Non-factorial nodal complete intersection threefolds

2013
journal article
article
1
cris.lastimport.wos2024-04-09T22:26:32Z
dc.abstract.enWe give a bound on the minimal number of singularities of a nodal projective complete intersection threefold which contains a smooth complete intersection surface that is not a Cartier divisor.pl
dc.affiliationWydział Matematyki i Informatyki : Katedra Geometrii Algebraicznej i Teorii Liczbpl
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematykipl
dc.contributor.authorCynk, Sławomir - 100413 pl
dc.contributor.authorRams, Sławomir - 131632 pl
dc.date.accessioned2014-07-16T05:09:48Z
dc.date.available2014-07-16T05:09:48Z
dc.date.issued2013pl
dc.description.number5pl
dc.description.volume15pl
dc.identifier.articleid1250064pl
dc.identifier.doi10.1142/S0219199712500642pl
dc.identifier.eissn1793-6683pl
dc.identifier.issn0219-1997pl
dc.identifier.urihttp://ruj.uj.edu.pl/xmlui/handle/item/58
dc.languageengpl
dc.language.containerengpl
dc.rights.licencebez licencji
dc.subject.enNodal varietypl
dc.subject.encomplete intersectionpl
dc.subject.enℚ-factorialitypl
dc.subtypeArticlepl
dc.titleNon-factorial nodal complete intersection threefoldspl
dc.title.journalCommunications in Contemporary Mathematicspl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T22:26:32Z
dc.abstract.enpl
We give a bound on the minimal number of singularities of a nodal projective complete intersection threefold which contains a smooth complete intersection surface that is not a Cartier divisor.
dc.affiliationpl
Wydział Matematyki i Informatyki : Katedra Geometrii Algebraicznej i Teorii Liczb
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorpl
Cynk, Sławomir - 100413
dc.contributor.authorpl
Rams, Sławomir - 131632
dc.date.accessioned
2014-07-16T05:09:48Z
dc.date.available
2014-07-16T05:09:48Z
dc.date.issuedpl
2013
dc.description.numberpl
5
dc.description.volumepl
15
dc.identifier.articleidpl
1250064
dc.identifier.doipl
10.1142/S0219199712500642
dc.identifier.eissnpl
1793-6683
dc.identifier.issnpl
0219-1997
dc.identifier.uri
http://ruj.uj.edu.pl/xmlui/handle/item/58
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights.licence
bez licencji
dc.subject.enpl
Nodal variety
dc.subject.enpl
complete intersection
dc.subject.enpl
ℚ-factoriality
dc.subtypepl
Article
dc.titlepl
Non-factorial nodal complete intersection threefolds
dc.title.journalpl
Communications in Contemporary Mathematics
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
3
Views per month

No access

No Thumbnail Available