Automated classification of virtual reality user motions using a motion atlas and machine learning approach

2024
journal article
article
5
dc.abstract.enA novel motion atlas consisting of 56 different motions was constructed to meet needs of virtual reality (VR) video games. Within the atlas four motion categories were defined: head movements ( HEAD ), hand and arm movements ( ARMS ), whole body movements ( BODY ), and animations ( ANIM ). The data identifying the motion patterns were collected exclusively using VR system peripherals, namely goggles and controllers – for motion capture (MoCap) purposes, the HTC Vive Pro and Meta Quest 2 devices were used. By employing popular machine learning (ML) architectures, 300 motion recognition models were trained, and the most effective ones were selected. The study included classical algorithms such as k-nearest neighbors (kNN), logistic regression (LR), support vector machine (SVM), decision tree (DT), extra-trees classifier (Ensemble), random forests (RF), naive Bayes classifier (NB), and LightGBM (LGBM), which were selected based on literature review. Deep learning (DL) algorithms were also tested: convolutional neural network (CNN), transformer, and long-short-term memory (LSTM). Despite the significantly larger size of the motion atlas compared to other approaches and the limitation to naturally available data within VR systems, the best obtained CNN model achieved a weighted F-score of nearly 98% for motion recognition.
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Informatyki Stosowanej
dc.contributor.authorPięta, Paweł
dc.contributor.authorJegierski, Hubert
dc.contributor.authorBabiuch, Paweł
dc.contributor.authorJegierski, Maciej
dc.contributor.authorPłaza, Mirosław
dc.contributor.authorŁukawski, Grzegorz
dc.contributor.authorDeniziak, Stanisław
dc.contributor.authorJasiński, Artur
dc.contributor.authorOpałka, Jacek
dc.contributor.authorWęgrzyn, Paweł - 100441
dc.contributor.authorIgras-Cybulska, Magdalena
dc.contributor.authorŁapczyński, Adrian
dc.date.accession2024-07-18
dc.date.accessioned2024-07-18T10:21:34Z
dc.date.available2024-07-18T10:21:34Z
dc.date.issued2024
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.physical94584-94609
dc.description.versionostateczna wersja wydawcy
dc.description.volume12
dc.identifier.doi10.1109/access.2024.3424930
dc.identifier.eissn2169-3536
dc.identifier.urihttps://ruj.uj.edu.pl/handle/item/387741
dc.identifier.weblinkhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10589385
dc.languageeng
dc.language.containereng
dc.rightsUdzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licenceCC-BY-NC-ND
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
dc.share.typeotwarte czasopismo
dc.subject.enaction recognition
dc.subject.enactivity recognition
dc.subject.enartificial intelligence (AI)
dc.subject.enclassification
dc.subject.endeep learning
dc.subject.enindependent component analysis (ICA)
dc.subject.enmachine learning
dc.subject.enmotion analysis
dc.subject.enmotion atlas
dc.subject.enmotion capture
dc.subject.enmotion recognition
dc.subject.enneural networks (NNs)
dc.subject.enprincipal component analysis (PCA)
dc.subject.ensensors
dc.subject.enuser movement
dc.subject.envideo games
dc.subject.envirtual reality
dc.subtypeArticle
dc.titleAutomated classification of virtual reality user motions using a motion atlas and machine learning approach
dc.title.journalIEEE Access
dc.typeJournalArticle
dspace.entity.typePublicationen
dc.abstract.en
A novel motion atlas consisting of 56 different motions was constructed to meet needs of virtual reality (VR) video games. Within the atlas four motion categories were defined: head movements ( HEAD ), hand and arm movements ( ARMS ), whole body movements ( BODY ), and animations ( ANIM ). The data identifying the motion patterns were collected exclusively using VR system peripherals, namely goggles and controllers – for motion capture (MoCap) purposes, the HTC Vive Pro and Meta Quest 2 devices were used. By employing popular machine learning (ML) architectures, 300 motion recognition models were trained, and the most effective ones were selected. The study included classical algorithms such as k-nearest neighbors (kNN), logistic regression (LR), support vector machine (SVM), decision tree (DT), extra-trees classifier (Ensemble), random forests (RF), naive Bayes classifier (NB), and LightGBM (LGBM), which were selected based on literature review. Deep learning (DL) algorithms were also tested: convolutional neural network (CNN), transformer, and long-short-term memory (LSTM). Despite the significantly larger size of the motion atlas compared to other approaches and the limitation to naturally available data within VR systems, the best obtained CNN model achieved a weighted F-score of nearly 98% for motion recognition.
dc.affiliation
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Informatyki Stosowanej
dc.contributor.author
Pięta, Paweł
dc.contributor.author
Jegierski, Hubert
dc.contributor.author
Babiuch, Paweł
dc.contributor.author
Jegierski, Maciej
dc.contributor.author
Płaza, Mirosław
dc.contributor.author
Łukawski, Grzegorz
dc.contributor.author
Deniziak, Stanisław
dc.contributor.author
Jasiński, Artur
dc.contributor.author
Opałka, Jacek
dc.contributor.author
Węgrzyn, Paweł - 100441
dc.contributor.author
Igras-Cybulska, Magdalena
dc.contributor.author
Łapczyński, Adrian
dc.date.accession
2024-07-18
dc.date.accessioned
2024-07-18T10:21:34Z
dc.date.available
2024-07-18T10:21:34Z
dc.date.issued
2024
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.physical
94584-94609
dc.description.version
ostateczna wersja wydawcy
dc.description.volume
12
dc.identifier.doi
10.1109/access.2024.3424930
dc.identifier.eissn
2169-3536
dc.identifier.uri
https://ruj.uj.edu.pl/handle/item/387741
dc.identifier.weblink
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10589385
dc.language
eng
dc.language.container
eng
dc.rights
Udzielam licencji. Uznanie autorstwa - Użycie niekomercyjne - Bez utworów zależnych 4.0 Międzynarodowa
dc.rights.licence
CC-BY-NC-ND
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subject.en
action recognition
dc.subject.en
activity recognition
dc.subject.en
artificial intelligence (AI)
dc.subject.en
classification
dc.subject.en
deep learning
dc.subject.en
independent component analysis (ICA)
dc.subject.en
machine learning
dc.subject.en
motion analysis
dc.subject.en
motion atlas
dc.subject.en
motion capture
dc.subject.en
motion recognition
dc.subject.en
neural networks (NNs)
dc.subject.en
principal component analysis (PCA)
dc.subject.en
sensors
dc.subject.en
user movement
dc.subject.en
video games
dc.subject.en
virtual reality
dc.subtype
Article
dc.title
Automated classification of virtual reality user motions using a motion atlas and machine learning approach
dc.title.journal
IEEE Access
dc.type
JournalArticle
dspace.entity.typeen
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
16
Views per month
Views per city
Krakow
3
Ełk
1
Tianjin
1
Downloads
wegrzyn_et-al_automated_classification_of_virtual_reality_user_motions_2024.pdf
18
pięta_et-al_automated_classification_of_virtual_reality_user_motions_2024.pdf
1