A nonsmooth optimization approach for hemivariational inequalities with applications to contact mechanics

2021
journal article
article
5
cris.lastimport.wos2024-04-09T19:36:57Z
dc.abstract.enIn this paper we introduce an abstract nonsmooth optimization problem and prove existence and uniqueness of its solution. We present a numerical scheme to approximate this solution. The theory is later applied to a sample static contact problem describing an elastic body in frictional contact with a foundation. This contact is governed by a nonmonotone friction law with dependence on normal and tangential components of displacement. Finally, computational simulations are performed to illustrate obtained results.pl
dc.affiliationWydział Matematyki i Informatyki : Katedra Teorii Optymalizacji i Sterowaniapl
dc.contributor.authorJureczka, Michał - 190145 pl
dc.contributor.authorOchal, Anna - 131110 pl
dc.date.accessioned2021-05-26T11:55:35Z
dc.date.available2021-05-26T11:55:35Z
dc.date.issued2021pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.physical1465-1485pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume83pl
dc.identifier.doi10.1007/s00245-019-09593-ypl
dc.identifier.eissn1432-0606pl
dc.identifier.issn0095-4616pl
dc.identifier.project823731 — CONMECHpl
dc.identifier.projectUMO-2012/06/A/ST1/00262pl
dc.identifier.projectROD UJ / OPpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/271808
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeinne
dc.subject.ennonmonotone frictionpl
dc.subject.enoptimization problempl
dc.subject.enerror estimatepl
dc.subject.enfinite element methodpl
dc.subject.ennumerical simulationspl
dc.subtypeArticlepl
dc.titleA nonsmooth optimization approach for hemivariational inequalities with applications to contact mechanicspl
dc.title.journalApplied Mathematics and Optimizationpl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T19:36:57Z
dc.abstract.enpl
In this paper we introduce an abstract nonsmooth optimization problem and prove existence and uniqueness of its solution. We present a numerical scheme to approximate this solution. The theory is later applied to a sample static contact problem describing an elastic body in frictional contact with a foundation. This contact is governed by a nonmonotone friction law with dependence on normal and tangential components of displacement. Finally, computational simulations are performed to illustrate obtained results.
dc.affiliationpl
Wydział Matematyki i Informatyki : Katedra Teorii Optymalizacji i Sterowania
dc.contributor.authorpl
Jureczka, Michał - 190145
dc.contributor.authorpl
Ochal, Anna - 131110
dc.date.accessioned
2021-05-26T11:55:35Z
dc.date.available
2021-05-26T11:55:35Z
dc.date.issuedpl
2021
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.physicalpl
1465-1485
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
83
dc.identifier.doipl
10.1007/s00245-019-09593-y
dc.identifier.eissnpl
1432-0606
dc.identifier.issnpl
0095-4616
dc.identifier.projectpl
823731 — CONMECH
dc.identifier.projectpl
UMO-2012/06/A/ST1/00262
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/271808
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.enpl
nonmonotone friction
dc.subject.enpl
optimization problem
dc.subject.enpl
error estimate
dc.subject.enpl
finite element method
dc.subject.enpl
numerical simulations
dc.subtypepl
Article
dc.titlepl
A nonsmooth optimization approach for hemivariational inequalities with applications to contact mechanics
dc.title.journalpl
Applied Mathematics and Optimization
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
8
Views per month
Views per city
Ashburn
4
Wroclaw
2
Dublin
1
Downloads
jureczka_ochal_a_nonsmooth_optimization_approach_for_hemivariational_2021.pdf
3