Resolution invariant wavelet features of melanoma studied by SVM classifiers

2019
journal article
article
4
dc.abstract.enThis article refers to the Computer Aided Diagnosis of the melanoma skin cancer. We derive wavelet-based features of melanoma from the dermoscopic images of pigmental skin lesions and apply binary C-SVM classifiers to discriminate malignant melanoma from dysplastic nevus. The aim of this research is to select the most efficient model of the SVM classifier for various image resolutions and to search for the best resolution-invariant wavelet bases. We show AUC as a function of the wavelet number and SVM kernels optimized by the Bayesian search for two independent data sets. Our results are compatible with the previous experiments to discriminate melanoma in dermoscopy images with ensembling and feed-forward neural networks.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Zakład Technologii Informatycznychpl
dc.contributor.authorSurówka, Grzegorz - 100453 pl
dc.contributor.authorOgorzałek, Maciej - 102456 pl
dc.date.accessioned2019-03-06T14:47:19Z
dc.date.available2019-03-06T14:47:19Z
dc.date.issued2019pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number2pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume14pl
dc.identifier.articleide0211318pl
dc.identifier.doi10.1371/journal.pone.0211318pl
dc.identifier.eissn1932-6203pl
dc.identifier.projectROD UJ / OPpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/69907
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.subtypeArticlepl
dc.titleResolution invariant wavelet features of melanoma studied by SVM classifierspl
dc.title.journalPLoS ONEpl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
This article refers to the Computer Aided Diagnosis of the melanoma skin cancer. We derive wavelet-based features of melanoma from the dermoscopic images of pigmental skin lesions and apply binary C-SVM classifiers to discriminate malignant melanoma from dysplastic nevus. The aim of this research is to select the most efficient model of the SVM classifier for various image resolutions and to search for the best resolution-invariant wavelet bases. We show AUC as a function of the wavelet number and SVM kernels optimized by the Bayesian search for two independent data sets. Our results are compatible with the previous experiments to discriminate melanoma in dermoscopy images with ensembling and feed-forward neural networks.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Zakład Technologii Informatycznych
dc.contributor.authorpl
Surówka, Grzegorz - 100453
dc.contributor.authorpl
Ogorzałek, Maciej - 102456
dc.date.accessioned
2019-03-06T14:47:19Z
dc.date.available
2019-03-06T14:47:19Z
dc.date.issuedpl
2019
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
2
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
14
dc.identifier.articleidpl
e0211318
dc.identifier.doipl
10.1371/journal.pone.0211318
dc.identifier.eissnpl
1932-6203
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/69907
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subtypepl
Article
dc.titlepl
Resolution invariant wavelet features of melanoma studied by SVM classifiers
dc.title.journalpl
PLoS ONE
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
3
Views per month
Views per city
Ashburn
3
Downloads
surowka_ogorzalek_resolution_invariant_wavelet_features_melanoma_studied_by_svm_classifiers_2018.pdf
21
surowka_ogorzalek_resolution_invariant_wavelet_features_melanoma_studied_by_svm_classifiers_2018.odt
6