - 102456 | pl |
dc.date.accessioned | 2019-03-06T14:47:19Z | |
dc.date.available | 2019-03-06T14:47:19Z | |
dc.date.issued | 2019 | pl |
dc.date.openaccess | 0 | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.number | 2 | pl |
dc.description.version | ostateczna wersja wydawcy | |
dc.description.volume | 14 | pl |
dc.identifier.articleid | e0211318 | pl |
dc.identifier.doi | 10.1371/journal.pone.0211318 | pl |
dc.identifier.eissn | 1932-6203 | pl |
dc.identifier.project | ROD UJ / OP | pl |
dc.identifier.uri | https://ruj.uj.edu.pl/xmlui/handle/item/69907 | |
dc.language | eng | pl |
dc.language.container | eng | pl |
dc.rights | Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa | * |
dc.rights.licence | CC-BY | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/legalcode.pl | * |
dc.share.type | otwarte czasopismo | |
dc.subtype | Article | pl |
dc.title | Resolution invariant wavelet features of melanoma studied by SVM classifiers | pl |
dc.title.journal | PLoS ONE | pl |
dc.type | JournalArticle | pl |
dspace.entity.type | Publication |
* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.
Views
3
Views per month
Views per city
Downloads
Open Access