Simple view
Full metadata view
Authors
Statistics
Balanced metrics and Berezin quantization on Hartogs triangles
Hartogs triangles
balanced metrics
Berezin quantization
In this paper, we study balanced metrics and Berezin quantization on a class of Hartogs domains defined by Ωn={(z1,…,zn)∈Cn:|z1|<|z2|<⋯<|zn|<1} which generalize the so-called classical Hartogs triangle. We introduce a Kähler metric g(ν) associated with the Kähler potential Φn(z):=−∑n−1k=1νkln(|zk+1|2−|zk|2)−νnln(1−|zn|2) on Ωn. As main contributions, on one hand we compute the explicit form for Bergman kernel of weighted Hilbert space, and then, we obtain the necessary and sufficient condition for the metric g(ν) on the domain Ωn to be a balanced metric. On the other hand, by using the Calabi’s diastasis function, we prove that the Hartogs triangles admit a Berezin quantization.
dc.abstract.en | In this paper, we study balanced metrics and Berezin quantization on a class of Hartogs domains defined by Ωn={(z1,…,zn)∈Cn:|z1|<|z2|<⋯<|zn|<1} which generalize the so-called classical Hartogs triangle. We introduce a Kähler metric g(ν) associated with the Kähler potential Φn(z):=−∑n−1k=1νkln(|zk+1|2−|zk|2)−νnln(1−|zn|2) on Ωn. As main contributions, on one hand we compute the explicit form for Bergman kernel of weighted Hilbert space, and then, we obtain the necessary and sufficient condition for the metric g(ν) on the domain Ωn to be a balanced metric. On the other hand, by using the Calabi’s diastasis function, we prove that the Hartogs triangles admit a Berezin quantization. | pl |
dc.affiliation | Wydział Matematyki i Informatyki : Instytut Matematyki | pl |
dc.contributor.author | Bi, Enchao | pl |
dc.contributor.author | Su, Guicong - 415322 | pl |
dc.date.accessioned | 2021-04-26T08:40:25Z | |
dc.date.available | 2021-04-26T08:40:25Z | |
dc.date.issued | 2021 | pl |
dc.date.openaccess | 0 | |
dc.description.accesstime | w momencie opublikowania | |
dc.description.physical | 273-285 | pl |
dc.description.version | ostateczna wersja wydawcy | |
dc.description.volume | 200 | pl |
dc.identifier.doi | 10.1007/s10231-020-00995-2 | pl |
dc.identifier.eissn | 1618-1891 | pl |
dc.identifier.issn | 0373-3114 | pl |
dc.identifier.project | 2017/26/E/ST1/00723.1 | pl |
dc.identifier.project | ROD UJ / OP | pl |
dc.identifier.uri | https://ruj.uj.edu.pl/xmlui/handle/item/269770 | |
dc.language | eng | pl |
dc.language.container | eng | pl |
dc.rights | Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa | * |
dc.rights.licence | CC-BY | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/legalcode.pl | * |
dc.share.type | inne | |
dc.subject.en | Hartogs triangles | pl |
dc.subject.en | balanced metrics | pl |
dc.subject.en | Berezin quantization | pl |
dc.subtype | Article | pl |
dc.title | Balanced metrics and Berezin quantization on Hartogs triangles | pl |
dc.title.journal | Annali di Matematica Pura ed Applicata | pl |
dc.type | JournalArticle | pl |
dspace.entity.type | Publication |
* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.
Views
17
Views per month
Views per city
Downloads
Open Access