Nanoskopoweukłady
logiczne na powierzchni
półprzewodników
Marek Kolmer
Praca doktorska napisana pod opieką profesora doktora habilitowanego Marka Szymońskiego oraz doktora Szymona Godlewskiego w Zakładzie Fizyki Nanostruktur i Nanotechnologii na Wydziale Fizyki, Astronomii i Informatyki Stosowanej
Uniwersytetu Jagiellońskiego
Krakw 2014
Chciałbym serdecznie podziękować mojemu Promotorowi, profesorowi doktorowi habilitowanemu Markowi Szymońskiemu za nieustanną, wieloletnią opiekę naukową.
Chciałbym także podziękować wszystkim pracownikom Zakładu Fizyki Nanostruktur i Nanotechnologii, z którymi miałem przyjemność pracować w ciągu ostatnich czterech lat, za niezwykle serdeczną atmosferę i życzliwość.
Szczególne podziękowania chciałbym skierować do doktora Szymona Godlewskiego za wiele wspólnie wykonanych eksperymentów, cenne uwagi oraz długie dyskusje nad materiałem zawartym w niniejszej pracy.
Spis treści.
1.
Forma pracy doktorskiej oraz opis indywidualnego wkładu kandydata……4
2.
Problem badawczy podejmowany w pracy doktorskiej…………………………...6
3.
Zarys kontekstu naukowego pracy doktorskiej……………………………………...10
4.
Krótki opis badań składających się na pracę doktorską…..……………………..16
5.
Podsumowanie oraz wnioski z pracy doktorskiej……………………………………21
Bibliografia…………………………….………………………………………………..…………………26 Przedruki artykułów składających się na pracę doktorską……………..……………28
1. Forma pracy doktorskiej oraz opis indywidualnego wkładu kandydata.
Na pracę doktorską „Nanoskopowe układy logiczne na powierzchni półprzewodników” składają się cztery oryginalne artykuły opublikowane w recenzowanych czasopismach naukowych oraz jeden rozdział w książce będący materiałem pokonferencyjnym:
1. [Kolmer, PRB 2012] M. Kolmer, S. Godlewski, H. Kawai, B. Such, F. Krok, M. Saeys,
C. Joachim, M. Szymonski, Electronic properties of STM-constructed dangling-bond dimer lines on a Ge(001)-(2×1):H surface, Physical Review B, 86, 125307 (2012);
2.
[Kolmer, ME 2013] M. Kolmer, S. Godlewski, J. Lis, B. Such, L. Kantorovich, M. Szymonski, Construction of atomic-scale logic gates on a surface of hydrogen passivated germanium, Microelectronic Engineering, 109, 262–265 (2013);
3.
[Kolmer, ASS 2014] M. Kolmer, S. Godlewski, R. Zuzak, M. Wojtaszek, C. Rauer, A. Thuaire,
J.M. Hartmann, H. Moriceau, C. Joachim, M. Szymonski, Atomic scale fabrication of dangling bond structures on hydrogen passivated Si(001) wafers processed and nanopackaged in a clean room environment, Applied Surface Science, 288 83– 89 (2014);
4.
[Kolmer, Springer 2013] M. Kolmer, S. Godlewski, B. Such, P. De Mendoza, C. De Leon,
A. M. Echavarren, H. Kawai, M. Saeys, C. Joachim, M. Szymonski, SPM imaging of trinaphthylene molecular states on a hydrogen passivated Ge(001) surface, Springer series “Advances in Atom and Single Molecule Machines”, vol.3, ISBN 978-3-642-38808-8, 105-114 (2013);
5.
[Godlewski, ACS Nano 2013] S. Godlewski, M. Kolmer, H. Kawai, B. Such, R. Zuzak,
M. Saeys, P. De Mendoza, A.M. Echavarren, C. Joachim, M. Szymonski, Contacting a conjugated molecule with a surface dangling bond dimer on a Ge(001):H surface allows imaging of the hidden ground electronic state, ACS Nano, 7 (11), 10105-10111 (2013).
Zgodnie z załączonymi oświadczeniami współautorów wkład kandydata w powstanie publikacji z pozycji 1-4 był wiodący. W przypadku artykułu [Godlewski, ACS Nano 2013] wkład trzech pierwszych autorów (w tym kandydata) był porównywalnyoraz wiodący.
W publikacjach [Kolmer, PRB 2012] oraz [Kolmer, ME 2013] wkład kandydata polegał na przygotowaniu uwodornionej powierzchni Ge(001):H, opracowaniu metodologii przeprowadzania eksperyment z użyciem skaningowej mikroskopii i spektroskopii tunelowej (Scanning Tunneling Microscopy/Spectroscopy, STM/STS), a w szczególności na opracowaniu protokołu kontrolowanej desorpcji atomów wodoru z powierzchni Ge(001):H. Kandydat wykonał większość pracy doświadczalnej, opracował dane eksperymentalne oraz uczestniczył w analizie wynik. Kandydat wspnie z doktorem Szymonem Godlewskim napisał manuskrypt [Kolmer, PRB 2012]. Kandydat napisał manuskrypt [Kolmer, ME 2013].
W publikacji [Kolmer, ASS 2014] wkład kandydata polegał na charakteryzacji powierzchni Si(001):H za pomocą techniki STM. Kandydat opracował także metodologię tworzenia zadanych struktur z niewysyconych wiązań na powierzchni Si(001):H. Kandydat miał istotnywkład w wykonane eksperymenty STM/STS dla nanostruktur z niewysyconych wiązań na Si(001):H, opracował dane eksperymentalne, przeprowadził analizę wyników STM/STS oraz wspólnie z profesorem Markiem Szymońskim napisał manuskrypt.
W publikacjach [Kolmer, Springer 2013] oraz [Godlewski, ACS Nano 2013] wkład kandydata polegał na przygotowaniu uwodornionej powierzchni Ge(001):H oraz opracowaniu metodologii przeprowadzania eksperyment STM/STS dla molekuł trinaphthylene na powierzchni Ge(001):H. Kandydat miał istotny wkład w wykonane eksperymenty STM/AFM oraz opracował część danych eksperymentalnych. Kandydat uczestniczył także w analizie uzyskanych wynik. Kandydat wraz z doktorem Szymonem Godlewskim napisał manuskrypt [Kolmer, Springer 2013].
2. Problem badawczy podejmowany w pracy doktorskiej.
Tematem pracy doktorskiej „Nanoskopowe układy logiczne na powierzchni półprzewodników” jest opracowanie protokołu wytwarzania oraz charakteryzacja właściwości nanostruktur uformowanych ze swobodnych wiązań na pasywowanych wodorem powierzchniach Ge(001):H oraz Si(001):H przy pomocy kriogenicznego skaningowego mikroskopu tunelowego (Low Temperature-Scanning Tunneling Microscopy, LT-STM). Głównym celem pracy jest weryfikacja potencjalnego zastosowania tych struktur w molekularnych oraz atomowych obwodach logicznych projektowanych w oparciu o koncepcję elektroniki monomolekularnej.
Praca doktorska dotyczy podstawowych zagadnień naukowych, które są związane w szerokim kontekście z dalszym rozwojem elektroniki. Postępująca miniaturyzacja elementów układów scalonych wytwarzanych w powszechnie stosowanej technologii CMOS (Complementary Metal–Oxide–Semiconductor) napotyka w tej chwili na fundamentalne ograniczenia związane między innymi z kwantowymi właściwościami materii w skali nanometrycznej. Kontynuacja trendu wyznaczonego od początku istnienia przemysłu elektronicznego przez empiryczne prawo Moore’a, które przewiduje podwajanie się liczby elementów układu scalonego (np. tranzystorów) co około 24 miesiące, niedługo wymagać będzie alternatywnych koncepcji realizacji obwodw logicznych. W tym aspekcie rozważa się szereg możliwych rozwiązań. Wśród nich jednym z najbardziej obiecujących jest elektronika molekularna.
Koncepcja elektroniki molekularnej, w której elementy elektronicznych układów scalonych zostają zastąpione przed odpowiednio zaprojektowane duże molekuły organiczne, nie jest ideą nową. Została ona zaproponowana przez Avirama i Ratnera w 1974 roku [1]. W swojej pracy wykazali oni, że molekuła organiczna może zachowywać się jak prostownik, jeden z najprostszych element elektronicznych. Teoretyczna koncepcja elektroniki molekularnej rozwijała się i w kolejnych latach zaprojektowano szereg molekuł mogących zastąpić wszystkie podstawowe elementy układu scalonego [2]. Nastąpił także podział na tak zwaną hybrydową elektronikę molekularną, w ramach której aktywnymi elementami są układy złożone z wielu molekuł oraz elektronikę monomolekularną, gdzie pojedyncza molekuła wykonuje zadane operacje logiczne [2]. W obrębie elektroniki monomolekularnej zaczęto ostatnio rozważać także zastąpienie klasycznych elementów logicznych obwodu elektronicznego przez odpowiednie układy kwantowe złożone z pojedynczych atom [3].
Obecnie poszukuje się prototypowych systemów realizujących ideę elektroniki monomolekularnej doświadczalnie, w warunkach laboratoryjnych. Zbadano do tej pory wiele systemów o potencjalnym zastosowaniu jako przełączniki, tranzystory czy klasyczne bramki logiczne. Zazwyczaj są to układy złożone z pojedynczych molekuł zaadsorbowanych na powierzchniach zapewniających stosunkowo prostą charakteryzację oraz manipulację w skali atomowej przy użyciu technik mikroskopii sond skanujących (Scanning Probe Microscopy, SPM). Pomimo niekwestionowanego wkładu badań nad tego typu układami w zrozumienie fundamentalnych zjawisk, większość układów molekularnych na takich metalicznych bądź półprzewodnikowych podłożach nie zostanie nigdy praktycznie wykorzystana. Jednym z niewielu wyjątków mogą być układy budowane na pasywowanych wodorem półprzewodnikach: germanie i krzemie o terminacji (001), które wydają się być najbardziej obiecującymi podłożami dla przyszłości elektroniki monomolekularnej. Dzieje się tak z co najmniej trzech powodów. Pierwszym z nich jest komplementarność tych materiałów z obecnie wykorzystywaną w przemyśle elektronicznym technologią CMOS. Co więcej uwodornione powierzchnie Ge(001):H i Si(001):H stanowią znakomite układy do mikro-i nano-litografii. Przykładowo Hallam i inni pokazali, że używając zogniskowanej wiązki elektronów o energii 25 keV można w kontrolowany sposób z precyzją dziesiątek nanometrów usuwać atomy wodoru z powierzchni [4]. Proces ten umożliwia tworzenie obszarów posiadających niewysycone wiązania (Dangling-Bonds, DBs) powierzchniowych atomów Si bądź Ge. Dla obszar tego typu pojawiają się dodatkowe lokalne powierzchniowe stany elektronowe, kte zarwno zwiększają lokalnie aktywność chemiczną jak i umożliwiają lateralny transport ładunku. Ponadto można znacznie poprawić zdolność rozdzielczą litografii stosując techniki SPM. Za pomocą mikroskopu STM można kontrolować desorpcję z powierzchni nawet na poziomie pojedynczych atom wodoru [5]. Daje to hipotetycznie możliwość tworzenia zadanych struktur z niewysyconych wiązań z atomową precyzją. Powstaje pytanie, jakie właściwości elektronowe będą miały wytworzone w ten sposób nanostruktury, a w szczególności jakie będą ich właściwości transportowe. Dodatkowo rzędy dimerów atomów Si lub Ge tworzących rekonstrukcje obu omawianych powierzchni powodują, że na poziomie pojedynczego tarasu atomowego można wyróżnić dwa kierunki: równoległy oraz prostopadły do wspomnianych rzędów rekonstrukcji. Odległości oraz wiązania między sąsiednimi atomami powierzchniowymi Ge bądź Si w obu tych kierunkach są inne. Powoduje to oczywiście różnicę w elektronowych sprzężeniach pomiędzy niewysyconymi wiązaniami w strukturze ułożonej wzdłuż bądź w poprzek kierunku wyznaczonego przez rzędy rekonstrukcji. Ten fakt został wykorzystany w badaniach teoretycznych poświęconych właściwościom transportowym różnych nanostruktur z niewysyconych wiązań na powierzchni Si(001):H [6]. Ich rezultatem są propozycje geometrii nanostruktur z niewysyconych wiązań odpowiadające poszczególnym klasycznym bramkom logicznym, które czekają na doświadczalną weryfikację. Trzecim, nie mniej istotnym niż
poprzednie, argumentem na rzecz uwodornionych powierzchni Ge(001):H i Si(001):H jest fakt, iż monowarstwa wodoru odprzęga elektronowo od powierzchni tych półprzewodników zaadsorbowane na nich pojedyncze molekuły organiczne [7, 8]. Możliwość odizolowania stanów elektronowych molekuł od wpływu podłoża to jeden z najistotniejszych aspektów architektury układów monomolekularnych. Dodatkowo w przypadku powierzchni Ge(001):H i Si(001):H ze względu na opisaną procedurę w pełni kontrolowanego wytwarzania nanostruktur z pojedynczych niewysyconych wiązań, można także wysunąć koncepcje adresowania molekuł organicznych poprzez ich oddziaływanie z niewysyconymi wiązaniami tworzonymi na powierzchni. W takiej sytuacji struktury z niewysyconych wiązań oraz organiczne molekuły tworzyłyby układy hybrydowe. Słabe oddziaływanie zaadsorbowanych molekuł z pasywowanymi wodorem podłożami powoduje jednak, że są one na nich bardzo mobilne. W związku z tym zarówno charakteryzacja właściwości elektronowych układów monomolekularnych jak i możliwość precyzyjnej manipulacji nimi za pomocą technik SPM są w tym wypadku niezwykle trudnymi zadaniami doświadczalnymi. W tym momencie otwartym pozostaje pytanie, czy układy monomolekularne lub atomowe na powierzchniach Ge(001):H oraz Si(001):H mogą mieć praktyczne zastosowanie w ramach koncepcji elektroniki monomolekularnej.
Reasumując, problemem badawczym podejmowanym w pracy doktorskiej jest próba określenia w jakim stopniu możliwa jest realizacja proponowanych teoretycznie nowych koncepcji formowania układów logicznych na pasywowanych wodorem powierzchniach Ge(001):H oraz Si(001):H. W celu rozwiązania postawionego problemu badawczego w ramach pracy podjęto przede wszystkim prby wytworzenia nanostruktur z niewysyconych wiązań na obu rozpatrywanych powierzchniach z zadaną, atomową precyzją. Ta część pracy doktorskiej ma pokazać, że realizacja proponowanych teoretycznie układów z niewysyconych wiązań jest możliwa doświadczalnie. Następnie w celu weryfikacji potencjalnych właściwości transportowych podjęto się charakteryzacji właściwości elektronowych uzyskanych nanostruktur z niewysyconych wiązań. W ostatnim etapie pracy, abyzweryfikować możliwość adresowania za pomocą niewysyconych wiązań molekuł organicznych zaadsorbowanych na uwodornionych półprzewodnikach, przebadano prototypowy układ hybrydowy: modelową organiczną molekułę oddziałującą z podwójnym niewysyconym wiązaniem na powierzchni Ge(001):H.
3. Zarys kontekstu naukowego pracy doktorskiej.
Przełomem w doświadczalnej realizacji idei elektroniki monomolekularnej było wynalezienie w 1981 roku przez Binniga i Rohrera pierwszego instrumentu z rodziny mikroskopów bazujących na architekturze sondy skaningowej (SPM): skaningowego mikroskopu tunelowego (STM) [9]. Ten moment zapoczątkował gwałtowny rozwój całej nanonauki, w tym również elektroniki monomolekularnej. Istotą tego nagłego rozwoju jest fakt, że za pomocą instrumentów SPM można nie tylko charakteryzować w przestrzeni rzeczywistej materię w skali atomowej, ale również manipulować nią.
Pierwsze tego typu eksperymenty, dotyczące manipulacji pojedynczymi adatomami na powierzchniach metalicznych, były przeprowadzane na początku lat 90tych [10]. W tym okresie zaczęto także po raz pierwszy charakteryzować uwodornioną powierzchnię (001) monokryształu krzemu za pomocą techniki STM [11]. Podejmowano także pierwsze pry desorpcji wodoru z Si(001):H przy użyciu mikroskopu STM [12, 13] oraz studiowano dynamikę pojedynczych natywnych niewysyconych wiązań na tej powierzchni w podwyższonych temperaturach [14]. W kolejnych latach zaczęto badania nad właściwościami nanostruktur z niewysyconych wiązań na powierzchni Si(001):H formowanych sztucznie w procesie desorpcji wodoru indukowanej ostrzem STM [5, 15-17]. Przykładowo w grupie profesora Wolkowa zapostulowano wykorzystanie układ z oddziałujących ze sobą pojedynczych niewysyconych wiązań do implementacji kubitw [17]. Należy zaznaczyć, że wszystkie powyższe badania STM nanostruktur z niewysyconych wiązań nie były prowadzone w układach doświadczalnych chłodzonych ciekłym helem, tzn. w temperaturach poniżej 10 K. Zaproponowane w związku z tym protokoły desorpcji wodoru wydają się nie dawać pełnej kontroli nad strukturą na poziomie pojedynczych wakancji wodorowych, co skutkuje defektami przy konstrukcji bardziej skomplikowanych układów [16]. Zastosowanie kriogenicznych temperatur, zapewniających odpowiednią stabilizację eksperymentu, może znacznie poprawić precyzję formowania zadanych struktur z niewysyconych wiązań. Co więcej, niedawno pokazano również, że najbardziej typowe defekty w postaci dodatkowych wakancji wodorowych mogą być naprawiane poprzez zastosowanie zaproponowanej przez Labidiego i innych metody [18]. W swojej pracy autorzy pokazują, że za pomocą ostrza STM można przeprowadzić kontrolowaną dysocjację molekułyH2 i dokonać lokalnej adsorpcji wodoru na powierzchni krzemu (001).
Z kolei jedną z nielicznych grup charakteryzujących powierzchnię Si(001):H za pomocą techniki STM właśnie w kriogenicznych temperaturach jest grupa profesora Dujardin, kta skupiła się jednak na właściwościach natywnych defektów na powierzchni Si(001):H, takich jak podwnie uwodornione atomy krzemu [19] oraz pojedyncze i podwne niewysycone wiązania [20-22]. Dzięki zastosowaniu odpowiednio niskich temperatur w prowadzonych eksperymentach STM wykazali oni między innymi możliwość nielokalnego indukowania przeskoku atomu wodoru na sąsiadujące niewysycone wiązanie [21], czy możliwość efektywnego naładowania pojedynczego niewysyconego wiązania [22].
Z drugiej strony przedstawiona w pracy [16] idea zastosowania niewysyconych wiązań na powierzchni Si(001):H do wytwarzania obwod elektronicznych, była w ostatnim czasie badana w szeregu prac czysto teoretyczno-obliczeniowych [23-27]. Pokazano w nich, że dla pewnych geometrii atomowych drutów z niewysyconych wiązań można rzeczywiście uzyskać efektywny transport ładunku w płaszczyźnie powierzchni. Co więcej, zaproponowano także możliwość implementacji bramek logicznych w skali atomowej dla specyficznych układów niewysyconych wiązań na Si(001):H [6, 28]. W kontekście przytoczonych prac teoretycznych kluczowym aspektem doświadczalnym jest nie tylko określenie w jakim stopniu możliwa jest bezpośrednia realizacja postulowanych układów z niewysyconych wiązań, ale także określenie ich właściwości elektronowych. W szczególności natywna geometria pojedynczych bądź podwójnych niewysyconych wiązań ma fundamentalne znaczenie dla właściwości elektronowych i transportowych uformowanych z nich nanostruktur. Przykładowo, zgodnie z obliczeniami przedstawionymi w pracy [26], drut zbudowany z podwnie niewysyconych wiązań na powierzchni Si(001):H uformowany wzdłuż rzędów dimerów rekonstrukcji z niewykrzywionych par atomw Si posiada metaliczne stany elektronowe. Wykrzywienie geometrii dimer względem płaszczyzny powierzchni, będące postulowaną natywną geometrią nieuwodornionych dimerów Si, powoduje otwarcie przerwy i zmianę właściwości transportowych opisywanego drutu. Należy zaznaczyć, że w przypadku niewysyconych wiązań na powierzchniach Si(001):H oraz Ge(001):H występuje niezwykle silne sprzężenie pomiędzy geometrią a strukturą elektronową. Powoduje to sytuację, w której badania oparte jedynie na wynikach obliczeniowych bądź doświadczalnych są niewystarczające, a jedynie kompilacja obu podejść daje możliwość pełnej interpretacji właściwości badanych układów. Aby zilustrować złożoność badanego zagadnienia przedstawiono na Rys.1 obrazy STM podstawowych jednostek strukturalnych
Rys.1
a)
Obrazy STM pojedynczego niewysyconego wiązania na powierzchni Ge(001):H o wymiarach 2×2 nm2 wykonane w 4 K dla różnych napięć wraz z odpowiednim modelem strukturalnym. Napięcia polaryzacji złącza STM zamieszczono na poszczególnych obrazach. W modelu strukturalnym szare koła odpowiadają atomom Ge posiadającym wodór, natomiast czerwone koło reprezentuje atom Ge z niewysyconym wiązaniem.
b)
Obrazy STM podwójnego niewysyconego wiązania na powierzchni Ge(001):H o wymiarach 2×2 nm2 wykonane w 4 K dla różnych napięć wraz z odpowiednim modelem strukturalnym. Napięcia polaryzacji złącza STM zamieszczono na poszczególnych obrazach. W modelu strukturalnym szare koła odpowiadają atomom Ge posiadającym wodór, natomiast czerwone koła reprezentują atomy Ge z niewysyconym wiązaniem.
układów z niewysyconych wiązań: pojedynczego (Rys.1a) oraz podwnego (Rys.1b) niewysyconego wiązania na powierzchni Ge(001):H. Przede wszystkim należyzwrócić uwagę na drastyczną zmianę kontrastów danych struktur dla poszczególnych napięć złącza STM. W przypadku pojedynczego niewysyconego wiązania (Rys.1a) jasne maksimum dla obraz STM zapełnionych stanów elektronowych próbki (ujemne napięcia) zmienia się w niewielkie maksimum otoczone czarnym obszarem „halo” dla obrazowania przy napięciu +1.3V. Zaobserwowany efekt jest związanyze zmianą stanu ładunkowego pojedynczego niewysyconego wiązania, którego stany elektronowe znajdują się w pobliżu energii Fermiego, w wyniku efektu ugięcia pasm spowodowanego oddziaływaniem z ostrzem STM. Ponieważ stany elektronowe związane z pojedynczym podwójnym niewysyconym wiązaniem (Rys.1b) nie znajdują się w pobliżu energii Fermiego, to w tym przypadku opisany efekt nie występuje. Jednak dla podwójnego niewysyconego wiązania natywna wykrzywiona geometria, objawiająca się asymetrycznym względem rzędów rekonstrukcji maksimum dla napięcia -0.5V, zmienia się w poszarpaną symetryczną strukturę dla wyższych ujemnych napięć. Ten efekt z kolei jest związany z indukowaniem przeskok dimeru Ge za pomocą elektronów tunelujących przez złącze STM. Natomiast całkowicie symetryczny obraz dla dodatnich napięć może świadczyć
o wyprostowaniu geometrii dimeru Ge pod wpływem oddziaływania z ostrzem STM.
Warto w tym momencie zaznaczyć, że w odróżnieniu od szeroko badanej uwodornionej powierzchni (001) krzemu, prac dotyczących odpowiadającej jej uwodornionej powierzchni
(001) monokryształu germanu o identycznej strukturze krystalicznej jest stosunkowo niewiele. Jedynie dwie z nich traktują o indukowanej ostrzem STM desorpcji wodoru z Ge(001):H [29, 30], przy czym nie ma prac opisujących atomowo precyzyjny protokół do formowania nanostruktur z niewysyconych wiązań na tej powierzchni. Wykorzystanie powierzchni Ge(001):H wydaje się być niezwykle obiecujące w kontekście doświadczalnej weryfikacji postulowanych teoretycznie właściwości transportowych nanostruktur z niewysyconych wiązań. Charakteryzacja nanostruktur z niewysyconych wiązań za pomocą skaningowej spektroskopii tunelowej (Scanning Tunneling Spectroscopy, STS) jest wymagana do zrozumienia struktury
elektronowej badanych układów. Należy podkreślić, że do tego momentu w literaturze ukazało się bardzo niewiele prac dotyczących charakteryzacji struktur z pojedynczych niewysyconych wiązań na powierzchniach Ge(001):H i Si(001):H przy pomocy techniki STS [20, 31]. W przypadku monokryształu krzemu ten fakt może być tłumaczony relatywnie dużą objętościową przerwą wzbronioną (~1.2 eV) i zablokowaniem kanałów przewodnictwa objętościowego w kriogenicznych temperaturach. Ta sytuacja powoduje, że w powyższych warunkach istotne dla architektury układ stany elektronowe struktur z niewysyconych wiązań na powierzchni Si(001):H są bardzo trudne do obserwacji za pomocą STS. Ten problem może być rozwiązany przez zastosowanie powierzchni (001) germanu, materiału o mniejszej przerwie (~0.7 eV) i zwiększonej ruchliwości nośników a posiadającej podobne właściwości strukturalne oraz elektronowe.
Jak już wspomniano w rozdziale 2 innym istotnym aspektem zastosowania powierzchni uwodornionych półprzewodników jest fakt, że monowarstwa wodoru może odprzęgać elektronowo duże organiczne molekuły od wpływu podłoża [7], co zostało ostatnio wykazane przez Bellec i innych dla powierzchni Si(001):H oraz molekuły pentacenu [8]. Ten wynik doświadczalny skłonił do rozważań nad projektowaniem hybrydowych układów opartych na koncepcji elektroniki monomolekularnej na powierzchni Si(001):H, kte zawierałyby duże organiczne molekuły adresowane nanostrukturami z niewysyconych wiązań. Jednak jak również można wywnioskować z powyższej pracy [8], pomimo stosowania kriogenicznych temperatur podczas prowadzenia eksperyment LT-STM/STS, molekuły organiczne bez specjalnych grup funkcyjnych na powierzchni Si(001):H są niezwykle mobilne. Powoduje to trudności w wytworzeniu i późniejszej charakteryzacji takich prototypowych dla elektroniki monomolekularnej układ hybrydowych. Ponieważ stany elektronowe atomów Ge związane z niewysyconymi wiązaniami rozciągają się bardziej w przestrzeni niż odpowiadające im stany atom Si, co powinno bardziej stabilizować zaadsorbowane na nich molekuły organiczne, zastosowanie powierzchni Ge(001):H może także w tym wypadku okazać się dobrym rozwiązaniem.
Możliwość desorpcji wodoru i tworzenia dobrze zdefiniowanych nanostruktur z niewysyconych wiązań na powierzchniach Ge(001):H oraz Si(001):H jest również przedmiotem badań grup wykorzystujących inne koncepcje niż opisywana elektronika monomolekularna. Jedną z nich jest już wspomniana grupa profesora Wolkowa, zajmująca się przede wszystkim właściwościami pojedynczych niewysyconych wiązań na powierzchni Si(001):H w kontekście wykorzystania ich do implementacji kubitw [17, 32, 33]. Wśród innych grup należy także wymienić tutaj grupę profesor Simmons. W ramach prowadzonych przez tę grupę badań tworzone są za pomocą litografii STM zdefiniowane struktury z niewysyconych wiązań na powierzchniach Ge(001):H [29, 30] i Si(001):H [34-36]. Następnie wykorzystując ich zwiększoną aktywność chemiczną adsorbuje się na nich molekuły PH3, kte po wygrzaniu rozpadają się, pozostawiając atomy fosforu wbudowane w strukturę półprzewodnika. W ten sposób wywarzane są lokalnie domieszkowane obszary na powierzchni, które następnie są pokrywane odpowiednimi warstwami homoepitaksjalnymi. Za pomocą tak bardzo silnie i lokalnie domieszkowanych obszarów w objętości kryształów Ge oraz Si można tworzyć i charakteryzować ciekawe obiekty fizyczne takie jak kropki kwantowe czy przewodzące nanodruty.
4. Krótki opis badań składających się na pracę doktorską.
Wszystkie badania prowadzone w ramach pracy doktorskiej wykonano w laboratorium Zakładu Fizyki Nanostruktur i Nanotechnologii na Wydziale FAIS Uniwersytetu Jagiellońskiego. Eksperymenty przeprowadzano w systemie ultra wysokiej próżni (Ultra High Vacuum, UHV)
o
bazowym ciśnieniu na poziomie 5×10-11 mbar. Zasadniczą część pracy doktorskiej stanowią pomiary SPM, kte wykonywano za pomocą niskotemperaturowego mikroskopu LT-STM/AFM firmy Omicron GmbH operującego w temperaturach ciekłego helu (4.5 K) oraz ciekłego azotu (77 K).
Przede wszystkim na potrzeby prowadzonych badań opracowano metodę preparatyki uwodornionych powierzchni Ge(001):H oraz Si(001):H o atomowo perfekcyjnych obszarach koniecznych do formowania układów logicznych w skali atomowej. Powierzchnie Ge(001):H oraz Si(001):H przygotowywano na dwa odmienne sposoby. W przypadku germanu prki w postaci monokryształów eksponujących płaszczyznę (001) przygotowywano standardową procedurą składającą się z wygrzewania wraz z bombardowaniem powierzchni jonami Ar+. Jakość powierzchni Ge(001) sprawdzano wstępnie za pomocą dyfrakcji niskoenergetycznych elektron (Low Energy Electron Diffraction, LEED), a następnie za pomocą techniki LT-STM. Dzięki powyższej procedurze uzyskano powierzchnie Ge(001) z atomowo płaskimi tarasami
o
rozmiarach lateralnych rzędu kilkudziesięciu nanometrów. Powierzchniowe atomy Ge układały się w rzędy dimer, ktych wzajemne ułożenie mogło odpowiadać dwóm możliwym niskotemperaturowym rekonstrukcjom: c(4×2) lub p(2×2). Tak przygotowane prki wystawiano na działanie strumienia atomowego wodoru. W czasie procesu uwodorniania powierzchni próbki monokryształu germanu utrzymywano w podwyższonej temperaturze w celu zapobiegnięcia procesowi tworzenia się di-i tri-wodork germanu na powierzchni. W ten spos uzyskiwano uwodornioną powierzchnię Ge(001):H o rekonstrukcji (2×1) z trzema typami pojedynczych defekt w skali atomowej: wakancjami powierzchniowych atom Ge oraz pojedynczymi i podwójnymi niewysyconymi wiązaniami (odpowiedni brak jednego bądź dwóch atomów wodoru na dimerze Ge). Szczegółowyopis preparatyki oraz charakteryzacji powierzchni Ge(001) oraz Ge(001):H znajduje się w publikacjach [Kolmer, PRB 2012; Kolmer, ME 2013; Kolmer, Springer 2013].
Powierzchnię Si(001):H o rekonstrukcji (2×1) otrzymywano poprzez otwarcie „kanapki” składającej się z dwóch atomowo płaskich, uwodornionych monokryształów krzemu o terminacji
(001) złączonych ze sobą za pomocą oddziaływań van der Waalsa. Uwodornione powierzchnie Si(001):H tworzące „kanapkę” zostały przygotowane chemicznie przez grupę z instytutu LETICEA w Grenoble (Francja). Procedura preparatyki zastosowana przez współpracowników z LETI-CEA jest w pełni kompatybilna z metodami używanymi w przemyśle mikroelektronicznym. W ramach pracy doktorskiej scharakteryzowano przygotowane w opisany spos powierzchnie Si(001):H-(2×1) za pomocą LT-STM. Wykazano, że opisana innowacyjna metoda preparatyki uwodornionych podłoży Si(001):H daje odpowiednio duże, atomowo perfekcyjne obszary na powierzchni, które mogą być wykorzystane do testowania układów logicznych w skali atomowej. Jest to wynik niezwykle istotny i daje możliwość integracji atomowych bądź molekularnych układów logicznych na powierzchni pasywowanych wodorem półprzewodników ze standardowymi, obecnie używanymi metodami tworzenia układów scalonych. Szczegółowy opis preparatyki oraz charakteryzacji powierzchni Si(001):H znajduje się w publikacji [Kolmer, ASS 2014].
Posiadając uwodornione powierzchnie Ge(001):H i Si(001):H można przejść do kolejnego zadania badawczego pracy doktorskiej, ktrym było wytwarzanie struktur z niewysyconych wiązań z precyzją atomową. Aby osiągnąć ten cel za pomocą mikroskopu STM niezbędna jest odpowiednia stabilność pracy tego urządzenia, którą zapewniają kriogeniczne temperatury. Jak wspominano w rozdziale 3 w przypadku powierzchni Ge(001):H metody desorpcji wodoru o wymaganej na potrzeby tych badań precyzji nie zostały przedstawione do tej pory. W ramach pracy doktorskiej opracowano nową procedurę zapewniającą atomową zdolność rozdzielczą w formowaniu zadanych struktur z niewysyconych wiązań. Pokazano, że korzystając z zaproponowanego protokołu można tworzyć zadane nanostruktury z podwnych niewysyconych wiązań na Ge(001):H odpowiadające postulowanym teoretycznie bramkom logicznym. Ciekawym i istotnym wynikiem w kontekście projektowania układów z niewysyconych wiązań, który został uzyskany na wstępnym etapie charakteryzacji wytworzonych struktur z niewysyconych wiązań na Ge(001):H za pomocą techniki LT-STM jest fakt, że natywna geometria struktur z podwójnych niewysyconych wiązań wykazuje wygięcie dimerów germanowych względem płaszczyzny powierzchni. Efekt możliwego wygięcia geometrii dimerów, mający konsekwencje dla struktury elektronowej, nie był do tej pory uwzględniany w czysto teoretycznych pracach dotyczących projektowania układów z niewysyconych wiązań na powierzchni Si(001):H.
Kolejnym etapem badań prowadzonych w ramach pracy doktorskiej jest weryfikacja podstawowych założeń prac teoretycznych dotyczących właściwości transportowych nanostruktur z niewysyconych wiązań. W tym celu zbadano również właściwości elektronowe tego typu struktur. Przeprowadzono badania spektroskopowe używając techniki STS. Widma STS dla wybranych nanostruktur z niewysyconych wiązań pokazują, że związane z nimi stany elektronowe rzeczywiście pojawiają się w przerwie energetycznej Ge(001):H. Co więcej, ich położenie przesuwa się do wnętrza przerwy energetycznej wraz ze zwiększaniem rozmiarów struktury. W ramach pracy doktorskiej zbadano za pomocą STS liniowe struktury zbudowane z podwnych niewysyconych wiązań o długościach do 5 dimerów, które były zorientowane zarówno w poprzek jak i wzdłuż rzędów rekonstrukcji powierzchni. Dzięki współpracy z grupą profesora Joachima z instytutu IMRE w Singapurze uzyskane wyniki doświadczalne STM/STS zostały wsparte obliczeniami teoretycznymi. Zasymulowano między innymi transmisję elektronów przez złącze: ostrze STM – niewysycone wiązania – powierzchnia Ge(001), uzyskując widma transmisji T(E) oraz obrazy STM odpowiadające danym eksperymentalnym. W rezultacie przedyskutowano efekty prowadzące do sprzężeń pomiędzy niewysyconymi wiązaniami w poszczególnych strukturach, które prowadzą do opisywanego przesunięcia ich stan elektronowych w funkcji lateralnych rozmiar struktury. Szczegółowyopis tworzenia zadanych struktur z niewysyconych wiązań z atomową precyzją na powierzchni Ge(001):H znajduje się w publikacjach [Kolmer, PRB 2012; Kolmer, ME 2013]. Szczegółowy opis charakteryzacji właściwości elektronowych nanostruktur z niewysyconych wiązań znajduje się w publikacji [Kolmer, PRB 2012].
Metodę desorpcji wodoru stosowaną dla powierzchni Ge(001):H można także wykorzystać w przypadku powierzchni Si(001):H. Należy ją jednak odpowiednio zmodyfikować ze względu na większą energię wiązania pomiędzy atomami wodoru i krzemu. Powoduje to między innymi, że w wypadku Si(001):H po zastosowaniu opracowanej procedury desorbowany jest pojedynczy atom wodoru, w odróżnieniu od powierzchni Ge(001):H, dla której są to zazwyczaj dwa wodory. Ta różnica pomiędzy oboma uwodornionymi podłożami pokazuje, że złożoność możliwych do realizacji struktur z niewysyconych wiązań na powierzchni Si(001):H może być większa. Szczegółowy opis procedury tworzenia struktur z niewysyconych wiązań na Si(001):H oraz opis charakteryzacji właściwości elektronowych krkich nanostruktur z niewysyconych wiązań na tej powierzchni przedstawione są w publikacji [Kolmer, ASS 2014].
Ostatnim zadaniem badawczym zawartym w pracy doktorskiej jest pra uzyskania na powierzchni uwodornionego półprzewodnika prototypowego układu zawierającego duże, organiczne molekuły. Celem tego etapu pracy jest wykazanie możliwości sprzęgania organicznych molekuł z niewysyconymi wiązaniami na powierzchni w kontekście adresowania układów monomolekularnych przez struktury z niewysyconych wiązań. W związku z powyższym naparowano na powierzchnię Ge(001):H molekuły trinaphthylene („Y”). Te poliaromatyczne węglowodory, składające się z siedmiu pierścieni fenylowych ułożonych w kształt litery Y, zaprojektowano specjalnie na potrzeby elektroniki monomolekularnej, jako potencjalne bramki logiczne. Molekuły stosowane w pracy zostały zsyntetyzowane w instytucie ICIQ w Tarragonie (Hiszpania). Ostatnio pokazano doświadczalnie, że rzeczywiście pojedyncza molekuła „Y” może zachowywać się na powierzchni Au(111) jak bramka logiczna NOR [37].
Po naparowaniu molekuły „Y” adsorbują jedynie na defektach powierzchni Ge(001):H, takich jak na przykład krawędzie tarasów czy pojedyncze i podwne niewysycone wiązania. W ramach pracy pokazano, że pojedyncze molekuły można stabilnie obrazować techniką STM w4K również na w pełni uwodornionych obszarach powierzchni. Wyniki charakteryzacji molekuł tego typu potwierdzają przede wszystkim, że monowarstwa wodoru na powierzchni Ge(001):H efektywnie izoluje stany molekularne od wpływu podłoża. Co więcej, zaobserwowano wyraźny efekt wpływu sprzężenia molekuły z podwójnym niewysyconym wiązaniem na obrazowane za pomocą technik STM stany molekularne. Dzięki obliczeniom wykonanym w grupie z instytutu IMRE w Singapurze ustalono, że stan podstawowy molekuły „Y” może zostać zaobserwowany w obrazie STM tylko w przypadku molekuły podpiętej do podwójnego niewysyconego wiązania na powierzchni Ge(001):H. Dzięki sprzężeniu molekuła – niewysycone wiązania uzyskuje się wtedy dostęp do stanów powierzchni Ge(001). Ten fundamentalny wynik pokazuje, że koncepcja adresowania molekuł organicznych przez sprzęganie się z ich stanami elektronowymi za pomocą niewysyconych wiązań na powierzchniach pasywowanych wodorem półprzewodników jest możliwa do zrealizowania. Szczegółowy opis charakteryzacji molekuł trinaphthylene na powierzchni Ge(001):H znajduje się w publikacjach [Kolmer, Springer 2013; Godlewski, ACS Nano 2013]. Szczegółowy opis oddziaływania molekuły z podwójnym niewysyconym wiązaniem i jego wpływ na obrazowane stany elektronowe molekuły trinaphthylene w eksperymencie STM zawarty jest w publikacji [Godlewski, ACS Nano 2013].
5. Podsumowanie oraz wnioski z pracy doktorskiej.
Przede wszystkim wyniki uzyskane w ramach pracy doktorskiej pokazują, że korzystając z opracowanej metody desorpcji wodoru przy użyciu techniki STM można w kriogenicznych temperaturach uzyskać atomową precyzję w konstruowaniu układów z niewysyconych wiązań na powierzchniach Ge(001):H oraz Si(001):H. Ten rezultat potwierdza, że teoretycznie rozważane struktury z niewysyconych wiązań mogą zostać rzeczywiście wytworzone na powierzchni, co stanowi podstawę do dalszych badań nad właściwościami transportowymi nanostruktur z niewysyconych wiązań i ich potencjalnego zastosowania do tworzenia układów logicznych.
Dodatkowo w ramach pracy doktorskiej pokazano doświadczalnie, że stany elektronowe związane z niewysyconymi wiązaniami powstają w przerwie wzbronionej uwodornionego półprzewodnika. Dzięki zastosowaniu powierzchni Ge(001):H, która ma mniejszą przerwę wzbronioną niż odpowiadająca jej powierzchnia Si(001):H, zarejestrowano bezpośrednio za pomocą techniki STS stany elektronowe związane z niewysyconymi wiązaniami. Pozwoliło to na zbadanie wpływu sprzężeń pomiędzy niewysyconymi wiązaniami w różnych konfiguracjach na odpowiadające im stanyelektronowe.
Znajomość sprzężeń pomiędzy niewysyconymi wiązaniami jest kluczowa dla projektowania układów z niewysyconych wiązań o zadanych właściwościach transportowych. Znając sprzężenia pomiędzy niewysyconymi wiązaniami można tworzyć z nich układy logiczne w oparciu o koncepcję Quantum Hamiltonian Computing (QHC) [38], w ktrej ewolucja stanu kwantowego układu jest wykorzystana do implementowania klasycznych bramek logicznych. Przykładowy projekt bramki NOR/OR na powierzchni Si(001):H oparty o tę koncepcję zaprezentowany jest na Rys.2a. Zgodnie z konwencją przyjętą w pracy [6] za sygnał odpowiadający jedynce logicznej przyjęto obsadzenie podwójnego niewysyconego wiązania w strukturze bramki wodorem. Zeru odpowiada natomiast brak dwh atom wodoru. Sprzężenia pomiędzy stanami γ tworzącymi bramkę opisano w modelu ciasnego wiązania i przedstawiono w postaci parametrw: α, β, a, κ, ε. W takim opisie ewolucja układu uwarunkowana jest macierzą Hamiltonianu przedstawioną na Rys.2b, w ktrej parametry α i β zależą od wartości logicznych na wejściach bramki (obecność bądź brak odpowiednich atomów
Rys.2
a) Model strukturalny oraz schemat stanów kwantowych i odpowiednich sprzężeń między nimi
dla bramki logicznej OR/NOR zrealizowanej w koncepcji QHC na powierzchni Si(001):H. Opisy
poszczególnych wartości logicznych zamieszczono w górnej części rysunku.
b) Hamiltonian QHC w przybliżeniu ciasnego wiązania odpowiadający za ewolucję układu z niewysyconych wiązań realizującemu bramkę OR/NOR. Rysunek przekopiowany dzięki uprzejmości prof. Joachima z raportu rocznego 2013 projektu AtMol (http://www.atmol.eu).
wodoru). Okres charakterystycznych oscylacji Rabiego pomiędzy stanem wejściowym |φa> a wyjściowym |φb> determinuje propagację sygnału (informacji) przez strukturę i jest kontrolowany przez zanik odpowiednich sprzężeń α lub β.
Wykorzystując protokół zawarty w pracy doktorskiej przedstawioną bramkę OR/NOR zrealizowano doświadczalnie na powierzchni Si(001):H, co jest zaprezentowane na serii obrazów STM na Rys.3a. Tak jak opisano powyżej, desorpcja dwóch atomów wodoru z powierzchni zmienia odpowiednie sygnały wejściowe. Należy w tym momencie zaznaczyć, że bezpośrednia weryfikacja właściwości transportowych nanostruktur z niewysyconych wiązań nie była tematem podejmowanym w pracy doktorskiej. Do pomiarów lateralnego transportu ładunku przez nanostruktury wymagane jest użycie wielopróbnikowego instrumentu STM. Powoduje to szereg nierozważanych w pracy doktorskiej komplikacji i problemów badawczych związanych przede wszystkim ze skontaktowaniem się z badanymi obiektami w skali atomowej [39]. Z tego względu podjęto próbę charakteryzacji wytworzonej struktury z niewysyconych wiązań w geometrii wertykalnej, wykorzystując do tego celu metodę zaproponowaną w pracy [37]. Za pomocą pojedynczego ostrza STM i techniki STS zbadano przesunięcie stan elektronowych w centralnej części bramki podczas zmiany wartości logicznych wejść. Wyniki zostały zaprezentowane na wykresie na Rys.3b. Można zauważyć wyraźną ewolucję stan elektronowych na krawędzi pasma przewodnictwa. Wykonując odczyty sygnału dI/dU dla zadanych napięć +1.5 V i +1.75 V uzyskuje się odpowiednio charakterystyki odpowiadające bramkom logicznym NOR i OR. Powyższy wynik, pokazuje, że zaprezentowana w pracy doktorskiej metodologia tworzenia nanostruktur z niewysyconych wiązań na powierzchniach Si(001):H i Ge(001):H oraz zbadane właściwości sprzężeń pomiędzy nimi mogą zostać wykorzystane do tworzenia prototypowych układów logicznych na tych powierzchniach.
Dodatkowo w ramach pracy doktorskiej wykazano, że stosując nowatorski proces preparatyki uwodornionych powierzchni Si(001):H, kompatybilny z obecnie wykorzystywaną technologią wytwarzania wafli półprzewodnikowych na potrzeby przemysłu elektronicznego, można otrzymać atomowo czyste podłoża. Liczba pojedynczych defektw na monoatomowych tarasach tak uzyskanych powierzchni Si(001):H nie odbiega od typowej liczby defekt otrzymywanych po standardowej preparatyce powierzchni Si(001):H w laboratoryjnych warunkach UHV. Jak pokazano w pracy, jakość przygotowanych w ten spos podłoży
Rys.3
a) Obrazy STM wykonane w 77 K dla różnych konfiguracji bramki logicznej, ktej model strukturalny został zaprezentowany na Rys2a. Opisy poszczególnych wartości logicznych odpowiadających danej strukturze zamieszczono w górnej części rysunku. Napięcia polaryzacji złącza STM zamieszczono na poszczególnych obrazach, wartość prądu tunelowego wynosiła
10pA.
b) Wykresy STS dI/dU dla powierzchni Si(001):H oraz poszczeglnych struktur przedstawionych na Rys.3a. Zaznaczono napięcia, dla których następuje odczyt sygnału wyjściowego z widma STS.
Si(001):H jest wystarczająca do tworzenia zadanych, prototypowych struktur z niewysyconych wiązań i badania ich właściwości elektronowych czy transportowych. Przedstawiony wynik powoduje, że realnym wydaje się zintegrowanie w przyszłości układów z niewysyconych wiązań na powierzchniach pasywowanych wodorem półprzewodników ze standardowymi układami mikroelektronicznymi stosowanymi obecnie. Należy zaznaczyć, że w szerokim kontekście potencjalnych zastosowań, kompatybilność nowych rozwiązań z obecnie stosowaną technologią CMOS jest niezwykle istotna i może wręcz decydować o wdrożeniu danej koncepcji do praktycznej realizacji.
Ostatnim zadaniem badawczym wykonanym w ramach pracy doktorskiej było wytworzenie prototypowego układu monomolekularnego na powierzchniach pasywowanych wodorem półprzewodników. Ten cel został osiągnięty dla molekuł trinaphthylene („Y”) na powierzchni Ge(001):H. Po pierwsze pokazano, że monowarstwa wodoru efektywnie odprzęga stany molekularne od wpływu podłoża. Ten wynik jest niezwykle istotny w kontekście praktycznego wykorzystania układów monomolekularnych, ponieważ pokazuje, że zadane podczas etapu projektowania i syntezy molekuł właściwości elektronowe nie zostaną zaburzone po jej zdeponowaniu na powierzchnię. Dodatkowo wykazano, że podpięcie molekuły „Y” do podwnego niewysyconego wiązania w istotny sposób wpływa na jej sprzężenie ze stanami elektronowymi powierzchni Ge(001). Efekt uzyskania efektywnego sprzężenia elektronowego pomiędzy molekułami trinaphthylene a niewysyconymi wiązaniami na powierzchni pasywowanego wodorem półprzewodnika otwiera perspektywy wykorzystania układów z niewysyconych wiązań do adresowania molekuł organicznych o zadanych właściwościach.
Reasumując, badania przedstawione w ramach pracy doktorskiej stanowią doświadczalną realizację prototypowych układów atomowych i molekularnych na powierzchniach pasywowanych wodorem półprzewodników. W świetle prezentowanych w pracy doktorskiej wynik podłoża Si(001):H i Ge(001):H rzeczywiście stanowią perspektywiczną platformę do wytwarzania układów logicznych opartych na idei elektroniki monomolekularnej.
Bibliografia
1.
Aviram, A. and M.A. Ratner, Molecular Rectifiers. Chemical Physics Letters, 1974. 29(2): p. 277283.
2.
Joachim, C., J.K. Gimzewski, and A. Aviram, Electronics using hybrid-molecular and mono-molecular devices. Nature, 2000. 408(6812): p. 541-8.
3.
Prauzner-Bechcicki, J.S., S. Godlewski, and M. Szymonski, Atomic-and molecular-scale devices and systems for single-molecule electronics. physica status solidi (a), 2012. 209(4): p. 603-613.
4.
Hallam, T., et al., Use of a scanning electron microscope to pattern large areas of a hydrogen resist for electrical contacts. Journal of Applied Physics, 2007. 102(3): p. 034308.
5.
Soukiassian, L., et al., Atomic-scale desorption of H atoms from the Si(100)-2×1:H surface: Inelastic electron interactions. Physical Review B, 2003. 68(3).
6.
Kawai, H., et al., Dangling-bond logic gates on a Si(100)-(2 x 1)-H surface. J Phys Condens Matter, 2012. 24(9): p. 095011.
7.
Ample, F. and C. Joachim, The chemisorption of polyaromatic hydrocarbons on Si(100)H dangling bonds. Surface Science, 2008. 602(8): p. 1563-1571.
8.
Bellec, A., et al., Imaging Molecular Orbitals by Scanning Tunneling Microscopy on a Passivated Semiconductor. Nano Letters, 2009. 9(1): p. 144-147.
9.
Binning, G., et al., Surface Studies by Scanning Tunneling Microscopy. Physical Review Letters, 1982. 49(1): p. 57-61.
10.
Eigler, D.M. and E.K. Schweizer, Positioning Single Atoms with a Scanning Tunneling Microscope. Nature, 1990. 344(6266): p. 524-526.
11.
Boland, J., Evidence of pairing and its role in the recombinative desorption of hydrogen from the Si(100)-2×1 surface. Physical Review Letters, 1991. 67(12): p. 1539-1542.
12.
Shen, T.C., et al., Atomic-Scale Desorption through Electronic and Vibrational-Excitation Mechanisms. Science, 1995. 268(5217): p. 1590-1592.
13.
Foley, E.T., et al., Cryogenic UHV-STM study of hydrogen and deuterium desorption from Si(100). Physical Review Letters, 1998. 80(6): p. 1336-1339.
14.
McEllistrem, M., M. Allgeier, and J.J. Boland, Dangling bond dynamics on the silicon (100)-2x1 surface: Dissociation, diffusion, and recombination. Science, 1998. 279(5350): p. 545-548.
15.
Hitosugi, T., et al., Jahn-Teller distortion in dangling-bond linear chains fabricated on a hydrogenterminated Si(100)-2 x 1 surface. Physical Review Letters, 1999. 82(20): p. 4034-4037.
16.
Soukiassian, L., et al., Atomic wire fabrication by STM induced hydrogen desorption. Surface Science, 2003. 528(1-3): p. 121-126.
17.
Haider, M., et al., Controlled Coupling and Occupation of Silicon Atomic Quantum Dots at Room Temperature. Physical Review Letters, 2009. 102(4).
18.
Labidi, H., L. Kantorovich, and D. Riedel, Atomic-scale control of hydrogen bonding on a bare Si(100)-2×1 surface. Physical Review B, 2012. 86(16).
19.
Bellec, A., et al., Dihydride dimer structures on the Si(100):H surface studied by low-temperature scanning tunneling microscopy. Physical Review B, 2008. 78(16).
20.
Bellec, A., D. Riedel, and G. Dujardin, Electronic properties of the n -doped hydrogenated silicon
(100) surface and dehydrogenated structures at 5 K. Physical Review B, 2009. 80(24).
21.
Bellec, A., et al., Nonlocal Activation of a Bistable Atom through a Surface State Charge-Transfer Process on Si(100)-(2×1):H. Physical Review Letters, 2010. 105(4).
22.
Bellec, A., et al., Reversible charge storage in a single silicon atom. Physical Review B, 2013. 88(24).
23.
Kawai, H., et al., Conductance decay of a surface hydrogen tunneling junction fabricated along a Si(001)-(2×1)-H atomic wire. Physical Review B, 2010. 81(19).
24.
Robles, R., et al., Energetics and stability of dangling-bond silicon wires on H passivated Si(100). J Phys Condens Matter, 2012. 24(44): p. 445004.
25.
Kepenekian, M., et al., Electron transport through dangling-bond silicon wires on H-passivated Si(100). J Phys Condens Matter, 2013. 25(2): p. 025503.
26.
Kepenekian, M., et al., Surface-state engineering for interconnects on H-passivated Si(100). Nano Letters, 2013. 13(3): p. 1192-5.
27.
Kepenekian, M.l., et al., Leakage current in atomic-size surface interconnects. Applied Physics Letters, 2013. 103(16): p. 161603.
28.
Ample, F., et al., Single OR molecule and OR atomic circuit logic gates interconnected on a Si(100)H surface. J Phys Condens Matter, 2011. 23(12): p. 125303.
29.
Scappucci, G., et al., A complete fabrication route for atomic-scale, donor-based devices in single-crystal germanium. Nano Letters, 2011. 11(6): p. 2272-9.
30.
Scappucci, G., et al., Atomic-scale patterning of hydrogen terminated Ge(001) by scanning tunneling microscopy. Nanotechnology, 2009. 20(49): p. 495302.
31.
Ye, W., et al., Scanning tunneling spectroscopy and density functional calculation of silicon dangling bonds on the Si(100)-2×1:H surface. Surface Science, 2013. 609: p. 147-151.
32.
Livadaru, L., et al., Dangling-bond charge qubit on a silicon surface. New Journal of Physics, 2010. 12(8): p. 083018.
33.
Pitters, J.L., et al., Tunnel coupled dangling bond structures on hydrogen terminated silicon surfaces. J Chem Phys, 2011. 134(6): p. 064712.
34.
Fuhrer, A., et al., Atomic-Scale, All Epitaxial In-Plane Gated Donor Quantum Dot in Silicon. Nano Lett, 2009. 9(2): p. 707-710.
35.
Weber, B., et al., Ohm's law survives to the atomic scale. Science, 2012. 335(6064): p. 64-7.
36.
Fuechsle, M., et al., Spectroscopy of few-electron single-crystal silicon quantum dots. Nat Nanotechnol, 2010. 5(7): p. 502-505.
37.
Soe, W.H., et al., Manipulating Molecular Quantum States with Classical Metal Atom Inputs: Demonstration of a Single Molecule NOR Logic Gate. ACS Nano, 2011. 5(2): p. 1436-1440.
38.
Renaud, N. and C. Joachim, Design and stability of NOR and NAND logic gates constructed with three quantum states. Physical Review A, 2008. 78(6).
39.
Joachim, C., et al., Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates. J Phys Condens Matter, 2010. 22(8): p. 084025.
Przedruki artykułów składających się na pracę doktorską.
Artykuły umieszczono w następującej kolejności:
1. [Kolmer, PRB 2012] M. Kolmer, S. Godlewski, H. Kawai, B. Such, F. Krok, M. Saeys,
C. Joachim, M. Szymonski, Electronic properties of STM-constructed dangling-bond dimer lines on a Ge(001)-(2×1):H surface, Physical Review B, 86, 125307 (2012);
2.
[Kolmer, ME 2013] M. Kolmer, S. Godlewski, J. Lis, B. Such, L. Kantorovich, M. Szymonski, Construction of atomic-scale logic gates on a surface of hydrogen passivated germanium, Microelectronic Engineering, 109, 262–265 (2013);
3.
[Kolmer, ASS 2014] M. Kolmer, S. Godlewski, R. Zuzak, M. Wojtaszek, C. Rauer, A. Thuaire,
J.M. Hartmann, H. Moriceau, C. Joachim, M. Szymonski, Atomic scale fabrication of dangling bond structures on hydrogen passivated Si(001) wafers processed and nanopackaged in a clean room environment, Applied Surface Science, 288 83– 89 (2014);
4.
[Kolmer, Springer 2013] M. Kolmer, S. Godlewski, B. Such, P. De Mendoza, C. De Leon,
A. M. Echavarren, H. Kawai, M. Saeys, C. Joachim, M. Szymonski, SPM imaging of trinaphthylene molecular states on a hydrogen passivated Ge(001) surface, Springer series “Advances in Atom and Single Molecule Machines”, vol.3, ISBN 978-3-642-38808-8, 105-114 (2013);
5.
[Godlewski, ACS Nano 2013] S. Godlewski, M. Kolmer, H. Kawai, B. Such, R. Zuzak,
M. Saeys, P. De Mendoza, A.M. Echavarren, C. Joachim, M. Szymonski, Contacting a conjugated molecule with a surface dangling bond dimer on a Ge(001):H surface allows imaging of the hidden ground electronic state, ACS Nano, 7 (11), 10105-10111 (2013).
PHYSICALREVIEWB86,125307(2012)
Electronic properties of STM-constructed dangling-bond dimer lines on a Ge(001)-(2×1):H surface
MarekKolmer,1SzymonGodlewski,1,*HiroyoKawai,2,†
BartoszSuch,1FranciszekKrok,1MarkSaeys,2,3ChristianJoachim,2,4andMarekSzymonski1
1Department of Physics of Nanostructures and Nanotechnology, Institute of Physics, Jagiellonian University, Reymonta 4, PL 30-059 Krakow, Poland 2Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602, Singapore 3Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore 4Nanosciences Group & MANA Satellite, CEMES-CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse, France
(Received25April2012;revisedmanuscriptreceived3August2012;published6September2012)
Atomicallyprecisedangling-bond(DB)linesareconstructeddimer-by-dimeronahydrogen-passivatedGe(001)-(2×1):Hsurfacebyanefficientscanningtunnelingmicroscope(STM)tip-induceddesorptionprotocol.DuetothesmallersurfacebandgapoftheundopedGe(001)substratecomparedtoSi(001),statesassociatedwithindividuallycreatedDBscanbecharacterizedspectroscopicallybyscanningtunnelingspectroscopy(STS).CorrespondingdI/dV spectracorroboratedbyfirst-principlemodelingdemonstratethatDBdimersintroducestatesbelowtheGe(001):Hsurfaceconductionbandedge.ForaDBlineparallel tothesurfacereconstructionrows,theDB-derivedstatesneartheconductionbandedgeshifttolowerenergieswithincreasingnumberofDBs.ThecouplingbetweentheDBstatesresultsinadispersivebandspanning0.7eVforaninfiniteDBline.ForalongDBlineperpendicular tothesurfacereconstructionrows,asimilarbandisnotformedsincetheinterdimercouplingisweak.However,forashortDBline(2–3DBs)perpendiculartothereconstructionrowsasignificantshiftisstillobservedduetothemoreflexibledimerbuckling.
DOI:10.1103/PhysRevB.86.125307PACSnumber(s):73.20.At,68.37.Ef
I. INTRODUCTION
SiliconSi(001):HandgermaniumGe(001):Hhydrogenpassivatedsurfacesarepromisingplatformsfortheatomicscalefabricationofmesoscopicelectronicdevices1andfortheconstructionofatomic-scalesurfaceelectroniccircuits.2,3Thedesorptionofsurfacehydrogenatomsusingthescanningtunnelingmicroscope(STM)tipcreatesverylocalizeddangling-bond(DB)electronicstateswithinthesurfacebandgapofthosematerials.1,4–8Thesenanostructurescanbeusedasinterconnectsinmolecularelectronicsdevicesstabilizedonasurface,9createDBlogiccircuitsbasedonquantuminterferences,2oractasqubitsforthesurfaceminiaturizationofquantumcomputers.6–8Theformationofsingle,doubleDBs,10–19andlongDBlines3,4,20onaSi(001):Hsurface,aswellasselectivein situ dopingbyPH3gashasbeenstudiedbySTMtechniquesbothatroomtemperatureandatlowtemperatures(LT).1,5,8,20–22AlthoughithasbeentheoreticallypredictedthatDBlinesrunningparallelandperpendiculartotheSi(001):Hdimerrowswillhaveverydifferentelectronictransportproperties,23,24thosepropertieshavenotyetbeencharacterizedspectroscopically.ItisimportanttoquantifythedifferencebetweentheDBlinesinbothdirectionsinordertodesignefficientatomic-scaledevicesusingDBs.2Specifically,itiscrucialtodeterminethemaximumandminimumlengthofDBlineinterconnectsbetweensurfacemoleculardevices,9aswellastoinvestigatethesurfacetunnelingleakagecurrent24inbothdirections.However,duetothelargersurfacebandgap,itischallengingtospectroscopicallycharacterizethestatesintroducedbyDBnanostructuresinthesurfacebandgapofSi(001):H.Aswedemonstrateinthispaper,thesmallersurfacebandgapofGe(001):HmakesitpossibletopreciselytrackthegradualshiftintheenergylevelsoftheDBstatesasafunctionofnumberofDBsusingscanningtunnelingspectroscopy(STS),asDBlinesarecreateddimer-by-dimer.
WereportanefficientSTMprotocoltoconstructpredesignedDBnanostructuresonaGe(001):Hsurface.First,shortatomiclinescontaining1–5DBdimersarefabricated.NearthebottomoftheGe(001):Hsurfaceconductionbandedge,theprogressiveintroductionofDBelectronicstatesisstudiedusingLT-STMdI/dV spectroscopy.ShortDBdimerlinesintroduceelectronicstatesinthegap.ThosestatescanbeusedtodesignDBlogicgates.2WhenthelengthofDBlinesincreasesbeyond3DBdimers,aconductionchannelgraduallydevelopsbelowthebottomoftheGe(001):HconductionbandedgeforDBlinesparalleltothereconstructionrows.
II. EXPERIMENTAL AND COMPUTATIONAL DETAILS
TheGesamplesusedintheSTM/STSmeasurementswerecutfromundopedGe(001)wafers(TBLKelpinCrystals,n-type,∼45cm).AfterinsertionintotheUHVsystem,thesampleswerefirstsputteredandannealedfor15min(Ar+,600eV,1020K).Thesputteringcycleswererepeateduntilacleanc(4×2)/p(2×2)surfacewasobtainedasconfirmedbylowenergyelectrondiffraction(LEED)andLT-STMmeasurements.Thenhydrogenpassivationwasperformedusingahome-builthydrogencrackertoprovideatomichydrogen.Duringthepassivationprocedure,thesampleswerekeptat485Kandthehydrogenpressurewasmaintainedat1×10−7mbar.ThebasepressureoftheSTMchamberwasinthelow10−10mbarrange.AllSTM/STSmeasurementswereperformedat5K(liquidhelium).BeforeconstructionoftheDBdimerlines,thebareGe(001)andGe(001):HsurfacestructureswerecharacterizedbycomparingtheexperimentalandcalculatedSTMimages.TheelectronicpropertiesofDBdimer
1098-0121/2012/86(12)/125307(9)125307-1©2012AmericanPhysicalSocietyMAREKKOLMERet al. PHYSICALREVIEWB86,125307(2012)
lineswereanalyzedindetailusingdensityfunctionaltheory(DFT)surfaceelectronicstructurecalculationsanddI/dV spectracalculatedusingthesurfaceGreen-functionmatching(SGFM)method.25TheSTMimagesanddI/dV spectrawerecalculatedforstructuresoptimizedusingDFT26withthePerdew-Burke-Ernzerhof(PBE)functional,27asimplementedintheViennaab initio simulationpackage(VASP)(seeAppendixA).STMimageswerecalculatedusingtheSGFMmethod25withanextendedHuckelmolecularorbital(EHMO)Hamiltonian.TheparametersintheEHMOHamiltonianwerefittedtoaccurateDFTbandstructures.TheHSE06functionalwasusedtofittheparameterssinceitprovidesamoreaccuratedescriptionoftheGebandgapthanthePBEfunctional(seeAppendixA).TheSTMjunctionwasmodeledasasemi-infiniteW(111)slab,aGe-terminatedSTMtip,anine-layerGe(001):HsurfacewiththeDBnanostructures,andthesemi-infiniteGe(001)bulk,asillustratedinFig.9.Ourapproachtakesintoaccountthecouplingbetweenthesurfaceandthetipandtheircouplingstothebulkelectronicstates.ThisapproachprovidesarealisticdescriptionoftheballisticelectrontransportacrosstheSTMjunction,whileminimizingthecomputationalcost.
III. RESULTS AND DISCUSSION
StartingfromaGe(001):Hsurface,atomicallycontrolledHextractionswereperformedbypulsingtheSTMtipbiasvoltage.First,thetipwasapproachedoverthehydro-gendimerselectedforextractionwiththeSTMfeedbackloopsetonaI =1nAtunnelingcurrentintensityandaV =−0.5Vbiasvoltage.ThetipapexwaspositionedoverthedimeraccordingtotheGe(001):Hfilled-stateSTMimage[seeFig.1(a)].Subsequently,thefeedbackloopwasturnedoffandthedesorptionprocessstartedwithaV pulsesetupat+1.6V.ThedesorptionofthehydrogendimerwasdetectedwhenasuddenriseofthetunnelingcurrentwasobservedintheI(t)characteristic.Theprocedurewasrepeatedstep-by-stepuntilthetargetedDBdimerpatternwasconstructed.TheaboveprotocolallowsfortheefficientconstructionofapredesignedDBnanostructurewithatom-by-atomprecision,unlikemethodsbasedonafasttipmovementalongsurfacedimerrowsataconstantspeed.3,4,20Figure1illustratesanatomicallycontrolleddimer-by-dimerdesorptionleadingtotheconstructionofashort2DBdimerlineparalleltotheGe(001):Hrows.Here,unlikeinthecaseoftheSi(001):Hsurface,ourSTMtipV pulseprotocolextractsapairofHatomsperpulseinsteadofasingleH.
Followingthisprotocol,shortlinesconsistingof1to3DBdimerswereconstructedinbothdirections,aspresentedinFig.2(leftcolumn).DFTcalculationsshowthatinfiniteDBlinesperpendicularandparalleltotheGe(001):Hrowsbuckleby0.81and0.89˚
A,respectively.Alongtheperpendiculardirection,thebucklingofDBdimersissimilartothebucklingofanisolatedDBdimer,andin-phasebuckling(adown-up-down-upsequence)ismorestablethanout-of-phasebuckling(adown-up-up-downsequence)by20meV/dimer.Thesmallenergydifferencesuggeststhatthebucklingisratherflexiblefortheperpendiculardirection.ForDBlinesparalleltotheGe(001):Hrows,out-of-phasebuckling,whereneighboringDBdimersarebuckledinoppositedirections,as
FIG.1.(Coloronline)STMtipinducedfabricationofaDBlinerunningalongthesurfacereconstructionrows.Redcrossesindicatethepositionsofthetipduringthedimerdesorptionprocesses:
(a)
filled-stateSTMimage(−0.5V,1nA,4nm×4nm)ofthehydrogenatedGe(001)surfacebeforedesorption,(b)singleDBdimer,(c)twoneighboringDBdimersformingtheDBline,and
(d)
typicalI(t)characteristicrecordedduringthedesorptionprocess.
itisinthec(4×2)andp(2×2)reconstructionsofthebareGe(001)surface,ismorestablethanin-phasebuckling,whereneighboringDBdimersarebuckledinthesamedirection,by120meV/dimer.ThecalculatedSTMimagesforshortlinesof1,2,and3DBdimersinbothdirections[Fig.2,secondcolumn]agreewellwiththeexperimentalSTMimages[Fig.2,firstcolumn].Inordertocomparetheimagesinmoredetail,thecorrugationsovertheDBswerealsoplotted.AspresentedinFig.2(thirdcolumn),eachcalculatedconstantcurrentlinescanagreeswellwiththecorrespondingexperimentallinescan.Thesmalldifferencesinthecorrugationscanbeattributedtodetailsoftipapexelectronicstructure,aswellastodifferencesinbucklingbetweenshortandinfiniteDBlines.ThedetailedcomparisonbetweenexperimentalandcalculatedSTMimagesfurthermorehighlightsthedifferentsurfaceatomicstructureofDBdimerlinesconstructedonaGe(001):HsurfaceandonaSi(001):Hsurface.AsreportedbyBellecet al.,isolatedDBdimersdonotappearbuckledonaSi(001):Hsurface.12
Tocharacterizetheelectronicpropertiesofeachsurface,theelectronicbandstructuresoftheGe(001):HsurfaceandofthebareGe(001)surfacewerecalculated[Fig.3].ThefullyhydrogenatedGe(001):Hsurfaceispredictedtohavea1.1eVsurfaceelectronicbandgap,whilethebareGe(001)surfacehasa0.6eVsurfacebandgap[Figs.3(a)and3(d),respectively].TheGe(001):HsurfacegapdecreaseswhenDBdimerlinesarecreatedonthesurfaceduetotheelectronicstatesintroducedbytheDBdimersnearthebottomoftheGe(001):Hconductionbandedge.Thesebandsresultfromtheantibondingπ ∗statesoftheGe(001)DBdimers.Thecorrespondingbondingπ statesarelocatedwellbelowthetopofthevalenceband
125307-2ELECTRONICPROPERTIESOFSTM-CONSTRUCTED... PHYSICALREVIEWB86,125307(2012)
edge,andtheydonotaffectthewidthofthebandgap.ThebandstructuresforinfiniteDBlinesonGe(001):HinboththeperpendicularandtheparalleldirectionareshowninFigs.3(b)and3(c),respectively.Inbothcases,anewπ ∗conductionbandiscreatednearthebottomoftheGe(001):Hconductionband.Asignificantdispersionof0.67eVishoweveronlyfoundfortheparallelDBdimerline[Fig.3(c)].
ToinvestigatehowtheDBdimerstatesshiftgraduallyintheGe(001):HsurfacebandgapasthelengthofDBlineincreases,dI/dV spectraweremeasuredandtransmissionspectraT (E)werecalculatedforDBlineswithvariouslengths.AllSTSmeasurementswereperformedinamodewiththefeedbackloopturnedonbetweeneverytwoI(V )characteristicstodeterminethetipposition.TheI(V )characteristicswereautomaticallycollectedusingagridcoveringa2.5nm×
FIG.2.(Coloronline)Experimen-talandcalculatedSTMimagesoftheGe(001)-(2×1):Hsurfacewith(a)1DBdimer,(b)and(c)2and3DBdimersalignedperpendiculartothedimerrows,and(d)and(e)2and3DBdimersalignedparalleltothedimerrows.ThecorrugationsovertheDBdimersarealsoshownforeachcase.AllSTMimagesacquiredat−0.5V,1.0nA,3nm×3nm.TheatomicstructuresoftheDBlineperpendicularandparalleltothedimerrowsareshowntoillustratethelinedirections.
2.5nmsurfacearea,andthecorrespondingdI/dV spectrawereobtainedbydifferentiatingtheI(V )curvesaveragedpreviouslyovertheareaoftheDBsonly.ThedI/dV spectraweresimulatedbycalculatingtheelectronictransmissionspectrathroughthetunneljunctionusedfortheconstantcurrentimagecalculations[Fig.2],whichconsistsoftheWtip,theGetipapex,theGe(001):Hsurface,andtheGe(001)bulk[seeAppendixA,Fig.9].Thetipapexwasplaced7A˚abovetheGe(001):Hsurface.
First,thedI/dV spectraforthebareGe(001)surfaceandforthefullyhydrogenatedGe(001):HsurfaceweremeasuredandcomparedwithcalculatedT (E)spectra.TheexperimentaldI/dV spectraclearlyshowthatthesurfacebandgapincreasesuponsurfacehydrogenationfrom0.25eVforthebareGe(001)surfacetoabout0.85eVforGe(001):H[lightblueandgreen
125307-3MAREKKOLMERet al. PHYSICALREVIEWB86,125307(2012)
FIG.3.Bandstructuresof(a)afullypassivatedGe(001)-(2×1):Hsurface,(b)infiniteDBlineperpendiculartothedimerrowswithsevenH-passivateddimersbetweentwoDBlines,(c)infiniteDBlineparalleltothedimerrows,wheretheDBdimersarebuckledout-of-phasealongthedimerrow,and(d)acleanGe(001)-c(4×2)surface.Anine-layerslabwasusedtomodeltheGesurfaces.
curvesinFig.4(a),respectively].ThecalculatedT (E)spectra[Fig.4(b)]followthesametrend,inagreementwiththecalculatedbareGe(001)-c(4×2)andGe(001):Hsurfacebandstructures[Figs.3(a)and3(d),respectively].ThebandgapforthedI/dV andT (E)spectradiffersslightlyfromthecalculatedbandstructures,becauseanine-layerslabwasusedforthebandstructurecalculationswhileasemi-infinitestructurewasusedinthetransportcalculations.NotethatT (E)wascalculatedforasinglepointinsteadofaveragingovertheDBarea.Therefore,therelativeheightsandwidthsoftheT (E)resonancepeaksaredifferentfromtheexperimentaldI/dV spectra.
Next,experimentaldI/dV spectraandcalculatedT (E)spectraarecomparedforDBlineswith1,2,3,and5DBdimersinboththeperpendicularandtheparalleldirection.ForDBlinesinbothdirections,theexperimentaldI/dV spectraandthecalculatedT (E)spectrashowlargenonzeroconductancesatenergiesbelowtheGe(001):Hsurfaceconductionbandedge[Fig.4].AlthoughthesenonzeroconductancesarefoundwithintheGe(001):Hsurfacegap,theycanbedetectedinthemeasurementsandinthecalculationsbecausetheGebulkbandgapissmallerthanthe0.85eVGe(001):Hsurfacebandgap.Notethatalargeresonancepeakappears0.9eVabovetheFermilevelevenforasingleDBdimer[blueresonance,Figs.4(a)and4(c)],clearlyshowingtheDBdimerstateintroducedbelowtheconductionbandedge.ThissingleDBdimerresonancepeakisalsodescribedwellbythecalculations[blueresonancepeak,Figs.4(b)and4(d)].Noresonancepeaksareobservednearthevalencebandedge.
ForDBlinesparalleltothedimerrows,itisexpectedthatthedI/dV resonancesareobservedbelowtheconductionbandedge,andthattheresonanceswillgraduallyspanthe0.6eVenergydifferencebetweentheGe(001):HandthebareGe(001)conductionbandedgeasthelengthoftheDBlineincreases.ThisisbecauseeachDBdimerintroducesanadditionalπ ∗statenearthebottomedgeoftheGe(001):Hconductionband,
FIG.4.(Coloronline)(a),(c),and(e)ExperimentaldI/dV and(b),(d),and(f)calculatedT (E)spectraforafullyhydrogenatedGe(001)-(2×1):H,DBlinescontaining1,2,3,and5DBdimersalignedparallelandperpendiculartotheGe(001):HdimerrowsandcleanGe(001)surfacewithc(4×2)reconstruction[STSfeedbackloopat0.5nAand−0.5Vforallcasesexceptfor2and3DBdimersin(a)and5DBdimersin(e),where0.3nAand−0.5Vsetpointwasused].
125307-4ELECTRONICPROPERTIESOFSTM-CONSTRUCTED... PHYSICALREVIEWB86,125307(2012)
andaninfinitelylongDBdimerlineresultsinadispersiveπ ∗bandasshowninFig.3(c).ForshortDBlinescomposedof2and3dimers,thedI/dV resonancesindeedgraduallyshifttowardslowerenergiescomparedtotheresonancepeakforasingleDBdimer[Fig.4(a),redandblackresonances],whichisalsoobservedinthecalculatedT (E)spectra[Fig.4(b),redandblackresonances].WhenthenumberofDBdimersincreasesto5,thedI/dV resonancesshiftfurthertolowerenergies[Fig.4(e),pinkresonance],graduallyapproachingtheconductionbandedgeofthebareGe(001)surface[Fig.4(e),lightblueresonance].TheT (E)spectrashowthesametrend[Figs.4(b)and4(f)].ForDBlinesparalleltothedimerrows,thegradualshiftoftheresonancepeaksresultsfromthesignificantelectroniccouplingsbetweenthenearest-neighborDBdimerstates[seeAppendixB,Figs.10].NotethatonlyoneresonanceisobservedintheT (E)spectrumforthe5DBdimerline[Fig.4(f),pinkresonance],whereasafewpeaksareobservedinthedI/dV plot[Fig.4(e)].ThisisbecausethetippositionisfixedabovethecentralDBdimerfortheT (E)calculation,whereasthedI/dV plotisaveragedovertheDBline.SinceeachT (E)peakresultsfromadifferentDBdimeralongtheDBline,differentpeaksareenhancedintheT (E)dependingonthetipposition.Inallcases,nosignificantshiftwasobservedinthevalencebandedge.
SimilartoDBlinesparalleltothedimerrows,theresonancepeaksshifttolowerenergiesforlinesof2and3DBdimersperpendiculartothedimerrows.However,theshiftinthemeasureddI/dV spectraislargerthantheshiftinthecalculatedT (E)spectra[Figs.4(c)and4(d)].ForperpendicularDBlines,theshiftintheT (E)resonancesduetocouplingbetweenDBstatesisexpectedtobesmallbecausethebandstructureforaninfiniteperpendicularDBlineshowsonlyanondispersiveπ ∗bandlocatedattheedgeofGe(001):Hconductionband[Fig.3(b)].Thisdifferencebetweenthemeasuredandcalculatedshifts,however,resultsfromacompetitionbetweensurfaceatomicstructurerelaxationtowardstheirinfiniteconfigurationsandinterdimerelectronicinteractionsalongthoseDBlines.SincetheinterdimerdistanceislargerforaperpendicularDBline,thebucklingofthedimersforshort2and3DBdimerlinesismoreflexiblethanforshortparallelDBlines.Forexample,whenthebucklingoftheperpendicularDBdimersisreducedby25%,theDB-derivedstatesshiftdownbyalmost0.1eV,andshowaresonanceshiftsimilartotheoneobservedinthedI/dV spectra[Fig.4(c)].ThisflexibilityhencecausesthedI/dV shiftsforshortperpendicularDBlinestobesimilartothoseobservedforshortparallelDBlines.However,whenthelengthoftheperpendicularDBlineexceeds3DBdimers,thebucklingbecomeslessflexibleandapproachesthebucklingfortheinfiniteDBline.Therefore,whenthenumberofDBdimersisincreasedto5,theresonancepeakinboththedI/dV andtheT (E)spectrashiftsupinenergy,andbecomesclosetothepositionforasingleDBdimer[dashedblackresonance,Figs.4(e)and4(f)].ThisbehaviorisverydifferentfromthetrendobservedfortheparallelDBlinewith5DBdimers.
IV. CONCLUSIONS
Inconclusion,wehavedevelopedanefficientprotocoltoconstructatomicallypreciseDBnanostructuresonaGe(001):Hplatform,byselectivedimer-by-dimerhydrogendesorption.UnlikeonSi(001):H,theDBstatesonGe(001):HcanbecharacterizedbySTSmethodsonanundopedsubstrate.Comparisonoffirst-principlescalculationswithhigh-resolutionSTMimagesconfirmsthattheDBdimersarestabilizedinbuckledconfigurations,incontrasttoisolatedDBsonSi(001):H.ThecreationandgradualshiftofDBelectronicstatesasafunctionofthenumberofDBdimershasbeenprobedbySTSmeasurements.WedemonstrateexperimentallythattheDBelectronicstatesareintroducedintheGe(001):HgapdifferentlyforDBlinesrunningperpendicularandparalleltothesurfacereconstructionrows.DBlinesparalleltothesurfacereconstructionrowsdisplayastrongerinter-DBdimerelectroniccoupling,resultinginadispersiveconductionbandspanning0.7eVforaninfiniteparallelDBline.Surprisingly,theDBstatesshowsimilarshiftsforshortDBlinesregardlessoftheirorientation,whichcanbeexplainedbydifferentphysics.ForDBlinesparalleltothedimerrows,theshiftiscausedbyelectroniccouplingbetweenneighboringDBdimerstates,whileforperpendicularDBlines,thecorrespondingshiftresultsfromthemoreflexiblebucklingoftheDBdimers.ThisisconfirmedspectroscopicallyforlongerperpendicularDBlines,wheretheDB-derivedpeakshiftsbacktoahigherenergywhentheDBbucklingsettles,whileforparallelDBlinesthepeakcontinuestoshifttowardslowerenergiesuntilthecouplingsaturatesandthefullrangeofthebandstructureiscovered.ThepresenceofstatesintheGe(001):Hsurfacebandgaptogetherwiththeabilitytosplittheminbothsurfacedirectionsfor2and3DBdimersprovidesapowerfultooltobuildsurfaceatomic-scalelogicgateswithaminimumnumberofDBs.Indeed,onecanplaywiththosedimerstateswhich,aswehaveshown,arealsointeractinginthecaseofshort(3DBdimers)perpendicularlines.2ThebestapproachtointerconnectthosegatesistoconstructDBdimerlinesparalleltotheGe(001):Hrowsandtoapplyabiasvoltagehigherthan
+0.5Vtoaccessthenewπ ∗surfaceconductionstates.TheelectronicbehaviorofshortDBlinesinbothdirectionsisofgreatimportanceforthedesignofDBquantumHamiltonianatomic-scalelogicgates,whichuptonowhadonlybeenaccessibleonasinglemoleculebasis.Furthermore,wehavedemonstratedthatbyvaryingthenumberofneighboringDBs,thenewelectronicstateslocatedwithintheintrinsicbandgapofthehydrogenatedsurfacecanbetuned,whichcanbeutilizedtocontrolthechargestateofDBquantumdots.
ACKNOWLEDGMENTS
Thisresearchwassupportedbythe7thFrameworkPro-grammeoftheEuropeanUnionCollaborativeProjectICT(In-formationandCommunicationTechnologies)“AtomicScaleandSingleMoleculeLogicGateTechnologies”(ATMOL),ContractNo.FP7-270028andbytheVisitingInvestigatorshipProgramme“AtomicscaleTechnologyProject”fromtheAgencyofScience,Technology,andResearch(A∗STAR).TheexperimentalpartoftheresearchwascarriedoutwithequipmentpurchasedwithfinancialsupportfromtheEuropeanRegionalDevelopmentFundintheframeworkofthePolishInnovationEconomyOperationalProgram(ContractNo.POIG.02.01.00-12-023/08).
125307-5
MAREKKOLMERet al. PHYSICALREVIEWB86,125307(2012)
FIG.5.(Coloronline)Atomicstructureandstabilityof(a)fourdifferentsurfacereconstructionofGe(001):(2×1)s,(2×1)a,p(2×2),andc(4×2),(b)twodifferentbucklingconfigurationsfortheDBwireperpendiculartothedimerrows,and(c)twodifferentbucklingconfigurationsfortheDBwireparalleltothedimerrows.
APPENDIX A differenceinenergybetweenc(4×2)andp(2×2)isverysmall,itisexpectedthatbothreconstructionswillbeobservedinthe
FourpossiblesurfacereconstructionsforGe(001)areexperimentalSTMimageofacleanGe(001)surface.WhentheshowninFig.5.Amongthedifferentsurfacereconstructions,Ge(001)surfaceisfullyhydrogenated,theGe(001):Hsurfacethemoststablereconstructionisc(4×2),butsincethedimersaresymmetricwithoneHatomperGeatom.FortheDB
FIG.6.(Coloronline)ThesurfaceatomicstructuresusedinthebandstructurecalculationsshowninFig.3.
FIG.7.(Coloronline)Thesurfaceatomicstructuresusedintheimagecalculations[Fig.2]andT (E)spectra[Fig.4].
125307-6ELECTRONICPROPERTIESOFSTM-CONSTRUCTED... PHYSICALREVIEWB86,125307(2012)
FIG.8.(Coloronline)DFT-HSE06(toprow)andEHMO(bottomrow)bandstructuresfor(a)bulkGe,(b)Ge(001)-c(4×2),(c)Ge(001)(2×1):H,and(d)Ge(001)-(2×1):Hsurfacewithbuckledwireperpendiculartothedimerrows.TheBrillouinzoneforeachbandstructureisindicatedbythedashedlinesontheatomicstructure.
wireperpendiculartothedimerrows,thein-phasebucklingthanthein-phaseconfigurationby0.12eV/dimer,consistentconfigurationisslightlymorestablethantheout-of-phasewiththeenergydifferencebetweenthe(2×1)aandthep(2×2)configuration,butduetothesmalldifferenceinstabilityreconstruction[Fig.5(c)].
(0.02eV/dimer),bothconfigurationswereobservedinSTMThesurfaceatomicstructuresforthebandstructuresinmeasurements[Fig.5(b)].FortheDBwireparalleltothedimerFig.3areshowninFig.6.Thesame(4×8)unitcellwasusedrows,theout-of-phasebucklingconfigurationismorestableforallbandstructurecalculationstoallowdirectcomparison.
FIG.9.(Coloronline)TheatomicconfigurationandEHMOparametersusedintheSTMimageandT(E)calculations.
125307-7MAREKKOLMERet al. PHYSICALREVIEWB86,125307(2012)
ThesurfaceatomicstructuresofthecalculatedimagesinFig.2andT (E)spectrainFig.4arealsoshown[Fig.7].AsmentionedinSec.II,theparametersintheEHMOHamilto
nianusedintheSTMimageandT (E)calculationswerefittedtoDFT-HSE06bandstructures.InFig.8,theDFT-HSE06andfittedEHMObandstructuresforbulkGeanddifferentGesurfacesarecompared,showingthereasonableagreement.NotethattheDFT-PBEinsteadofDFT-HSE06wasusedforc(4×2)configurationduetothecomputationallimitation.TheatomicconfigurationandEHMOparametersusedintheSTMimageandT (E)calculationsareshowninFig.9.
APPENDIX B
AsthenumberofDBsincreases,thenumberofDBstatesneartheconductionbandedgeincreases,andtheyaredispersedduetothecouplingbetweentheDBdimerstates.TherangeofthestatesforashortlineofDBsparalleltothedimerrowseventuallyevolvestoabandastheDBlinebecomesinfinitelylong[Fig.10].ForalineofDBsperpendiculartothedimerrows,thedispersionoftheDBstatesismuchsmallerthanfortheparalleldirection[Fig.11].
125307-8
ELECTRONICPROPERTIESOFSTM-CONSTRUCTED...
*szymon.godlewski@uj.edu.pl
†kawaih@imre.a-star.edu.sg1M.Fuechsle,S.Mahapatra,F.A.Zwanenburg,M.Friesen,M.A.Eriksson,andM.Y.Simmons,Nat.Nanotechnol.5,502(2010).2H.Kawai,F.Ample,Q.Wang,Y.K.Yeo,M.Saeys,andC.Joachim,J.Phys.:Condens.Matter24,095011(2012).3L.Soukiassian,A.J.Mayne,M.Carbone,andG.Dujardin,Surf.Sci.528,121(2003).4T.Hitosugi,S.Heike,T.Onogi,T.Hashizume,S.Watanabe,Z.Q.Li,K.Ohno,Y.Kawazoe,T.Hasegawa,andK.Kitazawa,Phys.Rev.Lett.82,4034(1999).5B.Weber,S.Mahapatra,H.Ryu,S.Lee,A.Fuhrer,T.C.G.Reusch,
D.L.Thompson,W.C.T.Lee,G.Klimeck,L.C.L.Hollenberg,andM.Y.Simmons,Science25,64(2012).6M.B.Haider,J.L.Pitters,G.A.DiLabio,L.Livadaru,J.Y.Mutus,andR.A.Wolkow,Phys.Rev.Lett.102,046805(2009).7J.L.Pitters,I.A.Dogel,andR.A.Wolkow,ACSNano5,1984(2011).8J.L.Pitters,L.Livadaru,M.B.Haider,andR.A.Wolkow,J.Chem.Phys.134,064712(2011).9F.Ample,I.Duchemin,M.Hliwa,andC.Joachim,J.Phys.:Condens.Matter23,125303(2011).
10A.Bellec,F.Ample,D.Riedel,G.Dujardin,andC.Joachim,NanoLett.9,144(2009).
11A.Bellec,D.Riedel,G.Dujardin,O.Boudrioua,L.Chaput,
L.Stauffer,andP.Sonnet,Phys.Rev.Lett.105,048302(2010).12A.Bellec,D.Riedel,G.Dujardin,O.Boudrioua,L.Chaput,
L.Stauffer,andP.Sonnet,Phys.Rev.B80,245434(2009).
PHYSICALREVIEWB86,125307(2012)
13T.Hitosugi,T.Hashizume,S.Heike,H.Kajiyama,Y.Wada,
S.Watanabe,T.Hasegawa,andK.Kitazawa,Appl.Surf.Sci.130,
340(1998).
14J.J.Boland,Phys.Rev.Lett.67,1539(1991).
15D.ChenandJ.J.Boland,Phys.Rev.B65,165336(2002).
16K.Bobrov,G.Comtet,G.Dujardin,andL.Hellner,Phys.Rev.Lett.
86,2633(2001).17L.Soukiassian,A.J.Mayne,M.Carbone,andG.Dujardin,Phys.Rev.B68,035303(2003).
18T.C.Shen,C.Wang,G.C.Abeln,J.R.Tucker,J.W.Lyding,andP.Avouris,Science268,1590(1995).
19E.T.Foley,A.F.Kam,J.W.Lyding,andP.Avouris,Phys.Rev.Lett.80,1336(1998).
20G.Scappucci,G.Capellini,W.C.T.Lee,andM.Y.Simmons,
Nanotechnology20,495302(2009).
21G.Scappucci,G.Capellini,B.Johnston,W.M.Klesse,J.A.Miwa,andM.Y.Simmons,NanoLett.11,2272(2011).
22A.Fuhrer,M.Fuechsle,T.C.G.Reusch,B.Weber,andM.Y.Simmons,NanoLett.9,707(2009).
23S.Watanabe,Y.A.Ono,T.Hashizume,andY.Wada,Phys.Rev.B54,R17308(1996).
24H.Kawai,Y.K.Yeo,M.Saeys,andC.Joachim,Phys.Rev.B81,195316(2010).
25J.Cerda,M.A.VanHove,P.Sautet,andM.Salmeron,Phys.Rev.B56,15885(1997).
26G.KresseandJ.Hafner,Phys.Rev.B47,558(1993).
27J.P.Perdew,K.Burke,andM.Ernzerhof,Phys.Rev.Lett.77,3865(1996).
125307-9
Microelectronic
Engineering
109
(2013)
262–265
Contents lists available at SciVerse
ScienceDirect
Microelectronic Engineering
journal
homepage:
www.elsevier.com/locate/mee
Construction of atomic-scale logic gates on a surface of hydrogen passivated germanium
Marek Kolmer a, Szymon Godlewski a, Jakub Lis a, Bartosz Such a, Lev Kantorovich b, Marek Szymonski a,⇑
a Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Reymonta Str. 4, PL 30-059 Krakow, Poland b Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
article info abstract
Article history:
Available online 22 March 2013
Keywords:
Hydrogen passivated germanium STM Dangling bond nanostructures Atomic-scale logic gates
We describe a complete protocol for atomically precise dangling bond (DB) logic gate construction on a hydrogenated Ge(001):H surface. Starting from the preparation of the reconstructed Ge(001) surface fol-lowed by its passivation with hydrogen atoms we end up with the platform for scanning tunneling microscopy (STM) atomic-scale lithography. Finally with the use of dimer-by-dimer STM tip-induced hydrogen desorption from the Ge(001) (2 1):H surface the DB nanostructures of pre-designed form are fabricated. Furthermore, the STM tip manipulation provides the control over the buckling phase of a single DB dimer incorporated into the DB logic gate structure, which is of crucial importance for the final electronic properties of the system. Our results prove feasibility of DB atomic scale logic gate implementation on the passivated semiconductor surfaces.
2013 Elsevier B.V. All rights reserved.
1. Introduction
Miniaturization of the present electronic technology based on silicon devices nowadays approaches natural size limitations arising from quantum effects dominating the performance at the nanoscale. Therefore, all over the world new alternative solutions are sought for. Among them the idea of single molecules and atom-ic circuits performing logic operations seems to be an exciting one and has been the subject of several on-going experiments [1].
For the development of the monomolecular/atomic concept the suitable surfaces are required. One of the most promising ideas is based on the application of hydrogen passivated semiconductor surfaces. Its attractiveness arises from the possibility of creating sophisticated surface circuits by the controlled desorption of hydrogen atoms leading to formation of conductive nanostructures composed from dangling bonds [2–12]. Moreover the hydrogenated surfaces allow for combining atomic logic circuits with additional organic molecules that could be effectively decoupled from the underlying substrate.
In contrast to Si(001):H surface, there are only a few reports on STM tip-induced hydrogen desorption from a Ge(001):H surface [10–12]. In a recent paper, we demonstrated successful construction of atomically clean and ordered DB lines and also the first spectroscopic characterization of DB lines running across and along surface reconstruction rows [10]. We showed that upon desorption
⇑ Corresponding author. Tel./fax: +48 12 6635560. E-mail address: marek.szymonski@uj.edu.pl
(M. Szymonski).
of hydrogen atoms, the electronic states related to thus created DB structures appeared in the band gap of the Ge(001):H surface. The electronic coupling between short DB dimer lines provides a pow-erful tool to build surface atomic-scale logic gates. In this paper we demonstrate that our hydrogen extraction protocol can be applied for preparation of large well-defined DB structures containing several DB dimers. We show that STM tip induced desorption and fur-ther manipulation enables effective control over the DB structure geometry up to a single DB, including also variation of the DB dimer buckling configuration. Such a precision in construction of DB structures is of crucial importance for their electronic properties [3,10], governing the functionality of DB logic devices. Therefore reported data prove the feasibility of the proposed [3]
DB atomic scale logic gates implementation on the passivated semiconductors.
2. Experiment
The experiments were carried out in an ultra-high vacuum (UHV) system with the base pressure of 5 1011 mbar. The STM measurements were performed with the Omicron low temperature scanning probe microscope (LT STM). The samples were cut from Ge(001) undoped wafers (TBL Kelpin Crystals) and after introduction into the UHV system were first annealed for 6 h at 800 K. Sub-sequently the cycles of 1 keV Ar+ sputtering and annealing at 1040 K for 15 min were repeated until clean well-reconstructed surfaces were obtained, as checked by low energy electron diffraction (LEED) and STM. Hydrogen passivation was performed with
0167-9317/$ -see front matter 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.mee.2013.03.061
M. Kolmer et al. / Microelectronic Engineering 109 (2013) 262–265
use of a home built hydrogen cracker providing atomic hydrogen. The Ge sample temperature during the passivation was 480 K. The STM imaging was carried out at cryogenic temperature of around 4 K (liquid helium) with electrochemically etched polycrystalline tungsten tips used as probes. For image processing and STM data analysis SPIP and WSxM [13]
software were used.
To help interpreting experimental results, we simulated STM images of the bare Ge(001) c(4 2) and Ge(001):H (2 1) surfaces using ab initio calculations based on the density functional theory. The geometries of both systems were optimized with the SIESTA code [14]
applying the generalized gradient approximation for the exchange and correlation [15]. Rather thick slabs containing 10 layers of germanium were required to obtain the converged geometry and electronic structure of the surface [10]. Subsequently, STM images were calculated using the Tersoff–Hamman approximation [16]
and the Vienna ab initio simulation package (VASP) code [17].
3. Results and discussion
A starting platform for DB-based logic gate construction is the crystalline, almost defect free surface of Ge(001). The Ge(001) sur-face itself is very reactive and UHV conditions are needed to avoid quick contamination of the sample. At cryogenic temperatures the
(001) surface has two stable reconstructions, c(4 2) and p(2 2), consisting of Ge dimer rows separated by a distance of 0.8 nm. Each single Ge dimer is tilted with respect to the surface plane. Every two successive Ge dimers along the row are separated by
0.4 nm and they are buckled in opposite directions. This buckling associated with a small effective charge transfer from the lower Ge atom to the upper one stabilizes both surface geometries. The p(2 2) and c(4 2) reconstructions correspond to in-phase and out-of-phase buckling of two neighboring Ge dimer rows, respectively. From the DFT calculations the c(4 2) structure is more stable than p(2 2), but the small energy difference of about 1 meV/ dimer between the two reconstructions suggests that both config-urations are almost equally possible; as a result, for moderate STM junction biases both phases are observed at low temperature [10]. Furthermore, it is possible to control the surface reconstruction state by changing the Ge dimer buckling with the use of the STM manipulation technique [18,19]. By applying positive or negative voltage pulses one can switch the Ge(001) reconstruction from p(2 2) to c(4 2) or vice versa. In Fig.
1A and B experimental and calculated STM filled state images of a Ge(001) c(4 2) sur-face are presented. Each red protrusion corresponds to an upper Ge atom in buckled dimers, which stick out from the surface plane. Dark depletions are related to lower Ge atoms in the dimers. The out of phase buckling of two adjacent surface rows resulting in a formation of a (4 2) reconstruction is clearly seen.
The second step in the protocol of DB logic gate formation is a hydrogenation of the Ge(001) surface. This process is done by exposure of the surface to a hydrogen atom source. As the result the surface is passivated by the monolayer of hydrogen atoms, which form a stable monohydride (2 1) phase. In this particular structure each Ge DB is filled with one H atom, meaning that there are two H atoms bonded to a single Ge dimer. The process of hydrogenation is performed for a sample kept at elevated temper-ature of around 470 K in order to avoid multihydride formation on the surface and its further etching. Filled state experimental and calculated STM images of the Ge(001):H surface are depicted in Fig.
1D and E, respectively. As is clearly seen, the resulting surface geometry is now symmetric with respect to the reconstruction rows. This is due to the fact, that there is no buckling of hydrogenated Ge dimers. For images obtained with the 0.5 V surface bias voltage, the rows of reconstruction are seen as lines of single pro-trusions running along the dimer rows. These protrusions are sep-arated by 0.4 nm along the reconstruction rows. DFT calculations reveal that the maxima in the images correspond to the position
M. Kolmer et al. / Microelectronic Engineering 109 (2013) 262–265
between two H atoms located over each Ge dimer. The formation of atomic DB logic gates can be done only on a perfectly hydrogenated Ge(001):H surface area, such as presented in Figs. 1D and 2A, in order to avoid any influence of surface defects on final electronic properties of a given DB nanostructure. The next step of the DB logic circuit construction process is performed with the use of a newly developed STM vertical atom manipulation procedure [10]. First, the STM tip apex is located over a protrusion observed in the constant current filled state STM image. As mentioned, this corresponds to the location exactly over the center of a hydrogenated Ge dimer. Then, the STM feedback loop is switched off and the bias voltage is simultaneously increased by a positive value for a certain period of time. On the time scale of hundreds of milliseconds a sud-den rise of the tunneling current is observed, which is related to a hydrogen desorption event. Images A and B in Fig.
2
present the same surface area before and after STM tip induced hydrogen desorption. The resulting asymmetric feature corresponds to a buckled Ge dimer, which lost both of its hydrogen atoms. Note that due to the increased local density of states (LDOS) related to Ge dimer dangling bonds this structure is observed in STM constant cur-rent mode as a protrusion instead of depletion, unlike the real surface morphology. The buckled configuration of the single bare Ge dimer with the buckling angle of about 19 was confirmed by comparing line-by-line the experimental and the calculated scans using the optimized dangling bond dimer structure on the Ge(001):H surface [10]. Our results indicate that by applying de-scribed protocol hydrogen dimers are desorbed and thus DB di-mers are formed on the surface of Ge(001):H.
The presented procedure enables the creation of DB atomic scale lines and small circuits of any desired complexity. Images C and D in Fig.
2
show simple atomic structure with 2 and 3 DB di-mers in length oriented perpendicularly to the reconstruction rows. Note that in this case all the DB dimers are buckled to the same side, what makes the DB line appearing as homogenous. Such a geometry corresponding to the p(2 2) reconstruction of the bare Ge(001) surface is more stable than alternating (across rows) buckling configuration. However, the calculated energy difference of 20 meV/dimer [10]
is not high and the distorted structures oriented across the dimer rows can also be observed (see Fig.
3A). For long DB dimer structures oriented along the reconstruction rows this is usually not the case, since the alternating buckling geometry observed for bare Ge(001) is strongly favored (120 meV/dimer).
In order to prove that our protocol is appropriate for surface atomic logic gate construction proposed theoretically in [3],we
have focused the experiments on the construction of DB atomic scale structures extended over sizable areas. We have succeeded to construct very long DB wires consisting of more than 20 DBs with the length of up to 10 nm and 1 DB in width. However, de-scribed distortions caused by different buckling orientations of DB dimers start to be inevitable with increased lateral dimensions of a targeted DB nanostructure. To overcome this problem we pro-pose the following procedure which should enable one to achieve the desired control over the DB dimer phase. It is based on the known mechanism of Ge(001) surface reconstruction change [18,19]. The STM tip manipulation protocol starts again with filled state imaging. As it was already mentioned, DB dimers for 0.5 V sample bias are typically represented as asymmetric protrusions. STM tip apex is placed in the center of a reconstruction row over the selected DB dimer. Note that it is the position on a side of the STM image maximum, which is related to the protruding DB. Then the STM feedback loop signal is turned off with the bias volt-age changing to small positive values. Depending on the tip apex we usually use voltages of up to +1 V. The application of described procedure is presented in Fig.
3A–D. A distorted DB wire consisting of 5 DB dimers is transformed into a homogenous structure in two controlled buckling phase change operations. The buckling phase of two neighboring DB dimers is of crucial importance for their electronic coupling and it also influences the electronic properties of the whole DB structure. The latter fact can be used in designing atomic switches controlled by the STM tip and is the subject of ongoing experiments. Described effect is nicely reflected in STM images in Fig.
3A and C, where increased LDOS on the central DB dimer is decreased after successful buckling phase transformation.
Since any even small surface DB circuit must also contain input electrodes, we propose to construct a small 2-input like small DB circuit by extracting the gate input atoms one lattice constant away from the DB line. This is presented in Fig.
3E with the corresponding atomic scale surface structure depicted in Fig.
3F. The
M. Kolmer et al. / Microelectronic Engineering 109 (2013) 262–265
simple circuit shown in Fig.
3
is a very nice experimental demon-stration that the atomic scale construction technology is beneficial for the design of surface logic gates based on DB nanostructures.
4. Conclusions
In conclusion, we have demonstrated that the hydrogenated Ge(001) surface may be used for construction of prototypical atomic-scale electronic circuits. The newly developed protocol al-lows for precise desorption of hydrogen atoms and provides unique technique for nanofabrication of circuits comprised of surface DB states.
Acknowledgments
This research was supported by the 7th Framework Programme of the European Union Collaborative Project ICT (Information and Communication Technologies) ‘‘Atomic Scale and Single Molecule Logic Gate Technologies’’ (ATMOL), contract number: FP7270028. The experimental part of the research was carried out with equipment purchased with financial support from the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (contract no. POIG.02.01.00-12-023/08).
References
[1] J.S. Prauzner-Bechcicki, S. Godlewski, M. Szymonski, Phys. Stat. Sol. A 209 (2012) 603.
[2] M. Fuechsle, S. Mahapatra, F.A. Zwanenburg, M. Friesen, M.A. Eriksson, M.Y. Simmons, Nature Nanotechnol. 5 (2010) 502.
[3] H. Kawai, F. Ample, Q. Wang, Y. Kiat Yeo, M. Saeys, C. Joachim, J. Phys. Condens. Matter 24 (2012) 095011.
[4] L. Soukiassian, A.J. Mayne, M. Carbone, G. Dujardin, Surf. Sci. 528 (2003) 121.
[5] T. Hitosugi, S. Heike, T. Onogi, T. Hashizume, S. Watanabe, Z.Q. Li, K. Ohno, Y. Kawazoe, T. Hasegawa, K. Kitazawa, Phys. Rev. Lett. 82 (1999) 4034.
[6] B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T.C.G. Reusch, D.L. Thompson,
W.C.T. Lee, G. Klimeck, L.C.L. Hollenberg, M.Y. Simmons, Science 25 (2012) 64.
[7] M. Baseer Haider, J.L. Pitters, G.A. DiLabio, L. Livadaru, J.Y. Mutus, R.A. Wolkow, Phys. Rev. Lett. 102 (2009) 046805.
[8] J.L. Pitters, I.A. Dogel, R.A. Wolkow, ACS Nano 5 (2011) 1984.
[9] L. Pitters, L. Livadaru, M. Baseer Haider, R.A. Wolkow, J. Chem. Phys. 134 (2011) 064712.
[10] M. Kolmer, S. Godlewski, H. Kawai, B. Such, F. Krok, M. Saeys, C. Joachim, M. Szymonski, Phys. Rev. B 86 (2012) 125307.
[11] G. Scappucci, G. Capellini, W.C.T. Lee, M.Y. Simmons, Nanotechnology 20 (2009) 495302.
[12] G. Scappucci, G. Capellini, B. Johnston, W.M. Klesse, J.A. Miwa, M.Y. Simmons, Nano Lett. 11 (2011) 2272–2279.
[13] I. Horcas, R. Fernandez, J.M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero,
A.M. Baro, Rev. Sci. Instr. 78 (2007) 013705.
[14] J.M. Soler et al., J. Phys. Condens. Matter 14 (2002) 2745.
[15] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[16] J. Tersoff, D.R. Hamann, Phys. Rev. B 31 (1985) 805.
[17] G. Kresse, J. Furthmuller, Comput. Mater. Sci. 6 (1996) 15 (see also Phys. Rev. B 54 (1996) 11169).
[18] Y. Takagi, Y. Yoshimoto, K. Nakatsuji, F. Komori, Surf. Sci. 559 (2004) 1.
[19] Y. Takagi, K. Nakatsuji, Y. Yoshimoto, F. Komori, Phys. Rev. B 75 (2007) 115304.
SPM Imaging of Trinaphthylene Molecular States on a Hydrogen Passivated Ge(001) Surface
Marek Kolmer, Szymon Godlewski, Bartosz Such, Paula de Mendoza, Claudia De Leon, Antonio M. Echavarren, Hiroyo Kawai, Mark Saeys, Christian Joachim and Marek Szymonski
Abstract We report on studies concerning individual trinaphthylene molecules (Y molecules) deposited and anchored on the hydrogenated Ge(001):H surface. The characterization of single Y molecules has been performed by means of cryogenic temperature STM imaging using conventional STM tungsten tips and tuning fork-based sensors. In the latter case, a qPlus sensor facilitated simultaneous STM and NC-AFM measurements and thus molecular states were probed by both tunneling current and atomic forces concurrently. We show that the mole-cules are physisorbed, thus weakly interacting with the substrate. Contrary to the measurements on hydrogenated silicon, for planar aromatic molecules on the hydrogenated germanium, both empty and filled molecular states could be probed by STM.
M. Kolmer (&) S. Godlewski B. Such M. Szymonski Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Reymonta 4, 30059 Krakow, Poland e-mail: marek.kolmer@uj.edu.pl
P. de Mendoza C. De Leon A. M. Echavarren Institute of Chemical Research of Catalonia (ICIQ), Avenida Països Catalans 16, 43007 Tarragona, Spain
H. Kawai M. Saeys C. Joachim Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602, Singapore
M. Saeys Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore
C. Joachim Nanosciences Group & MANA Satellite, CEMES-CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse, France
L. Grill and C. Joachim (eds.), Imaging and Manipulating Molecular Orbitals, Advances in Atom and Single Molecule Machines, DOI: 10.1007/978-3-642-38809-5_9, Springer-Verlag Berlin Heidelberg 2013
M. Kolmer et al.
1 Introduction
Since further development of a conventional, CMOS-type electronic device is approaching fundamental limits at the nanoscale, several alternative routes are considered [1–3]. One possibility, called ‘‘monomolecular electronics,’’ is con-sidering a device in which states of a single organic molecule are altered by close contact with another atom or a molecule, which play the role of inputs [4]. In order to extract output information from such a molecular (quantum) device, spectroscopic control of individual molecular states is needed, so at first, imaging and spectroscopy of states of the prospective molecules should be performed with atomic precision. Furthermore, the effect of external input stimulation on the molecular states of the device, for example with atomic-size defects, should be characterized with similar level of precision.
In order to facilitate molecular orbital imaging and spectroscopy based on the state-of-the-art use of modern nanotechnology tools, such as Scanning tunneling microscopy (STM) and Non-contact atomic force microscopy (Nc-AFM), electronic decoupling of the molecule in question from the underlying substrate is required. It is expected that proper isolation of such molecular entities could be achieved by application of passivated semiconductor surfaces, e.g., Si(001):H and Ge(001):H. A monolayer of hydrogen atoms may decouple molecules from a semiconductor surface as recently demonstrated by Bellec et al. [5], who imaged physisorbed pentacene molecules on hydrogen passivated silicon surfaces. Recorded images closely resemble the HOMO orbital contour of molecules and the dI/dU spectra provide additional confirmation of weak molecule substrate interaction. The STM image of the pentacene on the Si(001):H is shown in Fig. 1.
Similarly, also functionalized molecular platforms adsorbed on hydrogenated surfaces could be probed by STM technique as reported by Gruyters et al. [6], who measured iron phthalocyanine molecules on passivated silicon Si(111):H. The images recorded with different bias voltages provide insight into the electronic structure and are shown in Fig. 2.
Fig. 1 STM image of the pentacene molecule anchored on a step of the hydrogenated Si(001) surface; the image closely resembles the contour of molecule HOMO orbital. Reprinted with permission from Bellec et al. [5]
SPM Imaging of Trinaphthylene Molecular States
Fig. 2 STM filled-state images of the iron phthalocyanine molecule adsorbed on the hydrogenated Si(111) surface. Reprinted from Gruyters et al. [6] with permission
The application of passivated surfaces offers also the possibility to construct dangling-bond (DB) atomic-scale structures by STM tip-induced hydrogen desorption [7]. These DB structures may then serve as interconnects in molecular electronic devices. However, in principle the measurements of aromatic molecules on hydrogenated surfaces are extremely challenging due to high mobility of molecules. Moreover, the large band gap of the silicon substrate may hinder empty state probing especially if the states are hidden in the gap of the substrate. As a result only filled states are measured [5, 6].
Recent advances in quantum-chemical design and organic synthesis offer practical solutions toward fabrication of a suitable molecular logic gate. In general, we need planar aromatic molecules, which would physisorb on the passivated Ge(001):H and/or Si(001):H surface and should rather not be quite freely diffusing on those substrates but still the binding should allow for STM-tip induced manipulation over the surface. The molecules should have 3–4 branches allowing for anchoring them to dangling-bond defects (hydrogen monomer or dimer vacancies), so the lateral dimensions of the molecule branches should be correlated with a spacing of the reconstruction rows on the passivated surface.
One possibility is to use some symmetrical or non-symmetrical Y-shaped ac-enes, i.e., triphenylene-cored oligoacenes, as molecular gate building blocks. Therefore, in this study we decided to deposit a simple Y-shaped trinaphthylene, which could be considered as a prototypic molecule for the molecular logic gate devices. In our work, usage of hydrogen passivated Ge(001) allows for not only decoupling the molecules electronically (at least partially) from the low band gap substrate, but also offers an innovative way of producing interconnects by
M. Kolmer et al.
H-extraction with the STM tip, as described recently in Ref. [7]. The DB wires fabricated by STM-tip-induced H-extraction could also form logic structures providing specific input for the molecule device.
2 Ge(001) Surface Preparation and Molecule Deposition
The experiment was carried out in an ultra-high vacuum (UHV) system containing preparation and cryogenic microscope chambers. The STM measurements were performed with the Omicron low temperature scanning probe microscope (LTSTM/AFM). The base pressure was in the low 10-10 mbar range. The preparation chamber was supplied with a noble gas ion gun, a homebuilt hydrogen cracker, and an infrared pyrometer. The surface quality was monitored with a low energy electron diffraction (LEED) setup. The Ge(001) undoped wafers (TBL Kelpin Crystals) were mounted on sample holders and were heated by direct current flowing through the sample. The samples were first annealed for 6 h at 800 K, and subsequently the 15 min cycles of 600 eV Ar+ sputtering of the sample kept at 1040 K were repeated until a clean, well-defined surface was obtained, as checked by LEED and STM. The annealing temperature was controlled by the infrared pyrometer. Hydrogen passivation was performed with the use of a homebuilt hydrogen cracker providing atomic hydrogen. During passivation procedure the sample was kept at 485 K and the hydrogen pressure was maintained at 1 910-7 mbar. The STM imaging was carried out at reduced temperature of around 4 K (liquid helium) with etched tungsten tips used as probes. For image processing and STM data analysis SPIP and WSxM [8] software was used.
Figure 3 shows low temperature (liquid helium, 4 K) filled state STM images of Ge(001) (left panel) and hydrogen passivated Ge(001):H (right panel) surfaces. Ge(001) image exhibits clearly a mixed c(4 92) and p(2 92) surface
Fig. 3 Filled-state low temperature (4 K) STM images of the zig-zag dimer rows indicating mixed c(4 92)-and p(2 92)-Ge(001) surface reconstructions (left panel), and Ge(001)(2 91):H (right panel) surfaces; scan size 10 910 nm2, STM parameters V =-0.5 V, and I =1nA
SPM Imaging of Trinaphthylene Molecular States
Fig. 4 LT STM image (25 9 25 nm) of the hydrogen passivated Ge(001) surface with individual trinaphthylene molecules (Y). White circles mark single Y molecules and red circles indicate individual DBs Tunneling current 2 pA, bias voltage -2.0 V. A scheme of the Y molecules is shown in the inset
reconstruction which arises from in-phase and out-of-phase buckling of neighboring Ge dimers. The hydrogenated surface is recorded as a ladder structure consisting of rows of Ge dimers passivated by hydrogen atoms. On the right panel image, one can distinguish three main types of intrinsic defects inevitably present on the surface. The brightest are attributed to surface double DBs (two dangling bonds on a Ge dimer), slightly smaller and less bright are single DBs (one dangling bond per Ge dimer). The third type recorded as dark depletion is ascribed to surface Ge atom vacancies. Note that the apparent height of surface double DBs is in principle identical to the height of surface Ge atoms on unpassivated surface.
In this work, low temperature scanning tunneling microscopy and non-contact atomic force microscopy (LT-STM/nc-AFM) measurements have been made on planar polyaromatic hydrocarbon molecules, namely the heptastarphene (trinaphthylene, Y) molecules deposited on the hydrogenated germanium surface. The Y molecules are prototypical 3 input/output molecules that could be applied in single molecule switches. The inset in Fig. 4 shows the scheme of Y molecule. Due to extremely high molecule mobility, Y molecules are evaporated on the sample which is removed from the microscope cryostat just before deposition. This pro-cedure enables evaporation of molecules on the sample kept still at low temper-ature. The sample is inserted into the microscope cryostat immediately after molecule deposition. The molecules are evaporated at very low molecule flux with the evaporator kept at 450 K. A typical result of the deposition at relatively low dose is presented in Fig. 4, where LT-STM image (25 9 25 nm) of the hydrogen passivated Ge(001) surface with individual trinaphthylene molecules (Y) is shown.
M. Kolmer et al.
3 Molecular State Imaging of Heptastarphene Molecules Anchored on the Ge(001):H Surface with LT-STM
The molecules deposited on the hydrogenated germanium sample are physisorbed, and thus only weakly interact with the substrate. Therefore, after evaporation the molecules are mobile and move across the surface. This results in trapping of the molecules by surface defects and step edges. Some molecules are trapped by unidentified defects and are strongly interacting with these defects. Therefore these molecules could not be manipulated with the use of the STM tip. However, the vast majority of the molecules could be found immobilized by the well-known surface defects, i.e., characterized previously DB dimers [7]. These molecules do not interact very strongly with the defects and could be manipulated with the use of the STM tip. The procedure of the tip-induced lateral manipulation enables us to detach the molecules from the DB dimes and to place the molecules on the fully hydrogenated surface. Therefore, we can probe both the properties of molecules immobilized by surface DBs and molecules physisorbed on the surface without any defects in the vicinity.
At liquid helium temperature the molecules physisorbed on the hydrogenated surface prove to be stable during measurements allowing for acquisition of STM images with different bias voltages. In Fig. 5a the STM images obtained at different bias voltages are shown. The images obtained for -3.0 and +3.0 V voltage settings exhibit intramolecular contrast proving that the submolecular resolution of physisorbed molecules could be achieved. For bias voltages between -2.4 and +3.0 V almost no intramolecular contrast is recorded indicating that no molecule states are available for tunneling electrons and the recorded image is simply the image of the hydrogenated surface with the image contrast modulated by the molecule. To analyze the details of the molecule–substrate interaction and the electronic structure we performed extensive calculations. The density functional theory (DFT)-based calculations show that the HOMO–LUMO gap of free gas phase molecule reaches approximately 3.24 eV (HSE06 functional). In Fig. 5b calculated STM image of the molecule physisorbed on the Ge(001):H is shown. The image closely resembles the experimental images acquired for -2.0 V
Fig.5 a STM images of the physisorbed Y molecule acquired with different bias voltages denoted in the text. b Calculated STM image of Y molecule
SPM Imaging of Trinaphthylene Molecular States
indicating that the measurements are performed out of the resonances resulting in the imaging of the surface modified by the presence of the molecule.
4 3D Molecular State Probing with Simultaneous
Tunneling Current and Force Imaging with a qPlus
Sensor
In recent years NC-AFM-related techniques have been developing very fast. One of the fields where fast progress is especially prominent is cryogenic NC-AFM. Following the footsteps of STM, for which going to low temperatures gave access to new fields in physics and chemistry, cryogenic NC-AFM is opening a range of new applications. There are some examples of highly successful NC-AFM experiments performed with the use of cantilever-based systems; however, the rapid growth of applications and accessibility of the field coincided with the introduction of quartz tuning forks as sensors. Additionally, a tuning fork can be equipped with a tip made of any material (for instance tungsten or Pt–Ir alloy) which can be connected to preamplifier by a separate lead allowing in principle for dual AFM/STM operation. Tuning forks are typically used in qPlus configuration—in which one of the prongs is glued to a ceramic holder while another, with a tip attached at its end, is oscillating freely.
Two consecutive images of the same area of the hydrogenated Ge(001):H surface taken with qPlus-based scanning probe microscope: topographic, constant current STM image, and constant height map of frequency shift are presented in Fig. 6a and b. The appearance of the STM image (Fig. 6a) is similar to the one presented in Fig. 3. The main features of the constant height image (Fig. 6b) are double rows of protrusions, i.e., positions where the tip had to adjust the frequency shift in order to maintain the required height. Note that Fig. 6b represents a map of the frequency shift, i.e., elevation indicates weaker attraction. The separation between the protrusions in a single row is about 0.37 nm, while the double rows are separated by 0.82 nm. Those values correspond quite closely to the postulated distances between hydrogen atoms adsorbed on a Ge dimer and the distance between dimer rows on the Ge(001) surface. Occasionally, defects can be observed on the surface, located over one of the hydrogen atoms in a dimer row. In the atomically resolved images, they are depicted as depressions.
Proper characterization of molecular adsorbates with the use of an NC-AFM based on qPlus sensor solution could provide an additional channel of information complementary to a standard STM study. In particular, possibility of simultaneous acquiring both the tunneling current and the detuning frequency maps for selected tip sensor heights above the surface opens new opportunities for 3D spectroscopy of molecular states. It is known that standard STS dI/dU spectroscopy for mole-cules adsorbed on surfaces provides information in which spatial distribution of the molecular state density is filtered by a specific surface band structure and the
M. Kolmer et al.
Fig. 6 Two consecutive images of the same area of hydrogenated Ge(001):H surface taken with qPlusbased scanning probe microscope; a topographic, constant current STM image, U =-0.5 V, the color scale spans over 0.15 nm; b constant height map of frequency shift (f0 =22,970 Hz, Q =20,000, A =500 pm), color scale corresponds to the range from -1.1 to -0.1 Hz
molecule-surface electronic coupling. For large surface band gaps and low level of coupling a large fraction of the density of states spectrum is not accessible in conventional STS measurements. This missing information could be retrieved by the proper analysis of the force maps measured by a qPlus sensor in parallel to tunneling current measurements.
In Fig. 7 the result of simultaneous STM/NC-AFM imaging of a single star-phene molecule adsorbed at a defect on the Ge(001):H surface is shown. In this case, it is clear that the image is dominated by the interactions related to the density of electrons and hence is quite similar to the corresponding STM image. Till date it was impossible to approach the repulsive mode which could show the internal structure of a molecule, since binding to the surface is not strong enough and such an attempt resulted in uncontrolled manipulation of a molecule. However, since during the STM experiments a certain degree of control over location of the molecule on the surface (i.e. tip-induced manipulation) was achieved, fur-ther efforts will be undertaken to find a location stable enough to access molecular internal structure by the NC-AFM.
SPM Imaging of Trinaphthylene Molecular States
Fig. 7 Simultaneous imaging of ‘‘Y’’ molecule by STM and NC-AFM in constant height mode. a 5 92.7 nm current image, V =-0.5 V, color scale corresponds to currents from 0 to 3.1 nA; b 5 92.7 nm frequency shift image, color scale corresponds to frequency shift from -1.0 to
0.4 Hz
5 Concluding Remarks
In this report we showed that a symmetric Y-shaped starphene, a prototypic molecule for the molecular logic gate devices, could be successfully anchored and imaged on the passivated semiconductor surface, namely Ge(001):H, using an STM/NC-AFM scanning probe operating at cryogenic temperatures (4 K). It appears that a uniform monohydrate layer provides sufficient electronic decoupling of the molecular states from the semiconductor substrate providing insight into internal structure of the molecular orbitals by scanning tunneling current spec-troscopy and force spectroscopy with an NC-AFM qPlus sensor. The physisorbed molecules could also be manipulated with the STM tip. This could be utilized in the future for sampling of various levels of the molecule coupling to the passivated surface defects, both native and at will, created by analyzing STM images of the molecules at the relevant locations. Finally, possibility of simultaneous acquiring of both the tunneling current and the detuning frequency maps for selected tip sensor heights above the surface has been successfully explored.
Acknowledgments This research was supported by the 7th Framework Programme of the European Union Collaborative Project ICT (Information and Communication Technologies) ‘‘Atomic Scale and Single Molecule Logic Gate Technologies’’ (ATMOL), Contract No. FP7270028. The experimental part of the research was carried out with equipment purchased with financial support from the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08).
M. Kolmer et al.
References
1.
Fiurasek, J., et al.: Intramolecular Hamiltonian logic gates. Physica E 24(3–4), 161–172 (2004)
2.
Joachim, C., Gimzewski, J.K., Aviram, A.: Electronics using hybrid-molecular and mono-molecular devices. Nature 408(6812), 541–548 (2000)
3.
Prauzner-Bechcicki, J.S., Godlewski, S., Szymonski, M.: Atomic-and molecular-scale devices and systems for single-molecule electronics. Phys. Status Solidi (a) 209, 603–613 (2012)
4.
Soe, W.-H., Manzano, C., Renaud, N., De Mendoza, P., De Sarkar, A., Ample, F., Hliwa, M., Echavarren, A.M., Chandrasekhar, N., Joachim, C.: Manipulating molecular quantum states with classical metal atom inputs: demonstration of a single molecule NOR logic gate. ACS Nano 5, 1436–1440 (2012)
5.
Bellec, A., Ample, F., Riedel, D., Dujardin, G., Joachim, C.: Imaging molecular orbitals by scanning tunneling microscopy on a passivated semiconductor. Nano Lett. 9, 144–147 (2009)
6.
Gruyters, M., Pingel, T., Gopakumar, T.G., Néel, N., Schütt, Ch., Köhler, F., Herges, R., Berndt, R.: Electronic ground-state and orbital ordering of iron phthalocyanine on H/Si(111) unraveled by spatially resolved tunneling spectroscopy. J. Phys. Chem. C 116, 20882–20886 (2012)
7.
Kolmer, M., Godlewski, S., Kawai, H., Such, B., Krok, F., Saeys, M., Joachim, C., Szymonski, M.: Electronic properties of STM-constructed dangling-bond dimer lines on a Ge(001)(2 9 1):H surface. Phys. Rev. B 86, 125307 (2012)
8.
Horcas, I., Fernández, R., Gómez-Rodríguez, J. M., Colchero, J., Gómez-Herrero, J., Baro, A. M.: WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instr. 78, 013705 (2007)
Contacting a Conjugated Molecule with a Surface Dangling Bond Dimer on a Hydrogenated Ge(001) Surface Allows Imaging of the Hidden Ground Electronic State
Szymon Godlewski,†,#,* Marek Kolmer,†,# Hiroyo Kawai,‡,#,* Bartosz Such,† Rafal Zuzak,† Mark Saeys,‡,§
ARTICLE
Paula de Mendoza, ^ Antonio M. Echavarren, ^ Christian Joachim,‡,
†Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Reymonta 4, PL 30-059, Krakow, Poland, ‡Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602, Singapore, §Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore, ^ Institute of Chemical Research of Catalonia
)
and Marek Szymonski†
)
Nanosciences Group & MANA Satellite, CEMES-CNRS, 29 Rue Jeanne Marvig, F-31055 Toulouse, France. #S. Godlewski, M. Kolmer, and H. Kawai contributed equally to this work.
ABSTRACT Fabrication of single-molecule logic devices requires controlled manipulation of molecular states with atomic-scale precision. Tuning moleculesubstrate coupling is achieved here by the reversible attachment of a prototypical planar conjugated organic molecule to dangling bonds on the surface of a hydrogenated semiconductor. We show that the ground electronic state resonance of a Y-shaped polyaromatic molecule physisorbed on a defect-free area of a fully hydrogenated surface cannot be observed by scanning tunneling micro-scopy (STM) measurements because it is decoupled from the Ge bulk states by the hydrogen-passivated surface. The state can be accessed by STM only if the molecule is contacted with the substrate by a dangling bond dimer. The reversibility of the attachment processes will be advantageous in the construction of surface atomic-scale circuits composed of single-molecule devices interconnected by the surface dangling bond wires.
KEYWORDS: hydrogenated semiconductor . organic molecule . single-molecule devices . atomic-scale contacts . scanning tunneling microscope . molecule manipulation . surface dangling bonds
(ICIQ), Avenida Països Catalans 16, 43007 Tarragona, Spain, and
D
etailed knowledge of the electronic structure of individual molecules and the ability to manipulate their electronic states are the key ingredients for the construction of single-molecule logic circuits. One of the most powerful tools to visualize individual atoms and molecules, to probe their electronic properties, and to manipulate them with atomic-scale precision is the scanning tunneling microscope (STM).115 However, the use of an STM requires metallic or semiconducting sub-strates. As a result, originally designed electronic properties of free molecules are in general not retained after adsorption, due to electronic coupling of the molecular electronic states with the surface. To overcome this problem, a passivating layer must be inserted between the molecules and the surface of the substrate to minimize those interactions. In recent years, several examples of molecules electronically decoupled by an ultrathin insulating layer on metals7,16 and on semiconductors17 have been re-ported, showing that even a monolayer of insulating material efficiently minimizes the electronic coupling. For example, Bellec et al. have shown that pentacene molecules are decoupled from the semiconductor bulk states by surface hydrogenation.18 The transport properties of molecules on the hydrogenated surface, however, can
* Address correspondence to szymon.godlewski@uj.edu.pl, kawaih@imre.a-star.edu.sg.
Received for review August 14, 2013 and accepted October 22, 2013.
Published online
10.1021/nn404254y
be influenced by the surface dangling bonds (DBs), as demonstrated by Piva et al.19 Moreover, the ability to create20 surface DBs on demand by extracting specific hydrogen atoms from the semiconductor surface allows in principle to create a planar atomic-scale contact between a physisorbed molecule and a DB.
In this paper, we demonstrate that a single tri-naphthylene (Y) molecule physisorbed on a hydrogenated semiconductor surface can be reversibly contacted with a single surface DB dimer. This mole-cule was selected because it was demonstrated to function as a NOR logic gate on a Au(111) surface.4 On a fully passivated Ge(001):H surface, its ground electronic state resonance cannot be recorded in the corresponding scanning tunneling spectroscopy (STS) dI/dV spectrum because it is very well decoupled from the semiconductor bulk states. However, when this molecule is manipulated to a native or specifically constructed DB dimer to increase its interaction with the Ge bulk electronic states through the DB states, the ground state tunneling resonance becomes observa-ble. This leads to large differences in the recorded STM intramolecular contrast of this molecule when it is positioned on a surface DB dimer compared to the same molecule positioned on a fully hydrogenated surface.
RESULTS AND DISCUSSION
Physisorbed Molecules. Filtering the Ground Electronic State Resonance by a Hydrogenated Surface. Low-temperature STM measurements performed after molecule deposition show that all molecules are located either at the surface step edges or on defect-like native DBs (see Figure 1, molecule 2). This indicates that the interaction between the Y molecules and the Ge(001):H surface is very weak. The Y molecules are physisorbed on the surface and are highly mobile, as observed previously for pentacene molecules on Si(001):H.18 However, on Si(001):H the molecules were found only at step edges, while on Ge(001):H Y molecules can also be trapped by native DB defects. This is because a DB on Ge(001):H protrudes further into the vacuum than on Si(001):H. Therefore, a flat aromatic molecule can interact more strongly with a surface DB on Ge(001):H without any significant distortion of its planar structure. Still, Y molecules can be easily detached from DBs by STM lateral molecular manipulation. This procedure facilitates the identification of the native Ge(001):H surface defects that trap the Y molecule after adsorption (see Figure 1). The atomic structure of these surface defects is determined by a comparison between the appearance of a defect in an STM image, its STS characteristics, and the results of our recent studies of DB nanostructures con-structed by STM tip-induced hydrogen desorption.20
The characterization of the uncovered DB defect is indeed consistent with results obtained for an intentionally created DB dimer on Ge(001):H, demonstrating that, during deposition, Y molecules are stabilized by
ARTICLE
Figure 1. Filled state STM image of Y molecules on a hydro-genated Ge(001) surface. (1) Y molecule physisorbed on a defect-free Ge(001):H surface. The molecule was intentionally detached from a DB dimer (3) and placed on a defect-free area by STM tip-induced manipulation. (2) Y molecule in an initial geometry immobilized by a surface DB dimer. Inset: Atomic structure of the Y molecule. STM imaging conditions: bias voltage 2.0 V, tunneling current 2 pA. The image is acquired at liquid helium temperature (4.5 K).
native DB dimers on Ge(001):H.20 It is worth emphasizing that our ability to remove a Y molecule from a DB dimer and to place it on the defect-free part of the Ge(001):H surface is extremely advantageous. This al-lows for a detailed characterization of the electronic properties of a molecule without any perturbation of its electronic structure by substrate defects. Our measurements show that Y molecules placed on the hydrogenated surface by the STM tip are stable enough to perform both STM imaging and STS characterization at liquid helium temperature. Although initially all mol-ecules are trapped by surface defects, we will first discuss the electronic states and STM image of a Y molecule physisorbed on a fully hydrogenated Ge(001) surface, followed by a discussion of the electronic states and STM image of a Y molecule on a DB dimer.
STS measurements are performed on Y molecules positioned on a defect-free area of the Ge(001):H surface. As shown in Figure 2a, two distinct peaks are recorded at approximately 2.4 and 2.9 V below the Ge bulk Fermi level. A single resonance is also recorded at þ3.0 V in the conduction band of bulk Ge. Contrary to previous experiments with conjugated molecules on hydrogenated semiconductor surfaces,18,21 the lowest excited state of the Y molecule can be probed with tunneling electrons on Ge(001):H. However, the apparent electronic gap between the first peak below and the first peak above the Fermi energy as measured by STS is approximately 5.4 eV, considerably larger than the HOMOLUMO gap of 3.5 eV calculated for a gas-phase Y molecule. The electronic structure of a Y molecule physisorbed on defect-free Ge(001):H does not differ from a free molecule. In order to understand the large apparent gap between the STS peaks, the electronic transmission spectrum, T(E), for a Y molecule physisorbed on Ge(001):H is calculated with the STM tip apex located above the Y molecule (Figure 2b). The T(E) spectrum below the bulk Ge Fermi level comprises three peaks. The first resonance involves three molecular orbitals (MOs), HOMO, HOMO1a, and HOMO1b, which have nearly the same energy (separated by less than 0.05 eV). Note that these MOs are not located in the band gap of the Ge substrate. The second resonance originates from HOMO2a and HOMO2b, and the third resonance, which is the last peak within the energy window shown, is attributed to HOMO3. The first resonance above the Fermi level corresponds to the LUMO and the second one to LUMOþ1a and LUMOþ1b (see Figure 2c for the spatial expansion and symmetry of those MOs for the isolated Y molecule). The calculated tunneling resonance gap of 3.5 eV is consistent with the HOMOLUMO gap of a free Y molecule.
Interestingly, the first peak corresponding to HOMO, HOMO1a, and HOMO1b is calculated to be a very sharp Lorentzian resonance, implying that its contribution to the tunneling current intensity is very small. This is because the Y molecule is very well decoupled from the Ge bulk states by the hydrogen surface layer, and this decoupling is enhanced by the very small number of Ge bulk channels near the top of the valence band edge. Both effects limit the tunneling current in this energy range. Therefore, in this energy range, the tunneling current intensity is dominated by the tails of the HOMO2a, HOMO2b, and HOMO3 resonances. Furthermore, for bias voltages down to 2.0 V, the STM images recorded for a Y molecule on a defect-free Ge(001):H do not exhibit any intramolecular contrast that would correspond to the HOMO/HOMO1ab peak (see Figure 3a,b). The absence of the intramolecular contrast is apparent when these images are compared with the STM image of a Y molecule on a Au(111) surface measured at the ground state (HOMO) energy, which clearly shows the characteristic HOMO intramolecular features.4 These images rather reflect the Ge(001):H surface corrugation recorded through a planar Y molecule. The first HOMO/HOMO1ab resonance is hence filtered by the tunneling junction, indicating that the interaction of those MOs with the Ge bulk states is
ARTICLE
Figure 3. Two slightly different configurations (denoted as A and B) of physisorbed Y molecules on a defect-free Ge(001):H surface. (a and b) Filled state STM images. (c and d) STM images calculated when the HOMO/HOMO1ab resonance is excluded. The presence of the Ge(001):H surface rows underneath the molecule, marked by white solid lines, results in the contrast variation over the molecule. The variation is different for configurations A and B, reflecting the positions of the hydrogenated surface rows. All images are acquired at 2.0 V bias voltage and 2 pA tunneling current. The bright green noisy features clearly visible in the experimental images correspond to the DB dimer. (e and f) Comparison of experimental and calculated corrugations of the Y molecule ob-tained along the black dashed lines shown in panels ad.
so small that this resonance cannot be captured in the dI/dV spectra. The decoupling of these MO states from the Ge bulk states is also shown by the calculated MO structure, where almost no extension of Y MOs to the Ge bulk is observed (Figure 5g). This explains the very large apparent gap recorded for the Y molecule physisorbed on a defect-free Ge(001):H surface, even though those MOs are located neither in the intrinsic band gap of the Ge bulk nor in the surface band gap of the Ge(001):H surface.
Experimental STM images show that a Y molecule can physisorb in two slightly different configurations denoted as configurations A and B, respectively (Figure 3a,b). In both configurations, the Y molecule lies flat on the Ge(001):H surface with one Y arm per-pendicular to the surface hydrogen dimer rows. The difference in the STM images arises from the slight displacement of the molecule perpendicular to those rows. In both cases, the structure of the Y molecule is not affected by the presence of the surface, and the resulting geometry resembles the gas-phase geometry. The results are in good agreement with previous theoretical calculations for polyacene molecules phy-sisorbed on a fully hydrogenated Si(001) surface.22,23
The calculated STM images for configurations A and B are presented in Figure 3c,d. The slight differences in the STM contrast between A and B originate from imaging of the Ge(001):H surface corrugation through the tails of the HOMO2a, HOMO2b, and HOMO3 electronic state resonances. For example, the STM image of configuration A exhibits a higher contrast (conductance) for the arm perpendicular to hydrogenated surface rows (Figure 3c). The STM image of configuration B, where the central phenyl ring is located closer to the hydrogenated surface row, dis-plays higher contrast (conductance) for the other arms and significantly lower conductance between these arms and the third arm (Figure 3d). The experimental and calculated surface corrugations of the physisorbed Y molecule are shown in Figure 3e,f.
The very weak coupling between the states of the Y molecule and the Ge bulk states is confirmed by STM imaging at a positive bias voltage (Figure 4). The STM image of a Y molecule on a Ge(001):H surface at þ3.5 V resembles the images of a Y molecule physisorbed on Au(111) and on NaCl/Cu(111) surfaces, where three characteristic central lobes corresponding to a large conductance are observed near the LUMO resonance.4,24 These lobes correspond to the spatial expansion of the LUMO of the Y molecule. The similarity of the first excited state image on Ge(001):H and on Au(111) indicates that the Y molecule is physisorbed and not chemisorbed on a Ge(001):H surface, and therefore the coupling between the states of the Y molecule and the Ge bulk states is weak. The calculated image agrees reasonably well with the experimental image (Figure 4). The difference in bias voltages is due to the difference in the position of the LUMO in the experimental dI/dV and in calculated T(E) spectra.
Y Molecule Contacted with a DB Dimer: Recoupling the Ground Electronic State Resonance to the Substrate. The intramolecular STM corrugation changes significantly when one end of the Y molecule is placed intentionally over a DB dimer. The electronic coupling between the electronic states of the Y molecule and the Ge sub-strate states is enhanced due to coupling through the DB dimer states. These states protrude into the vacuum and are located close to the energy range of the HOMO, HOMO1a, and HOMO1b molecular states around 1.0 eV below the Fermi level. The difference in the spatial expansion and hybridization of the states of the Y molecule on Ge(001):H with and without DB dimer is shown in Figure 5f,g, respectively. Notice that initially all Y molecules are trapped by surface DB dimers and other surface defects. By manipulating a Y molecule away from the surface defect using the STM tip, one can confirm that the molecule was on a DB dimer. The Y molecule can then be manipulated back to the DB dimer to investigate how the DB dimer states are coupled to the states of the Y molecule. Through such precise contacting, the interaction between the states of the Y molecule and the DB dimer states recouples the HOMO/HOMO1ab states of the Y molecule to the Ge(001) states and therefore to the Ge bulk states, allowing for STM imaging of this hidden ground electronic state. This is evident from the difference in contrast between the experimental STM images of a Y molecule on a defect-free Ge(001):H surface (Figure 3a,b) and of a Y molecule contacted by a DB dimer (Figure 5a). The experimental and calcu-lated images of a Y molecule contacted by a DB dimer are compared in Figure 5a,b, with the corresponding corrugations in Figure 5d,e. The DB dimer is located at the intersection of the dashed lines A and B. The images agree reasonably well. The differences in the amplitudes can be attributed to details of tip apex electronic structure. Notice that when the Y molecule is contacted by a DB dimer, one arm of the molecule is parallel to the Ge(001):H dimer rows, whereas for the Y molecule on a defect-free Ge(001):H surface, one arm of the molecule is perpendicular to the Ge(001):H dimer rows.
We first compare the calculated images and corrugations of the Y molecule contacted with a DB dimer with the corrugation for a Y molecule on defect-free Ge(001):H (Figure 5b,c,e) for an identical configuration. When the Y molecule contacts the DB dimer, a higher conductance is expected because this structure resembles the structure where one end of a conjugated molecular wire contacts a metallic step edge. For such a structure, a high conductance at contact was indeed observed experimentally.2527 The line scans across the Y molecule in contact with a DB dimer (solid lines in Figure 5e) clearly show a larger corrugation compared to the line scans without the DB dimer (dashed lines in Figure 5e). This higher conductance results from the
ARTICLE
ARTICLE
Figure 5. Y molecules on a DB dimer. (a) Filled state STM image of a Y molecule contacted by a DB dimer at 2.0V and 2 pA. (b) Calculated STM image of a Y molecule contacted by a DB dimer. (c) Calculated STM image of a Y molecule on a Ge(001):H surface without a DB dimer. (d and e) Corrugation along the dashed lines A and B in panels ac for calculated and experimental images. The black solid lines and red dashed lines correspond to the corrugation of a Y molecule on a DB dimer and on a fully hydrogenated Ge(001) surface, respectively. Note that the dashed lines in panel d show the corrugation of a Y molecule in configuration A shown in Figure 3a. (f) MO expansion, illustrating the coupling of the HOMO/HOMO1ab states with the Ge bulk states via the DB dimer state. (g) MO expansion of a Y molecule on a fully hydrogenated Ge(001) surface, showing the decoupling of the HOMO/HOMO1ab state from the Ge bulk states.
overlap between the DB dimer states and the MO states of the Y molecule, as shown in Figure 5f. The experimental STM image and line scan of the Y molecule on a fully hydrogenated Ge(001) surface and with one of the arms parallel to the surface H dimer rows could not be obtained due to the structural instability of this configuration. However, the experimental line scans of a Y molecule contacted by a DB dimer (solid lines in Figure 5d) have larger corrugations compared to the line scans of a Y molecule on a defect-free Ge(001):H in configuration A (dashed lines in Figure 5d), showing the same trend as the calculated results. Notice that the experimental line scan of configuration B (Figure 3f) cannot be used for comparison since the internal contrast of the Y molecule in configuration B is in-creased by the corrugation of the hydrogenated Ge
(001) surface rows underneath the molecule.
To determine which state (HOMO, HOMO1a, or HOMO1b) contributes most to this contact conduc-tance and therefore to the STM images, we have analyzed the symmetry of these states and of the experimentally recorded images. From the symmetry, it is clear that the appearance of a single lobe at the Y-DB dimer contact point corresponds to the HOMO1a (see Figure 2c). In addition, the lobes at the two other arms also resemble the symmetry of the HOMO1a. Calculations also show that when the Y molecule contacts the DB dimer, the maximum of the transmission peak contains a dominant contribution from the HOMO1a state. Notice that experimentally, the precise recording of the dI/dV spectra in the energy range of the HOMO/HOMO1ab states is very delicate due to the instability of the Y molecule positioned on a DB dimer against higher currents and bias voltages, resulting in the uncontrolled detachment of Y mol-ecules from the DB dimers during the acquisition of the STS spectrum. The STM images are recorded with an extremely small current, but this current is insufficient for STS measurements.
To resolve whether the Y molecule is adsorbed over a buckled or an unbuckled DB dimer, surface structure optimizations have been performed. Experiments show that a DB dimer is buckled at liquid helium temperature. However, when measured at increasing bias voltages, the DB dimers flip frequently, as shown already in Figure 1. The stability of the buckled geometry is confirmed by calculations showing that the buckled geometry is 0.5 eV more stable than the unbuckled one. Thus, it is unlikely that the weak interaction with the Y molecule stabilizes the unbuckled geometry. Yet, the asymmetry of the buckled DB dimer under the Y molecule is not reflected in the experimental STM images. The symmetric appearance of the Y molecule positioned over a DB dimer seems to arise from either
(1) oscillations of the DB dimer caused by tunneling electrons or (2) the filtering of the DB states by the bulk states of the Ge substrate, which provide an averaged symmetric contribution, similar to the recently reported symmetric appearance of buckled silicon dimers on a Si(001)-c(42) surface, where the buckling of the dimer is not apparent from the image when imaging is performed at a higher voltage.28 To reproduce these effects in the calculated image, the images of the Y molecule on a DB dimer with two buckling configurations are calculated, and the average of the two images is obtained. This results in a symmetric image (Figure 5b) that agrees reasonably well with the experimental image.
CONCLUSIONS
In conclusion, we have shown that a large polyaromatic molecule physisorbed on a defect-free Ge(001):H surface can be imaged using STM. Because DB states on a Ge(001):H surface extend further into the vacuum compared to Si(001):H surface DBs, such molecules can be contacted with a DB dimer without significant distortion of their planar geometry. The ground electronic state of the physisorbed Y molecule on a defect-free Ge(001):H surface cannot be observed in the STM images due to the very weak electronic coupling of those states with the Ge bulk states through the Ge(001):H surface states. The ground electronic state becomes visible when the molecule is precisely positioned over a DB dimer, resulting in its direct STM observation. The reversibility of the electronic contact formation by LT-STM manipulation allows for a con-trolled coupling of a single conjugated molecule to a Ge substrate via a surface DB dimer, which can be native or precisely constructed using the STM tip. This opens up the possibility of constructing surface atom-ic-scale circuits using single-molecule devices and DB wires as interconnects.
ARTICLE
METHODS
Experimental Details. All experiments are performed using a low-temperature Omicron GmbH STM operated at liquid helium
(4.5 K) temperature in ultra-high-vacuum (UHV) conditions with a base pressure at the low 1010 mbar range. The samples are cut from an undoped Ge wafer (TBL Kelpin Crystals, n-type, ∼45 Ωcm). After insertion into the UHV chamber, the substrate is prepared by subsequent cycles of Arþion sputtering (600 eV, sputtering time: 10 min). During sputtering, the sample temperature is kept at 1020 K and controlled by an infrared pyrometer. The quality of the surface is checked by LEED and STM measurements. The surface hydrogenation procedure is performed using a home-built hydro-gen cracker as described by Kolmer et al.20 During the passivation procedure, the sample is kept at 485 K and the hydrogen pressure is maintained at 1 107 mbar. The trinaphthylene (Y) molecules are deposited from a three-cell Kentax effusion cell onto the sample, which is removed from the microscope cryostat just before the evaporation to keep the sample at cryogenic tempera-ture. The molecular powder is purified before evaporation. The deposition is performed with the crucible at 450 K.
Calculation Scheme. To analyze the STM images, the electronic properties of a Y molecule adsorbed on a Ge(001):H surface are studied using theoretical approaches. The tunneling trans-mission coefficient, T(E), spectra (equivalent to the dI/dV experimental spectra) and the STM images are calculated using the surface Green-function matching (SGFM) method29 with an extended Hkel molecular orbital (EHMO) Hamiltonian. The structures of Ge(001):H surfaces are optimized using the density functional theory (DFT) with the PerdewBurkeErnzerhof (PBE) functional30 as implemented in the Vienna ab initio simulation package (VASP).3134 The parameters in the EHMO Hamiltonian are fitted to accurate DFT band structures obtained with the HSE06 functional,3537 which provides a more accurate description of the Ge band gap than the PBE functional.20 The STM junction is modeled as described by Kolmer et al.20 and takes into account all the electronic couplings inside the STM tunneling junction, including the coupling between the surface and the tip and the native couplings between the surface and the bulk electronic states.
Conflict of Interest: The authors declare no competing financial interest.
Acknowledgment. This research was supported by the 7th Framework Programme of the European Union Collaborative Project ICT (Information and Communication Technologies) “Atomic Scale and Single Molecule Logic Gate Technologies” (ATMOL), Contract No. FP7-270028, and by the Visiting Investigatorship Programme “Atomic Scale Technology Project” from the Agency of Science, Technology, and Research (A*STAR). The experimental part of the research was carried out with equipment purchased with financial support from the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (Contract No. POIG.02.01.00-12-023/08). We acknowledge the A*STAR Com-putational Resource Centre (A*CRC) for the computational resources and support and the ICIQ Foundation for financial support. M.K. acknowledges financial support received from the Polish National Science Centre for preparation of his Ph.D. dissertation (Decision No. DEC-2013/08/T/ST3/00047).
REFERENCES AND NOTES
1.
Uhlmann, C.; Swart, I.; Repp, J. Controlling the Orbital Sequence in Individual Cu-Phthalocyanine Molecules. Nano Lett. 2013, 13, 777–780.
2.
Gross, L.; Moll, N.; Mohn, F.; Curioni, A.; Meyer, G.; Hanke, F.; Persson, M. High-Resolution Molecular Orbital Imaging Using a p-Wave STM Tip. Phys. Rev. Lett. 2011, 107, 086101.
3.
Mohn, F.; Schuler, B.; Gross, L.; Meyer, G. Different Tips for High-Resolution Atomic Force Microscopy and Scanning Tunneling Microscopy of Single Molecules. Appl. Phys. Lett. 2013, 102, 073109.
4.
Soe, W.-H.; Manzano, C.; Renaud, N.; de Mendoza, P.; De Sarkar, A.; Ample, F.; Hliwa, M.; Echavarren, A. M.; Chandrasekhar, N.; Joachim, C. Manipulating Molecular Quantum States with Classical Metal Atom Inputs: De-monstration of a Single Molecule NOR Logic Gate. ACS Nano 2011, 5, 1436–1440.
5.
Lafferentz, L.; Ample, F.; Yu, H.; Hecht, S.; Joachim, C.; Grill, L. Conductance of a Single Conjugated Polymer as a Continuous Function of Its Length. Science 2009, 323, 1193–1197.
6.
Liljeroth, P.; Repp, J.; Meyer, G. Current-Induced Hydrogen Tautomerization and Conductance Switching of Naphthalocyanine Molecules. Science 2007, 317, 1203–1206.
7.
Soe, W.-H.; Manzano, C.; De Sarkar, A.; Ample, F.; Chandrasekhar, N.; Renaud, N.; de Mendoza, P.; Echavarren,
A. M.; Hliwa, M.; Joachim, C. Demonstration of a NOR Logic Gate Using a Single Molecule and Two Surface Gold Atoms to Encode the Logical Input. Phys. Rev. B 2011, 83, 155443.
8.
Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. Science 2009, 325, 1110–1114.
9.
Swart, I.; Sonnleitner, T.; Niedenfuehr, J.; Repp, J. Con-trolled Lateral Manipulation of Molecules on Insulating Films by STM. Nano Lett. 2012, 12, 1070–1074.
10.
Liljeroth, P.; Swart, I.; Paavilainen, S.; Repp, J.; Meyer, G. Single-Molecule Synthesis and Characterization of MetalLigand Complexes by Low-Temperature STM. Nano Lett. 2010, 10, 2475–2479.
11.
Mohn, F.; Repp, J.; Gross, L.; Meyer, G.; Dyer, M. S.; Persson,
M. Reversible Bond Formation in a Gold-AtomOrganic-Molecule Complex as a Molecular Switch. Phys. Rev. Lett. 2010, 105, 266102.
12.
Pavlicek, N.; Fleury, B.; Neu, M.; Niedenfuehr, J.; Herranz-Lancho, C.; Ruben, M.; Repp, J. Atomic Force Microscopy Reveals Bistable Configurations of Dibenzo[a,h]thianthrene and their Interconversion Pathway. Phys. Rev. Lett. 2012, 108, 086101.
13.
Swart, I.; Sonnleitner, T.; Repp, J. Charge State Control of Molecules Reveals Modification of the Tunneling Barrier with Intramolecular Contrast. Nano Lett. 2011, 11, 1580– 1584.
14.
Olsson, F. E.; Paavilainen, S.; Persson, M.; Repp, J.; Meyer, G. Multiple Charge States of Ag Atoms on Ultrathin NaCl Films. Phys. Rev. Lett. 2007, 98, 176803.
15.
Repp, J.; Meyer, G.; Olsson, F. E.; Persson, M. Controlling the Charge State of Individual Gold Adatoms. Science 2004, 305, 493.
16.
Repp, J.; Meyer, G.; Stojkovic, S. M.; Gourdon, A.; Joachim, C. Molecules on Insulating Films: Scanning-Tunneling Micro-scopy Imaging of Individual Molecular Orbitals. Phys. Rev. Lett. 2005, 94, 026803.
17.
Such, B.; Goryl, G.; Godlewski, S.; Kolodziej, J. J.; Szymonski,
M. PTCDA Molecules on a KBr/InSb System: a Low Temperature STM Study. Nanotechnology 2008, 19, 475705.
18.
Bellec, A.; Ample, F.; Riedel, D.; Dujardin, G.; Joachim, C. Imaging Molecular Orbitals by Scanning Tunneling Micro-scopy on a Passivated Semiconductor. Nano Lett. 2009, 9, 144–147.
19.
Piva, P. G.; DiLabio, G. A.; Pitters, J. L.; Zikovsky, J.; Rezeq, M.; Dogel, S.; Hofer, W. A.; Wolkow, R. A. Field Regulation of Single-Molecule Conductivity by a Charged Surface Atom. Nature 2005, 435, 658–661.
20.
Kolmer, M.; Godlewski, S.; Kawai, H.; Such, B.; Krok, F.; Saeys, M.; Joachim, C.; Szymonski, M. Electronic Properties of STM-Constructed Dangling-Bond Dimer Lines on a Ge(001)-(21):H Surface. Phys. Rev. B 2012, 86, 125307.
21.
Gruyters, M.; Pingel, T.; Gopakumar, T. G.; Néel, N.; Scht, Ch.; Kler, F.; Herges, R.; Berndt, R. Electronic Ground-State and Orbital Ordering of Iron Phthalocyanine on H/Si(111) Unraveled by Spatially Resolved Tunneling Spectroscopy. J. Phys. Chem. C 2012, 116, 20882–20886.
22.
Ample, F.; Joachim, C. The Chemisorption of Polyaromatic Hydrocarbons on Si(100)H Dangling Bonds. Surf. Sci. 2008, 602, 1563–1571.
23.
Tsetseris, L.; Pantelides, S. T. Atomic-Scale Mechanisms of Selective Adsorption and Dimerization of Pentacene on Si Surfaces. Appl. Phys. Lett. 2005, 87, 233109.
24.
Guillermet, O.; Gauthier, S.; Joachim, C.; de Mendoza, P.; Lauterbach, T.; Echavarren, A. STM and AFM High Resolution Intramolecular Imaging of a Single Decastarphene Molecule. Chem. Phys. Lett. 2011, 511, 482–485.
25.
Langlais, V. J.; Schlittler, R. R.; Tang, H.; Gourdon, A.; Joachim, C.; Gimzewski, J. K. Spatially Resolved Tunneling along a Molecular Wire. Phys. Rev. Lett. 1999, 83, 2809.
26.
Moresco, F.; Gross, L.; Alemani, M.; Rieder, K.-H.; Tang, H.; Gourdon, A.; Joachim, C. Probing the Different Stages in Contacting a Single Molecular Wire. Phys. Rev. Lett. 2003, 91, 036601.
27.
Stojkovic, S.; Joachim, C.; Grill, L.; Moresco, F. The Contact Conductance on a Molecular Wire. Chem. Phys. Lett. 2005, 408, 134–138.
28.
Manzano, C.; Soe, W. H.; Kawai, H. Saeys, M. Joachim, C. Origin of the Apparent (21) Topography of the Si(100)-c(42) Surface Observed in Low-Temperature STM Images. Phys. Rev. B 2011, 83, 201302(R).
29.
Cerda, J.; Van Hove, M. S.; Sautet, P.; Salmeron, M. Efficient Method for the Simulation of STM Images. I. Generalized Green-Function Formalism. Phys. Rev. B 1997, 56, 15885.
30.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865.
31.
Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558.
32.
Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simula-tion of the Liquid-MetalAmorphous-Semiconductor Transition in Germanium. Phys. Rev. B 1994, 49, 14251.
33.
Kresse, G.; Furthmler, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169.
34.
Kresse, G.; Furthmler, J. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996, 6,15–50.
35.
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207.
36.
Heyd, J.; Scuseria, G. E. Efficient Hybrid Density Functional Calculations in Solids: Assessment of the HeydScuseriaErnzerhof Screened Coulomb Hybrid Functional. J. Chem. Phys. 2004, 121, 1187.
37.
Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Erratum: “Hybrid Functionals Based on a Screened Coulomb Potential”
[J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys. 2006, 124, 219906.
ARTICLE