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Abstract

Drosophila melanogaster germ cell-expressed protein (GCE) belongs to the family of
bHLH-PAS transcription factors that are the regulators of gene expression networks that
determine many physiological and developmental processes. GCE is a homolog of D. mela-
nogaster methoprene tolerant protein (MET), a key mediator of anti-metamorphic signaling
in insects and the putative juvenile hormone receptor. Recently, it has been shown that the
functions of MET and GCE are only partially redundant and tissue specific. The ability of
bHLH-PAS proteins to fulfill their function depends on proper intracellular trafficking, deter-
mined by specific sequences, i.e. the nuclear localization signal (NLS) and the nuclear
export signal (NES). Nevertheless, until now no data has been published on the GCE intra-
cellular shuttling and localization signals. We performed confocal microscopy analysis of
the subcellular distribution of GCE fused with yellow fluorescent protein (YFP) and YFP-
GCE derivatives which allowed us to characterize the details of the subcellular traffic of this
protein. We demonstrate that GCE possess specific pattern of localization signals, only par-
tially consistent with presented previously for MET. The presence of a strong NLS in the C-
terminal part of GCE, seems to be unique and important feature of this protein. The intracel-
lular localization of GCE appears to be determined by the NLSs localized in PAS-B domain
and C-terminal fragment of GCE, and NESs localized in PAS-A, PAS-B domains and C-ter-
minal fragment of GCE. NLSs activity can be modified by juvenile hormone (JH) and other
partners, likely 14-3-3 proteins.

Introduction

Drosophila melanogaster has become an important model to study a diverse range of biological
processes including understanding how genes direct the development of an embryo from a sin-
gle cell to a mature multicellular organism [1]. The growth and development of insects is
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controlled by two hormones: the steroid 20-hydroxyecdysone (20E) and the sesquiterpenoid
juvenile hormone (JH) [2]. Both pathways interact to mediate insect development, but the
detailed mechanism of these interactions has not yet been fully elucidated [3,4]. The simulta-
neous presence of both 20E and JH leads to larval-larval molting, while a lack of JH initiates
metamorphosis. Additionally, JH is responsible for regulating maturation of the reproductive
system. Despite its importance in the developmental processes of insects, the receptor for JH
was unknown for a long time [5,6]. Wilson and Fabian [7] discovered the Methoprene-tolerant
(Met) gene while screening for mutants resistant to the JH analog methoprene, used as an
insecticide. The genomic localization of the Met gene and the homology of the MET protein to
the family of bHLH-PAS transcription factors was subsequently discovered [8]. MET has
gained the status of being the putative JH receptor, because of its ability to bind JH with nano-
molar affinity and to initiate transcriptional activity in a JH-dependent manner [9,10]. How-
ever, the fact that the Drosophila Met-null mutant is fully viable undermined the credibility of
the hypothesis that MET functions as a JH receptor [7]. Later on, the bHLH-PAS paralog of
MET, the germ cell- expressed protein (GCE) was discovered [11]. There was also a recent
finding that partial functional redundancy prevents the mortality of mutant flies [12,13].

It was documented that MET is capable of forming both homodimers and heterodimers
with GCE as a partner protein in the absence of JH [14]. In contrast to MET, the overexpres-
sion of GCE does not cause mortality [12]. Studies on GCE have revealed that the expression of
MET is more abundant [13], but that GCE binds JH with higher activity [10]. The activation of
E75A, a JH target gene, requires GCE but not MET, providing proof that GCE is not merely a
MET substitute [15] and opening the possibility of intricate MET/GCE-specific functions.
Dubrovsky et al. found evidence that the orphan nuclear receptor FTZ-F1 is an essential com-
ponent of JH signaling by interaction with putative JH receptors MET and GCE [15]. The
course of evolution of both genes across the Drosophila genus suggests that Met appeared as a
product of the duplication of the Gee-like ancestor gene during early dipteran evolution [16]. It
has been shown that MET is able to interact with proteins involved in the signal transduction
of ecdysteroids: ecdysteroid receptor (EcR) and ultraspiracle (USP) but also with 39 kDa
FK506-binding nuclear protein (FKBP39), calponin-like protein Chd64 (Chd64) [3,17], steroid
receptor co-activator (SRC) [18,19] and cycle protein [20] as well. MET is a component of a
protein complex that coordinates the crosstalk between JH and 20E signaling pathways
[3,16,21]. MET and GCE induced programmed cell death (PCD), and this activity may be sup-
pressed by methoprene [22]. The published data on the role of JH reception, including review
reports [23,24,25], focused primarily on the function of MET and left the function of GCE
largely unknown [24].

The family of bHLH-PAS transcription factors includes proteins that are critical regulators
of the gene expression network responsible for many essential physiological and developmental
processes in invertebrates [26,27]. The ability to localize and translocate these proteins to spe-
cific cellular compartments is fundamental to the organization and functioning of all living
cells. For a number of transcription factors, translocation from the cytoplasm to the nucleus is
an important event that enables the transcription factor to recruit co-activators [28]. Recently
He et al. [29] reported that Hsp83 facilitates the JH induced nuclear import of MET in D. mela-
nogaster larval fat body cells. The nuclear transport of proteins is usually mediated by a family
of transport receptors known as karyopherins, which form a transport complex after binding
to proteins as a result of the recognition of the nuclear localization signal (NLS) for nuclear
import or the nuclear export signal (NES) for export [30]. The best characterized transport sig-
nal is the classical NLS (cNLS) for nuclear protein import, which consists of either one (mono-
partite) or two (bipartite) stretches of basic amino acids [31]. The most common characterized
NES consists of a non-conserved motif encompassing hydrophobic residues and is leucine-rich
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[30]. The high degree of homology between the GCE and MET proteins [32] raises the possibil-
ity that the trafficking of GCE in the cell is mediated by some of the localization signals identi-
fied for MET [33]. However, the sequence homology applies only to the bHLH (78%) and PAS
domains (PAS-A 68%, PAS-B 86%) [11]. The identification of the NLS and NES signals is fun-
damental in being able to understand the intracellular signaling role of the GCE protein. In
order to better determine the presence of NLS and NES signals in the GCE protein we decided
to use mammalian cells which do not produce juvenile hormone and 20-hydroxyecdysone.
This cells are also devoid of some insect cell-specific endogenous proteins like MET and the
EcR/USP complex, which could influence results obtained in insect cells. Mammalian cells
were used successfully to analyze the subcellular trafficking of MET [33], and transcriptional
response of EcR [6] and MET/GCE to JH [10,34]. We investigated the subcellular distribution
of GCE in living cells using a yellow fluorescent protein (YFP) label.

Here we shown that GCE has a specific pattern of signals that are only partially consistent
with those previously presented for MET. The homology of GCE and MET with regards to
NLS and NES activity occurs only in the PAS domains. We demonstrate the presence of a
strong NLS in the C-terminal fragment of GCE, which seems to be a unique and important fea-
ture of this protein.

Materials and Methods
Plasmid construction

GCE cDNA from D. melanogaster was a kind gift from Prof. Thomas G. Wilson (Department
of Entomology, Ohio State University, USA) [13]. We numbered amino acids residues of GCE
from 1 to 689 in accordance with papers previously published [35,36]. According to personal
communication with A. Baumann (University of Tennessee), GCE used in our study and its
longer variant [16] deposited in UniprotKB database as Q9VXW?7 show similar function when
expressed in transgenic D. melanogaster.

Full-length cDNA, encoding amino acid residues 1-689, was amplified by PCR and cloned
into the HindIII and Smal restriction sites of the MCS of the pEYFP-C1 vector. Deletion mu-
tants of GCE were cloned analogically in the pEYFP-C1 vector. DNA constructs: YFP-GCE/
S462A/S670A, YFP-GCE/S462A, YFP-GCE/S670A, YFP-GCE430-572/S462A, YFP-GCE573-
689/S670A, YFP-GCE391-572/5462A, YFP-GCE391-689/5462A, YFP-GCE391-689/S670A
and YFP-GCE391-689/5462A/S670A were analogically obtained for the full-length and deletion
mutants, and for the PCR reaction templates GCE/S462A/S670A, GCE/S462A or GCE/S670A
were used. Mutations were introduced using the QuikChange Site-Directed Mutagenesis Kit
(Stratagene), according to the manufacturer’s instructions. The point mutants, GCE69-429/
K356A/K360A/H362A, GCE/K582A/K585A, GCE/S462A, K582A/K585A, GCE/K582A/
K585A/5670A, GCE/S462A/K579A/K582A/S670A, GCE391-689/K582A/K585A, GCE391-
689/5462A/K582A/K585A, GCE391-689/K582A/K585A/S670A, and GCE391-689/S462A/
K582A/K585A/S670A, were obtained by the PCR-Mediated Site-Directed Mutagenesis as
described by Ko and Ma [37], where GCE, GCE/S462A/S670A, GCE/S462A or GCE/S670A
were used as a template and cloned with Lgul, HindIII and Smal restriction enzymes. All con-
structs were verified by DNA sequencing.

Cell culture and DNA transfection

African green monkey kidney fibroblasts COS-7 (ATCC CRL-1651) and human embryonic
kidney HEK293 (Sigma) cells were maintained in Dulbecco’s modified Eagle medium
(DMEM) supplemented with 1% non-essential amino acids (Gibco/Invitrogen), 1 mM sodium
pyruvate and 2% glutamine (Gibco/Invitrogen). The medium was supplemented with 10%
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fetal calf serum (FCS). Cells were grown at 37°C in a 95% air/5% CO, atmosphere. Cells were
transfected with 3 ug DNA/150 000 cells using jetPEI (Polyplus-transfection SA), according to
the manufacturer’s instructions. Juvenile hormone III (JHIII) (Sigma) was dissolved in
dimethylsulfoxide (DMSO) (Sigma) to a concentration of 107> M and added to the medium
during transfection to a final concentration of 10~® M. The control cells received an equal vol-
ume of DMSO.

Confocal fluorescence microscopy

Before conducting the imaging experiments, cells were plated on 0.17-mm-thick round glass
coverslips (Menzel) submerged in a culture medium in 2-cm-diammeter Petri dishes. Prior to
the microscopy experiment (20-24 h after transfection), coverslips with cell cultures were
transferred onto a steel holder and mounted on a microscope stage. The standard culture
medium was replaced by DMEM/F12 without phenol red, buffered with 15 mM HEPES
(Sigma), suplemented with 1% FBS (Sigma). During microscopy, the temperature of the cell
culture was maintained at 37°C by microincubator (Life Imaging Services Box & Cube). Images
of fluorescently labeled proteins were acquired using the Leica TCS SP5 II confocal system
equipped with an argon laser and a 63xOil (NA: 1,4) objective lens. YEP was excited using

514 nm light and the emitted fluorescence was observed at range 525-600 nm. Images are pre-
sented for typical cells with phenotype characteristic for more than 95% of the observed cells
population.

In silico analysis of the GCE sequence

To predict the secondary structure of GCE we used PSIPRED (Protein Structure Prediction
Server) [38], http://www.psipred.net/psiform.html. To predict regions in GCE that do not
assume unique three-dimensional structures (intrinsically disordered regions, IDRs) [39] we
used Pondr, http://www.pondr.com/, [40-42]. To predict the domain architecture of GCE we
used SMART (Simple modular architecture tool) [43], http://smart.embl-heidelberg.de/, PRO-
SITE (a database of protein families and domains), http://expasy.org/tools/scanprosite/, and
Protein Model Portal (PMP), http://www.proteinmodelportal.org/. The sequence alignments
were obtained by CLUSTAL_X [44], http://www.clustal.org/. Predictions for the potential NLS
signals were performed by NucPred [45], http://www.sbc.su.se/~maccallr/nucpred/, PSORTII
[46], http://www.psort.org/, cNLS Mapper http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_
Mapper_y.cgi. Predictions of the potential NES signals were performed by the NetNes 1.1
server [47], http://www.cbs.dtu.dk/services/NetNES/, and ValidNES [48], http://validness.ym.
edu.tw. Scansite http://scansite.mit.edu was used to predict potential 14-3-3 binding sites [49]
along with the Eukaryotic Linear Motif resource for Functional Sites in Proteins (ELM) [50],
http://elm.eu.org/. Potential phosphorylation sites were predicted with the Disorder-Enhanced
Phosphorylation Site Predictor (Disphos 1.3), http://www.dabi.temple.edu/disphos/, [51-55]
and NetPhos 2.0 [56], http://www.cbs.dtu.dk/services/NetPhos/.

Results
Searching for nuclear import and export signals in different parts of GCE

We performed a set of experiments to identify NLS and NES motifs in GCE, using full-length
GCE and a series of deletion mutants tagged with YFP. To ensure the functionality of the struc-
tural motifs within the GCE sequence, truncated regions were designed using the results of
NLS and NES prediction methods, the secondary structure motifs of GCE, the alignment of the
GCE sequence with MET and predictions of GCE domains (data not shown). The subcellular
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localization of the expressed proteins was analyzed by confocal microscopy 20-24h after the
transfection of COS-7 cells. Then, western blot analysis was performed to prove the expression
of YFP tagged proteins (data not shown).

We observed the distribution of full-length GCE (Fig 1Aa) in both the nucleus and cyto-
plasm of transfected cells (Fig 1Ba) similarly to the distribution of the YFP protein (Fig 1Ab)
expressed as a control (Fig 1Bb). The N-terminal fragment of GCE that encompassed the
bHLH region (Fig 1Ac) was primarily in the nucleus (Fig 1Bc). The alignment of the MET and
GCE bHLH domains revealed not only the conservation of basic amino acids from MET in
GCE, but also the presence of some additional basic amino acids in the GCE (Fig 1C). The pre-
dominantly nuclear localization could be linked to the interaction of basic residues with DNA.
The PAS-A domain (Fig 1Ad) was localized in the cytoplasm (Fig 1Bd), which suggests the
activity of NES signal identified for MET [33] despite a few amino acid residues in GCE that
didn’t match (Fig 1D). The fusion of bHLH and the PAS-A domain (Fig 1Ae) was localized
exclusively in the cytoplasm (Fig 1Be), which suggests that the bHLH domain contains no NLS
signal, or a very weak one, and the NES from PAS-A is dominant. The region between the
PAS-A and PAS-B domains (Fig 1 Af) is localized in the nucleus (Fig 1Bf). The performed
alignment of MET and GCE sequences revealed that there was a greater accumulation of basic
residues in the area of GCE in comparison to MET, where no such activity was detected (Fig
1E). Prediction software did not find any NLS in this part of GCE; however, the fusion of this
region with PAS-A (Fig 1 Ag) showed that there was protein accumulated both in the nuclei
and the cytoplasm of the analyzed cells (Fig 1Bg). This suggests that there is a comparable
strength in the NES from PAS-A and the putative NLS from the area that links PAS-A and
PAS-B. More detailed research is needed to explain the results that were obtained. The exten-
sion of the region linking PAS-A and PAS-B by the N-terminal part of PAS-B to the E331 resi-
due (Fig 1Ah) didn’t change the localization, as seen by the fluorescence in the nucleus (Fig
1Bh), whereas the N-terminal part of the PAS-B domain alone was uniformly localized
throughout the whole cell (data not presented). Both of these results were unexpected. The
alignment of the MET and GCE sequences demonstrated the presence of a sequence (see Fig
2C) previously documented as the active NES in PAS-B of MET [33]. However, the NES activ-
ity was not visible until the C-terminus of the N-terminal part of PAS-B was extended from the
E331 to the N340 residue (Fig 2Aa). The extension led to a shift in the localization from ubiqui-
tously distributed (data not shown) to being distributed in the cytoplasm (Fig 2Ba), which sug-
gests that the presence of additional amino acids is required for NES activity.

The C-terminal part of the PAS-B domain (Fig 2Ab) showed that the localization was pre-
dominantly in the nucleus (Fig 2Bb), which is consistent with the previously documented pres-
ence of an NLS in this region in MET (Fig 2E) [33]. The expression of the C-terminal fragment
of PAS-B extended by amino acid residues 391-429 (Fig 2Ac) resulted in a signal present both
in the nucleus and the cytoplasm (Fig 2Bc), even though the NLS was in the C-terminal part of
PAS-B. The lack of NLS activity under these conditions is likely due to additional amino acid
residues which are post-translationally modified and which affect interaction with other pro-
teins. It was recently shown that GCE residues 414-424 are responsible for the interaction with
the nuclear receptor FTZ-F1 through the LIXXL motif [37]. Although there was an accumula-
tion of PAS-B (Fig 2Ad) exclusively in the cytoplasm of the analyzed cells (Fig 2Bd), similarly
to PAS-B of MET, the NLS activity was observed only after the mutation of the NES, which is
dominant over the NLS in the absence of JH [33].

To study the localization of putative signals in the C-terminal part of GCE, this area was
divided into three fragments: the N-terminal (residues 391-429), the internal fragment (resi-
dues 430-572) and the C-terminal (residues 573-689). The N-terminal fragment (Fig 2Ae) was
localized both in the nucleus and the cytoplasm (Fig 2Be), while the internal fragment (Fig
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Fig 1. Subcellular distribution of the GCE mutants. Experiments identifying NLS and NES motifs in GCE, using full-length GCE and a series of deletion
mutants tagged with YFP revealed differentiated localization of truncated proteins. The subcellular localization of the expressed proteins was analyzed by
confocal microscopy 20-24h after the transfection of COS-7 cells. (A) Schematic representation of the GCE and deletion mutants. Regions of GCE are
depicted using different patterns. The length of each domain in the diagram is arbitrary. (B) Representative images (single confocal plane) of the subcellular
distribution of the GCE derivatives. Bar, 10 ym. (C) ClustalX alignment of the MET36-97/GCE7-68 encompassing bHLH domain. (D) ClustalX alignment of
the MET126-141/GCE73-89 encompassing NES in PAS-A domain. (E) ClustalX alignment of the MET301-331/GCE200-230 from area linking PAS-A with
PAS-B.

doi:10.1371/journal.pone.0133307.g001

2Af) shifted towards the nucleus (Fig 2Bf). However, the fusion of both fragments (YFP-
GCE/391-572) (Fig 2Ag) resulted in uniform fluorescence throughout the cell (Fig 2Bg). The
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C-terminal fragment (Fig 1Ah) was localized both in the nucleus and the cytoplasm (Fig 2Bh),
while the N-terminal extension of this fragment by residues in the internal fragment
(YFP-GCE/430-689) (Fig 2Ai) redistributed fluorescence to the exclusively nuclear (Fig 2Bi).
The in silico analysis identified two putative NLS’s in the analyzed area: a monopartite variant
of the NLS at residues 582-589 and a bipartite NLS at residues 570-589. For activity of such
signals the presence of basic amino acid residues like lysine or arginine is fundamental [31].
Intracellular localization of the derivative proteins after the scission between residues 572 and
573 is indirect proof of the existence of a bipartite NLS. In particular, the absence of basic resi-
dues K570 and R571 in the expressed truncated protein (Fig 2Ah and 2E) changed its distribu-
tion from exclusively nuclear to nuclear and cytoplasmic (Fig 2Bh). The final proof of the
existence of an NLS in this area was obtained with the construct YFP-GCE/430-689, in which
two amino acid residues (K582 and K585) from basic residues potentially crucial for NLS activ-
ity were substituted by A (Fig 2Aj). The mutations that were introduced caused the redistribu-
tion of the fluorescence from the nucleus to the cytoplasm (Fig 2Bj). A comparison of the GCE
NLS revealed no homology with MET (Fig 2E). Thus, the NLS in the C-terminal part of the
protein is unique to GCE. The localization of an analogous fragment of MET was strictly in the
cytoplasm [33]. Each localization experiment was repeated three times to ensure the reproduc-
ibility of the results. Additionally, we performed localization experiments for the GCE deriva-
tives described above in HEK293 cells and got the same results (data not shown).

Full-length GCE localize in both compartments of analyzed cells, in contrast to MET, which
was predominantly in the nucleus [33]. This is a result of different pattern of signals that regu-
late the localization of GCE. Despite the conservation of NES signals in the PAS-A and PAS-B
domains and the NLS signal in the PAS-B domain, there are intrinsic differences between GCE
and MET. In addition to the deficiency of JH-independent NLS activity which is dominant for
MET [33], the presence of a strong bipartite NLS in the C-terminal part of GCE seems to be a
crucial difference in the specific NLS/NES pattern of these two proteins.

The NLS in the PAS-B domain needs the activity of the NLS in the C-
terminal fragment for GCE transport to the nucleus

Because of the high degree of homology between the MET and GCE PAS-B domains, we
hypothesized that the PAS-B domain of GCE is also responsible for JH binding. Previously, we
documented that the NLS activity in the PAS-B of Drosophila MET was dependent on the pres-
ence of JH [33]. Here, we tested the JH-dependence of the NLS activity in the PAS-B of GCE.
As had been done previously for MET [33], the system was simplified by truncating the C-ter-
minal fragment (residues 391-689) to avoid activating the C-terminal NLS, and the N-terminal
fragment (residues 1-68) was truncated to prevent the bHLH domain from interacting with
the DNA. Deletion mutants were created that encompassed the GCE residues from the PAS-A
to PAS-B domains (residues 69-390). The resulting protein was accumulated in the cytoplasm
in the absence of JH (Fig 3A), and the introduction of JH resulted in a shift to the nucleus (Fig
3A). To disrupt NLS in PAS-B domain, basic amino acid residues potentially crucial for NLS
activity: K356, K360 and H362 were substituted by A. Mutant with an inactivated NLS was
localized in the cytoplasm, both in the absence of JH and after adding JH (Fig 3B). This sug-
gests that there was a loss of function and leads to the conclusion that NLS action in the PAS-B
of GCE is JH-dependent similarly like NLS in the PAS-B domain of MET [33].

To further investigate the effect of JH on distribution of GCE we used the full length protein.
Obtained results were unexpected. GCE localized both in the nucleus and cytoplasm indepen-
dent on the absence or presence of JH (Fig 3C). Additional test was done to see the role of the
NLS from the C-terminus of protein in transport of full-length GCE. An examination was
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made when the NLS activity in the C-terminal area was inhibited by introducing K582A and
K585A mutations. In this case, localization was observed to be predominantly in the cytoplasm
irrespective of the presence of JH (Fig 3D), suggesting that the NLS itself from PAS-B is insuffi-
cient for shuttling full-length GCE. Our results demonstrate that additional factor which is
NLS in the C-terminal part of GCE is necessary for transferring of full-length GCE into the
nucleus.

Intracellular trafficking of GCE S462A and/or S670A mutants depends
on the presence of JH

As indicated above, GCE is a paralog of MET, which is the putative juvenile hormone (JH)
receptor [12]. It was documented that GCE binds JH with higher activity than MET [10]. Full-
length GCE was localized both in the nucleus and the cytoplasm in the absence of JH and JH
treatment had no effect on cellular distribution (Fig 3C). Since GCE is a transcription factor, it
should be able to be transferred to the nucleus, so we decided to look for additional mediators
of GCE shuttling. Using ELM, Scansite, Disphos 1.3 and NetPhos 2.0 predictors, the S462 and
S670 were predicted with the highest scores to be phosphorylated and to be a part of the 14-3-3
protein binding motifs of GCE (Fig 4A and 4B). The ubiquitous family of 14-3-3 proteins is
involved in the regulation of signal transduction by changing proteins subcellular localization
[57]. A recent study described the influence on the specificity of signal transduction in the cell
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Fig 4. Subcellular distribution of the S462A and S670A mutants. (A) ClustalX alignment of the MET482-498/GCE457-471 encompassing GCE predicted
14-3-3 binding moitif. (B) ClustalX alignment of the MET/GCE663-677 encompassing GCE predicted 14-3-3 binding motif. Asterisks indicate identical
residues, and colons indicate similar residues. Residues numbered according to the sequence of GCE are given at the bottom of the alignment. Red
asterisks indicate mutated residues. (C) The influence of JH on the subcellular distribution of the putative 14-3-3 binding sites mutants of the full length GCE
and its C-terminal fragment was analyzed. The subcellular localization of the expressed proteins tagged with YFP was analyzed by confocal microscopy 20-
24h after the transfection of COS-7 cells in the absence or presence of JH. The length of each domain in protein schematic illustration is arbitrary. Regions of
GCE are depicted using different patterns. Asterisks indicate mutated residues. Representative images (single confocal plane) present the typical subcellular
distribution of the GCE derivatives. Bar, 10 um.

doi:10.1371/journal.pone.0133307.g004

from the interaction of 14-3-3 proteins with partners that possess intrinsically disordered
regions (IDR) [58], one of which we predicted in C-terminal fragment of GCE comprising
$462 and S670 residues. Based on the knowledge that the 14-3-3 dimer usually interacts with a
partner protein at two binding sites [59], two mutants were prepared of full-length GCE with
single point mutations of the putative 14-3-3 binding residues: S462A or S670A (Fig 4Ca and
4Cb) and one mutant with substituted both predicted 14-3-3 binding residues GCE/S462A/
S670A (Fig 4Cc). The mutants were N-terminally tagged with YFP, and their subcellular locali-
zation was analyzed. All the expressed mutant proteins were localized in the cytoplasm in the
absence of JH (Fig 4Ca-4Cc). However, adding JH redistributed the mutants to the nucleus
(Fig 4Ca-4Cc), which indicates that there is dependence on JH. These results suggest a possible
role for 14-3-3 binding to GCE as modifying GCE localization in the absence and the presence
of JH. The possible inhibition of 14-3-3 binding to GCE could be caused by the activity of
other factors occurring in Drosophila, like de-phosphorylation by phosphatases or the masking
of binding sites by other partners of 14-3-3 or GCE proteins. The lack of interaction with the
mutant results in the unmasking of the NLS in the C-terminus of GCE. We hypothesize that in
the absence of JH cytoplasmic localization of GCE mutants was the result of dominant activity
of NES’s located in several domains. The presence of JH activates JH-dependent NLS in PAS-B
which acts synergistically to unmasked NLS located in the C-terminal fragment of protein and
transports GCE mutant to the nucleus. As previously mentioned, 14-3-3 typically binds as a
dimer with two partner protein sites; interaction with a single site is also possible, although
much weaker. Additionally, 14-3-3 can exist in a monomer form and perform chaperone-like
activity [60,61]. It seems that in the case of GCE, neither of the two predicted 14-3-3 binding
sites alone is able to continue interaction with these proteins, and both are equally important
for putative binding function.

Previous studies documented that for JH binding by GCE the presence of PAS-B domain is
necessarry and sufficient, and removal of GCE C-terminal region only lowers the protein yield
[10]. However, in our study, we observed that the presence of JH influenced the localization of
the mutants which had had a substitution of either one or both serine residues that had been
predicted as sites that would be recognized by 14-3-3 and located in C-terminal fragment of
GCE. For this reason, we decided to examine the JH role in localization of C-terminal fragment
of GCE without ligand binding PAS-B domain. Both in the presence and absence of the hor-
mone, our results showed that the full-length, C-terminal part of the wild-type GCE and all of
the S462A, S670A mutants were distributed exclusively in the nucleus (Fig 4D-4G). Thus the
influence of JH on the localization of GCE can not be mediated by the C-terminal domain
without the presence of the ligand binding PAS-B domain and signals from both domains act
synergistically.

Inactivation of NLS570-589 by K582A and K585A substitutions both in the C-terminal,
wild-type fragment and in mutants where S had been substituted by A resulted in localization
that was exclusively in the cytoplasm, independent of the presence of JH (Fig 5A-5D). Full
length GCE mutants with inactive NLS in C-terminus localized exclusively in the cytoplasm
both in the absence and in the presence of hormone (Fig 5E-5G) suggeting dominant role of
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Discussion

GCE is a known paralog of MET that belongs to the family of bHLH-PAS transcription factors
in D. melanogaster [8,11]. Subcellular distribution is one of the key elements for the proper
functioning of bHLH-PAS proteins [27]. This study has provided a detailed characterization of
the NLS and NES signals which regulate the localization of GCE in cells. We have demon-
strated that wild-type GCE is ubiquitously localized throughout the cell, in contrast to MET,
which is localized predominantly in the nucleus [9,33]. The experiments verified the homology
between GCE and MET with regard to their bBHLH and PAS domains and verified the presence
of active sequences equivalent to the signals in MET: NES-1 in PAS-A, NES-2 in PAS-B and a
JH-dependent NLS in PAS-B (NLS-1) (Fig 6). There is an important difference which was
detected in the short area that links bHLH and PAS-A, which in GCE lacks the dominant and
ligand-independent NLS (RRRKK) that is present in MET [33]. A comparative analysis of
homologous sequences in other insect species revealed that this signal is a unique feature of D.
melanogaster MET (Fig 7A).

Many aspects of the functional control of bHLH-PAS proteins are analogous to those
defined for nuclear receptor signaling [26]. Ubiquitous localization of transcription factor
might be additional element of signaling pathways regulation. Human progesterone receptors
(PR) are expressed from a single gene as two protein isoforms PR-A and PR-B [62]. Interest-
ingly, PR-B which is localized both in the nucleus and in the cytoplasm of the cell is much
stronger transcriptional activator than PR-A. PR-B additionally to classical nuclear genomic
function mediates extra-nuclear non-genomic progestin activation of steroid receptor coactiva-
tor (Src)/mitogen-activated protein kinase (MAPK) signaling, whereas predominantly nuclear
PR-A is not able to do so. Due to distinct cellular locations, progestin activation of Sre/MAPK
signaling can regulate selected target genes that lack direct PR binding response elements
(PREs) [63,64]. In addition to regulation by ligand, activation of cellular signaling pathways
can be sufficient to activate PR in the absence of hormone [63]. Lately, Liu et al. [4] suggested
the presence of a non-genomic pathway in JH signaling. Additionally, the GCE/FTZ-F1 hetero-
dimer, unlike MET/FTZ-F1, can activate transcription without methoprene [15].
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It was previously shown that the overexpression of GCE in a tissue specific manner could
partially make up for a lack of MET in resistance to pupal death or an eye defect but not for a
defect in the male genitalia; thus, the functions of MET and GCE are only partially redundant
and tissue specific in vivo [12]. Both GCE and MET interact with the nuclear receptor FTZ-F1
through the LIXXL sequence in their C-terminus, but the glutamine Qg region in this area is a
secondary receptor interaction site only for MET, which suggests that functional divergence
can be attributed in part to regions located in the C-termini of MET and GCE [36].

The function of the C-terminal region, which shows the biggest sequence differentiation,
is not known. In this paper we have shown that the C-terminal fragment of GCE is localized
exclusively in the nucleus of the cell in contrast to the C-terminal fragment of MET, which
was localized in the cytoplasm [33]. Additionally, we have identified the bipartite NLS 570-
KRGSTAHVETEEKLSKRRF-589 (NLS-2; Fig 6) in this area. NLS-2 activity is necessary for
the JH-dependent transport of GCE to the nucleus and contributes to the functioning of the
JH-dependent NLS-1 in PAS-B. Our results shed light on the distinctive nature of the C-termi-
nal parts of GCE and MET, which may be one of the reasons for the functional divergence of
these two proteins.

Inactivation of NLS-2 residing in C-terminus of GCE leads to relocalization of this deletion
mutant to cytoplasm. A search for clusters of hydrophobic residues (which are typical of NES)
revealed one putative NES (NetNES ratio for 1509 O.6) in the short region conserved both in
C-terminus of GCE and MET (Fig 7B). Interestingly in our previous studies for MET we were
not able to identify exact position of NES in C-terminus of this protein [33]. This sequence
conservation between GCE and MET suggest similar role as putative NES-3 signal (Fig 6) in
both proteins.

The ubiquitous family of 14-3-3 proteins is involved in the regulation of signal transduction
[65]. Binding by 14-3-3 modulates enzyme activity, subcellular localization, structure, stability
and molecular interactions of partner proteins [66]. 14-3-3 proteins usually recognize classical
RSXpSXP, RX(Y/F)XpSXP or non-classical motifs and interact with phosphorylated serine
residues [67-69], although 14-3-3 binding without phosphorylation was also reported [70].

PLOS ONE | DOI:10.1371/journal.pone.0133307 July 17,2015 14/19



@’PLOS ‘ ONE

Subcellular Localization Signals of GCE

14-3-3 can function by changing the conformation of its partner, by functioning as a scaffold
molecule to anchor proteins within close proximity of one another and acting as scaffold mole-
cule that stimulates protein-protein interactions. 14-3-3 proteins are expressed in all eukaryotic
cells and are highly conserved in amino acid sequences from yeast to mammals [71] what sug-
gests that 14-3-3 might interact with GCE in COS-7 cells with the resultant effect on GCE
localization. Mutants with an S462A and/or S670A substitution were localized in the cytoplasm
and redistributed into the nucleus after the introduction of JH. The interaction between the 14-
3-3 protein and its target can also be regulated by the presence of small molecule ligands [72].
We hypothesize that mutations of $462 and/or S670 disrupted the sequence recognized by the
14-3-3 proteins, mimicking the conditions in the cell when 14-3-3 is unable to bind GCE as a
consequence of serine residue de-phosphorylation, competitive binding by other proteins or
other unknown factors. The lack of such interaction would unmask putative NES-3, allowing
GCE to be transported to cytoplasm in the absence of JH, while NLS-2 in cooperation with JH-
dependent NLS-1 would transfer GCE to the nucleus under the influence of JH. The compara-
tive analysis of MET and GCE sequences derived from selected insects species revealed the big-
gest differentiation of sequences in the C-terminal area of proteins [16]. This suggests that the
C-terminal fragments of GCE and MET play an important role in protein functioning as spe-
cialized and differentiated paralogs in D. melanogaster.

Results presented in this paper, show combined impact of NLS and NES activities, the pres-
ence of JH and interaction partners on the GCE shuttling. We hypothesize that ubiquitous
localization of the wild type GCE, which does not depend on JH, results from interaction of
GCE with 14-3-3 proteins. This putative interaction is responsible for masking of NLS-2 and a
NES-3 located in the C-terminus of the protein. The presence of JH alone is not sufficient for
activation of GCE, as for inhibiting its interaction with 14-3-3 an additional not determined
cofactor is required. When residues S462 and/or S670 (a putative 14-3-3 target) are mutated,
signals located in the C-terminal fragment of GCE are dominant over other localization signals
located in PAS-A and PAS-B domains. Synergistic action of NESs from different parts of GCE
drives the full-length GCE mutated on S462 and/or S670 residues to cytoplasm in the absence
of JH. However, in the presence of JH NLS-2 in cooperation with JH-dependent NLS-1 trans-
ters GCE to the nucleus. $462, S670 GCE mutants are constitutively active.

Conclusions

Our results show a very complex pattern of molecular elements which can direct GCE shut-
tling. It appears that GCE subcellular localization depends on the integrated action of several
sequences and that their activity may be modulated by JH and partner proteins, like for exam-
ple 14-3-3. Interestingly, the final localization of GCE seems to be regulated in a much more
complex manner than it was observed previously for MET. This suggests the diverse and con-
text-specific functioning of GCE and MET as transcription factors.
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