The BPS property and its breaking in 1+1 dimensions

2018
journal article
article
23
cris.lastimport.wos2024-04-09T18:49:14Z
dc.abstract.enWe show that the Bogomol’nyi-Prasad-Sommerfield (BPS) property is a generic feature of all models in ( 1 + 1 ) dimensions that does not put any restriction on the action. Here, by BPS solutions we understand static solutions that (i) obey a lower-order Bogomolny-type equation in addition to the Euler-Lagrange equation, (ii) have an energy that only depends on a topological charge and the global properties of the fields, but not on the local behavior (coordinate dependence) of the solution, and (iii) have zero pressure density. Concretely, to accomplish this program we study the existence of BPS solutions in field theories where the action functional (or energy functional) depends on higher than first derivatives of the fields. We find that the existence of BPS solutions is a rather generic property of these higher-derivative scalar field theories. Hence, the BPS property in 1 + 1 dimensions can be extended not only to an arbitrary number of scalar fields and k-deformed models, but also to any (well-behaved) higher-derivative theory. We also investigate the possibility to destroy the BPS property by adding an impurity that breaks the translational symmetry. Further, we find that there is a particular impurity-field coupling that still preserves one-half of the BPS-ness. An example of such a BPS kink-impurity bound state is provided.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiegopl
dc.contributor.authorAdam, C.pl
dc.contributor.authorWereszczyński, Andrzej - 132581 pl
dc.date.accessioned2019-03-25T09:05:32Z
dc.date.available2019-03-25T09:05:32Z
dc.date.issued2018pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number11pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume98pl
dc.identifier.articleid116001pl
dc.identifier.doi10.1103/PhysRevD.98.116001pl
dc.identifier.eissn2470-0029pl
dc.identifier.issn2470-0010pl
dc.identifier.projectROD UJ / OPpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/71292
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeinne
dc.subtypeArticlepl
dc.titleThe BPS property and its breaking in 1+1 dimensionspl
dc.title.journalPhysical Review. Dpl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T18:49:14Z
dc.abstract.enpl
We show that the Bogomol’nyi-Prasad-Sommerfield (BPS) property is a generic feature of all models in ( 1 + 1 ) dimensions that does not put any restriction on the action. Here, by BPS solutions we understand static solutions that (i) obey a lower-order Bogomolny-type equation in addition to the Euler-Lagrange equation, (ii) have an energy that only depends on a topological charge and the global properties of the fields, but not on the local behavior (coordinate dependence) of the solution, and (iii) have zero pressure density. Concretely, to accomplish this program we study the existence of BPS solutions in field theories where the action functional (or energy functional) depends on higher than first derivatives of the fields. We find that the existence of BPS solutions is a rather generic property of these higher-derivative scalar field theories. Hence, the BPS property in 1 + 1 dimensions can be extended not only to an arbitrary number of scalar fields and k-deformed models, but also to any (well-behaved) higher-derivative theory. We also investigate the possibility to destroy the BPS property by adding an impurity that breaks the translational symmetry. Further, we find that there is a particular impurity-field coupling that still preserves one-half of the BPS-ness. An example of such a BPS kink-impurity bound state is provided.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.contributor.authorpl
Adam, C.
dc.contributor.authorpl
Wereszczyński, Andrzej - 132581
dc.date.accessioned
2019-03-25T09:05:32Z
dc.date.available
2019-03-25T09:05:32Z
dc.date.issuedpl
2018
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
11
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
98
dc.identifier.articleidpl
116001
dc.identifier.doipl
10.1103/PhysRevD.98.116001
dc.identifier.eissnpl
2470-0029
dc.identifier.issnpl
2470-0010
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/71292
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subtypepl
Article
dc.titlepl
The BPS property and its breaking in 1+1 dimensions
dc.title.journalpl
Physical Review. D
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
3
Views per month
Views per city
Ashburn
2
Downloads
adam_wereszczynski_bps_property_and_its_breaking_in_1+1_dimensions_2018.pdf
2
adam_wereszczynski_bps_property_and_its_breaking_in_1+1_dimensions_2018.odt
1