Jagiellonian University
Faculty of Physics, Astronomy and Applied Computer
Science
OPTICAL PROPERTIES OF HOST
GALAXIES IN GIANT RADIO
SOURCES
PhD Thesis
by
Agnieszka Kuźmicz
The thesis was written under the supervision of
Prof. Stanisław Zoła
submitted to the Jagiellonian University
for the degree of Doctor of Philosophy in Astronomy
To my family
Abstract
Giant radio sources are the largest single objects in the Universe. The projected linear size of their radio structures, larger than 0.7 Mpc, makes them valuable objects to study many astrophysicalproblems. Itis still unclear why only a smallfraction of radio sources reaches such a large size. It is considered that it may be due to special external conditions, such as lower intergalactic medium density. Other investigators pointed out theinternalpropertiesof the “central engine” oranadvanced ageof theradiostructure and/or recurrent radio activity as a possible cause.
In myThesisIinvestigate thehypothesis that thegiant radio sources canhave verylarge radio structuresdueto specificproperties of their central active nuclei. Because oflack of a representative sample of such objects, as many radio sources were not recognised to be giants, thishypothesis was notinvestigatedindetail. Bycomparingthe radio and optical surveys, a lot of gigantic-size radio sources have been recently discovered. I selected a sample of giant radio sources and compared the fundamental physical parameters oftheir active nuclei(such asblackholemasses andaccretion rates) withparameters of observed radio structures. As a result, I found out that when taking into account the optical and radio properties, giant radio sources have properties similar to those of smaller size and thatgiantsdo nothave morepowerful central enginesthan other radio sources. The results obtained in this work are consistent with evolutionary models of extragalactic radiosources,thatpredictthatgiants couldbethe moreevolved(aged) sources compared with smaller ones. In addition, I discovered that the environment may play only a minor role in the formation of large-scale radio structures. In my thesis I showed out that giants have relatively large number of old star with solar-like metalicity. The stellarpopulation composition ofgiant radiogalaxies couldbethe only property that distinguishes them from other radio sources. This fact may suggest that different histories of the host galaxy formation may be the main reason why some of radio sources evolved to giant size.
Podziękowania
Dziękuję dr Markowi Jamrozy za opiekę naukową w trakcie studiów doktoranckich.
Jestem Panu wdzięczna za poświęcony mi czas, za wszystkie rady, sugestie dotyczące
prowadzonych badań, za inspiracje oraz za troskę o przebieg mojej ”kariery” naukowej.
To była przyjemność pracować z Panem. Dziękuję Panu za wszelkie okazane dobro ...
po prostu – za dobre serce.
DziękujęProf. StanisławowiZole za opiekęnaukową, wsparcie, oraz zato,żejako charyzmatyczny szef i promotor motywował mnie do bycia lepszym we wszystkich rzeczach,
które robiłam.
Bardzo dziękuję mojemu mężowi Arturowi za cierpliwość do mnie oraz za to, że mnie
wspierał podczas całych studiów doktoranckich, a zwłaszcza w ostatnim roku. Bez tej
pomocy i poświęcenia skończenie rozprawy doktorskiej nie było by możliwe.
Dziękujęwszystkimtym,którzydobrze miżyczylii mnie wspierali w różnych momentach
życia.
Chciała bym również podziekować Dorocie Kozieł-Wierzbowskiej za liczne rady i sugestie dotyczące mojej pracy.
Zadanedoprowadzonychprzeze mniebadańdiękujęDorocie,RickowiWhite orazMarianne Vestergaard.
Badania prowadzone w ramach doktoratu zostały częściowo sfinansowane ze środków
NarodowegoCentrumNaukiprzyznanychnapodstawiedecyzji numerDEC-2011/01/N/
ST9/00726 oraz grantu MNiSW 3812/B/H03/2009/36.
v
Contents
Abstract
iv
Podziękowania
v
1
Introduction
1
1.1 ActiveGalacticNuclei ............................. 1
1.2 AGN classificationand unificationscheme . . . . . . . . . . . . . . . . . . 3
1.2.1 Blackholemasses ........................... 5
1.3 Radiosources .................................. 6
1.3.1 Opticalpropertiesof radiosources . . . . . . . . . . . . . . . . . . 9
1.3.2 Giantradiosources ........................... 10
2
Giant
radio
quasars
13
2.1 Thesample ................................... 13
2.1.1 Samplebiases .............................. 14
2.2 Radiodataanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Opticaldataanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Spectrareduction ............................ 17
2.3.2 Continuum subtraction and line parameters measurements . . . . 18
2.3.3 Blackholemassdetermination .................... 19
2.4 Radioproperties ................................ 20
2.5 Black hole masses for GRQs and comparison sample . . . . . . . . . . . . 23
2.6 Blackholemassvs. radioproperties . . . . . . . . . . . . . . . . . . . . . 25
2.7 Accretionrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 J1145−0033 –acandidateforthemostdistantGRQ . . . . . . . . . . . . 30
2.9 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3
Giant
radio
galaxies
39
3.1 Thesample ................................... 39
3.1.1 Samplebiases .............................. 40
3.2 Radioand opticaldataanalysis . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Radiodata ............................... 40
3.2.2 Spectra reduction and black hole mass determination . . . . . . . . 40
3.3 Radioproperties ................................ 41
3.4 Blackholemassesvs. radioproperties . . . . . . . . . . . . . . . . . . . . 42
3.5 The evolution from Compact Steep Spectrum to Giant Radio Galaxies . . 44
vii
3.6 Stellarpopulations ............................... 46
3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4
Comparison
of
radio
quasars
and
radio
galaxies
53
4.1 Radioproperties ................................ 53
4.2 Blackholemassesvs. radioproperties . . . . . . . . . . . . . . . . . . . . 58
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5
Conclusions
63
Abbreviations
74
A
Parameters
of
GRQs
77 B
Spectra
and
radio
maps
of
giant
radio
quasars
99 C
Parameters
of
GRGs
145 D
Spectra
and
radio
maps
of
giant
radio
galaxies
155
Chapter 1
Introduction
1.1 Active Galactic Nuclei
Active galactic nuclei (AGNs) are one of the most luminous objects in the Universe. They are observed at all wavebands -from radio to gamma ray. Their luminosity is not attributed to the light of stars but to powerful processes which take place in the central parts of the host galaxy. It is believed that radiation of AGN is caused by mass accretion on a supermassiveblackhole(SMBH) locatedinthe center. In about10% of all known galaxies the activity phenomenon is observed.
Usually an object is classified as an AGN, if at least one of the following properties is observed(Netzer 2006):
1.
A compact nuclear region, brighter than the corresponding region in galaxies of similar Hubble type.
2.
Nonstellar origin of continuum emission.
3.
Nuclear emission lines indicate excitation by a nonstellar continuum.
4.
Variable continuum and/or emission lines.
According to the commonly accepted picture of an AGN, a super massive black hole is located in the center of a galaxy. It is surrounded by an accretion disk where matter loses angular momentum and eventually is accreting onto the black hole (BH). The accretion processes cause a strong UV and X-ray radiation which ionize the clouds of gas moving with high velocities around the vicinity of the accretion disk. This region, where thebroad emissionlineshave their origin,is named abroadline region(BLR). All of those components are surrounded by a gaseous and dusty torus. At a larger distance to the black hole, the clouds of gas move with lower velocities forming narrow line region (NLR), where narrow emission lines are produced. In radio loud objects
1
weobserveradioemission,visibleasradiojets flowingfromthevicinity oftheBHin opposite directions and feeding radio lobes. A schematic view of an AGN structure is presentedinFigure1.1 and the typical values ofits components andproperties arelisted in Table 1.1.
Table 1.1: AGN components and their typical properties.
Parameter Value
Black hole mass 105 -109 M⊙ Range of luminosities 1042-1048erg/s Time scales of variability minutes1 to decades Eddington ratio 0.01-1 Size of an accretion disk ∼10−3 pc Size of BLR ∼10−2-1 pc Velocity dispersion in BLR >1000-2000 km/s Temperature of BLR ∼ 104 K Size of a torus ∼10-100 pc Dust temperature in a torus few hundred K Size of NLR ∼100-10000 pc Velocity dispersion in NLR <1000-2000 km/s
1 e.g.fortheblazarPKS2155-304(Tremaine et al.2002).
The above presented picture of AGN components is based on many observational and theoretical studies. However, our knowledge about its physics, dynamics and geometry is still incomplete. The spectroscopic data of innermost AGN regions give the evidence of the existence of a strong continuum emitting source, BLR, NLR and a dusty torus.
1.2 AGN classification and unification scheme
Itisbelieved that accretionprocesses are responsiblefor observedX-ray, UV and optical continuum emission. They also canbe responsiblefor occurence of winds andgeneration of radiojets. However,the nature of an accretiondiskis still not well understood. The commonly used accretion models(Bondi1952,Shakura&Syunyaev1973,Abramowicz & Fragile 2013)usually simplify this extremely complicated process. The observed broad and narrow emission lines are believed to originate in clouds of gas which move with high or low velocities, respectively. The strongest broad emission lines observed in spectra of AGNs are: Balmer lines, MgII, HeII, HeI, OI – low ionization lines; and NV, CIV, CIII – high ionization lines. They are not visible in all AGNs, whereas narrow lines are present in practically all AGNs. The most prominent narrow emission lines are: [OIII],[OII],[NII],[OI] and[SII].Additionally, thebroadLyman and Balmer series as well as CIV have narrow components. It is believed that photoionisation is the main physical process responsible for generation of emission line, however, shocks createdduring radiojetpropagation might also contributetothe excitationprocess(Davidson&Netzer1979). The nature and origin ofBLRis still an openquestion. It wasproposed thatBLRis related to outflowsfromthe accretiondisk(e.g Laor2003, Tran 2003) and in some objects, the conditions for producing a BLR do not appear
(e.g. in objects with low Eddington rates; Czerny, Różańska & Kuraszkiewicz 2004). The explanation of a probable origin of low ionization part of BLR was proposed by Czerny &Hryniewicz (2011)who worked out a model whichdescribestheBLR appearance as a result of a strong dusty wind from the accretion disk. In order to explain absorption of the optical andX-ray emissionin someAGNs, the existence ofgaseous anddusty torus wasproposed. Earlier studies considered theproperties of tori. It wasproposed thatthetoruscould consist of a largenumberof optically thick, dusty clouds(Krolik&Begelman1988). Later Tristrametal. (2007) showedastrong evidence for a clumpy or filamentary dust structure of the torus. The origin of an AGN torus and the process of dust production is still not well known. There are some suggestionsthatAGNsdoproducetheir owndust(Elvis,Marengo&Karovska2002,Jiang et al. 2010). However, the most commonly considered sources of dust are supernovae (Bianchi&Schneider2007)and asymptoticgiantbranch stars(Sedlmayr1997).
1.2 AGN classification and unification scheme
AGNs are classified into various classes depending on properties observed at different wavebands. When taking into account the strengths of radio flux, AGNs can be divided into radio-loud and radio-quiet.
When wefocus on theproperties of optical/UV spectra one candistinguish thefollowing AGN classes:
Broad Line or Type 1 AGNs -in their spectra the broad emission lines and bright continuum are observed. RadioLoudQuasars,RadioQuietQuasars,BroadLineRadio Galaxies(BLRGs) andSeyfertGalaxiesType1belong tothis class.
Narrow Line or Type 2 AGNs -with narrow emission lines and weak continuum:
i.e. NarrowLineRadioGalaxies(NLRGs),SeyfertGalaxiesType2.
Blazars or Type 0 AGNs -with weak emission lines and strong continuum emission originatedintheradiojet -theiremissionisaffectedby relativisticeffects.
The spectra of three AGN classes are presented in Figure 1.2 as examples.
Because of large number of different types of AGNs and their properties, it was needed to find a unified model able to explain the variety of such objects. Such a scheme was proposed by Antonucci (1993) and further developed by Urry & Padovani (1995) for radio loud objects. This unification scheme proposes that the apparent differences between various types of AGNs are caused solely by their different orientation toward the observer(see Figure 1.3).
1.2 AGN classification and unification scheme
1.2.1 Black hole masses
It is believed that the central BH plays an important role in an AGN duty cycle. The history of the SMBHs formation is still unclear and it is the subject of many studies (e.g.Marconi et al.2004, King&Pringle2006, Netzer et al.2007, Volonteri &Begelman 2010). The most probable process of BH mass supplying is the accretion of matter from the host galaxy. There are two main parameters describing this process. The radiative accretion efficiency (η) which represents the efficiency of conversion of mass into radiation. It depends on the BH spin and the angular momentum of the accretion disk. The value of η is in the range of ∼0.04 to ∼0.4(King&Pringle2006). Thesecond parameteristheEddington ratio(˙m) relating theAGNbolometricluminosity with the Eddington luminosity. For accretion disk around a rapidly rotating SMBH with mass MBH=108 M⊙, the values of η=0.1 andluminosity typical ofquasars, the mass accretion rate requiredto maintain thediskluminosityis about1-10M⊙/yr. LessluminousAGNs may have correspondingly smaller mass accretion rates.
There arefewdirect/indirectmethods which make estimation ofBH masspossible. They aredepended ontheAGN typeandits cosmologicaldistance. ForType2AGNs(where gas and dust block our view of the BLR), the emission of the water megamaser of the disk molecular gas in a galaxy is the most accurate way for BHs mass determination (Miyoshi et al. 1995). For Type 1 AGNs the most accurate way is the reverberation mapping virial method(tobediscussedinSection 2.3.3). Alsothedynamical methods, based on stellar or gas kinematics (e.g. Onken et al. 2007) are used, but they can be applied only to nearby and not very luminous AGNs. The most useful, though indirect, method of BH mass determination is the single epoch virial method, discussed in Section 2.3.3. Other methods based on comparison of the dynamicalSMBH massestimationsfromobservationalpropertiesof thehostgalaxy can also be very useful. The following correlations were found: BH mass -bulge luminosity (MBH-Lbulge) relation (Kormendy & Richstone 1995); BH mass -bulge mass (MBH -Mbulge)relation(Magorrianetal.1998);BHmass -velocitydispersion(MBH -σ∗)relation (Ferrarese & Merritt 2000; Gebhardt et al. 2000; discussed in Section 3.2.2).
1.3 Radio sources
Radio sources(RSs) are one of theAGN classes. They exhibit a wide range of sizes and morphological structures at radio wavelengths. RSs can be extremely compact or very extended. In many cases their morphologyis complex and not all of structures appearin every source. Apowerfulradio source consists of a centralAGN and twojetspointed out in oppositedirections, which are collimated outflows of chargedparticles(e.g. electrons, protons) moving with relativistic speeds in magnetic field. The jets blow up a large cocoonin theinterstellar(ISM) orintergalactic(IGM) medium where theypropagate and collide with ambient medium. The extended radio lobes are usually ended by the hot spots, explained as being due to a strong shock fronts, produced by the collision of supersonicjet with ambient medium. RSs can be divided into some subclasses based on their morphology, properties of the optical identification or linear size. If we consider the radio morphology, two classes of RSs aredistinguished: Fanaroff-RileyTypeI(FRI)andTypeII(FRII)(Fanaroff&Riley 1974). Thereisarelatively sharp transitioninradioluminositybetweenFRIsandFRIIs corresponding to P178MHz≃2×1025W/Hz/sr. Most of sources with lower luminosity are ofFRI type. FRI radiosourcesareedge-darkened -they arebrightesttowardsthecenter and fade further from the core ending in huge radio lobes or plums, while FRII radio sourcesareedge-brightened -they arebrightestattheedgeswherehot spotsarelocated and ratherfaint nearthebright radiocore. TheexamplesofFRI andFRII radiosources are presented in Figure 1.4. The dichotomy between FRI and FRII radio sources is still under debate. Many authors speculate about the physical explanation of this division. Theyproposed thatthe morphologicaldifferencebetweenFRI andFRII sources canbe explainedbydeceleration ofjets causedbythe environment(Gopal-Krishna&Wiita 2000) and/orduetodifferencesinblackholespinand accretionprocesses(e.g. Baum, Zierbel,&O’Dea1995;Meier1999) ordifferentjet composition(e.g. Celotti&Fabian
1.3 Radio sources
1993).
A morphological subtype of Fanaroff-Riley class, named double-double radio sources
(DDRSs) is also distinguished. They consist of two pair of lobes: the older outer and
youngerinner ones, which representdifferentphases of radio activity(seeFigure 1.5).
Looking at the optical properties of optically identified RSs, they can be divided to
radiogalaxies(RGs) andradioquasars(RQs). RGs are usually associated with optically extended objects and they show only narrow emission lines with full width at half
maximum(FWHM) �1000 km/s. RQs are linked to bright compact objects where their
nuclei outshinethehostgalaxy. Quasars(QSOs)show strong broad emissionlines with
FWHM>1000 km/s. At the radio wavelengths, RGs and RQs are very similar although
radio quasars tend to have stronger radio cores (Saikia & Kulkarni 1994), one sided
radiojets(Bridle&Perley 1984), more asymmetric morphology(Best et al.1995), and
highlypolarized structures(Laing 1988).
Finally, if we take into account the linear size of radio structure of RSs, they can be
divided to: gigahertz peaked spectrum radio sources with sizes <1 kpc and compact steep spectrum(CSS) radio sources of1-20kpc morphologies;RSs with mediumlinear sizes ∼100-700 kpc, and extremely large sources with complex structures extending to a few Mpc.
In spite of many studies of the mechanism ofjetgeneration(e.g. Blandford&Znajeck 1977), we do not know exactly what is the physical process responsible for this phenomenon. Not only this mechanism,but alsotheevolution of radiostructuresis subject ofdebate. The typical time of a radio source activityphaseis short,10-100Myr(Alexander & Leahy 1987, Liu, Pooley & Riley 1992). The observed range in RS sizes, from subgalactic (<1 kpc) to cluster scales (>1 Mpc), has been interpreted as an evidence for evolution of radio source size with age(e.g. Kaiser&Alexander1997). Itisbelieved that radio sources start their evolution as very compact GPS phase, pass through the CSS stage, classical mediumsizeFRI orFRII radiosourcesand finally somemay reach thephase of agiant radio source(GRS).
The relation between a BH mass and radio loudness has also been intensively studied, butthe results are ambiguous sofar. Many authors(e.g. Dunlop et al.2003,Laor2000, Marziani et al. 2003, McLure & Dunlop 2002, McLure & Jarvis 2004)have found that, on average, radio-louderAGNspossesslargerBH masses. However,there are also many reports arguing against anydependencebetweenthesequantities(e.g., Cirasuolo et al. 2003, Ho 2002, Oshlack, Webster & Whiting 2002, Snellen et al. 2003, Woo & Urry 2002). Furthermore,theimportance of the mechanical energy ofjets andlobes released by BHs and the feedback on the surroundings has recently been realized (Cattaneo &
1.3 Radio sources
Best 2009, Merloni & Heinz 2008, Shankar et al. 2008). There are also evidences that the spin of the BH plays a significant role in AGNs radio activity (e.g. Ghisellini & Tavecchio 2008, Shankar et al. 2010, Sikora, Stawarz & Lasota 2007).
1.3.1 Optical properties of radio sources
The optical properties of various samples of RSs were studied by many authors. This topic is important for investigating the structure, the environment of a host galaxy and also the physical conditions of central regions of active nuclei. The radio loudness of AGNs still remains an debated issue. Radio observations of optically selected samples of active galaxies and quasars showed that only 10-40% of the objects are powerful radiosources(forreferenceseee.g. Cirasuoloetal.2003,Jiang etal.2007). Recently, thanks to large area radio surveys, the number of RSs with faint radio fluxes has grown enormously. Therefore,itis nowpossibletoinvestigatethe optical and radioproperties ofAGNs,based on statistically significant samples of objects(e.g. Cirasuolo et al.2003, Hewett, Foltz & Chaffee 2001, Ivezic et al. 2002, Jiang et al. 2007, Shankar et al. 2010, White et al. 2000), and tryto understand the connection between the optical emission (luminosity,BHmass and spin, accretion rate) and the radio(jet) activity.
It is well known that majority of radio sources are hosted by luminous, massive elliptical galaxies, often interacting with a close companion galaxy. However, there are few exceptions (e.g. Ledlow, Owen & Keel 1995) where a host galaxy is disk dominated. Considering the host galaxies of RSs, it was found that FRI and FRII radio sources differin magnitudedistributions, colors and thehostgalaxy structures(Zirbel&Baum 1995, Zirbel 1997). On average, FRII hosts are weaker and have bluer colors than those inFRI type. The environments ofFRI andFRII radiogalaxies are alsodifferent. Additionally, FRI sources are located in richer groups of galaxies, while these of FRII types avoid them up to z∼0.5. On the other hand, FRII radio sources exist in rich cluster environments athigh redshifts. Thehostgalaxies ofFRII typefrequently have morphological features like tails, bridges or shells, that suggest that they arose due to collision or merger of galaxy pairs, while large fraction of FRIs show evidence of ongoing or past interactions with companion galaxies.
Based on the optical studies of Grandi&Osterbrock (1978), Steidel&Sargent (1991), Corbin (1992),Cohen&Osterbrock (1981)it wasfound that radio-loud and radio-quiet AGNs have very similar emission line properties and that differences between some of their spectral features are not significant. However, some differences were noticed between FRI andFRII sources. Allbroadline objects which arehigh excitationgalaxies (with[OIII]/Hα>0.2 and equivalent width of[OIII]>3˚
A) show FRII morphology, while low excitationgalaxieshavebothFRI andFRII morphologies(Buttiglione et al.2010).
Ingeneral,it wasfound that emissionlinesluminosities are correlated with radiopower
(e.g. Rawlings et al. 1989, Rawlings & Saunders 1991, Baum & Heckman 1989a,b). Thisrelation was alsofoundforCSS sources(Morganti et al. 1997) andGPS sources (Labiano 2008). The obtained relation suggests that the radio and line luminosities of RSsaredetermined,tothe firstorder,by thepropertiesof theircentral engine(Willott etal.1999). Otherfactorssuch astheenvironmentmayplay asecondary role(Baum & Heckman 1989b). Another possibility is that the line and radio luminosities may be independently correlated with e.g. the amount of cold gas present in the kpc scales from the nucleus. The above-mentioned correlation is flatter for FRI than FRII radio sources. It was found that FRII sources produce emission lines which are about 5-30 times moreprominentthanthose ofFRI onesforthe sametotal radiopower(Zirbel& Baum 1995).
1.3.2 Giant radio sources
GRSs aredefined aspowerful extragalactic radio sources,hostedbygalaxies orquasars, for which theprojectedlinear size oftheir radio structureislarger than0.72Mpc(assuming H0 = 71 km s−1Mpc−1 , ΩM =0.27, Ωλ =0.73; Spergel et al. 2003)2
. Looking through the new, “all-sky” radio surveys such as the Westerbork Northern Sky Survey (Rengelink et al.1997), theNRAOVLASkySurvey(NVSS;Condon et al.1998), the Faint Images of theRadioSky atTwenty centimeters(FIRST; Becker, White&Helfand 1995),theSydneyUniversityMolongloSkySurvey(Bock,Large&Sadler1999)and the SeventhCambridgeSurvey(McGilchrist et al.1990)alarge number of newgiant sources wasidentified. Almost all of theseGRSs areincludedinthe samples ofgiantspresented by Cotter,Rawlings&Saunders (1996),Lara et al. (2001),Machalski,Jamrozy &Zoła (2001), Machalski et al. (2006), Saripalli et al. (2005), Schoenmakers et al. (2001), as well as in the list of giants known before 2000 published by Ishwara–Chandra & Saikia (1999). Todate,there are about230GRSsknown andjust a smallfraction ofthem (∼ 8%) are actually related to quasars, but the number of GRSs is still growing. The largestknownGRSis theJ1420−0545 sourcewith theprojectedlinearsizeequal to4.69 Mpc(Machalski et al.2008). GRSs are very useful in studying a number of astrophysical problems, for example the evolution of RSs, the properties of the IGM at different redshifts or the nature of the central AGN. It is still unclear why such a small fraction of RSs reaches very large size
2 Many authors, assuming H0 = 50 km s−1 Mpc−1 , have used 1 Mpc as the defining size for GRSs. For the currently accepted cosmological parameters as given above, this size decreases to ∼0.72 Mpc.
1.3 Radio sources
– it may be due to special external conditions, such as lower IGM density, or due to the internal properties of the “central engine”. Our knowledge about the nature of GRSs has improved somewhat following studies conducted in the last decade. However, these were focused almost exclusively on: the role of the properties of the IGM (Machalski & Jmrozy 2006, Subrahmanyan et al. 2008), the advanced age of the radio structure
(e.g.
Kuligowska et al. 2009, Machalski, Jamrozy & Saikia 2009), or recurrent radio activity (e.g. Machalski et al. 2011, Schoenmakers et al. 2000) as responsible for their gigantic size. Usually giants are FRII radio sources but also some of them have FRI-like morphology
(e.g.
J0918+3151, J1032+5644) or intermediate FRIIs without hot spots at the lobes edges. The existence of FRI giant radio sources can be explained by the scenario in whichjetpropagatesfor some timein thepowerfulFRII mode and then transition to a lower power FRI mode takes place (due to decrease of accretion rate; Komberg & Pashchenko 2009). Most ofGRSs are observed at ratherlow redshifts(z<0.5). Forseveralyears,GRSswere not expected to be found at redshifts higher than z∼1, because of the strong density increase ofIGM. Kapahi (1989)showed thattheIGMdensity evolves as ρIGM ∝ (1+z)3 . Therefore, the large environmental densities hamper the radio structure linear-size evolution athigh redshifts. However, Law-Green et al. (1995)discovered aGRS(4C39.24) hosted by a galaxy located at z=1.883. Moreover, a sample of relatively distant (0.30.5; Machalski, Kozieł-Wierzbowska &Jamrozy 2007), but aslong as only a small number ofGRSsisknown, such studies can notbe very meaningful. There are several reasons for detecting a small number of GRGs at high redshifts. The most important one is that distant RSs can not be identified in a simple way when using the modern interferometric radio survey maps available. Detecting steep-spectra and low surface-brightness radio-bridges connecting the radio core with hot spots for distant GRSs, is a quite challenging task but it would be possibly facilitated with the advent of novel low-frequency telescopes, such as the Low Frequency Array and the Square Kilometre Array. There are a number of efforts under way aimed to increase the numberofhigh redshiftGRSs. Anewsampleoflargest radiosources(predominantly quasars) with 1(AIPS)package for radiodata reduction and analysis, and maps from the NVSS and FIRST surveys, I measured the basic
1 http://www.aips.nrao.edu/
parameters ofthe selected radioquasars, which subsequently were used to calculate their characteristics – defined in the following way:
1.
The arm-length-ratio, Q, whichis the ratio ofdistances(d1 and d2) between the core andthehotspots(peaksofradioemission), normalizedinsuch away that Qis always > 1 (for details see Figure2.1).
2.
The bending angle, B, which is the angle between the lines connecting the lobes with the core.
3.
Lobes flux-densityratio, F = S1/S2, where S1 isthe fluxdensityofthelobefurther from the core and S2 is the flux density of the lobe closer to the core.
4.
The source total luminosity at 1.4 GHz, Ptot, which is calculated following the formula given by Brown, Webster & Boyle (2001):
logPtot(WHz−1)=logStot(mJy)−(1+α)· log(1+z)+2log(DL (Mpc))+17.08 (2.1)
where α isthe spectralindex(the conventionI usedhereis Sν ∼ να)and DL was the luminosity distance. The total flux density (Stot) of individual sources was measured from NVSS maps and the average spectral index was assumed for all sources as α = −0.6,inaccordance with Wardle et al. (1997). Thecoreluminosity at1.4GHz(Pcore)was calculatedin a similar manner,butthe Stot in equation(2.1) wassubstitutedby thecore fluxdensity(Score). It was measured from the FIRST maps and the average spectral index value was adopted to be α = −0.3, according to Zhang & Fan (2003).
5. The inclination angle, i, whichisthe anglebetweenthejet axis andtheline of sight(i.e. i = 90◦ means that the object lies in the sky plane). The inclination angle was calculatedinthefollowing way(assuming thattheDopplerboosting is the main factor underlying the asymmetries of a source):
1(s −1)
i =[arccos( · )] (2.2)
βj (s +1)
where s =(Sj/Scj)1/2−α , Sj isthepeak flux-density of thelobeclosertothecore. Scj is the peak flux-density of the lobe further away from the core and βj is the jetvelocityintheunitsofc(Hocuk&Barthel2010). For all objectsIassumed βj =0.6, according to Wardle et al. (1997)and Arshakian&Longair (2004).
The resulting values of the above parameters for both samples of RQs are listed in Tables A.9 and A.10 presented in Appendix A. For two objects, i.e. J0439−2422 and
2.3 Optical data analysis
J1100+2314, Iwas not able to measure all of theirparameters. Thereis no mapof source J0439−2422 available in the FIRST catalogue and the radio structure of J1100+2314 is highly asymmetric making this determination unreliable. The detailed analyses of derived parameters are provided in Chapter 4. TheFIRSTandNVSS radio maps ofGRQs overlaid onDigitalSkySurvey(DSS) optical images are presented in Appendix B.
2.3 Optical data analysis
2.3.1 Spectra reduction
The spectra of quasars were reduced also using the standard procedures of the Image Reduction and Analysis Facility2
(IRAF) package. Each spectrum was corrected for galactic extinction taking into account values of the colour excess E(B−V)and the Bbandextinction(AB)takenfromtheNASA/IPACExtragalacticDatabase. Icalculated
2 http://iraf.noao.edu/
the extinction parameter R = E(B − V)/AB for each quasar from my samples. The extinction-corrected spectrum was then transformed to its rest frame using the redshift value given in the SDSS or from the literature if the SDSS spectrum was not available.
2.3.2 Continuum subtraction and line parameters measurements
In order to obtain reliable measurements of emission lines, it is needed to subtract continuum emission, as optical andUV spectra ofquasars aredominatedby thepower-law and Balmer continua. Using the IRAF package, I subtracted the power-law continuum fromall spectra. Thecontinuumwasthen fitted using alowordersplinefunctioninseveral windows,wherenoany emissionlinesareobserved(i.e. 1320–1350˚A,
A, 1430–1460˚1790–1830˚A, 3540–3600˚A). Particularly in the UV band,
A, 3030–3090˚A and 5600–5800˚the significant iron emission is observed, which is often blended with the MgII(2798˚
A) line. The procedure of subtracting the iron emission was similar to that described by Boroson&Green (1992). I used aFetemplateintheUVband(1250–3090˚
A) as developedby Vestergaard&Wilkes (2001) andinthe opticalband(3535–7530˚
A) given by Veron-Cetty, Joly & Veron (2004). First, I broadened the iron template by convolving it with Gaussian functions of various widths and multiplying by a scalar factor. Next, I chose the best fit of this modified template to each particular spectrum and then subtractedit. Afterthe subtraction of theFeline emission,I added thepreviously determinedpower-lawcontinuum fit and fittedit onceagain(inasimilarmannerassuggestedby Vestergaard&Wilkes2001). The “cleaned-up” spectraofgiantradioquasars are presented in Appendix B. The accurate fitting of the iron emission was not possible in some cases. It was due to either a low signal to noise ratio or too small fitting wavelength region. Iron emission was also not fitted when it was not required, i.e. when there was no emission lines in the fitting region or it was not possible to measure it. For the purpose of my analysis I needed to measure the parameters of broad emission lines: CIV(1549˚A) and Hβ(4861˚
A), MgII(2798˚A). In some cases, performing this measurement wasdifficultdue to asymmetries of thelineprofiles(particularlyhighlyionized lines such as CIV), where it was hard to fit a Gaussian profile. In order to overcome this problem, I used the line measurement method described in Peterson et al. 2004. In Tables A.3 and A.4 I provided the respective widths of broad emission lines for GRQs and smallerradioquasars,respectively. Iwasnot abletomeasuretheMgII emissionline parameters in the spectrum of GRQ J1408+3054, as it showed strong broad-absorption features which considerably affected the emission line profile.
2.3 Optical data analysis
2.3.3 Black hole mass determination
Asit was mentioned inSection 1.2.1, the reverberation mapping virial methodis considered tobethe most accurate method ofBH mass estimationinType1AGNs(Peterson 1993). This method relies on the monitoring of emission line and continuum variations. Thetimedelaybetween a certainpatternvariations(whichisthelighttraveltime of photons from the central region emitting continuum to the line emitting region) is used tomeasurethesizeofBLR(moreprecisely -thesizeof aparticularlineemitting region). Assuming that the gas in the broad-line region is virialized in the gravitational field of a BH, its mass can be calculated as:
2
RBLRVBLR
MBH = (2.3)
G
where G is the gravitational constant, RBLR is the distance from the central BH to the broad-line region clouds, VBLR is the broad-line region virial velocity, which can be estimated from the FWHM of a respective emission line as:
VBLR = f · FWHM (2.4)
where f is a scaling factor, which depends on structure, kinematics, and orientation
√
of the BLR (for randomly distributed broad line region clouds f =3/2). The reverberation mapping virial method applied on the same source at different times, and considering different emission lines, is expected to provide consistent values of the BH mass e.g. Peterson&Wandel (2000). Based on this method, Kaspi et al. (2000,2005) obtained an empirical relation between the BLR size of an AGN and its optical continuum luminosity(λLλ) at 5100˚A, 1350˚
A (and later also at 1450˚A and in the 2–10 keV range):
A)0.70±0.03
RBLR ∼ λLλ(5100˚(2.5)
This relation makes it possible to use an approximation of the reverberation mapping method, called single epoch virial mass estimation. In this method, a BH mass is determined through a mass-scaling relation, where the FWHM of broad emission lines
(e.g. CIV, MgII, Hβ) and the monochromatic continuumluminosity(λLλ) of a singleepoch spectrum is only needed. The BH mass is expressed as:
λLλ FWHM
MBH = A· 106()B · ()2M⊙ (2.6)
1044ergs−1 1000kms−1
where the calibration constants A and B depend on which emission line is considered. In ordertodetermineBH mass ofQSOsI applied thefollowing equations:
λLλ(1350˚A) )0.53±0.06 FWHM(CIV1549˚A)
MBH(CIV1549˚A) =4.57· 106( · ()2M⊙ (2.7)
1044ergs−1 1000kms−1
λLλ(3000˚A) FWHM(MgII2798˚
A)
)0.5
MBH(MgII2798˚A) =7.24· 106( · ()2M⊙ (2.8)
1044ergs−1 1000kms−1 λLλ(5100˚A) FWHM(Hβ4861˚
A)
)0.50±0.06
MBH(Hβ4861˚A) =8.13· 106( · ()2M⊙ (2.9)
1044ergs−1 1000kms−1
Equations(2.7)and(2.9)were takenfrom Vestergaard&Peterson(2006), while equation
(2.8)from Vestergaard & Osmer (2009).
The monochromatic continuum luminosities λLλ can be computed as follows:
λLλ =4πD2 λfλ (2.10)
Hubble
where DHubble is the comovingradialdistance and fλ isthe fluxintherestframeatwavelengths λ equal to 1350˚A or 5100˚
A, 3000˚A. The resulting rest frame fluxes, monochromatic continuumluminosities andBH massesforgiant radioquasars and smallerquasars are given in Tables A.3, A.7 and Tables A.4, A.8 respectively.
2.4 Radio properties
I checked some general relations between radio parameters for both samples of sources. On the optical versus radio-luminosity plane my objects trace the regime of radio loudness (ratio of radio-to-optical luminosity) between 50 and 1000 and overlap with the FIRST-2dF sample ofquasars of Cirasuolo et al. (2003).
InFigure2.2 Ipresent thedependencebetween1.4GHz totalluminosityandthe redshift of quasars. It is important to note that due to selection criteria, i.e. the presence of the MgII(2798˚
A) emissionlineinthe spectra, the comparison sample of smallerRQs(sources marked asopencirclesinFigure 2.2 and subsequent figures) contains only objectsinthe redshift range of0.4�z�2(fordetails seeSection2.1). Sucha cut-offinthe redshift range ofquasarsfromthe comparison sample should not,however, affect the main results, since the majority of GRQs have redshifts in a similar range. Therefore, the non-existence of smallerRQsin the upper-leftpart ofFigure 2.2 is artificial, whereas the absence ofGRQs inthelower-rightcornerof this figureistheresult of sensitivitylimit of theradiosurveys which were used for sources recognition and measurements of their radio properties. It is known that in flux-limited samples one should expect correlations between the radio luminosity and the redshift, since for larger distances we are able to detect only those sources which are luminous enough, and faint sources at higher redshifts are below the detectionlimit. Forquasarsamplesinmy work adependencebetween redshift and total
2.4 Radio properties
z
radio luminosity can be seen, but the correlation is not as strong as for the sample of GRSsfrom Ishwara–Chandra&Saikia (1999) whostudied asmallersampleofgiants. The Spearman rank correlation coefficient for the GRQs is 0.50, whereas for the GRSs fromthepapercited aboveits valueis0.90. Thisshowsthatthe selection effectsforthe quasarsamplearenotasstrong asforotherradiogalaxies andGRS samplesof Ishwara– Chandra&Saikia (1999),thoughthey may stillhave affected some of my results. In Figure 2.3 Ipresent the relationbetweenluminosity(P) and thelinear size(D). The P–D diagram is a helpful tool in investigation of evolution of radio sources and was frequently used to test evolutionary models (e.g. Blundell, Rawlings & Willott 1999, Kaiser, Dennett-Thorpe & Alexander 1997). In order to draw this diagram I used the real linear size of the sources, which was derived by taking into account the inclination angle, i, as D∗ = D/sin(i), where D is theprojectedlinear size(given inTables A.1 and
A.2 derived as the sum of d1 and d2 -for details see Figure 2.1). The diagrams show that GRQs have, on average, lower core and total radio luminosities. The trend which can be observed in P–D diagrams is consistent with the predictions of evolutionary models and can suggest that, under favourable conditions, the luminous, smaller and probably younger RQs may evolve in time into aged and lower-luminosity GRQs. The non-existence of objects in the bottom-left part of Figure 2.3 may be due to selection
0.1 1 D* [Mpc]
D* [Mpc]
effects. Because of the surface-brightness limit, some extended objects with very low total radio luminosities might have been ovelooked.
Ipresent the relation between the total and core radio luminosities in Figure 2.4. There is a strong correlation between these two quantities for radio quasars. I derived the correlationcoefficientof0.76 and theslopeof thelinear fitequalsto 0.84±0.08, steeper than the slope of 0.59± 0.05 obtained by Ishwara–Chandra & Saikia (1999) for GRSs. The strong correlation between the core and the total luminosities in the population of giant-size radio galaxies was also mentioned by Machalski & Jmrozy (2006). This correlation canbeattributedtotheDopplerbeaming ofapc-scalejet andcan reflect
2.5 Black hole masses for GRQs and comparison sample
log(Ptot1.4 GHz [W/Hz])
Figure 2.4: Core radioluminosityagainstthe total radioluminosityforRQs. Astrong correlation is visible. A linear fit to the data points is given by the line logPcore = (0.84±0.08)logPtot +(3.20±2.00).
differentinclination angles of nuclearjets, andthustheinclination oftheentire radio sourceaxistotheobserver’slineof sight. Relatively moreluminouscores(incomparison with thetotalluminosity) shouldbeobservedforhighlyprojected sources(i.e.quasars). Therefore, in GRQs one could expect to observe relatively stronger cores than in giantsize radiogalaxies. On the otherhand, evolutionary effects(well visibleinFigure 2.3) can explain the clear difference of radio luminosities between giant radio quasars and smaller quasars. The observed correlation between the total and core radio luminosities can be also a result of evolution of smaller radio quasars toward larger ones. If we assume that P–D diagrams are a consequence of a radio source evolution, it is clearly seen that during the radio structure growth, the total and core luminosity of radio sources decreases.
2.5 Black hole masses for GRQs and comparison sample
In order to obtain the central BH mass of quasars in my samples, I used measurements of CIV, MgII and Hβ emissionlinesandthemass-scaling relations(equations 2.7,2.8 and 2.9). The mass values obtained are in the range of 1.4· 108M⊙4 radiogalaxies (e.g.,Hennawi et al.2010). Absorption measurementsinthe vicinity ofQSOpairs can be used for determination of IGM density in the corresponding regions (Kirkman & Tytler 2008, Hennawi et al. 2006). The absorption seems to be much higher than that calculated solelyfromtheQSOluminosity(Guimaraes et al.2007). This resultimplies that the QSOs are situated in regions where the IGM is overdense by a factor of ∼5 (Guimaraes et al.2007). Thereare also otherhints(e.g. correlationbetween asmallscale excess of galaxy and QSO clustering) suggesting that the QSOs are likely to be foundindenseenvironments(Bowen et al.2006,Hennawi et al.2006). If thisisthecase alsointhe vicinity oftheQSOpair,it may behardto explainhowthe radio structure of J1145−0033 evolved to a Mpc scale in such an overdense environment. I searched the SDSSdatabaselooking formorecompanionsatsimilarredshiftasthatofQSOs ‘A’ and ‘B’ withinthe circle of19.7 arcminindiameter(which correspondsto10Mpc) around theQSOspair,but no such objectshavebeenfound.
Interestingly enough, the optical spectrum of J1145−0033 shows high ionization broad absorptionlines(BAL), which makesitamemberof ararecategory ofquasars. (Trump et al. 2006). The BAL classification is usually based on a value of the balnicity index (BI;Weymann 1991)that defines the strength of its absorption features. In the case of QSO ‘A’,theclassificationwasperformed using anabsorptionindex(AI; Trump etal. 2006), which is more sensitive for narrower absorption lines. For J1145−0033 QSO the BI=0,butAI=1576km/s(Trump et al.2006).
2.8 J1145−0033 – a candidate for the most distant GRQ 35
The BAL phenomenon is observed in about 10−20% (depending on the selection criteria) ofthe entireQSOpopulation(Weymann2002,Tolea,Krolik&Tsvetanov2002, Hewett & Foltz 2003, Reichard et al. 2003, Trump et al. 2006). BAL are believed to be caused by high-velocity gas outflows during the accretion processes. Two scenarios have been proposed to explain this phenomenon. In the first one, BAL regions exist in bothBAL and non-BALquasars, and theBALquasars arejust normalQSOsbut seen along aparticularline-of-sight(Weymann1991). The second scenario states thatBAL arepresent only during relatively short(possibly episodic) evolutionaryphases ofQSO activity, which occurmostlikely atanearly stageoftheirevolution(e.g. Beckeretal. 2000). Among of BAL quasars only a small fraction are radio-loud objects and most of them have core-dominated radio morphologies. They belong to the CSS and GPS objects, which are considered to be young radio sources of linear sizes less than 20 kpc. The BAL quasars with extended radio structures are extremely rare. Only eight BAL quasars with extendedFRII radio structure areknowntodate(Greeg et al.2006). In almost all cases their projected linear size is within the range of 117−585 kpc, and one of them(J1408+3054, Greeg et al.2006)is considered tobe aGRQ with thelinear size of 1.65 Mpc. The inclination angle of J1145−0033 radio structure is about 82o, which means that the lobes lie almost exactly in the celestial plane. This may suggest that BAL could bejustduetoorientation ofthesource. Such anorientationimpliesthatthegasoutflows could be explained by a radiatively accelerated wind from the accretion disk or gas evaporatingfrom adusty torus(Punsly2006). While this explanation seemsquite plausible, the rarity of FR II BAL quasars and their observed anticorrelation between the BI and the radio loudness (Greeg et al. 2006) may not justify such an origin of outflows. Brotherton,DeBreuck&Schaefer (2006)foundthatthepolaroutflowsare present alsoinFRII radioquasars(e.g.PKS0040−005), therefore the two facts seem to support the alternative origin of BAL, as being shown up only at some episodic evolutionaryphases ofQSOs(e.g. Greeg et al.2006). This scenariois also consistent with theresultobtainedforQSOpairsby Kirkman&Tytler (2008), whofoundthatQSOs display episodic activity with time scales of 0.3–10 Myr.
The obtained values for the BH masses of QSO ‘A’ and ‘B’ are relatively high and their accretion rates are small in comparison with BHs from the comparison sample of smaller-size QSOs. The parameters of both ‘A’ and ‘B’ quasars, are however very similar, which may suggest that they are different QSOs with regard to either some internal properties of their host galaxies or external properties of their common IGM. Theirevolution couldbevery similar,exceptforthepresenceof radioemissionfromone of them. Thesmall accretionratesof0.013 and0.022,respectivelyforQSOs ‘A’and ‘B’, are close to thelowerlimit of radio-loudQSOs(whichis ∼0.01; Gu et al. 2001). The largeBH masses and small accretion rates of theseQSOs couldbe explained, according to Netzer et al. (2007),byoccurring of atleast one earlier episode offasterBHgrowth with ahigh(∼ 1)accretion rate. Thereareseveral radiogalaxiesthat showstructuresof multi-episodes ofAGN activity(Saikia&Jamrozy2009; see an exampleinFigure 1.5) but, atpresent,thereis only oneknownQSO thatdisplays radio structures originating fromtwodifferent cycles of nuclear activity: 4C02.27(Jamrozy,Saikia&Konar2009).
2.9 Results
I have presented a comparison of radio and optical properties for a sample of giant radio quasars and smaller radio quasars. It is worth mentioning that the measurements were obtained in a similar and homogeneous way for all sources from both the GRQ and comparison samples. Therefore, only the absolute values might be in some way, if at all,affectedby someglobal calibrationerrors. The finalresultsaresummarizedbelow:
1.
Based on the P–D diagram, I found that there is a continuous distribution of GRQs and smaller radio quasars. Therefore, I can conclude that the GRQs could have evolved, overtime, outof smallerradioquasars, which seemstobeconsistent with the RS evolutionary model predictions.
2.
ThevaluesofBH massesestimatedforboth samplesare similartothoseofpowerfulAGNs. TheBH massesestimated using theMgII emissionline areinthe range
1.6 · 108M⊙. The basic parameters and references are listed in Table C.1 wherethe columns contain:(1) J2000.0IAU name;(2) and(3) J2000.0 right ascension and declination of the central position of the optical galaxy; (4) redshift of the host galaxy; (5) angular size in arcmin; (6) projected linear size in Mpc; (7) availability of the spectrumfrom theSDSS survey(S), orINT archivedatabase(I); availability of radio mapsfromNVSS orFIRST(N orF, respectively);(8) references to theidentified object. Some of the GRGs studied here have also visible double-double radio morphology. This double-doublegiant radiogalaxies(DDGRGs) are markedinTable C.1 by an asterisk. As a comparison sample,IchoseFRIItype radiogalaxies takenfrom Kozieł-Wierzbowska &Stasińska (2011)for whichthe optical and radiodata were catalogued. This sample contains401FRII radiogalaxies(includinggiant anddouble-double radiogalaxies; DDRGs). Astheauthors mentioned,itisnotacomplete sampleinany sense(it can notbe used to study e.g.luminosity functions),but covers a wide range of radiopowers and sizes of radio structures(fordetails of selection criteria see Kozieł-Wierzbowska& Stasińska 2011). Excluding GRGs and DDRGs, the final comparison sample contains 385 RGs. The excluded GRGs and DDRGs are marked in Tables C.1, C.4 by double and triple asterisk, respectively.
1 http://casu.ast.cam.ac.uk/casuadc/ingarch/query
39
3.1.1 Sample biases
AsmentionedinSection 2.1.1, similarly togiant radioquasars,theresultsforGRGsmay be affected by selection effects related to sensitivity of the radio surveys that were used for selecting extended sources. Additionally, the inverse Compton losses against CMB can make invisible a steep spectrum and low surface brightness radio bridge connecting the radio core withhot spotsin case ofdistant objects. Apartfrom the aspectsdescribed in Section 2.1.1, the sample of GRGs was reduced to those objects for which the optical spectraintheFITSformat wereavailable. Duetothiscriterion,Iconsidered onlyGRGs with SDSS r magnitudes of theirhostgalaxiesfainterthan14.5 andbrighterthan20.3. Thelowermagnitudelimitstillgivesa sufficientS/N ratioof theiroptical spectra. The same criterion was applied to the comparison sample considered in this chapter.
3.2 Radio and optical data analysis
3.2.1 Radio data
I measured the basic parameters of radio structure for the GRGs sample in a similar way asitwasdescribedinSection 2.2.Themeasuredparameterswere: arm-length ratio Q, bending angle B, flux-density ratio F, total luminosity Ptot, core luminosity Pcore, and an inclination angle i. For Ptot calculations I adopted the average spectral index α = −0.75 and for Pcore α = −0.5 (Sν∼να). All obtained values for GRGs are listed in Table C.3, while the FIRST and NVSS radio maps, overlaid on the DSS optical images, are presented in Appendix D. For the FRII smaller-size radio galaxies sample only the Ptot was available and therefore nocomparison of otherparameters(e.g. Pcore and radio structure parameters) with these obtained for GRGs was possible.
3.2.2 Spectra reduction and black hole mass determination
The INT spectra of giant radio galaxies were preliminary reduced and flux as well as wavelength calibrated using standardproceduresof theIRAFpackage. The next reduction steps were done for all GRGs (from INT and SDSS) in a similar way as for the sampleofgiantradioquasars(seeSection 2.3.1). Thecontinuum fitting wasdoneusing the Starlight Spectral Synthesis Code2
(Cid Fernandes et al. 2005)which fits the stellar continuum based on the superposition of stellar spectra. I used 150 stellar spectra templates (extracted from the evolutionary synthesis models of Bruzual & Charlot 2003)
2 http://www.astro.ufsc.br/starlightst
3.3 Radio properties
with various ages(1Myr≤t∗≤18Gyr) and metallicities(0.005≤Z/Z⊙≤2.5). The upper agelimitisinconsistent with the currently accepted age of theUniverse(13.7Gyr) but taking into account uncertainties in stellar evolution, cosmological parameters, observationsandinthe fitsthemselves,thisinconsistencyismerelyformal(Asari etal.2007). The narrow spectral windows, where emission lines are expected, have been excluded in the fittingprocedure. Apartfromthecontinuum fitting,starformation,chemical enrichment histories and velocity dispersion parameters were also modelled. The continuum fits and spectra of GRGs are presented in Appendix D.
To determine BH masses I used the MBH -σ∗ method which is a very useful way of BH mass estimationin activegalaxies. Itisbased on atight correlationbetween aBH mass and the velocity dispersion of stars in the galactic bulge (Ferrarese & Merritt 2000, Gebhardt et al. 2000). It is described by the relation:
MBH σ∗
log( )= α+ βlog() (3.1)
M⊙ 200kms−1
where the recent estimations of the α and β constants are: α = 8.12 ± 0.08, β = 4.24 ± 0.41based on a sample of49 sources(G¨ultekin et al.2009) and α = 8.13 ± 0.05, β = 5.13 ± 0.34based on a sample of64 sources(Graham2011). The values of the above constants were estimated by many authors who obtained very similar results of the α constant but a bit different ones for the β parameter spanning over a range from 3.75 to 5.3. This discrepancy is believed to be a consequence of systematic differences in the adopted values of σ∗ (e.g. Tremaine et al. 2002). In my analysisI used the values of the constantsgivenby Graham (2011)becausethe sample usedin theirdetermination waslarger andgave a smallerintrinsic scatter of theMBH-σ∗ relation. Hereafter,theBH massderived using theequation 3.1 willbedenoted asMσ∗. Resulting BH masses are presented in Table C.2. For four GRGs it was not possible to obtain a good stellar continuum fit, therefore, their BH masses were not estimated. I plot the spectra of those galaxies without continuum fit in Appendix D.
3.3 Radio properties
Inordertocheck the fluxlimitation of theradiogalaxies samples,IplottedinFigure 3.1 the dependence between the 1.4GHz total radio luminosity and the redshift. A similar trend to that noticed for the sample of radio quasars is also seen: the radio luminosity increases with redshift. This trend is likely due to selection effects (discussed in Section 2.4). The Sperman rank correlation coefficient for the linear fit is equal to 0.59 anditis smaller than thatforGRG samples usedin earlier studies(Ishwara–Chandra
log(Ptot1.4 GHz [W/Hz])
28 27 26 25 24 23
z
Figure 3.1: 1.4 GHz total radio luminosity as a function of redshift. The GRGs are marked with solid circles and smaller FRII radio galaxies with open circles. Such a notation is used in all diagrams in this chapter. Some of GRGs were also classified as DDRSs. These are marked by solid triangles.
& Saikia 1999). Therefore, the new sample of GRGs considered in this chapter is not so strongly flux limited as the earlier studied samples were.
The P-D diagram is plotted in Figure 3.2. The observed behaviour is consistent with evolutionary tracks for radio sources. The first phase of RSs evolution also can be seen in this diagram. There are few extremely compact radio galaxies with low total radio luminosities in the FRII radio galaxies sample. According to predictions of dynamics andluminosity evolution modelsof radiosources,threephasesof evolution areexpected tobepresent. Whilelobes expand(within thehostgalaxy), the radioluminosity rises with radio source sizeincrease to the moment when synchrotronlossesbecomedominant. After this point, the radio luminosity steadily decreases with increasing source size and finally passes throughout the phase of sharp decrease of luminosity when the inverse Compton losses, resulting from the CMB energy density, dominate the synchrotron losses(Kaiser & Best 2007, An & Baan 2012).
3.4 Black hole masses vs. radio properties
In order to check the role of AGNs in generation of the Mpc scale radio structures, I compared their BH masses with their other internal properties. If we assume that giants areformedduetolonger or/andrestartingAGN activityphases,largerBH masses
3.4 Black hole masses vs. radio properties
27
26
log(Ptot1.4 GHz [W/Hz])
25
24
23
22
D [Mpc]
Figure 3.2: Luminosity-linear size diagram for GRGs and smaller FRII RGs.
shouldbe expected as a result oflonger accretion time of matter onto aBH.InFigure 3.3, where thedependencebetween logMσ∗ andprojectedlinear sizeisplotted, thebehaviour similartothat observedforGRQs(Figure 2.7)is not visible.
Relationsbetween aBH mass and thelinear size of radio structuresare similarforgiant
11
10
log (Mσ * [M⊙])
9 8 7 6 5
D [Mpc]
Figure 3.3: Relationbetween logMσ∗ andlogarithm ofprojectedlinear sizeforGRGs and smallerFRII radiogalaxies.
and smaller FRII type radio galaxies, but different than that for giant radio quasars (Figure2.7). Assuming that the different MBH−D relation for GRQs is real and indeed may be explained by a different composition of BLR in young and old radio sources, such an explanation could not be applied to giant radio galaxies. This is because their BH masses were determined using the Mσ∗ method, which is based only on the velocity dispersion of stars in the galactic bulge and not related to BLR in any sense.
Mσ∗ asafunctionof total radioluminosityisshowninFigure 3.4. Itcanbeseenthatno any correlation between the two parameters is present. The distribution of logMσ∗ and logPtot spans a wide range of valuesforboth samples. The mean values of log(Mσ∗[M⊙]) and log(Ptot[W/Hz]) for the sample of GRGs are: 8.4±0.7 and 25.1±0.6, and for the smaller FRII radio galaxies sample 8.6±0.6 and 25.2±0.6, respectively. Also, the BH masses of DDGRGs are considered separately, it can be seen that there is no difference visiblebetweendouble-doubleand other radiogalaxies. Concluding, my resultsindicate thatgiant radiogalaxiesdo nothavelargerBH masses than smallerin size radiogalaxies.
11
10
9
8
7
6
5
log(Ptot1.4 GHz [W/Hz])
log (Mσ * [M⊙])
Figure 3.4: Relation between logarithms of Mσ∗ and total radio luminosity.
3.5 The evolution from Compact Steep Spectrum to Giant Radio Galaxies
To test the hypothesis that radio sources begin as very compact objects and then evolve tolargerandmorecomplexradiostructures(aspostulatedby evolutionary modelsof RSs e.g. Kaiser & Alexander 1997) and to verify processes of BH mass growth during
3.5 The evolution from Compact Steep Spectrum to Giant Radio Galaxies
11
10 9 8 7 6 5
log (Mσ * [M⊙]) log (Mσ * [M⊙])
log(Ptot1.4 GHz [W/Hz])
11
10 9 8 7 6 5
log(P1.4 GHz [W/Hz])
core
Figure 3.5: The dependence between logMσ∗ and total radioluminosity(toppanel), and core radioluminosity(bottompanel)for samples ofGRGs(solid circles),DDGRGs (solidtriangles), smallersizeDDRGs(solid upturned triangles) andCSS radiogalaxies (open triangles). The same notation is used in next two Figures.
this process, I collected additional samples of RGs. They contain CSS radio galaxies (5sources) takenfrom the sampledescribedby Czerny et al. (2009)andDDRGs(8 radio galaxies with small size and 7 giant radio galaxies) taken from the sample of Nandi & Saikia(2012)and otherpublicationslistedinTable C.4. The main selection criterion was the availability of their SDSS optical spectrum. The basic parameters of those classes of RSs are listed in Table C.4. Using the same methods as described in Section 3.2, I determined their BH masses, total and core radio luminosities and plotted them in Figure 3.5. I did not place small FRII radio galaxies (from Kozieł-Wierzbowska & Stasińska2011)inthegraphforthe sake of clarity(for comparison seeFigure 3.4). Itis seen that no any evolutionary behaviour in the Mσ∗ -Ptot plane can be seen. Young CSS radiogalaxieshaveBH with massessimilartotheseof oldGRGsconfirming my finding described earlier. This might suggest that there is no relation between BH masses and the linear size of RSs. However, the number of sources is small and future studies based on larger samples of different types of RGs are needed to test this hypothesis more reliably.
There are estimations of ages tRS for few objects from my sample in the literature. For fourCSS radiogalaxiesit wasdeterminedbased onthecontinuousinjection model(Myers & Spangler 1985, Carilli et al. 1991). This model assumes that a RS is continuously being supplied by a constant flow of relativistic particles. The ages of double-double, giant and smaller sizeFRII radiogalaxies weredetermined using theJaffe-Perola model (Jaffe & Perola 1973) which assumes single injection of particles with subsequent scattering in a pich angle. This method gives more precise results than the continuous injection modelfor extended radiolobes(Jamrozy et al. 2008). ForJ1247+6723CSS radiogalaxy instead of the synchrotron age,itskinematic age wasdeterminedbased on the measurement of the hot spot separation speed. The parameters derived for these sources are given in Table C.4.
In Figure 3.6 I plotted the log of linear size against logtRS. The trend that older radio sources have larger linear sizes can be noticed. It is consistent with studies of Murgia (2003),Parma et al. (1999)and Jamrozy et al. (2008). The number of radiogalaxiesin Figure 3.6 is very small due to the selection criteria which were used to complete the samples. The lack of optical spectroscopic data significantly cuts down the number of objects with available estimations of a radio source age.
The dependence between logtRS and logarithm of Mσ∗ is plotted in Figure 3.7. It can be seen that there is no clear relation between those parameters. This fact may suggest thatBH massesdo notgrow significantly during aRSlifetime(thisis also confirmedin Figure 3.5)orthatsuch a relationcanbedifferent atsubsequent evolutionaryphasesof RS. However, to verify this hypothesis, a larger sample of RSs with both homogeneous measurements of RS ages and spectroscopic data is required.
3.6 Stellar populations
The star formation history of a host galaxy is another aspect considered in my work. During modelling of agalaxy continuum usingtheStarlightSynthesisCode(seeSection 3.2.2), we can get an information what stellar population mixture in a particular
3.6 Stellar populations
100 10 1
tRS [Myr]
0.1
0.01
0.001
D [kpc]
Figure 3.6: The dependence between logtRS andlogarithm ofprojectedlinear size.
100 10 1
tRS [Myr]
0.1
0.01
0.001
log (Mσ* [M⊙])
Figure 3.7: The dependence between logtRS and logarithm of Mσ∗ .
galaxy is. It can be expressed by the light-fraction population vector xj whichgives the percentagefraction of agalaxy light(luminosity) which comesfrom stars of agiven age and metallicity(CidFernandes et al.2004). Iplotted thehistograms whichpresentthe age distribution of stellar populations expressed by xj in Figure 3.8. The histograms were generated for compact steep spectrum, giant and double-double radio galaxies for different metallicities from Z=0.005 to Z=2.5. The plotted xj vector is a mean value of light-fraction population vectors obtained for each object from the studied samples. The summarized light-fraction population vector Σxj (the sum of xj over all range of metallicity) is plotted in Figure 3.9. Double-double giant radio galaxies were included both in GRGs and DDRGs samples. It can be seen that the star formation histories for the studied objects are somewhat similar but there are also some differences.
Majority of starshave agesin two ranges: from1 to10Myr andfrom1 to11GyrinCSS radio galaxies. Most of them have low metallicities but also high metallicity stars are observedinthosetwo age ranges. InGRGsthesignificant numberof starshave advance ages with the medium and high metallicities and only a small fraction of young stars with low Z. In DDRGs a significant number of stars have ages in the whole range with low and high metallicities. The two maxima of stellar ages are also seen in 1-10 Myr and1-11Gyr ranges. Theolder stellarpopulationsmightberelated tothe cosmological epoch when the galaxy mergers were very frequent. Next, I compared the star formation histories with the radio activity phase. The approximated scales of a RS radio activity phase are marked in Figure 3.9. It can be seen that the metal poor young stellar populations were born at the time when radio emission occured. According to hydrodynamical simulations of jet propagation in an earlyphase of radio activity(before cocoon expansion), cold clouds are compressed and star formation increases, but later, when the cocoon has propagated, the temperature of clouds and the ISM increases and star formation quenches in a time of ∼2-3×1 Myr (Tortora 2009). This is due to higher temperature of clouds and ambient medium that increases the critical mass for gravitational collapse and increases the stripping outer regions of clouds due to instabilities. Such a scenario could explain larger number of young stars in the case of DDRGs and, to some extent, in GRGs, but not in CSS radio galaxies. Itisalsopossiblethatsomeearlierphasesof radioactivity werepresentduring the host galaxy life, but detection of such old radio structures is very difficult or even impossible due to very low radio luminosities of presumably old radio lobes. However, based on arguments listed above, drawing a conclusion that radio activity can trigger significantly the star formation in a galaxy may be somewhat exaggerated and requires further investigation.
3.6 Stellar populations
CSS RGs GRGs DDRGs
0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000
12
10
10
8
8
xj [%] xj [%] xj [%] xj [%] xj [%]
xj [%] xj [%] xj [%] xj [%] xj [%]
6
4
4
2
2
0
0
0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000
12
12
10
10
8
8
6
4
4
2
2
0
0
0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000
12
12
10
10
8
8
6
4
4
2
2
0
0
0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000
12
12
10
10
8
8
6
4
4
2
2
0
0
0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000
12
10
10
8
8
6
4
4
2
2
0
0
0.1 1 10 100 1000 10000 0.1 1 10 100 1000 10000 t [Myr] t [Myr] t [Myr]
xj [%] xj [%] xj [%] xj [%] xj [%]
Figure 3.8: Age distribution of the light fraction xj population vector for different metallicities and different types of RSs: left panel: CSS radio galaxies, middle panel: GRGs, right panel: DDRGs.
CSS RGs GRGs DDRGs
12
12
10
10
Σ xj [%]
8
6 8
6
4 4 4
2 2 2
0 0
0t [Myr]t [Myr] t [Myr]
Figure 3.9: The agedistribution shown as summarizedlight-fractionpopulation vector Σxj.
3.7 Results
Inthis sectionIpresented the comparisonbetween radio and opticalproperties ofgiant and smallersizeFRII typeradiogalaxies. Icanconcludetheobtained resultsasfollows:
1.
ThedistributionofGRGsand smallersizeFRII radiogalaxiesonthe P-D planeis consistent with predictions of RS evolutionary models. According to them, GRGs have evolved out of smaller RGs.
2.
I did not find any correlation between BH masses and the total radio luminosities as well as the linear size of radio structures. The distribution of Mσ∗ and Ptot are the same for both considered samples of RGs. The relation between BH masses and thelinear size of radio structures, similar to that observedforRQs, is not seen for RGs. If we assume that the origin of such a relation may be due to different composition of BLR in giant and smaller-size RSs, we should not expect to see it in radiogalaxies. TheMσ∗ estimations for the latter are based on velocity dispersion measurements andthey should notbe related toBLRpropertiesin any aspect.
3.
The correlation between the synchrotron age and the projected linear size of RGs (with sizes from few kiloparsecs up to megaparsec scales) exists, in accordance with earlier studies. I did not find any significant correlation between tRS and Mσ∗. This may suggest that BH mass does not grow during RSs lifetime or that such a relation can be different atvariousevolutionaryphasesof radiosources. However, asmall number of objectsforwhichboth theageestimations and spectroscopicdataare available, does not allow for a firm conclusion.
3.7 Results
4.
TheDDRGsdonot constituteadistinctgroup ofAGNs. All measuredparameters are comparable with those obtained for other radio sources. This suggests that theirhosts are very similartothose of otherRGs withthe exception ofthe recurrent radio activity phenomenon.
5.
The analysis of stellarpopulationsinCSS,giant anddouble-double radiogalaxies shows that star formation histories of GRGs were different than these for CSS radiogalaxies andDDRGs. Thehostgalaxies ofGRGs mainly consist of old stars with high metallicities.
Chapter 4
Comparison of radio quasars and radio galaxies
In the next step, a comparison of properties of giant radio quasars and giant radio galaxies based on obtained results was done. Despite of the fact that methods used for determinationofparameterspresentedinthisthesis(i.e. BH massvalues) weredifferent for both classes of giants, such a comparison could be meaningful as these methods are considered to be the most accurate for each class of objects.
4.1 Radio properties
Some authors (e.g. Kaspi et al. 2005) have suggested that giants should have more prominent cores, as stronger nuclear activity is necessary to produce larger linear sizes of their radio structure. Ishwara–Chandra & Saikia (1999) attempted to verify this hypothesis for giant size radio galaxies by plotting a diagram of the core prominence, fc, which is the ratio of the core luminosity to the total luminosity of a radio source, but they did not find giants to have more prominent cores. I plotted a similar diagram for samples of giant radio galaxies, giant radio quasars and radio quasars from the comparisonsample(seeFigure 4.1)andI arrived toa similarconclusion. Such aresult is in agreement with the existence of the core luminosity-total luminosity correlation visible in Figure 4.1 where smaller RSs have more luminous cores but also larger total luminosities than GRSs.
I also investigated the asymmetries of radio structures in both giant radio quasars and galaxies samples. It is well known that a non-uniform environment (i.e. non-uniform density on both sides of the core) can be one of the factors underlying radio structure
53
fc
log(P1.4 GHz [W/Hz])
core
1
0.1
0.01
log(Ptot1.4 GHz [W/Hz])
28 27 26 25 24 23 22
log(Ptot1.4 GHz [W/Hz])
Figure 4.1: Toppanel: coreprominenceagainsttotalradioluminosity. Bottompanel: core radio luminosity versus the total radio luminosity for RQs. A strong correlation is visible. Black colour: solid and open circles correspond to GRQs and smaller size RQs respectively,thehalf solid circledenotesQSOJ1623+3419(asinFigure 2.2);red colour: solid circles represent GRGs while solid triangles -DDGRGs. Such a notation is used in all Figures throughout this chapter.
asymmetries, which canbedescribedby the arm-length ratio Q(e.g.Scheuer1995). The distribution ofthisparameterforgiantand smaller sizeRQsfrom the comparison sample ispresentedinFigure 4.2 (toppanel). IfoundthatGRQs seemtobe more symmetric than smallerRQs(there were noGRQs with Q>2.4 in my sample). However, the mean values of the Qparameter for GRQs and for the comparison sample are 1.41±0.36 and 1.65±0.61, respectively. Taking into account large uncertainties of the obtained values
4.1 Radio properties
of the Q parameter, no statistically significant conclusion about differences in radio structures morphology between giant radio quasars and galaxies can be drawn based on the investigated samples. This indicates that GRQs and smaller sources evolve in a similar IGM. I also compared GRQs arm length ratios with those obtained for GRGs (bottom panel in Figure 4.2). The distribution of the Q parameter is very similar for both samples. The mean value for all GRSs is equal to 1.41 ± 0.36, exactly the same as the one computed for GRQs. My results agree well with those of Ishwara–Chandra &Saikia (1999), whofoundthatthemeanvalueoftheQ parameter for GRSs is 1.39;
�
Q�
for a comparison sample based on smaller 3CR sources they obtained a smaller Qvalue of 1.19.
Determination of values of the bending angle B and the lobe flux-density ratio F gives a similar result for both samples of quasars, with mean values of B=7◦ .4 ± 5◦ .89, F=1.45±1.16 and B=8◦ .5±7◦ .31, F=2.28±5.53 for GRQs and the comparison sample, respectively. Themeanvaluesof thebending angleand thelobe flux-density ratioforall giant radio sources(galaxies andquasars) are: B=6◦ .9± 6◦ .03 and F=1.13±0.89. The distributions of B and F for GRSs are presented in Figure 4.3. The obtained results show,thatthere arenoany significantdifferencesintheenvironmentalpropertiesof the IGM within which giant and smaller size RSs evolve. No significant differences among
�
F�
4.1 Radio properties
Q, B, F parameters between the samples of giant radio quasars and galaxies can also be noticed.
Furthermore,I checked thedistribution of theinclination angle(seeFigure 4.4) of objects analysed in this work. I found, that for the sample of RQs, most objects have inclinations between 60o and 90o . This result is inconsistent with the models of the AGN unification scheme,in which,following Urry&Padovani (1995),theinclination anglesforQSOshave valuesbetween0o−45o . In those objects with an inclination angle larger than 45o,thebroad-line region shouldbepartially ortotally obscuredby adusty
�
i [�O�]�
torus and the broad emission lines should not be as prominent as we observe in the spectra from the QSO sample. A plausible explanation of the observed distribution of inclinationsisthatthere couldbe nodusty torusin someAGNs(Elitzur2008) orthat we aredealing witha clumpy or receding torus(i.e. Nenkova et al. 2008),thusbroad emission lines can be observed even in QSOs with high inclinations. The most asymmetric radio structure is observed in the quasar J1623+3419 which has the inclination angle of i=13o . Such a small value suggests that, more properly, it should be classified as a blazar. Further observations are needed to confirm whether its observed radio structure is actually related to a unique radio source. Contrary to that for giant radio quasars, the distribution of inclinations of giant radio galaxies is consistent with the AGN unification scheme.
4.2 Black hole masses vs. radio properties
The dependence between BH mass and the projected linear size is presented in Figure
4.5. I obtained similar mean values of log(MBH[M⊙]) for GRSs and the comparison samples equal to 8.51 ± 0.54 and 8.59 ± 0.49, respectively. It can also be seen that BH masses of RGs span over a wider range of values. This could be a result of uncertainties introduced by the BM mass determination method as the mass scaling relations are less accurate than the the M-σ∗ method.
11
10
9
8
7
6
5
D [Mpc]
log(MBH [M⊙])
Figure 4.5: Dependence between BH masses and projected linear sizes in the logarithmicscale. Red opencirclesrepresent smallerFRII radiogalaxies.Meaning of other symbols is the same as in Figure 4.1.
4.2 Black hole masses vs. radio properties
Figure 4.6 presents the dependence between BH masses and total as well as core radio luminosities. The core radio luminosities were not available for sample of smaller size FRII radio galaxies and therefore they are not shown in this graph. There are no any dependence visible between radio luminosities and BH masses.
log(MBH [M⊙]) log(MBH [M⊙])
11
10 9 8 7 6 5
11
10 9 8 7 6 5
log(Ptot[W/Hz])
log(P[W/Hz])
core
Figure 4.6: The dependence between BH masses and total radio luminosities (top panel), and coreradioluminosities(bottompanel) inlogarithmscalesforQSOsand RGs.
Finally, looking at the dependence between BH mass and redshift for samples of RSs studiedinthischapter(Figure 4.7),onecanseethatthereisa tendency of aBH mass moderategrowth with cosmictimefromz=2 to z=0.5 and thenitsdeclinetowards z=0. TheproblemofBH massgrowth wasinvestigatedby anumberof authors(e.g. Trakhtenbrot & Netzer 2012). They studied large samples of optically selected objects. As a result, usually they obtained that BH masses increase with redshift to an upper limit of about ∼ 1010M⊙ (at z∼2) and then remain at the same level. Such a trend could be strongly biased by selection effects arising from flux-limited samples. From my analysis performed for samples of giant and smaller size radio sources, I have obtained a similar result for RGs but an opposite one for RQs, for which BH masses tend to decrease with redshift. Such a behaviour obtained for RQs may be a result of the single epoch virial method used for their BH mass determination. Due to its large uncertainties, the observedbehaviour couldbejust spurious.
11
10
9
8
7
6
5
z
log(MBH [M⊙])
Figure 4.7: The relation between log MBH and redshiftforQSOs andRGs.
4.3 Results
1.
There is no evidence that giant radio sources have more prominent radio cores, which could suggest that giants are similar to smaller objects if we take into ac-count their energetics at radio wavelengths.
2.
Thearm-length ratioandbending-anglevaluesforgiant radiogalaxies,giantradio quasars and smaller size RQs are all similar. This indicates that there is no significant difference of the environmental properties of the IGM within which giant and smaller RSs evolve.
4.3 Results
3.
Statistically,theinclinationanglesobtainedforthesamplesofquasarsstudiedhere are inconsistent with the traditional AGN unification scheme. Inclinations larger than45o could,however,be explainedbased on recent resultsfrom studies ofdusty tori properties. The inclinations obtained for sample of giant radio galaxies have the same distribution as that for giant radio quasars. Therefore, the distribution of i for GRGs is in a good agreement with the unification scheme.
4.
TheBH massesofgiant radioquasarsandgalaxiesderived usingdifferent methods are comparable. Some bias between mass estimations is obvious but it does not qualitatively change the obtained results.
5.
The similarities ofparameters obtainedforgiant radioquasars andgalaxies allow to consider them as the same class of objects wheninvestigatingproperties of their extended radio structure.
6.
It should be mentioned that in such studies, lack of spectroscopic data is a severe limitation. Thisfactrestrictsthesample ofGRSsonly tothebrightest onesinthe optical band. Also the investigations are limited to relatively nearby galaxies due to detection limits of radio and optical surveys.
Chapter 5 Conclusions
InthisthesisIhaveinvestigatedpossible reasons why some radiogalaxieshavegigantic size of their radio structures. Especially I checked if central engines of GRGs are more powerful than that in smaller size radio sources. This was done by investigating the properties of host galaxies in these sources, including the black hole masses. Other possible models of GRSs origin were also considered, such as environment properties inwhichjetspropagateaswell asradiosourcesages. Toachievethegoals, samplesof giant quasars and giant galaxies were collected. The new sample of giant radio quasars is the largest one known to date. Except for 23 already known, it contains also 24 newly recognised giants. The direct and indirect relations between host galaxies and their radio properties were investigated. By comparing BH masses and accretion rates with total and coreradioluminosities, sizes of radiostructuresand(in some cases) their ages, it was possible to characterize qualitatively the significance of the central engine in generation of gigantic radio structures.
In summary, taking into account the optical and radio properties, I can conclude that exceptfor the size of radio structures,giant radio sources are similar to smaller size radio sources in any other aspect. In particular, their BH masses are comparable to those of smaller radio sources and in case of giant radio quasars, also accretion rates are not significantly differentthanthatof smallerones. Idid not find any significantcorrelation between the BH masses and radio luminosities of objects considered. It rather seems that theBH massis not related to radio activity andits recurrency. Accordingto several studies on BH mass evolution with cosmic time, the masses have grown much earlier than the observed radio activity phase occured. Therefore, even if a BH mass has had some influence on an object radio emission -the relation between these parameters can be hard to detect at present.
63
The distribution of arm-length ratios and bending-angle values for both radio quasars andgiant radiogalaxies samples are very similar. Thatindicatesthatthereis no significantdifferencesin environmentalpropertiesof theIGM within whichgiant and smaller radio sources evolve. Of course, moreprecise studies ofIGM(when estimations ofIGM density and pressure could be provided) may give more accurate results.
Summing up, the results of my analysis indicate that the giants are evolved (aged) radio sources and thattheirhostgalaxyproperties are very similarto smaller size radio sources. The properties of environment may play only a minor role in the formation of large-scale radio structures. The only property different for giants and other radio sourcesis the composition of their stellarpopulation. GRSshave relativelylarge number of old stars with solar-like metallicity. Thisgives somehintsthatthehostgalaxy stellar formation history, and not properties of the central engine, may be a key factor to distinguish giants from other radio sources.
The results obtained in this work can be used as a base in new studies of radio sources in the future. Firstly, the sample of giant radio quasars can be used for other astrophysical investigations e.g. studies of the evolution of individual radio sources. Also the interesting fact is the recurrent radio activity. There is a relatively large number of double-double giant radio sources. This fact indicates that the recurrence phenomenon may bepresentin majority ofGRSs,buthigh resolution andlowfrequency radio observations are needed to confirm this hypothesis. According to the results obtained in this work, it is necessary to provide a detailed analysis of a galaxy formation history. Also through multifrequency analysis of giant radio sources, the global view of a host galaxy and radio source physics can be provided. Such studies can be crucial to give the final answer why some of RSs have very large sizes.
Bibliography
Abramowicz M.A., Fragile P.C., 2013, LRR, 16, 1
Adelman-McCarthy J.K., et al., 2008, ApJS, 175, 297
Alexander P., Leahy J.P., 1987, MNRAS, 225, 1
An T., Baan W.A., 2012, ApJ, 760, 77
Antonucci R.R.J., 1993, ARA&A, 31, 473
Arshakian T.G., Longair M.S., 2004, MNRAS, 351, 727
Asari N.V., Cid Fernandes R., Stasińska G., Torres-Papaqui J.P., Mateus A., Sodre L. Jr., Schoenell W., Gomes J.M., MNRAS, 2007, 381, 263
Baum S.A., Heckman T., 1989a, ApJ, 336, 681
Baum S.A., Heckman T., 1989b, ApJ, 336, 702
Baum S.A., Zirbel E.L., O’Dea C.P., 1995, ApJ, 451, 88
Becker R.H., White R.L., Helfand D.J., 1995, ApJ, 450, 559
Becker et al., 2000, ApJ, 538, 72
BeckerR.H.,WhiteR.L.,GreggM.D., Laurent-MuehleisenS.A., et al.,2001, ApJS,135,
Best P.N., Bailer D.M., Longair M.S., Riley J.M., 1995, MNRAS, 275, 1171 Best P.N., Kauffmann G., Heckman T.M., Ivezic Z., 2005, MNRAS, 362, 9 Bhatnagar S., Krishna G., Wisotzki L., 1998, MNRAS, 299, 25 Bianchi S., Schneider R., 2007, MNRAS, 378, 973 Blandford R.D., Znajeck R., 1977, MNRAS, 179, 433 Blundell K.M., Rawlings S., Willott C.J., 1999, AJ, 117, 677
65
Bock D.C.-J., Large M.I., Sadler E.M., 1999, AJ, 117, 1578 Bondi H., 1952, MNRAS, 112, 195 Boroson T.A., Green R.F., 1992, ApJS, 80, 109 Bowen D.V., et al., 2006, ApJ, 645, 105 Bridle A.H., Perley R.A., 1984, ARAA, 22, 319 Brotherton M.S., De Breuck C., Schaefer J.J., 2006, MNRAS, 372, 58 Brown M.J.I., Webster R.L., Boyle B.J., 2001, AJ, 121, 2381 Bruzual G., Charlot S., 2003, MNRAS, 344, 1000 Buttiglione S., et al., 2010, A&A, 509, 6 Carilli C.L., Perley R.A., Dreher J.W., Leahy J.P., 1991, ApJ, 383, 554 Cattaneo A., Best P.N., 2009, MNRAS, 395, 518 Celotti A., Fabian A.C., 1993, MNRAS, 264, 228 Cid Fernandes R., GuQ., Melnick J., Terlevich E., Terlevich R., Kunth D., Rodrigues
L.R., Joguet B., 2004, MNRAS, 355, 273 Cid Fernandes R., Mateus A., Sodr´e L., Stasińska G., Gomes J.M., 2005, MNRAS, 358,
Ciliegi P., et al., 1999, MNRAS, 302, 222 Cirasuolo M., Magliocchetti M., Celotti A., Danese L., 2003, MNRAS, 341, 993 Cohen R.D., Osterbrock D.E., 1981, ApJ, 243, 81 CondonJ.J.,CottonW.D.,GreisenE.W.,YinQ.F.,PerleyR.A.,TaylorG.B.,Broderick
J.J., 1998, AJ, 115, 1693
Corbin M.R., 1992, ApJ, 391, 577
Cotter G., Rawlings S., Saunders R., 1996, MNRAS, 281, 1081
Czerny B., Różańska A., Kuraszkiewicz J., 2004, A&A, 428, 39
Czerny B., Siemiginowska A., Nikiel-Wroczyński B., Stawarz Ł., 2009, ApJ, 698, 840
Czerny B., Hryniewicz K., 2011, A&A, 525, 8
Davidson K., Netzer H., 1979, RevMP, 51, 715
BIBLIOGRAPHY
Decarli, R., Labita, M., Treves, A., Falomo, R., 2008, MNRAS, 387, 1237 Dietrich M., Mathur S., Grupe D., Komossa S., 2009, ApJ, 696, 1998 Djorgovski S.G., 1991, ASPCS, 21, 349 Djorgovski S.G., 1999, ASPCS, 193, 397 Djorgovski S., Thompson D.J., Vigotti M., Grueff G., 1990, PASP, 102, 113 Djorgovski S G., Odewahn S.C., Gal R.R., Brunner R.J., de Carvalho R.R., 1999, AS
PCS, 191, 179 Dunlop J.S., McLure R.J., Kukula M.J., Baum S.A. O’Dea C.P. Huges D.H., 2003,
MNRAS, 340, 1095
Elitzur M., 2008, NewAR, 52, 274
Elvis M., Marengo M., Karovska M., 2002, ApJ, 567, 107
Erlund M.C., Fabian A.C., Blundell K M., 2008, MNRAS, 386, 1774
Fanaroff B.L., Riley J.M., 1974, MNRAS, 167, 31
Ferrarese L., Merritt D., 2000, ApJ, 539, 9
Gebhardt K., et al., 2000, ApJ, 539, 13
Ghisellini G., Tavecchio F., 2008, MNRAS, 387, 1669
Gopal-Krishna, Wiita P.J., Saripalli L., 1989, MNRAS, 239, 173
Gopal-Krishna, Wiita P.J., 2000, A&A, 363, 507
Graham A.W., et al., 2011, MNRAS, 412, 2211
Grandi S.A., Osterbrock D.E., 1978, ApJ, 220, 783
Gregg M.D., Becker R.H., White R.L., Helfand D.J., McMahon R.G., Hook I.M., 1996,
AJ, 112, 407
Gregg M.D.,Becker R.H., Vries W., 2006, ApJ, 641, 210
Guimaraes R., et al., 2007, MNRAS, 377, 657
G¨ultekin K., et al., 2009, ApJ, 698, 198
Hennawi J F., et al., 2010, ApJ, 719, 1672
Hennawi J.F., et al., 2006, AJ, 131, 1 Hewett P.C., Foltz C.B., Chaffee F.H., 2001, AJ, 122, 518 Hewett P.C., Foltz C.B., 2003, AJ, 125, 1784 Hine R.G., 1979, MNRAS, 189, 527 Hintzen P., Ulvestad J., Owen F., 1983, AJ, 88, 709 Ho L.C., 2002, ApJ, 564, 120 Hocuk S., Barthel P.D., 2010, A&A, 523, 9 Hopkins P.F., Hernquist L., Cox T J., Kere, D., 2008, ApJS, 175, 356 Ishwara-Chandra C.H., Saikia D.J.,1999, MNRAS, 309, 100 Ivezic, M.J., et al., 2002, AJ, 124, 2364 Jaffe W.J., Perola G.C., 1973, A&A, 26, 423 Jamrozy M., Konar C., Machalski J., Saikia D.J., 2008, MNRAS, 385, 1286 Jamrozy M., Konar C., Saikia D.J., Machalski J., 2009, ASPCS, 407, 137 Jamrozy M., Saikia D.J., Konar C., 2009, MNRAS, 399, 141 J¨agersW.J.,MileyG.K., vanBreugelW.J.M.,SchilizziR.T.,ConwayR.G., 1982, A&A,
105, 278
J¨agers W.J., 1987, A&AS, 71, 75
Jiang L., et al., 2007, ApJ, 656, 680
Jiang L., et al., 2010, Nat., 464, 380
JoshiS.A., NandiS.,SaikiaD.J.,Ishwara-ChandraC.H., KonarC.,2011, MNRAS.414.
1397
Kaiser C.R., Alexander P., 1997, MNRAS, 286, 215
Kaiser C.R., Best P.N., 2007, MNRAS, 381, 1548
Kaiser C.R., Dennett-Thorpe J., Alexander P., 1997, MNRAS, 292, 723
Kapahi, V.K., 1989, AJ, 97, 1
KaspiS., SmithP.S.,Netzer H., Maoz D., JannuziB.T.,Giveon U., 2000, ApJ,533, 631
KaspiS.,Maoz D., Netzer H., Peterson B.M., Vestergaard M., JannuziB.T., 2005, ApJ,
629, 61
BIBLIOGRAPHY
Kaspi S., Brandt W.N., Maoz D., Netzer H., Schneider D.P., Shemmer O., 2007, ApJ, 659, 997
King A.R., Pringle J.E., 2006, MNRAS, 373, 90
Kirkman D., Tytler D., 2008, MNRAS, 391, 1457
Komberg B.V., Pashchenko I.N., 2009, ARep, 53, 1086
Konar C., Saikia D.J., Jamrozy M., Machalski J., 2006, MNRAS, 372, 693
Kormendy J., Richstone D., 1995, ARA&A, 33, 581
Kozieł-Wierzbowska D., Stasińska G., 2011, MNRAS, 415, 1013
Krolik J.H., Begelman M.C., 1988, ApJ, 329, 702
Kuligowska E., 2007, Master Thesies “Search for giant size radio galaxies at large red-shift”, Jagiellonian University
Kuligowska E., Jamrozy M., Kozieł-Wierzbowska D., Machalski J., 2009, AcA, 59, 431
Kuźmicz, A., Kuligowska, E., Jamrozy, M., 2011, AcA, 61, 71
Labiano A., 2008, A&A, 488, 59
Lacy M., Laurent-Muehleisen S.A., Ridgway S.E., Becker R.H., White R.L., 2001, ApJ, 551, 17
Laing R.A., 1988, Nat., 331, 149
Laing R.A., Riley J.M., Longair M.S., 1983, MNRAS, 204, 151
Laor A., 2000, ApJ, 543, 111
Laor A., 2003, ApJ, 590, 86
Lara L., Marquez I., Cotton W.D., Feretti L., Giovannini G., Marcaide J.M., Venturi T., 2001, A&A, 378, 826
Laskar T., Fabian A.C., Blundell K.M., Erlund M.C., 2010, MNRAS, 401, 1500
Law-Green J.D.B., Eales S.A., Leahy J.P., Rawlings S., Lacy M., 1995, MNRAS, 277,
Ledlow M.J., Owen F.N., & Keel W.C., 1998, ApJ, 495, 227 Lin Y., Shen Y., Strauss M.A., Richards G.T., Lunnan R., 2010, ApJ, 723, 1119 Liu R., Pooley G., Riley J.M., 1992, MNRAS, 257, 545 Liu F.K., Zhang Y.H., 2002, A&A, 381, 757
Machalski J., Jamrozy M., Zoła S., 2001, A&A, 371, 445
Machalski J., Jamrozy M., 2006, A&A, 454, 95
Machalski J., Jamrozy M., Zoła S., Kozieł D., 2006, A&A, 454, 85
Machalski J., Kozieł-Wierzbowska D., Jamrozy M., 2007, AcA, 57, 227
Machalski J., Chyży K.T., Stawarz Ł., Kozieł D., 2007, A&A, 462, 43
Machalski J., Koziel-Wierzbowska D., Jamrozy M., Saikia D.J., 2008, ApJ, 679, 149
Machalski J., Jamrozy M., Saikia D.J., 2009, MNRAS, 395, 812
Machalski J., Jamrozy, M., Stawarz Ł., Kozieł-Wierzbowska, D., 2011, ApJ, 740, 58
Mack K.H., Klein U., O’Dea C.P., Willis A.G., 1997, A&AS, 123, 423
Magorrian J., et al., 1998, AJ, 115, 2285
Marconi A., Risaliti G., Gilli R., Hunt L.K., Maiolino R., Salvati M., 2004, MNRAS, 351, 169
Marziani P., Zamanov R.K., Sulentic J.W., Calvani C., 2003, MNRAS, 345, 1133
Mathur S., 2000, MNRAS, 314, 17
McGilchrist M.M., Baldwin J.E., Riley J.M., Titterington D.J., Waldram E.M., Warner P.J., 1990, MNRAS, 246, 110
Morganti R., Tadhunter C.N., Dickson R., Shaw M., 1997, A&A, 326, 130
McLure R.J., Dunlop J.S., 2002, MNRAS, 331, 795
McLure R.J., Jarvis M.J., 2004, MNRAS, 353, 45
Meier D.L., 1999, ApJ, 522, 753
Merloni A., Heinz S., 2008, MNRAS, 388, 1011
Metcalf R. B., Magliocchetti M., 2006, MNRAS, 365, 101
Miyoshi M., et al., 1995, Nat., 373, 127
Murgia M., 2003, PASA, 20, 19
Myers S.T., Spangler S.R., 1985, ApJ, 291, 52
Nandi S., Saikia D.J., 2012, BASI, 40, 121
BIBLIOGRAPHY
Nenkova M., Sirocky M.M., Nikutta R., Ivezic, Z., Elitzur, M., 2008, ApJ, 685, 160 Netzer H., 2006, LNP, 693, 1 Netzer H., Lira P., Trakhtenbrot B., Shemmer O., Cury I., 2007, ApJ, 671, 1256 Nilsson K., 1998, A&AS, 132, 31 Onken C. A., et al., 2007, ApJ, 670, 105 Oshlack A., Webster R., Whiting M., 2002, ApJ, 576, 81 Parma P., de Ruiter H.R., Mack K.H., van Breugel W., Dey A., Fanti R., Klein U.,
1996, A&A, 311, 49 Parma P., Murgia M., Morganti R., Capetti A., de Ruiter H. R., Fanti R., 1999, A&A,
344, 7
Peterson B.M., 1993, PASP, 105, 207
Peterson B.M., et al., 2004, AJ, 613, 682
Peterson B.M., Wandel A., 2000, ApJ, 540, 13
Punsly B., 2006, ApJ, 647, 886
Rawlings S., Saunders R., Eales S.A., Mackay C.D., 1989, MNRAS, 240, 701
Rawlings S., Saunders R. 1991, Nature, 349, 138
Reichard T.A., et al., 2003, AJ, 125, 1711
Rengelink R.B., TangY., deBruynA.G., Miley G.K., Bremer M.N., R¨ottgering H.J.A.,
Bremer M.A.R., 1997, A&AS, 124, 259
Riley J.M., Warner P.J.,1990, MNRAS, 246, 1
Sadler E.M., et al., 2007, MNRAS, 381, 211
Saikia D.J., Konar C., Kulkarni V.K., 2006, MNRAS, 366, 1391
Saikia D.J., Kulkarni V.K., 1994, MNRAS, 270, 897
Saikia D.J., Jamrozy M., 2009, BASI, 37, 63
Saripalli L., Hunstead R.W., Subrahmanyan R., Boyce E., 2005, AJ, 130, 896
Scheuer, P.A.G., 1995, MNRAS, 277, 331
Schoenmakers A.P., et al., 1998, A&A, 336, 455
Schoenmakers A.P., 1999, PhD-thesis “A population of Giant Radio Galaxies”, Utreht University
Schoenmakers A. P., de Bruyn A. G., R¨ottgering H. J. A., van der Laan H., Mack K.H., Kaiser C. R., 2000, Proc. Perspectives on Radio Astronomy: Science with Large Antenna Arrays, 165
Schoenmakers A.P., Mack K.-H., de Bruyn A.G., Rottgering H.J.A., Klein U., van der Laan H., 2000, A&AS, 146, 293
Schoenmakers A.P., de Bruyn A.G., R¨ottgering H.J.A., van der Laan H., 2001, A&A, 374, 861
Sedlmayr E., 1997, Ap&SS, 251, 103
Shakura N.I., Syunyaev R.A., 1973, A&A, 24, 337
ShankarF., Salucci P., Granato G.L., De Zotti G., Danese L., 2004, MNRAS, 354, 1020
Shankar F., Cavaliere A., Cirasuolo M., Maraschi L., 2008, ApJ, 676, 131
Shankar F., Sivakoff G.R., Vestergaard M., Dai X., 2010, MNRAS, 401, 1869
ShenY., GreeneJ.E., StraussM.A., RichardsG.T., SchneiderD.P., 2008, ApJ,680, 169
Silk J., Rees M., 1998, A&A, 331, 1
Sikora M., Stawarz Ł., Lasota J.-P., 2007, ApJ, 658, 815
Snellen I.A.G., Lehnert M.D., Bremer M.N., Schilizzi R.T., 2003, MNRAS, 342, 889
Spergel D.N., et al., 2003, ApJS, 148, 175
Steidel C.S., Sargent W.L.W., 1991, ApJ, 382, 433
Subrahmanyan R., Saripalli L., Safouris V., Hunstead R. W., 2008, ApJ, 677, 63
Tolea A., Krolik J.H., Tsvetanov Z., 2002, ApJ, 578, 31
Tortora C., Antonuccio-Delogu V., Kaviraj S., Silk J., Romeo A.D., Becciani U., 2009, MNRAS, 396, 61
Trakhtenbrot B., Netzer H., 2012, MNRAS, 427, 3081
Tran H. D., 2003, ApJ, 583, 632
Tremaine S. et al., 2002, ApJ, 574, 740
Tristram K.R.W., et al. 2007, A&A, 474, 837
BIBLIOGRAPHY
Trump J.R., et al., 2006, ApJS, 165, 1 Veron-Cetty M.-P., Joly M., Veron P., 2004, A&A, 417, 515 Vestergaard M., 2004, ApJ, 601, 676 Vestergaard M., Osmer P., 2009, ApJ, 699, 800 Vestergaard M., Pterson B.M., 2006, ApJ, 641, 689 Vestergaard M., Wilkes B.J., 2001, ApJS, 134, 1 Volonteri M., Begelman M.C., 2010, MNRAS, 409, 1022 de Vries W.H., Becker R.H., White R.L., 2006, AJ, 131, 666 Urry C.M., Padovani P., 1995, PASP, 107, 803 Wang J.M., Ho L.C., Staubert R., 2003, A&A, 409, 887 Wardle J.F.C., Aaron S.E., 1997, MNRAS, 286, 425 Weymann R.J., Morris S L., Foltz C.B., Hewitt P.C., 1991, ApJ, 373, 23 Weymann R.J., 2002, ASPC, 255, 329 White R.L., Becker R.H., 1992, ApJS, 79, 331 White R.L., et al., 2000, ApJS, 126, 133 Wilhite B.C., Brunner R.J., Schneider D.P., Vanden Berk D.E., 2007, ApJ, 669, 791 Willis A.G., Strom R.G., Wilson A.S., 1974, Nat., 250, 625 Willott C.J., Rawlings S., Blundell K.M., Lacy M., 1999, MNRAS, 309,1017 Woo J-H., Urry M., 2002, ApJ, 581, 5 Zier C., Biermann P.L., 2002, A&A, 396, 91 Zirbel E.L., Baum S.A., 1995, ApJ, 448, 521 Zirbel E.L., 1997, ApJ, 476, 489 Zhang J.S., Fan J.H., 2003, ChJAA, 3, 415
Abbreviations
AI Absorption Index
AGN Active Galactic Nuclei
AIPS Astronomical Image Processing System
BAL Broad Absorption Line
BH Black Hole
BI Balnicity Index
BLR Broad Line Region
BLRG Broad Line Radio Galaxy
CMB Cosmic Microwave Background
CSS Compact Steep Spectrum Object
DDGRG Double-Double Giant Radio Galaxy
DDRG Double-Double Radio Galaxy
DDRS Double-Double Radio Source
DSS Digital Sky Survey
FIRST Faint Images of the Radio Sky at Twenty centimetres
FRI Fanarof Riley type I
FRII Fanarof Riley type II
FWHM Full Width at Half Maximum
GRG Giant Radio Galaxy
GRQ Giant Radio Qasar
GRS Giant Radio Source
IGM Inter Galactic Medium
ISM Inter Sellar Medium
INT Isaak Newton Telescope
IRAF Image Reduction Analysis Facility
75
NLR Narrow Line Region NLRG Narrow Line Radio Galaxy NVSS NRAO VLA Sky Survey QSO QuasiStellar Object RG Radio Galaxy RQ Radio Qasar RS Radio Source SDSS Sloan Didital Sky Survey SMBH Super Masive Black Hole
Appendix A
Parameters of GRQs
This appendix presents the samples of GRQs and smaller-size RQs (Tables A.1, A.2
respectively). The description of the columns is as follows:
Column 1: J2000.0 IAU name.
Column 2 and Column 3: J2000.0 rightascension anddeclination of thecentralposition
of the optical quasar.
Column 4: Redshift of the host object.
Column 5: Angular size in arcmin.
Column 6: Projected linear size in Mpc.
Column 7: Availability of thespectrumfromtheSDSS survey(S),orprovidedbyWhite
(W);availability of radio mapsfromNVSS orFIRST(N orF, respectively).
Column 8: References to the identified object.
In next tablesIlisted the measured and calculatedparameters of sourcesfromboth samples(Tables A.9,A.3,A.5,A.7 forGRQs andTables A.10,A.4,A.6,A.8 for comparison
sample of RQs). The objects for which there was any of the calculated parameters were
removed from Tables.
InTables A.3 and A.4 -parametersof theoptical spectra(Section 2.3.3):
Column 1: J2000.0 IAU name.
Column 2: FWHM of broad emission line.
Column 3, 4, 5: Flux in the rest frame at wavelength λ equalto1350˚Aand
A, 3000˚5100˚
Arespectively.
77
Column 6, 7, 8: Monochromatic continuumluminosity wavelength1350˚Aand
A, 3000˚5100˚
Arespectively.
InTables A.5 and A.6 -opticalluminositiesand accretionrates(Section 2.7):
Column 1: J2000.0 IAU name.
Column 2, 3, 4: Logarithmofbolometricluminosity atwavelength1350˚Aand
A, 3000˚5100˚
Arespectively. Column 5, 6, 7: Logarithm of Eddington luminosity estimated using CIV, MgII, Hβ emission lines. Column 8, 9, 10: Accretion rate.
InTables A.7 and A.8 -computedBH masses(Section 2.3.3)
Column 1: J2000.0 IAU name.
Column 2, 3, 4: BH masses estimated using CIV, MgII, Hβ emission lines.
In Tables A.9 and A.10 I placed radio data described in Section 2.2:
Column 1: J2000.0 IAU name.
Column 2: Logarithm of total radio power.
Column 3: Logarithm of core radio power.
Column 4: Bending angle.
Column 5: Arm-length ratio.
Column 6: Flux-density ratio.
Column 7: Inclination.
Table A.1: List ofgiant-size(> 0.72 Mpc) radio quasars.
IAU α(J2000.0) δ(J2000.0) z d D Avail. Ref.
name (hm s) (o ’ ”) arcmin Mpc Data
(1) (2) (3) (4) (5) (6) (7) (8)
J0204−0944 02 04 48.29 −09 44 09.5 1.004 6.035 2.914 S,N,F 1
J0210+0118 02 10 08.26 +01 18 42.3 0.870 2.618 1.214 W,N,F 1
J0313−0631 03 13 32.88 −06 31 58.0 0.389 3.090 0.973 S,N 2
J0439−2422 04 39 09.20 −24 22 08.0 0.840 1.960 0.899 N 3
J0631−5405 06 32 01.00 −54 04 58.7 0.204 5.200 1.040 - 4
J0750+6541 07 50 34.43 +65 41 25.4 0.749 3.271 1.439 S,N 5
J0754+3033 07 54 48.86 +30 33 55.0 0.796 3.842 1.730 S,N,F 6
J0754+4316 07 54 07.96 +43 16 10.6 0.347 8.061 2.360 S,N,F 7
J0801+4736 08 01 31.97 +47 36 16.0 0.157 5.438 0.876 S,N,F 7
J0809+2912 08 09 06.22 +29 12 35.6 1.481 2.184 1.118 S,N,F 6, 8
J0810−6800 08 10 55.10 −68 00 07.7 0.231 6.500 1.420 - 9
J0812+3031 08 12 40.08 +30 31 09.4 1.312 2.427 1.203 S,N,F 8
J0816+3347 08 16 35.49 +33 47 48.79 0.510 3.543 1.306 S,N,F 10
J0819+0549 08 19 41.12 +05 49 42.7 1.701 1.923 0.987 S,N,F 8
J0842+2147 08 42 39.96 +21 47 10.4 1.182 2.314 1.156 S,N,F 8
J0902+5707 09 02 07.20 +57 07 37.9 1.595 1.678 0.862 S,N,F 9, 8
J0918+2325 09 18 58.15 +23 25 55.4 0.688 2.079 0.885 S,N,F 11
J0925+4004 09 25 54.72 +40 04 14.2 0.471 4.379 1.546 S,N,F 11
J0937+2937 09 37 04.04 +29 37 04.8 0.451 2.640 0.909 S,N,F 6, 11
J0944+2331 09 44 18.80 +23 31 18.5 0.987 1.870 0.899 S,N,F 11
J0959+1216 09 59 34.49 +12 16 31.6 1.089 1.964 0.966 S,N,F 12
J1012+4229 10 12 44.29 +42 29 57.0 0.364 3.088 0.933 S,N,F 9
J1020+0447 10 20 26.87 +04 47 52.0 1.131 1.478 0.733 S,N,F 12
J1020+3958 10 20 41.15 +39 58 11.2 0.830 2.663 1.217 W,N,F 9
J1027−2312 10 27 54.91 −23 12 02.0 0.309 2.860 0.774 N 3
J1030+5310 10 30 50.91 +53 10 28.6 1.197 1.698 0.749 S,N,F 8
J1054+4152 10 54 03.27 +41 52 57.6 1.090 4.702 2.314 S,N,F 11
IAU α(J2000.0) δ(J2000.0) z d D Avail. Ref.
name (hm s) (o ’ ”) arcmin Mpc Data
(1) (2) (3) (4) (5) (6) (7) (8)
Table A.1 continued
J1056+4100 10 56 36.26 +41 00 41.3 1.785 1.543 0.791 S,N,F 12
J1130−1320 11 30 19.90 −13 20 50.0 0.634 4.812 1.977 N 13
J1145−0033 11 45 53.67 −00 33 04.6 2.052 2.642 1.340 S,N,F 14
J1148−0403 11 48 55.89 −04 04 09.6 0.341 3.265 0.945 N,F 15
J1151+3355 11 51 39.68 +33 55 41.8 0.851 2.083 0.959 S,N,F 11
J1229+3555 12 29 25.56 +35 55 32.5 0.828 1.672 0.761 S,N,F 16
J1304+2454 13 04 51.42 +24 54 45.9 0.605 2.431 0.977 W,N,F 11
J1321+3741 13 21 06.42 +37 41 54.0 1.135 1.531 0.759 S,N,F 11
J1340+4232 13 40 34.70 +42 32 32.2 1.343 2.309 1.173 S,N,F 11
J1353+2631 13 53 35.92 +26 31 47.5 0.310 2.803 0.761 W,N,F 11, 17
J1408+3054 14 08 06.21 +30 54 48.5 0.837 3.618 1.658 S,N,F 11
J1410+2955 14 10 36.80 +29 55 50.9 0.570 2.483 0.970 W,N,F 6
J1427+2632 14 27 35.61 +26 32 14.5 0.363 3.822 1.158 S,N,F 17
J1432+1548 14 32 15.54 +15 48 22.4 1.005 2.824 1.364 S,N,F 15
J1445+3051 14 45 27.06 +30 51 29.0 0.417 5.090 1.674 S,N,F 10
J1504+6856 15 04 12.77 +68 56 12.8 0.318 3.140 0.867 N 5
J1723+3417 17 23 20.80 +34 17 58.0 0.206 3.787 0.760 W,N,F 18
J2042+7508 20 42 37.30 +75 08 02.5 0.104 10.052 1.138 N 19
J2234−0224 22 34 58.76 −02 24 18.9 0.550 3.236 1.241 N,F 1
J2344−0032 23 44 40.04 −00 32 31.7 0.503 2.658 0.973 W,N,F 1
References: (1) Becker et al. (2001); (2) Machalski, Kozieł-Wierzbowska & Jamrozy (2007); (3) Ishwara–Chandra & Saikia (1999); (4) Saripalli et al. (2005); (5) Lara et al. (2001); (6) Gregg et al. (1996); (7) Schoenmakers (1999); (8) Kuligowska et al. (2009);(9) deVries et al. (2006);(10) Machalski,Jamrozy&Zoła (2001);(11) White et al. (2000);(12)Kuligowska (2007);(13)Bhatnagar,Krishna&Wisotzki (1998);(14) Kuźmicz, Kuligowska & Jamrozy (2011); (15) Hintzen, Ulvestad & Owen (1983); (16) Shen et al. (2008);(17) Nilsson (1998);(18) J¨agers et al. (1982);(19) Riley&Warner (1990).
IAU α(J2000.0) δ(J2000.0) z d D Avail. Ref.
name (hm s) (o ’ ”) arcmin Mpc Data
(1) (2) (3) (4) (5) (6) (7) (8)
Table A.2: List of smaller-size(< 0.72Mpc) radioquasars.
J0022−0145 00 22 44.29 −01 45 51.1 0.691 1.432 0.610 N,F 1
J0034+0118 00 34 19.18 +01 18 35.8 0.841 1.364 0.664 W,N,F 1
J0051−0902 00 51 15.12 −09 02 08.5 1.265 1.379 0.696 S,N,F 1
J0130−0135 01 30 43.00 −01 35 08.2 1.160 1.306 0.650 W,N,F 1
J0245+0108 02 45 34.07 +01 08 14.2 1.537 0.883 0.453 S,N,F 3
J0745+3142 07 45 41.66 +31 42 56.5 0.461 1.795 0.626 S,N,F 3
J0811+2845 08 11 36.90 +28 45 03.6 1.890 0.507 0.259 S,N,F 3
J0814+3237 08 14 09.23 +32 37 31.7 0.844 0.239 0.187 S,N,F 3
J0817+2237 08 17 35.07 +22 37 18.0 0.982 0.395 0.190 S,N,F 3
J0828+3935 08 28 06.85 +39 35 40.3 0.761 1.077 0.477 S,N,F 3
J0839+1921 08 39 06.95 +19 21 48.9 1.691 0.523 0.269 S,N,F 3
J0904+2819 09 04 29.63 +28 19 32.8 1.121 0.379 0.188 S,N,F 3
J0906+0832 09 06 49.81 +08 32 58.8 1.617 1.307 0.671 S,N,F 4
J0924+3547 09 24 25.03 +35 47 12.8 1.342 1.345 0.683 S,N,F 5
J0925+1444 09 25 07.26 +14 44 25.9 0.896 0.665 0.311 S,N,F 3
J0935+0204 09 35 18.51 +02 04 19.0 0.649 1.200 0.498 S,N,F 3
J0941+3853 09 41 04.17 +38 53 49.1 0.616 0.853 0.346 S,N,F 3
J0952+2352 09 52 06.36 +23 52 43.2 0.970 1.466 0.702 S,N,F 2
J1000+0005 10 00 17.65 +00 05 23.9 0.905 0.521 0.245 S,N,F 3
J1004+2225 10 04 45.75 +22 25 19.4 0.982 1.097 0.526 S,N,F 3
J1005+5019 10 05 07.10 +50 19 31.5 2.023 1.300 0.660 S,N,F 2
J1006+3236 10 06 07.58 +32 36 27.9 1.026 0.246 0.119 S,N,F 3
J1009+0529 10 09 43.56 +05 29 53.9 0.942 1.377 0.654 S,N,F 2
J1010+4132 10 10 27.50 +41 32 39.0 0.612 0.525 0.212 S,N,F 3
J1023+6357 10 23 14.61 +63 57 09.3 1.194 1.294 0.648 S,N,F 6
J1100+1046 11 00 47.81 +10 46 13.6 0.422 0.549 0.182 S,N,F 3
J1100+2314 11 00 01.14 +23 14 13.1 0.559 1.577 0.610 S,N,F 5
Table A.2 continued
IAU α(J2000.0) δ(J2000.0) z d D Avail. Ref.
name (hm s) (o ’ ”) arcmin Mpc Data
(1) (2) (3) (4) (5) (6) (7) (8)
J1107+0547 11 07 09.51 +05 47 44.7 1.799 1.324 0.678 S,N,F 2 J1107+1628 11 07 15.04 +16 28 02.2 0.632 0.652 0.267 S,N,F 3 J1110+0321 11 10 23.84 +03 21 36.4 0.966 1.055 0.504 S,N,F 3
J1118+3828 11 18 58.53 +38 28 53.5 0.747 1.407 0.619 S,N,F 5 J1119+3858 11 19 03.20 +38 58 53.6 0.734 1.419 0.620 S,N,F 5 J1158+6254 11 58 39.76 +62 54 27.1 0.592 0.968 0.385 S,N,F 3 J1217+1019 12 17 01.28 +10 19 52.0 1.883 0.466 0.238 S,N,F 3 J1223+3707 12 23 11.23 +37 07 01.8 0.491 0.597 0.216 S,N,F 3 J1236+1034 12 36 04.52 +10 34 49.2 0.667 1.694 0.711 S,N,F 3 J1256+1008 12 56 07.66 +10 08 53.5 0.824 0.382 0.174 S,N,F 3 J1319+5148 13 19 46.25 +51 48 05.5 1.061 0.466 0.228 S,N,F 3 J1334+5501 13 34 11.71 +55 01 24.8 1.245 1.274 0.641 S,N,F 3 J1358+5752 13 58 17.60 +57 52 04.5 1.373 0.733 0.373 S,N,F 3
J1425+2404 14 25 50.65 +24 04 02.8 0.653 0.339 0.141 S,N,F 3 J1433+3209 14 33 34.26 +32 09 09.5 0.935 0.630 0.299 S,N,F 3 J1513+1011 15 13 29.30 +10 11 05.4 1.546 0.586 0.301 S,N,F 3 J1550+3652 15 50 02.01 +36 52 16.8 2.061 1.334 0.676 S,N,F 4 J1557+0253 15 57 52.83 +02 53 28.9 1.988 1.121 0.571 S,N,F 2 J1557+3304 15 57 29.94 +33 04 47.0 0.953 0.562 0.268 S,N,F 3 J1622+3531 16 22 29.90 +35 31 25.1 1.475 0.365 0.187 S,N,F 3 J1623+3419 16 23 36.45 +34 19 46.3 1.981 0.984 0.501 S,N,F 2 J2335−0927 23 35 34.68 −09 27 39.2 1.814 1.305 0.668 S,N,F 1
References:(1) Becker etal. (2001);(2) deVrieset al. (2006);(3) Nilsson (1998);(4) Kuligowska et al. (2009);(5)White et al. (2000);(6)Kuligowska (2007).
fλ logλLλ
IAU FWHM 1350˚A 3000˚A 5100˚A 1350˚A 3000˚A 5100˚A
name
˚A 10−17 erg cm−2 s−1 ˚A−1 erg s−1
Table A.3: Parameters of optical spectra for GQRs.
J0204−0944 MgII 34.19 − 10.13 − − 44.61 −
J0210+0118 MgII 49.61 − 46.57 − − 45.17 −
J0750+6541 MgII 38.55 − 27.98 14.36 − 44.76 44.50
Hβ 199.30
J0754+3033 MgII 48.59 − 53.77 10.65 − 45.17 44.70
Hβ 139.90
J0754+4316 Hβ 226.37 − − 30.2 − − 44.53
J0801+4736 Hβ 125.23 − − 3.69 − − 42.97
J0809+2912 MgII 46.91 − 44.45 − − 45.48 −
J0812+3031 MgII 30.91 − 11.14 − − 44.72 −
J0816+3347 MgII 60.67? − 3.80 2.99 − 43.67 43.62
Hβ 13.58
J0819+0549 CIV 75.57 − 1.50 − − 44.09 −
MgII 58.94
J0842+2147 MgII 33.16 − 10.96 − − 44.74 −
J0902+5707 CIV 31.09 − 10.40 − − 44.89 −
MgII 47.90
J0918+2325 MgII 55.91 − 54.28 8.92 − 45.08 44.52
Hβ 173.43
J0925+4004 MgII 62.30 − 109.20 20.40 − 45.10 44.60
Hβ 196.95
J0937+2937 MgII 41.23 − 78.80 14.70 − 44.92 44.42
Hβ 98.86
J0944+2331 MgII 43.36 − 34.92 − − 45.13 −
J0959+1216 MgII 46.95 − 14.32 − − 44.81 −
J1020+0447 MgII 57.04 − 6.56 − − 44.49 −
Table A.3 continued
fλ logλLλ
IAU FWHM 1350˚A 3000˚A 5100˚A 1350˚A 3000˚A 5100˚A
name
˚A 10−17 erg cm−2 s−1 ˚A−1 erg s−1
J1020+3958 MgII 66.70 − 33.48 − − 45.00 −
J1030+5310 MgII 36.46 − 26.04 − − 45.13 −
J1054+4152 MgII 49.00 − 23.03 − − 45.01 −
J1056+4100 CIV 34.41 − 2.841 − − 44.39 −
MgII 51.61
J1145−0033 CIV 61.12 16.07 5.38 − 44.87 44.74 −
J1151+3355 MgII 51.11 − 29.15 − − 44.95 −
J1229+3555 MgII 31.93 − 13.52 − − 44.60 −
J1304+2454 MgII 47.98 − 79.83 − − 45.15 −
Hβ 189.27
J1321+3741 MgII 73.96 − 15.56 − − 44.87 −
J1340+4232 MgII 52.94 − 8.22 − − 44.69 −
J1353+2631 MgII 41.75 − 136.10 35.48 − 44.86 44.51
Hβ 206.40
J1410+2955 MgII 69.94 − 47.28 − − 44.88 −
J1427+2632 Hβ 195.90 − − 42.12 − − 44.72
J1432+1548 MgII 52.83 − 18.82 − − 44.88 −
J1445+3051 MgII 68.39 − 1.39 4.58 − 43.10 43.64
Hβ 12.52
J1723+3417 Hβ 64.88 − 168.40 139.60 − 44.62 44.77
J2344−0032 MgII 41.18 − 70.72 − − 44.96 −
fλ logλLλ
IAU FWHM 1350˚A 3000˚A 5100˚A 1350˚A 3000˚A 5100˚A
name
˚A 10−17 erg cm−2 s−1 ˚A−1 erg s−1
Table A.4: Parameters of optical spectra for smaller-size RQ.
J0034+0118 MgII 56.34 − 11.80 − − 44.58 −
J0051−0902 MgII 64.84 − 11.51 − − 44.81 −
J0130−0135 MgII 61.47 − 23.58 − − 45.06 −
J0245+0108 CIV 35.54 − 12.67 − − 44.96 −
MgII 61.03
J0745+3142 CIV 186.40 − 499.50 107.50 − 45.74 45.30
MgII 53.84
Hβ 173.80
J0811+2845 CIV 27.10 59.34 12.92 − 45.40 45.08 −
MgII 54.05
J0814+3237 MgII 32.17 − 17.93 − − 44.74 −
J0817+2237 MgII 45.24 − 41.95 − − 45.21 −
J0828+3935 MgII 41.57 − 15.63 − − 44.61 −
J0839+1921 CIV 21.60 − 23.96 − − 45.29 −
MgII 36.12
J0904+2819 MgII 36.98 − 58.68 − − 45.44 −
J0906+0832 CIV 38.41 − 8.01 − − 44.79 −
MgII 48.46
J0924+3547 MgII 46.75 − 19.14 − − 45.06 −
J0925+1444 MgII 39.36 − 32.33 − − 45.03 −
J0935+0204 MgII 61.33 − 92.04 17.1 − 45.26 44.76
Hβ 142.40
J0941+3853 MgII 59.18 − 42.59 9.19 − 44.89 44.45
Hβ 234.00
J0952+2352 MgII 36.19 − 53.89 − − 45.31 −
J1000+0005 MgII 30.90 − 12.99 − − 44.65 −
J1004+2225 MgII 44.52 − 18.23 − − 44.84 −
Table A.4 continued
fλ logλLλ
IAU FWHM 1350˚A 3000˚A 5100˚A 1350˚A 3000˚A 5100˚A
name
˚A 10−17 erg cm−2 s−1 ˚A−1 erg s−1
J1005+5019 CIV 18.18 78.57 9.60 − − 44.98 −
MgII 46.60
J1006+3236 MgII 34.69 − 8.954 − − 44.57 −
J1009+0529 MgII 68.01 − 71.05 − − 45.41 −
J1010+4132 MgII 28.88 − 233.60 35.86 − 45.62 45.04
Hβ 65.89
J1023+6357 MgII 48.48 − 53.00 − − 45.43 −
J1100+1046 MgII 49.35 − 60.94 11.07 − 44.76 44.25
Hβ 21.30
J1100+2314 MgII 66.57 − 100.50 31.02 − 45.19 44.91
Hβ 296.03
J1107+0547 CIV 33.64 − 6.66 − − 44.76 −
MgII 40.26
J1107+1628 MgII 36.98 − 180.00 33.76 − 45.53 45.04
Hβ 88.07
J1110+0321 MgII 29.41 − 16.59 − − 44.79 −
J1118+3828 MgII 39.03 − 29.22 3.46 − 44.87 44.17
Hβ 431.77
J1119+3858 MgII 64.70 − 31.08 6.27 − 44.88 44.41
Hβ 345.40
J1158+6254 MgII 66.27 − 185.80 44.74 − 45.50 45.11
Hβ 284.30
J1217+1019 CIV 20.56 59.73 5.42 − 45.39 44.70 −
MgII 38.45
J1223+3707 MgII 50.07 − 34.43 9.27 − 44.63 44.29
Hβ 264.00
J1236+1034 MgII 38.83 − 53.47 11.31 − 45.05 44.60
Table A.4 continued
fλ logλLλ
IAU FWHM 1350˚A 3000˚A 5100˚A 1350˚A 3000˚A 5100˚A
name
˚A 10−17 erg cm−2 s−1 ˚A−1 erg s−1
Hβ 272.90
J1256+1008 MgII 33.46 − 15.93 − − 44.67 −
Hβ 33.74
J1319+5148 MgII 39.67 − 76.29 − − 45.52 −
J1334+5501 MgII 55.70 − 21.12 − − 45.06 −
J1358+5752 MgII 45.54 − 67.78 − − 45.62 −
J1425+2404 MgII 56.62 − 89.40 19.66 − 45.25 44.83
Hβ 131.60
J1433+3209 MgII 45.42 − 2.924 − − 44.02 −
J1513+1011 CIV 23.23 − 36.67 − − 45.42 −
MgII 42.70
J1550+3652 CIV 21.99 41.78 4.80 − 45.28 44.69 −
MgII 47.58
J1557+0253 CIV 10.42 34.97 4.69 − 45.19 44.66 −
MgII 24.83
J1557+3304 MgII 52.94 − 25.46 − − 44.97 −
J1622+3531 MgII 43.02 − 10.56 − − 44.86 −
J1623+3419 CIV 25.17 14.37 2.59 − 44.80 44.40 −
MgII 48.20
J2335−0927 CIV 14.18 60.11 1.14 − 45.38 44.00 −
MgII 35.59
Table A.5: Optical luminosity and accretion rate for GRQs.
IAU name logLbol 1350˚A 3000˚A 5100˚A CIV logLEdd MgII Hβ 1350 ˙m 3000 5100
erg s−1 erg s−1
J0204−0944 − 45.38 − − 46.45 − − 0.09 −
J0210+0118 − 45.94 − − 47.05 − − 0.08 −
J0750+6541 45.53 45.45 47.12 47.78 0.03 0.01
J0754+3033 − 45.94 45.66 − 47.04 47.29 − 0.08 0.02
J0754+4316 − − 45.48 − − 47.63 − − 0.01
J0801+4736 − − 43.92 − − 46.33 − − 0.004
J0809+2912 − 46.25 − − 47.16 − − 0.12 −
J0812+3031 − 45.49 − − 46.42 − − 0.12 −
J0816+3347 44.44 44.57 47.03 44.61 0.003 0.92
J0819+0549 45.29 44.86 − 47.49 46.66 − − 0.02 −
J0842+2147 − 45.51 − − 46.49 − − 0.11 −
J0902+5707 45.97 45.67 − 47.08 46.88 − − 0.06 −
J0918+2325 − 45.85 45.48 − 47.11 47.39 − 0.06 0.01
J0925+4004 − 45.87 45.55 − 47.21 47.54 − 0.05 0.01
J0937+2937 − 45.69 45.38 − 46.77 46.85 − 0.08 0.03
J0944+2331 − 45.90 − − 46.92 − − 0.10 −
J0959+1216 − 45.58 − − 46.82 − − 0.06 −
J1020+0447 − 45.26 − − 46.83 − − 0.03 −
J1020+3958 − 45.77 − − 47.22 − − 0.04 −
J1030+5310 − 45.90 − − 46.76 − − 0.14 −
J1054+4152 − 45.78 − − 46.96 − − 0.07 −
J1056+4100 45.34 45.16 − 46.83 46.70 − − 0.03 −
J1145−0033 45.53 45.51 − 47.43 − − 0.01 − −
J1151+3355 − 45.73 − − 46.97 − − 0.06 −
J1229+3555 − 45.37 − − 46.39 − − 0.10 −
J1304+2454 − 45.92 − − 47.01 47.57 − 0.08 −
J1321+3741 − 45.64 − − 47.25 − − 0.03 −
J1340+4232 − 45.47 − − 46.87 − − 0.04 −
J1353+2631 − 45.63 45.46 − 46.75 47.54 − 0.08 0.01
J1410+2955 − 45.65 − − 47.20 − − 0.03 −
J1427+2632 − − 45.67 − − 47.59 − − 0.01
J1432+1548 − 45.65 − − 46.96 − − 0.05 −
J1445+3051 − 43.87 44.59 − 46.18 44.39 − 0.01 1.60
J1723+3417 − 45.39 45.73 − − 46.66 − − 0.12
J2344−0032 − 45.723 − − 46.78 − − 0.09 −
IAU logLbol logLEdd m˙name 1350˚A A CIV MgII Hβ 1350 3000 5100
A 3000˚5100˚
−1 −1
erg serg s
Table A.6: Opticalluminosity and accretion ratefor small-size radioquasars.
J0034+0118 − 45.35 − − 46.87 − − 0.03 −
J0051−0902 − 45.58 − − 47.10 − − 0.03 −
J0130−0135 − 45.83 − − 47.19 − − 0.05 −
J0245+0108 46.05 45.73 − 47.23 47.13 − 0.07 0.04 −
J0745+3142 − 46.51 46.26 − 47.41 47.78 − 0.13 0.03
J0811+2845 46.06 45.85 − 47.00 47.08 − 0.11 0.06 −
J0814+3237 − 45.51 − − 46.46 45.89 − 0.11 −
J0817+2237 − 45.98 − − 46.99 − − 0.10 −
J0828+3935 − 45.38 − − 46.62 − − 0.06 −
J0839+1921 46.33 46.06 − 46.95 46.84 − 0.24 0.17 −
J0904+2819 − 46.21 − − 46.93 − − 0.19 −
J0906+0832 45.82 45.56 − 47.18 46.84 − 0.04 0.05 −
J0924+3547 − 45.83 − − 46.95 − − 0.08 −
J0925+1444 − 45.81 − − 46.78 − − 0.11 −
J0935+0204 − 46.03 45.72 − 47.28 47.34 − 0.06 0.02
J0941+3853 − 45.66 45.41 − 47.07 47.62 − 0.04 0.01
J0952+2352 − 46.080 − − 46.85 − − 0.17 −
J1000+0005 − 45.42 − − 46.38 − − 0.11 −
J1004+2225 − 45.61 − − 46.79 − − 0.07 −
J1005+5019 46.21 45.75 − 46.74 46.90 − 0.30 0.07 −
J1006+3236 − 45.34 − − 46.44 − − 0.08 −
J1009+0529 − 46.18 − − 47.45 − − 0.05 −
J1010+4132 − 46.40 46.00 − 46.81 46.81 − 0.39 0.15
J1023+6357 − 46.20 − − 47.16 − − 0.11 −
J1100+1046 − 45.53 45.20 − 46.84 45.43 − 0.05 0.59
J1100+2314 − 45.96 45.87 − 47.32 48.05 − 0.04 0.01
IAU logLbol logLEdd m˙name 1350˚A A CIV MgII Hβ 1350 3000 5100
A 3000˚5100˚
−1 −1
erg serg sJ0204−0944 − 1.93 ± 0.25 − J0210+0118 − 7.80 ± 0.22 − J0750+6541 − 3.24 ± 1.6 33.74 ± 2.13 J0754+3033 − 7.49 ± 0.25 13.56 ± 2.57 J0754+4316 −− 29.17 ± 1.32 J0801+4736 −− 1.48 ± 0.76 J0809+2912 − 9.98 ± 0.51 − J0812+3031 − 1.80 ± 0.15 − J0816+3347 − 2.14 ± 1.92 0.05 ± 0.01 J0819+0549 − 3.16 ± 2.77 −
Table A.6 continued
J1107+0547 45.87 45.54 − 47.09 46.67 − 0.06 0.07 −
J1107+1628 − 46.31 45.99 − 46.98 47.06 − 0.21 0.09
J1110+0321 − 45.57 − − 46.41 − − 0.14 −
J1118+3828 − 45.64 45.12 − 46.69 48.01 − 0.09 0.001
J1119+3858 − 45.65 45.37 − 47.14 47.94 − 0.03 0.003
J1158+6254 − 46.27 46.07 − 47.47 48.12 − 0.06 0.01
J1217+1019 46.06 45.47 − 46.76 46.60 − 0.20 0.08 −
J1223+3707 − 45.40 45.24 − 46.79 47.64 − 0.04 0.004
J1236+1034 − 45.82 45.56 − 46.78 47.82 − 0.11 0.01
J1256+1008 − 45.44 − − 46.46 45.70 − 0.10 −
J1319+5148 − 46.29 − − 47.03 − − 0.18 −
J1334+5501 − 45.83 − − 47.10 − − 0.05 −
J1358+5752 − 46.39 − − 47.20 − − 0.16 −
J1425+2404 − 46.03 45.78 − 47.21 47.30 − 0.07 0.03
J1433+3209 − 44.79 − − 46.40 − − 0.03 −
J1513+1011 46.59 46.20 − 47.15 47.05 − 0.27 0.14 −
J1550+3652 45.95 45.46 − 46.76 46.78 − 0.15 0.05 −
J1557+0253 45.85 45.43 − 46.06 46.20 − 0.61 0.17 −
J1557+3304 − 45.74 − − 47.01 − − 0.05 −
J1622+3531 − 45.63 − − 46.77 − − 0.07 −
J1623+3419 45.46 45.17 − 46.62 46.64 − 0.07 0.03 −
J2335−0927 46.04 44.77 − 46.43 46.18 − 0.41 0.04 −
Table A.7: Black hole masses for GRQs.
MBH
IAU CIV MgII Hβ
name
×108 M⊙
J0842+2147 − 2.12 ± 0.48 − J0902+5707 − 5.28 ± 1.28 − J0918+2325 − 8.86 ± 0.46 16.95 ± 3.37 J0925+4004 − 11.28 ± 4.24 23.90 ± 2.01 J0937+2937 − 4.03 ± 0.51 4.91 ± 0.24 J0944+2331 − 5.68 ± 0.54 − J0959+1216 − 4.59 ± 3.26 − J1020+0447 − 4.71 ± 1.45 − J1020+3958 − 11.52 ± 5.16 − J1030+5310 − 3.99 ± 0.27 −
J1054+4152 − 6.34 ± 3.40 − J1056+4100 − 3.43 ± 1.13 − J1145−0033 18.42 ± 2.43 −− J1151+3355 − 6.44 ± 2.48 − J1229+3555 − 1.67 ± 0.29 − J1304+2454 − 7.10 ± 0.43 − J1321+3741 − 12.23 ± 3.98 − J1340+4232 − 5.12 ± 2.67 − J1353+2631 − 3.87 ± 2.63 23.69 ± 2.59 J1410+2955 − 11.04 ± 6.67 −
J1427+2632 −− 27.08 ± 4.74 J1432+1548 − 6.34 ± 1.02 − J1445+3051 − 1.40 ± 1.05 0.045 ± 0.02 J1723+3417 −− 3.16 ± 0.407 J2344−0032 − 4.20 ± 0.31 −
Table A.8: Black hole masses for smaller-size RQs.
MBH
IAU CIV MgII Hβ
name
×108 M⊙
J0034+0118 − 5.06 ± 0.11 − J0051−0902 − 8.73 ± 3.13 − J0130−0135 − 10.56 ± 0.48 − J0245+0108 − 9.23 ± 3.07 − J0745+3142 − 17.67 ± 0.76 41.92 ± 4.52 J0811+2845 6.88 ± 0.88 8.30 ± 1.16 − J0814+3237 − 1.99 ± 0.14 − J0817+2237 − 6.72 ± 0.95 − J0828+3935 − 2.85 ± 0.54 − J0839+1921 − 4.72 ± 0.10 −
J0904+2819 − 5.88 ± 0.26 − J0906+0832 − 4.78 ± 2.13 − J0924+3547 − 6.09 ± 0.73 − J0925+1444 − 4.18 ± 0.41 − J0935+0204 − 13.22 ± 0.75 15.07 ± 1.44 J0941+3853 − 8.01 ± 1.03 28.53 ± 2.11 J0952+2352 − 4.85 ± 0.49 − J1000+0005 − 1.65 ± 0.20 − J1004+2225 − 4.29 ± 0.29 − J1005+5019 3.74 ± 0.46 5.53 ± 2.99 −
J1006+3236 − 1.90 ± 0.20 − J1009+0529 − 19.25 ± 1.07 − J1010+4132 − 4.45 ± 0.34 4.45 ± 0.76 J1023+6357 − 10.05 ± 0.97 − J1100+1046 − 4.79 ± 2.17 0.19 ± 0.10 J1100+2314 − 14.34 ± 4.02 77.29 ± 5.26
Table A.8 continued
MBH
IAU CIV MgII Hβ
name
×108 M⊙
J1107+0547 − 3.21 ± 1.52 − J1107+1628 − 6.57 ± 0.39 7.92 ± 0.86 J1110+0321 − 1.77 ± 0.74 − J1118+3828 − 3.39 ± 1.22 69.97 ± 29.70
J1119+3858 − 9.47 ± 3.54 59.42 ± 20.60 J1158+6254 − 20.31 ± 2.35 89.96 ± 19.39 J1217+1019 3.96 ± 0.53 2.71 ± 1.00 − J1223+3707 − 4.24 ± 0.95 30.00 ± 5.01 J1236+1034 − 4.13 ± 1.94 46.03 ± 9.20 J1256+1008 − 1.99 ± 0.18 − J1319+5148 − 7.42 ± 0.80 − J1334+5501 − 8.63 ± 0.92 − J1358+5752 − 11.05 ± 1.92 − J1425+2404 − 11.16 ± 1.62 13.87 ± 1.64
J1433+3209 − 1.73 ± 1.85 − J1513+1011 − 7.72 ± 0.57 − J1550+3652 3.97 ± 0.52 4.12 ± 1.81 − J1557+0253 0.79 ± 0.16 1.09 ± 1.28 − J1557+3304 − 7.05 ± 1.15 − J1622+3531 − 4.08 ± 0.83 − J1623+3419 2.88 ± 0.59 3.04 ± 1.78 − J2335−0927 1.85 ± 0.26 1.04 ± 0.99 −
Table A.9: Parameters of radio structures for GRQs.
IAU logPtot logPcore B Q F i
name W/Hz W/Hz [o] [o]
(1) (2) (3) (4) (5) (6) (7)
J0204−0944 25.76 24.92 0.0 2.06 0.59 81
J0210+0118 25.99 25.31 25.6 1.38 0.30 63
J0313−0631 25.89 24.45 5.6 1.11 0.97 87
J0439−2422 27.09 − 4.5 1.67 0.55 79
J0750+6541 26.39 25.73 5.5 1.05 0.33 65
J0754+3033 26.10 25.97 18.8 1.77 1.20 87
J0754+4316 25.63 24.68 0.2 1.07 0.36 85
J0801+4736 25.00 24.58 8.7 1.05 2.21 37
J0809+2912 27.47 26.21 1.5 1.25 0.04 28
J0812+3031 26.07 25.10 2.4 1.37 2.91 71
J0816+3347 25.54 23.88 3.8 1.16 1.08 44
J0819+0549 26.58 25.19 0.0 1.24 1.54 81
J0842+2147 26.45 25.46 0.9 2.28 0.92 85
J0902+5707 26.53 25.80 9.3 1.38 2.74 79
J0918+2325 26.17 25.59 9.4 1.48 0.99 81
J0925+4004 25.73 24.76 5.7 1.13 1.18 80
J0937+2937 25.27 24.13 4.3 1.56 0.69 81
J0944+2331 26.95 25.57 7.1 1.67 0.44 83
J0959+1216 25.96 25.21 11.0 1.17 1.80 73
J1012+4229 25.52 25.46 15.6 1.39 3.71 59
J1020+0447 26.00 27.85 6.7 1.08 3.71 61
J1020+3958 25.39 24.67 1.9 1.12 3.62 58
J1027−2312 26.21 25.38 8.2 1.15 0.82 88
J1030+5310 26.54 25.70 9.4 1.58 3.22 77
J1054+4152 25.82 24.48 18.8 1.18 4.23 75
J1056+4100 26.39 25.63 7.8 2.10 0.89 87
J1130−1320 27.20 25.40 0.7 1.13 0.29 67
IAU logPtot logPcore B Q F i
name W/Hz W/Hz [o] [o]
(1) (2) (3) (4) (5) (6) (7)
Table A.9 continued
J1145−0033 26.47 25.72 10.2 1.29 0.59 82
J1148−0403 26.32 25.76 12.8 1.06 1.20 88
J1151+3355 26.26 25.16 11.3 1.98 0.33 32
J1229+3555 26.20 24.65 14.9 1.33 0.39 57
J1304+2454 25.76 25.41 1.6 1.46 1.82 77
J1321+3741 26.53 25.55 17.0 1.06 0.72 79
J1340+4232 26.24 25.48 3.5 1.92 0.59 89
J1353+2631 25.83 24.78 13.4 1.21 2.98 34
J1408+3054 25.93 24.82 4.9 1.41 2.72 80
J1410+2955 25.26 24.56 10.4 1.30 1.00 81
J1427+2632 26.17 25.23 9.1 1.70 0.40 45
J1432+1548 26.83 25.71 2.9 1.39 0.99 87
J1445+3051 25.72 24.46 0.9 1.41 0.34 85
J1504+6856 26.13 25.52 4.0 1.85 1.66 81
J1723+3417 26.26 25.67 1.1 1.05 2.11 51
J2042+7508 25.67 24.72 7.1 1.03 2.69 61
J2234−0224 25.89 24.71 1.9 1.49 0.18 87
J2344−0032 25.46 25.12 0.8 1.54 0.76 79
Table A.10: Parameters of radio structures for smaller-size radio quasars from the comparison sample.
IAU logPtot logPcore B Q F i
name W/Hz W/Hz [o] [o]
(1) (2) (3) (4) (5) (6) (7)
J0022−0145 26.62 25.13 6.7 1.07 2.08 71
J0034+0118 27.20 24.51 7.9 1.90 0.26 60
J0051−0902 26.61 24.60 9.1 1.39 5.35 55
J0130−0135 26.18 24.68 5.9 1.90 0.15 62
J0245+0108 27.55 25.85 12.0 2.28 0.68 85
J0745+3142 26.96 26.59 5.3 1.10 0.62 88
J0811+2845 27.23 26.71 6.1 2.35 1.26 80
J0814+3237 26.84 26.49 12.8 2.40 0.37 72
J0817+2237 27.69 26.42 5.7 1.06 2.38 71
J0828+3935 26.26 24.94 0.4 1.15 0.23 79
J0839+1921 27.78 26.97 11.4 1.36 0.11 41
J0904+2819 26.83 26.22 2.3 1.07 3.15 45
J0906+0832 26.81 26.05 0.5 1.29 0.88 86
J0924+3547 26.49 25.90 1.9 1.05 0.68 84
J0925+1444 27.36 26.04 5.6 1.26 1.25 84
J0935+0204 27.06 26.47 4.3 1.62 37.20 -
J0941+3853 26.95 26.03 0.3 1.44 0.72 85
J0952+2352 26.23 26.02 17.7 2.56 0.97 89
J1000+0005 27.46 26.38 18.4 1.35 1.17 85
J1004+2225 27.40 26.05 4.7 1.25 1.03 85
J1005+5019 27.18 26.96 16.2 2.73 1.54 76
J1006+3236 27.31 26.97 0.9 2.89 1.06 80
J1009+0529 26.79 25.89 8.7 1.01 1.75 78
J1010+4132 27.35 26.57 5.5 1.69 12.73 42
J1023+6357 27.01 26.00 0.2 1.37 0.44 70
J1100+1046 26.61 26.19 1.8 1.20 0.61 78
IAU logPtot logPcore B Q F i
name W/Hz W/Hz [o] [o]
(1) (2) (3) (4) (5) (6) (7)
Table A.10 continued
J1100+2314 26.38 25.14 − − 3.64 68
J1107+0547 26.42 25.52 7.2 1.46 0.63 80
J1107+1628 27.09 26.53 3.4 1.05 0.67 87
J1110+0321 27.35 25.50 10.7 2.38 0.55 85
J1118+3828 26.10 24.89 3.5 1.25 3.25 55
J1119+3858 26.43 25.28 8.4 1.14 2.66 64
J1158+6254 27.03 25.32 4.3 1.53 0.46 75
J1217+1019 27.44 26.13 26.8 1.43 0.73 87
J1223+3707 26.57 25.48 3.9 1.75 0.72 83
J1236+1034 26.55 25.18 0.4 1.42 0.39 63
J1256+1008 26.98 26.51 20.3 1.14 0.30 69
J1319+5148 27.70 27.13 27.9 1.81 0.54 61
J1334+5501 27.46 25.69 0.4 1.13 0.79 89
J1358+5752 27.66 25.86 1.3 1.20 1.24 85
J1425+2404 27.37 26.62 18.9 1.41 1.60 83
J1433+3209 26.89 25.51 13.8 1.14 0.96 88
J1513+1011 27.38 26.36 20.9 1.46 1.07 83
J1550+3652 26.99 25.39 1.0 1.78 0.28 64
J1557+0253 26.78 26.40 7.4 3.62 8.05 61
J1557+3304 27.45 27.26 20.2 1.54 1.50 89
J1622+3531 27.56 26.36 17.2 2.67 0.59 82
J1623+3419 26.31 25.77 7.9 2.19 0.64 13
J2335−0927 26.72 26.11 8.0 2.74 1.66 83
Appendix B
Spectra and radio maps of giant radio quasars
This appendix presents the optical spectra and radio maps of the sample of GRQs.
In presented below graphs I plotted the observed spectra after galactic extinction and redshift correction(seeSection 2.3.1);apower-law continuum(greenlines); the continuumsubtracted spectra; thebest fitof theironemission(bluelines) intheUVband(1250– 3090˚A).
A) or/andinthe opticalband(3535–7530˚
The1.4-GHz VLA maps of theGRQs taken from theNVSS survey andfrom theFIRST survey(if available) overlaid onthe opticalimagefromtheDSS.The contourlevels are: -1, 1, 2, 4, 8, 16, 32, 64 × 1.35 mJy/beam and -1, 1, 2, 4, 8, 16, 32, 64 × 0.6 mJy/beam fortheNVSS andFIRST surveys, respectively. Theellipsesinthe corners representthe resolution of the NVSS and FIRST surveys. Crosses mark the position of the parent quasar.
All radio maps as well as optical spectra of GRQs were recorded on a CD which is attached to the Thesis.
99
Spectra and radio maps of giant radio quasars
J0204-0944
Wavelength [Å]
-09 41
-09 41
42
42
43
43
DECLINATION (J2000)
44
45
44
45
46
46
47
47
RIGHT ASCENSION (J2000)
J0210+0118
2000 2500 3000 3500 4000 4500 Wavelength [Å]
RIGHT ASCENSION (J2000)
DECLINATION (J2000)
J0313-0631
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
30 25 20 15 10 5 0−5−10
Wavelength [Å]
-06 28 29 30 31 32 33 34 35 36
RIGHT ASCENSION (J2000) -24 20 00
30
21 00
30
22 00
30
23 00
30
24 00
30
J0439−2422
DECLINATION (J2000)
J0750+6541
120 100
f λ [10−17 erg/s/cm2/Å]
80 60 40 20 0−20
Wavelength [Å]
65 43 30
00
42 30
00
41 30
00
40 30
00
39 30
DECLINATION (J2000)
J0754+3033
Wavelength [Å]
RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
DECLINATION (J2000)
Spectra and radio maps of giant radio quasars
J0754+4316
160 140 120
f λ [10−17 erg/s/cm2/Å]
100 80 60 40 20
0−20Wavelength [Å]
43 20
43 20
19
19
18
18
DECLINATION (J2000)
17
17
16
16
15
15
14
14
13
13
12
12
RIGHT ASCENSION (J2000)
J0801+4736
Spectra and radio maps of giant radio quasars
J0809+2912
160 140 120
f λ [10−17 erg/s/cm2/Å]
100 80 60 40 20
0−20Wavelength [Å]
29 15 00
29 15 00
14 30
14 30
00
00
13 30
13 30
DECLINATION (J2000)
00
12 30
00
00
12 30
00
11 30
11 30
00
00
10 30
10 30
RIGHT ASCENSION (J2000)
J0812+3031
2000 2500 3000 3500 4000 Wavelength [Å]
30 33 30
30 33 30
32 30
32 30
29 30
29 30
RIGHT ASCENSION (J2000)
DECLINATION (J2000)
Spectra and radio maps of giant radio quasars
J0816+3347
30 25
20 15 10 5 0−5−10
Wavelength [Å]
f λ [10−17 erg/s/cm2/Å]
33 54
33 54
52
52
50
50
DECLINATION (J2000)
DECLINATION (J2000)
48
46
44
44
42
42
RIGHT ASCENSION (J2000)
J0819+0549
Wavelength [Å]
f λ [10−17 erg/s/cm2/Å]
15 10 5 0−5−10
05 52 00
05 52 00 51 30
51 30 00
DECLINATION (J2000)
50 30
49 30
50 30
00
49 30
00
00
48 30
48 30
00
00
47 30
47 30
RIGHT ASCENSION (J2000)
Spectra and radio maps of giant radio quasars
J0842+2147
25 20
f λ [10−17 erg/s/cm2/Å]
15 10 5 0−5−10
Wavelength [Å]
DECLINATION (J2000)
21 49 30
21 49 30
00
00
48 30
48 30
00
00
DECLINATION (J2000)
47 30
47 30
00
00
46 30
46 30
00
00
45 30
45 30
00
00
RIGHT ASCENSION (J2000)
J0902+5707
1500 2000 2500 3000 3500 Wavelength [Å]
RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
DECLINATION (J2000)
Spectra and radio maps of giant radio quasars
J0918+2325
80 70 60
f λ [10−17 erg/s/cm2/Å]
50
40
30
20
10
0−10Wavelength [Å]
23 28 00
23 28 00
27 30
27 30
00
00
DECLINATION (J2000)
26 30
00
25 30
26 30
00
25 30
00
00
24 30
24 30
00
00
RIGHT ASCENSION (J2000)
J0925+4004
Wavelength [Å]
40 09
40 09
08
08
07
07
06
06
05
04
03
02
02
01
01
00
00
RIGHT ASCENSION (J2000)
DECLINATION (J2000)
Spectra and radio maps of giant radio quasars
J0937+2937
3000 3500 4000 4500 5000 Wavelength [Å]
DECLINATION (J2000)
RIGHT ASCENSION (J2000)
J0944+2331
2000 2500 3000 3500 4000 4500 Wavelength [Å]
f λ [10−17 erg/s/cm2/Å]
23 33 30
00
32 30
00
31 30
00
30 30
00
29 30
00
DECLINATION (J2000)
Spectra and radio maps of giant radio quasars
J0959+1216
50 40
f λ [10−17 erg/s/cm2/Å]
30 20 10 0−10−20
Wavelength [Å]
12 19 00
12 19 00
18 30
18 30
00
00
17 30
17 30
DECLINATION (J2000)
00
16 30
00
00
16 30
00
15 30
15 30
00
00
14 30
14 30
RIGHT ASCENSION (J2000)
DECLINATION (J2000) DECLINATION (J2000)
1012+4229
42 32 00
31 30
00
30 30
00
29 30
00
28 30
00
RIGHT ASCENSION (J2000)
42 32 00
31 30
00
30 30
00
29 30
00
28 30
00
RIGHT ASCENSION (J2000)
Spectra and radio maps of giant radio quasars
J1020+0447
20 15
f λ [10−17 erg/s/cm2/Å]
10 5 0−5−10
Wavelength [Å]
04 50 00
04 50 00
49 30
49 30
00
00
DECLINATION (J2000)
48 30
48 30
00
00
47 30
47 30
00
00
46 30
46 30
00
00
45 30
45 30
RIGHT ASCENSION (J2000)
J1020+3958
2500 3000 3500 4000 Wavelength [Å]
40 00 30
40 00 30
00
00
39 59 30
39 59 30
00
00
58 30
58 30
00
57 30
57 30
00
00
56 30
56 30
00
00
RIGHT ASCENSION (J2000)
DECLINATION (J2000)
J1027-2312
-23 08
09
10
11
12
13
14
15
16
DECLINATION (J2000)
J1030+5310
Wavelength [Å]
53 12 30
53 12 30
RIGHT ASCENSION (J2000)
DECLINATION (J2000)
Spectra and radio maps of giant radio quasars
J1054+4152
40 35 30
f λ [10−17 erg/s/cm2/Å]
25 20 15 10 5
0−5
Wavelength [Å]
41 57
41 57
56
56
55
55
DECLINATION (J2000)
54
54
53
53
52
52
51
51
50
50
49
49
RIGHT ASCENSION (J2000)
J1056+4100
1500 2000 2500 3000 Wavelength [Å]
41 03 00
41 03 00
02 30
02 30
00
01 30
01 30
00 30
00
00 30
00
00
40 59 30
40 59 30
00
00
58 30
58 30
RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
DECLINATION (J2000)
J1130-1320
-13 17
18
19
20
21
22
23
24
25
RIGHT ASCENSION (J2000)
DECLINATION (J2000)
J1145-0033
Wavelength [Å]
-00 31 00
-00 31 00 30 32 00
32 00
33 00
30
33 00
30
34 00
34 00
30
30
35 00
35 00
30
30
RIGHT ASCENSION (J2000)
DECLINATION (J2000)
Spectra and radio maps of giant radio quasars
J1148-0403
-04 00
01 02
DECLINATION (J2000)03
04
05
06 07
08
11 49 15 09 10 05 RIGHT ASCENSION (J2000) 00 48 55 50 45 40
-04 00
01 02
DECLINATION (J2000)03
04
05
06 07
08
09 11 49 15 10 05 RIGHT ASCENSION (J2000) 00 48 55 50 45 40
J1151+3355
2500 3000 3500 4000 4500 Wavelength [Å]
33 58 00
33 58 00
57 30
57 30
00
56 30
56 30
55 30
00
55 30
00
00
54 30
54 30
00
00
53 30
53 30
DECLINATION (J2000)
Spectra and radio maps of giant radio quasars
J1229+3555
25 20
f λ [10−17 erg/s/cm2/Å]
15 10 5 0−5−10
Wavelength [Å]
35 58 00
35 58 00
57 30
57 30
00
00
56 30
56 30
DECLINATION (J2000)
00
55 30
00
00
55 30
00
54 30
54 30
00
00
53 30
53 30
J1304+2454
2500 3000 3500 4000 4500 5000 5500 Wavelength [Å]
24 57 00
24 57 00 56 30
56 30 00
55 30
54 30
55 30
00
54 30
00
00
53 30
53 30
00
00
52 30
52 30
RIGHT ASCENSION (J2000)
DECLINATION (J2000)
Spectra and radio maps of giant radio quasars
J1321+3741
30 25
f λ [10−17 erg/s/cm2/Å]
20 15 10 5 0−5−10
Wavelength [Å]
37 44 00
37 44 00
43 30
43 30
00
00
DECLINATION (J2000)
42 30
00
41 30
42 30
00
41 30
00
00
40 30
40 30
00
00
39 30
39 30
J1340+4232
Wavelength [Å]
42 34 30
42 34 30
00
33 30
33 30
32 30
00
32 30
00
31 30
31 30
00
30 30
30 30
RIGHT ASCENSION (J2000)
DECLINATION (J2000)
Spectra and radio maps of giant radio quasars
J1353+2631
250 200
f λ [10−17 erg/s/cm2/Å]
150 100 50 0−50
Wavelength [Å]
DECLINATION (J2000)
26 36
26 36
35
35
34
34
DECLINATION (J2000)
33
33
32
32
31
31
30
30
29
29
28
28
27
27
J1408+3054
Wavelength [Å]
30 59
30 59
58
58
57
57
53
53
52
52
51
51
RIGHT ASCENSION (J2000)
DECLINATION (J2000)
Spectra and radio maps of giant radio quasars
J1410+2955
60 50
f λ [10−17 erg/s/cm2/Å]
40 30 20 10 0−10−20
Wavelength [Å]
29 58 00
29 58 00
57 30
57 30
00
00
DECLINATION (J2000)
56 30
00
55 30
56 30
00
55 30
00
00
54 30
54 30
00
00
53 30
53 30
RIGHT ASCENSION (J2000)
350 300 250 200 150 100 50 0−50
3000 3500 4000
J1427+2632
4500 5000 5500 6000 6500 Wavelength [Å]
f λ [10−17 erg/s/cm2/Å]
26 37
26 37
36
36
35
35
34
34
DECLINATION (J2000)
33
32
31
30
30
29
29
28
28
RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
Spectra and radio maps of giant radio quasars
J1432+1548
15 50 30 00 49 30 00 48 30 00 47 30 00 46 30 00
DECLINATION (J2000) DECLINATION (J2000)
15 50 30 00 49 30 00 48 30 00 47 30 00 46 30 00
J1445+3051
Wavelength [Å]
RIGHT ASCENSION (J2000)
DECLINATION (J2000)
J1504+6856
69 00
68 59
58
57
56
55
54
53
52
DECLINATION (J2000)
DECLINATION (J2000)
J1723+3417
Wavelength [Å]
RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
DECLINATION (J2000)
75 14
12
10
08
06
04
02
J2042+7508
RIGHT ASCENSION (J2000)
J2234-0224
2500 3000 3500 4000 4500 5000 5500 Wavelength [Å]
-02 22 00
-02 22 00
DECLINATION (J2000)
Spectra and radio maps of giant radio quasars
J2344-0032
2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 Wavelength [Å]
DECLINATION (J2000)
RIGHT ASCENSION (J2000)
Appendix C
Parameters of GRGs
This appendix presents the samples of GRGs (Tables C.1). The description of the
columns is as follows:
Column 1: J2000.0 IAU name.
Column 2 and Column 3: J2000.0 rightascension anddeclination of thecentralposition
of the optical galaxy.
Column 4: Redshift of the host galaxy.
Column 5: Angular size in arcmin.
Column 6: Projected linear size in Mpc.
Column 7: Availability of the spectrumfromtheSDSS survey(S), orINTdata archive
(I);availability of radio mapsfromNVSS orFIRST(N orF, respectively).
Column 8: References to the identified object.
The GRGs marked by single asterisk are also DDRGs, by double and triple asterisk
giant and double-double RGs which were excluded from sample of FRII radio galaxies
(Kozieł-Wierzbowska & Stasińska 2011)respectively.
In next tables I listed the measured and calculated parameters of GRGs (Tables C.3,
C.2).
InTable C.2 -velocitydispersionsandBH masses(Section 3.2):
Column 1: J2000.0 IAU name.
Column 2: Velocity dispersion.
Column 3: Blackhole massderived usingEquation 3.1 with constantsgivenby Graham
(2011)(Section3.2)
145
In Table C.3 I placed radio data described in Section 3.2:
Column 1: J2000.0 IAU name.
Column 2: Logarithm of total radio power.
Column 3: Logarithm of core radio power.
Column 4: Bending angle.
Column 5: Arm-length ratio.
Column 6: Flux-density ratio.
Column 7: Inclination.
InTable C.4 -basicparametersofGRGs,DDRGs,smallerFRIIRSsandCSSRSswith
estimations of tRS. (Section3.5):
Column 1: J2000.0 IAU name.
Column 2 and Column 3: J2000.0 rightascension anddeclination of thecentralposition
of the optical galaxy.
Column 4: Redshift of the host galaxy.
Column 5: Projected linear size of outer radio structure in kpc.
Column 6: Projected linear size of iner radio structure in kpc.
Column 7: Logarithm of total radio power.
Column 8: Logarithm of core radio power.
Column 9: Age of radio structure -tRS.
Column 10: Velocity dispersion.
Column 11: Black hole mass derived using Equation 3.1.
Column 12: References to the identified object.
Column 13: References to the tRS estimation.
Table C.1: List ofgiant-size(> 0.72 Mpc) radio galaxies.
IAU α(J2000.0) δ(J2000.0) z d D Avail. Ref.
name (hm s) (o ’ ”) arcmin Mpc Data
(1) (2) (3) (4) (5) (6) (7) (8)
J0010−1108** 00 10 49.69 -11 08 12.9 0.077 8.68 752.75 S,N,F 1
J0037+0027 00 37 54.59 +00 27 17.4 0.589 4.96 1967.72 S,N,F 2
J0053+4031 00 53 31.71 +40 31 26.5 0.149 7.36 1135.08 I,N,F 3
J0112+4928 01 12 02.23 +49 28 35.2 0.067 10.39 790.13 I,N 4
J0134−0107 01 34 12.80 -01 07 28.2 0.079 10.14 896.47 S,N,F 1
J0200+4049 02 00 30.83 +40 48 54.1 0.083 9.22 852.87 I,N 3
J0214+3251 02 14 15.23 +32 51 06.1 0.261 4.91 1177.67 I,N 5
J0300−0728 03 00 59.02 -07 28 31.0 0.491 4.58 1652.93 S,N 1
J0313+4120 03 13 01.96 +41 20 01.2 0.136 5.32 760.22 I,N 5
J0318+6829 03 18 18.98 +68 29 31.4 0.090 14.55 1448.74 I,N 6
J0748+5548 07 48 36.76 +55 48 57.3 0.036 21.55 913.07 I,N,F 7
J0751+4231** 07 51 08.79 +42 31 23.6 0.203 4.89 970.46 S,N,F 8
J0918+3151 09 18 59.42 +31 51 40.6 0.062 11.00 778.80 S,N,F 9
J0949+7314 09 49 46.05 +73 14 22.9 0.058 14.21 945.51 I,N 10
J1006+3454* 10 06 01.77 +34 54 10.2 0.100 38.44 4181.22 S,N,F 11
J1021+0519** 10 21 31.47 +05 19 01.0 0.156 12.62 2025.64 S,N,F 1
J1021+1217*** 10 21 24.22 +12 17 05.3 0.129 13.65 1868.84 S,N,F 1
J1032+2756 10 32 14.09 +27 56 00.2 0.085 10.51 994.11 S,N,F 8
J1032+5644 10 32 59.02 +56 44 53.8 0.045 14.83 777.04 S,N 12
J1048+1108** 10 48 43.42 +11 08 02.1 0.157 4.92 792.20 S,N,F 1
J1108+0202 11 08 45.51 +02 02 40.5 0.157 8.36 1350.48 S,N,F 1
J1111+2657 11 11 24.97 +26 57 46.6 0.033 25.36 990.55 S,N,F 13
J1147+3501 11 47 22.12 +35 01 08.0 0.063 11.46 823.42 S,N,F 8
J1216+4159 12 16 09.63 +41 59 28.1 0.243 5.06 1152.75 S,N,F 5
J1216+6724** 12 16 37.28 +67 24 41.0 0.362 4.81 1447.11 S,N 10
J1220+6341** 12 20 36.38 +63 41 44.3 0.188 4.93 920.88 S,N,F 14
J1242+3838* 12 42 36.89 +38 38 06.3 0.408 2.61 847.62 S,N 3
IAU α(J2000.0) δ(J2000.0) z d D Avail. Ref.
name (hm s) (o ’ ”) arcmin Mpc Data
(1) (2) (3) (4) (5) (6) (7) (8)
Table C.1 continued
J1247+6723*** 12 47 33.32 +67 23 15.9 0.107 10.47 1218.55 S,N 5
J1253+4041** 12 53 12.28 +40 41 23.7 0.229 4.34 946.48 S,N 8
J1308+6154** 13 08 44.78 +61 54 15.3 0.163 8.58 1422.81 S,N,F 5
J1311+4059** 13 11 43.06 +40 59 00.0 0.111 6.19 739.41 S,N,F 15
J1313+6937 13 13 58.86 +69 37 18.7 0.106 6.27 721.58 I,N 14
J1328−0129 13 28 34.16 -01 29 17.8 0.151 5.40 844.30 S,N,F 1
J1328−0307** 13 28 34.33 -03 07 45.0 0.085 13.61 1288.99 S,N,F 8
J1345+5403** 13 45 57.56 +54 03 16.6 0.163 4.87 807.83 S,N,F 11
J1400+3019 14 00 43.44 +30 19 18.2 0.206 10.36 2079.00 S,N,F 16
J1409−0302* 14 09 48.86 -03 02 32.5 0.138 7.06 1019.00 S,N 17
J1418+3746** 14 18 37.67 +37 46 24.9 0.135 6.38 905.56 S,N 8
J1428+2918 14 28 19.24 +29 18 44.2 0.087 15.05 1453.30 S,N,F 5
J1453+3308*** 14 53 02.92 +33 08 42.7 0.248 5.64 1304.31 S,N,F 5
J1605+0711* 16 05 13.74 +07 11 52.6 0.311 2.69 730.96 S,N 18
J1628+5146 16 28 04.04 +51 46 31.7 0.056 18.56 1194.92 I,N,F 5
J1635+3608 16 35 22.54 +36 08 04.7 0.165 4.82 810.55 S,N,F 8
J1738+3733 17 38 20.98 +37 33 33.7 0.124 5.85 772.57 I,N 8
J2145+8154 21 45 31.76 +81 54 55.2 0.146 17.72 2687.41 I,N,F 5
References: (1): Best et al. (2005), (2): Sadler et al. (2007), (3): Saikia, Konar & Kulkarni (2006),(4): Laing,Riley&Longair (1983),(5): Schoenmakerset al. (2000), (6): Schoenmakers et al. (1998),(7): Mack et al. (1997),(8): Schoenmakers et al. (2001), (9): J¨agers (1987);(10): Lara et al. (2001),(11): Nilsson (1998),(12): Hine (1979),(13): Liu&Zhang(2002),(14): Laraet al. (2001),(15): Djorgovski et al. (1990),(16): Parma et al. (1996),(17): Lin et al. (2010),(18): White,Becker&Robert (1992) * -DDGRG; ** -GRGfrom Kozieł-Wierzbowska&Stasińska (2011); *** -DDGRG from Kozieł-Wierzbowska & Stasińska (2011).
Table C.2: Velocity dispersions and black hole masses for GRGs.
IAU σ∗ logMσ∗
name km/s M⊙
(1) (2) (3)
J0010−1108 239.91 8.54 J0037+0027 223.62 8.38 J0053+4031 189.40 8.01 J0112+4928 268.27 8.78 J0134−0107 262.75 8.74 J0200+4049 −− J0214+3251 214.66 8.29 J0300−0728 260.29 8.72 J0313+4120 448.75 9.93 J0318+6829 −− J0748+5548 243.55 8.57 J0751+4231 264.77 8.76 J0918+3151 220.43 8.35 J0949+7314 173.30 7.81 J1006+3454 251.97 8.64 J1021+1217 238.40 8.52 J1021+1217 234.66 8.49 J1032+2756 182.95 7.93 J1032+5644 285.01 8.92 J1048+1108 258.68 8.70 J1108+0202 179.40 7.89 J1111+2657 285.45 8.92 J1147+3501 226.82 8.41 J1216+4159 204.83 8.18 J1216+6724 154.15 7.55 J1220+6341 252.29 8.65 J1242+3838 242.37 8.56 J1247+6723 241.75 8.55 J1253+4041 209.96 8.24
Table C.2 continued
IAU σ∗ logMσ∗
name km/s M⊙
(1) (2) (3)
J1308+6154 209.81 8.24
J1311+4059 98.28 6.55
J1313+6937 256.21 8.68
J1328−0129 193.67 8.06
J1328−0307 90.05 6.35
J1345+5403 194.70 8.07
J1400+3019 260.71 8.72
J1409−0302 135.68 7.27
J1418+3746 223.84 8.38
J1428+2918 245.16 8.58
J1453+3308 276.88 8.85
J1605+0711 188.18 7.99
J1628+5146 284.19 8.91
J1635+3608 272.75 8.82
J1738+3733 − −
J2145+8154 411.48 9.74
Table C.3: Parameters of radio structures for GRGs.
IAU logPtot logPcore B Q F i
name W/Hz W/Hz [o] [o]
(1) (2) (3) (4) (5) (6) (7)
J0010−1108 23.97 23.04 6.16 1.34 0.84 79
J0037+0027 26.25 24.17 0.26 1.26 0.94 87
J0053+4031 25.43 23.76 3.44 1.29 1.95 78
J0112+4928 25.31 23.63 5.34 1.05 1.24 77
J0134−0107 24.65 24.05 21.64 1.82 4.84 70
J0200+4049 24.70 - 15.07 2.03 0.74 87
J0214+3251 25.95 - 1.23 1.36 1.26 86
J0300−0728 25.68 24.41 4.17 1.53 0.94 86
J0313+4120 25.38 25.24 24.78 2.49 0.16 41
J0318+6829 25.20 23.88 5.08 1.44 0.26 52
J0748+5548 24.45 23.76 2.45 1.11 2.18 19
J0751+4231 25.26 22.56 17.65 1.19 1.20 80
J0918+3151 24.43 22.97 10.98 1.64 0.08 60
J0949+7314 25.29 22.60 16.42 1.26 2.16 69
J1006+3454 26.04 25.88 0.63 1.66 0.75 69
J1021+0519 25.05 23.53 3.00 1.74 1.76 86
J1021+1217 24.77 23.83 15.46 1.14 1.09 84
J1032+2756 24.70 23.78 0.44 1.60 1.34 83
J1032+5644 24.36 23.79 2.11 1.18 0.42 82
J1048+1108 25.17 23.28 0.97 1.31 0.81 79
J1108+0202 25.81 25.63 3.89 1.06 4.23 45
J1111+2657 23.55 23.32 6.85 1.08 0.63 78
J1147+3501 24.87 24.74 10.67 1.26 0.81 80
J1216+4159 25.84 24.45 0.35 1.25 0.82 67
J1216+6724 25.88 24.01 5.64 2.18 0.51 74
J1220+6341 25.38 23.38 2.53 1.25 0.74 88
J1242+3838 25.25 23.67 5.56 1.03 1.72 86
IAU logPtot logPcore B Q F i
name W/Hz W/Hz [o] [o]
(1) (2) (3) (4) (5) (6) (7)
Table C.3 continued
J1247+6723 25.03 24.86 3.77 1.18 1.13 87
J1253+4041 24.86 - 0.05 1.16 1.64 81
J1308+6154 24.85 23.83 11.56 1.18 1.14 80
J1311+4059 25.24 - 1.86 1.07 1.38 86
J1328−0129 25.30 23.92 2.97 1.02 0.73 81
J1313+6937 25.59 - 8.28 1.40 0.58 78
J1328−0307 24.58 23.17 2.51 1.18 0.50 76
J1345+5403 25.36 23.77 3.09 1.18 0.85 85
J1400+3019 25.69 23.28 7.65 2.48 0.54 79
J1409−0302 24.93 - 12.60 2.15 0.50 63
J1418+3746 24.42 23.50 2.64 1.95 1.81 87
J1428+2918 24.89 23.39 4.54 1.31 1.01 85
J1453+3308 25.90 23.51 10.48 1.31 0.55 77
J1605+0711 25.89 - 11.90 1.01 1.23 78
J1628+5146 24.67 23.50 7.24 1.53 0.43 77
J1635+3608 24.83 23.55 16.04 1.31 0.72 60
J1738+3733 24.95 24.60 3.20 1.38 1.16 85
J2145+8154 25.36 23.82 11.48 1.14 0.78 89
Table C.4: Basic parameters of GRGs, DDRGs, smaller-size FRII RSs and CSS RSs with estimations of tRS.
IAU α(J2000.0) δ(J2000.0) z Dout Din logPtot logPcore tRS vσ logMσ Ref. Ref.
name (hm s) (o ’ ”) kpc kpc [W/Hz] [W/Hz] [Myr] km/s M⊙ obj. tRS
(1) (2) (3) (4) (5) 6) (7) (8) (9) (10) (11) (12) (13)
GRGs RG
J0112+4928 48.1 8
J0748+5548 All data in Tables C.1, C.3, C.2 10.0 9
J1313+6937 35.4 10
DDRGs
J0924+0602 09 24 49.05 +06 02 42.9 0.2306 369.68 77.36 25.16 23.41 - 269.20 8.79 1
J1006+3454 10 06 01.77 +34 54 10.2 0.1560 4181.22 - 26.04 25.88 20.3 251.97 8.64 2 9
J1158+2621 11 58 20.12 +26 21 12.1 0.1120 490.92 138.65 25.50 22.42 - 177.06 7.86 3
J1326+1924 13 26 13.67 +19 24 23.8 0.1763 155.12 22.34 24.85 - - 279.69 8.88 3
J1328+2752 13 28 48.45 +27 52 27.8 0.0911 363.84 121.43 24.65 22.68 - 165.08 7.70 3
J1344−0030 13 44 46.92 -00 30 09.3 0.5801 653.30 134.86 25.92 - - 276.49 8.85 3
J1352+3126 13 52 17.88 +31 26 46.5 0.0452 197.25 76.79 25.36 25.21 - 194.73 8.07 4
J1453+3308 14 53 02.92 +33 08 42.7 0.2480 1304.31 141.12 25.90 23.51 52.5 276.88 8.85 5 11
J1528+0544 15 28 04.95 +05 44 28.3 0.0411 619.70 15.56 24.22 22.85 - 143.92 7.40 1
J1545+5047 15 45 17.21 +50 47 54.2 0.4309 338.62 50.76 25.83 - - 212.00 8.26 3
FRII RG J0911+3724 09 11 53.2 +37 24 10 0.1040 454.20 -25.24 -14.0 301.9 9.44 6 12
CSS RSs
J0141+1353 01 41 09.1 +13 53 28 0.6210 - 5.53 27.54 - 0.0013 338.1 9.3 7 13
J1008+0730 10 08 00.0 +07 30 16 0.8770 - 9.03 28.24 - 0.0181 71.18 5.83 7 13
J1028+3844 10 28 44.3 +38 44 37 0.3610 - 5.1 26.40 - 0.0060 389.49 9.61 7 13
J1247+6723 12 47 33.3 +67 23 16 0.1073 1218.55 0.1 24.86 - 0.0002 242.74 8.56 7 13
J1609+2641 16 09 13.3 +26 41 29 0.4730 - 0.26 27.52 - 0.0005 191.42 8.03 7 13
References:(1): this work;(2): Willis,Strom,&Wilson (1974);(3): Nandi&Saikia (2012);(4): Joshi et al. (2011);(5): Konar et al. (2006); (6): Kozieł-Wierzbowska&Stasińska (2011),(7): Czerny et al. (2009). ReferencestotRS estimations:(8): Schoenmakers et al. (2000);(9): Jamrozy et al. (2009);(10): Jamrozy et al. (2008);(11): Jamrozy et al. (2009);(12): Machalski et al. (2007);(13): Czerny et al. (2009).
153
Appendix D
Spectra and radio maps of giant radio galaxies
This appendix presents the optical spectra and radio maps of the sample of GRGs.
In presented below graphs I plotted the observed spectra after galactic extinction and redshift correction (see Section 2.3.1); a spectral continuum modelled using Starlight SpectralSynthesisCode(greenlines); the continuum-subtracted spectra. ForfourGRGs it was not possible to obtain a good stellar continuum fit, therefore, I plot the spectra of those galaxies withought continuum fit.
The1.4-GHz VLA maps of theGRQs taken from theNVSS survey andfrom theFIRST survey(if available) overlaid onthe opticalimagefromtheDSS.The contourlevels are:
√√
-1, 2n; n=0, 1, 2 ... × 1.35 mJy/beam and -1, n; n=0, 1, 2 ... × 0.6 mJy/beam for the NVSS and FIRST surveys, respectively. The ellipses in the corners represent the resolution of the NVSS and FIRST surveys. Crosses mark the position of the parent galaxy.
All radio maps as well as optical spectra of GRGs were recorded on a CD which is attached to the Thesis.
155
Spectra and radio maps of giant radio galaxies
J0010-1108
Wavelength [Å]
-11 02
-11 02
DECLINATION (J2000)
DECLINATION (J2000)
f λ [10−17 erg/s/cm2/Å]
J0037+0027
3.5
3
2.5
2
1.5
1
0.5
0
−0.5
−1
−1.5
−2
2500 3000 3500 4000 4500 5000 5500 6000
Wavelength [Å]
00 34
00 34
32
32
30
30
DECLINATION (J2000)
28
26
24 24
22 22
20 00 38 15 RIGHT ASCENSION (J2000) 00 37 45 30 20 00 38 15 RIGHT ASCENSION (J2000) 00 37 45 30
J0053+4031
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
50 40 30 20 10 0−10
40 38
36
34
32
30
28
26
00 54 00 53 45 30 15 00 RIGHT ASCENSION (J2000)
J0112+4928
4000 4500 5000 5500 6000 6500 7000 Wavelength [Å]
DECLINATION (J2000)
Spectra and radio maps of giant radio galaxies
J0134-0107
100 80
f λ [10−17 erg/s/cm2/Å]
60 40 20 0−20
Wavelength [Å]
-00 58
-00 58
-01 00
-01 00
02
02
04
04
DECLINATION (J2000)
06
08
06
08
10
10
12
12
14
14
16
16
RIGHT ASCENSION (J2000)
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
J0200+4049
80 70 60 50 40 30 20 10
Wavelength [Å]
40 56
54
52
50
48
46
44
42
RIGHT ASCENSION (J2000)
J0214+3251
4000 4500 5000 5500 6000 6500 Wavelength [Å]
DECLINATION (J2000)
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
J0300-0728
12
10
8
6
4
2
0
−2
−4
−6
-07 24 25 26 27 28 29 30 31 32 33 RIGHT ASCENSION (J2000)
160 140 120 100 80 60 40 20 0−20−40
J0313+4120
Wavelength [Å]
DECLINATION (J2000) f λ [10−17 erg/s/cm2/Å]
41 26
24
22
20
18
16
14
RIGHT ASCENSION (J2000)
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
350 300 250 200 150 100 50 0
68 36
34
32
30
28
26
24
J0318+6829
Wavelength [Å]
RIGHT ASCENSION (J2000)
Spectra and radio maps of giant radio galaxies
J0748+5548
200 150
f λ [10−17 erg/s/cm2/Å]
100
50
0
−50
4000 4500 5000 5500 6000 6500 7000
Wavelength [Å]
56 05
56 05
00
DECLINATION (J2000)
55 55
55 55
DECLINATION (J2000)
50
45
40 40
35 35
07 50 30 30 00 49 30 RIGHT ASCENSION (J2000) 00 48 30 00 47 30 00 46 30 07 50 30 30 00 49 30 RIGHT ASCENSION (J2000) 00 48 30 00 47 30 00 46 30
DECLINATION (J2000)
J0751+4231
3500 4000 4500 5000 5500 6000 6500 7000 7500 Wavelength [Å]
42 36
42 36
35
35
34
34
33
32
31
30
30
29
29
28
28
27
27
RIGHT ASCENSION (J2000)
Spectra and radio maps of giant radio galaxies
J0918+3151
100 80
f λ [10−17 erg/s/cm2/Å]
60 40 20 0−20
Wavelength [Å]
31 56
31 56
55
55
54
54
DECLINATION (J2000)
53
52
51
50
50
49
49
48
48
47
47
140 120 100 80 60 40 20 0
J0949+7314
Wavelength [Å]
DECLINATION (J2000) f λ [10−17 erg/s/cm2/Å]
73 20
18
16
14
12
10
08
06
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
90 80 70 60 50 40 30 20 10 0−10
3500 4000 4500 5000
35 15
10
05
00
34 55
50
45
40
35
30
J1006+3454
5500 6000 6500 7000 7500 8000 Wavelength [Å]
10 07 30 00 06 30 00 05 30 00 04 30 RIGHT ASCENSION (J2000)
30 25 20 15 10 5 0−5−10
3500 4000 4500
J1021+0519
5000 5500 6000 6500 7000 7500 Wavelength [Å]
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
05 26
05 28 26
24
24
22
22
DECLINATION (J2000)
20 18
16
16
14
14
12
10 RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000) 12
Spectra and radio maps of giant radio galaxies
J1021+1217
40
35
30
f λ [10−17 erg/s/cm2/Å]
25 20 15 10 5
0−5
Wavelength [Å]
12 24
12 24
22
22
20
20
DECLINATION (J2000)
18
16
18
16
14
14
12
12
10
10
RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
J1032+2756
4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 Wavelength [Å]
10 32 45 30 15 00 31 45 10 32 45 30 15 00 31 45 RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
Spectra and radio maps of giant radio galaxies
J1032+5644
200 150
f λ [10−17 erg/s/cm2/Å]
56 54
100
50
0
−50
4000 4500 5000 5500 6000 6500 7000 7500 8000 8500
Wavelength [Å]
56 54
52
52
50
50
DECLINATION (J2000)
48
46
44
DECLINATION (J2000)
48
46
44
42 42
40 40
38 38
36 36
10 34 00 33 45 30 15 00 32 45 30 15 00 10 34 00 33 45 30 15 00 32 45 30 15 00
RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
40 35 30 25 20 15 10 5 0−5−10 −15
3500 4000 4500
J1048+1108
5000 5500 6000 6500 7000 7500 Wavelength [Å]
f λ [10−17 erg/s/cm2/Å]
11 12
11 12
11
11
10
10
DECLINATION (J2000)
09
08
07
06
06
05
05
04
04
RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
176 Spectra and radio maps of giant radio galaxies
J1108+0202
80
70
60
f λ [10−17 erg/s/cm2/Å]
02 12
50
40
30
20
10
0
−10
3500 4000 4500 5000 5500 6000 6500 7000 7500
Wavelength [Å]
02 12
10
10
08
08
06
06
DECLINATION (J2000)
DECLINATION (J2000)
04
02 04
02
00 00
01 58 01 58
56 56
54 54
11 09 15 00 08 45 30 15 11 09 15 00 08 45 30 15
RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
J1111+2657
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
250 200 150 100 50 0−50
27 15
10
05
00
26 55
50
45
40
11 12 30 00 11 30 00 10 30 00 RIGHT ASCENSION (J2000)
Spectra and radio maps of giant radio galaxies
J1147+3501
450
400
350
f λ [10−17 erg/s/cm2/Å]
300 250 200 150 100 50 0−50
Wavelength [Å]
35 10
35 10
08
08
06
06
DECLINATION (J2000)
04
02
00
04
02
00
34 58 34 58
56 56
54 54
52
52 RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
140 120 100 80 60 40 20 0−20
3500 4000 4500
J1216+4159
5000 5500 6000 6500 7000 Wavelength [Å]
f λ [10−17 erg/s/cm2/Å]
42 04
42 04
03
03
02
02
DECLINATION (J2000)
41 59
01
00
41 59
58
58
57
57
56
56
55
55
RIGHT ASCENSION (J2000)
DECLINATION (J2000) f λ [10−17 erg/s/cm2/Å]
J1216+6724
20
15
10
5
0
−5
67 29
28
27
26
25
24
23
22
21
20
12 17 15 00 16 45 30 15 00
RIGHT ASCENSION (J2000)
25 20 15 10 5 0−5−10
3500 4000 4500
J1220+6341
5000 5500 6000 6500 7000 7500 Wavelength [Å]
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
RIGHT ASCENSION (J2000)
Spectra and radio maps of giant radio galaxies
J1242+3838
4 3
f λ [10−17 erg/s/cm2/Å]
2 1 0−1−2 −3
Wavelength [Å]
DECLINATION (J2000)
38 40 00
38 40 00
39 30
39 30
00
00
DECLINATION (J2000)
38 30
38 30
00
00
37 30
37 30
00
00
36 30
36 30
00
00
RIGHT ASCENSION (J2000)
J1247+6723
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
50 40 30 20 10 0−10
67 32
30
28
26
24
22
20
18
16
14
25 20 15 10 5
0−5
40 46
45
44
43
42
41
40
39
38
37
J1253+4041
Wavelength [Å]
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
30 25 20 15 10 5 0−5−10 −15 −20
3500 4000 4500
J1308+6154
5000 5500 6000 6500 7000 7500 Wavelength [Å]
f λ [10−17 erg/s/cm2/Å]
13 09 15 00 08 45 30 15 13 09 15 00 08 45 30 15 RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
Spectra and radio maps of giant radio galaxies
J1311+4059
80
70
60
f λ [10−17 erg/s/cm2/Å]
50
40
30
20
10
0−10Wavelength [Å]
41 03
41 03
02
01
00
40 59
58
DECLINATION (J2000)
57
56
55
RIGHT ASCENSION (J2000)
J1313+6937
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
160 140 120 100 80 60 40 20 0−20
Wavelength [Å]
69 44
42
40
38
36
34
32
RIGHT ASCENSION (J2000)
Spectra and radio maps of giant radio galaxies
J1328-0129
250 200
f λ [10−17 erg/s/cm2/Å]
150 100 50 0−50
Wavelength [Å]
-01 25
-01 25
26
26
27
27
DECLINATION (J2000)
28
29
30
28
29
30
31 31
32 32
33 33
34
34 RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
J1328-0307
Wavelength [Å]
f λ [10−17 erg/s/cm2/Å]
-02 58
-02 58
-03 00
-03 00
02
02
04
04
DECLINATION (J2000)
06
08
10
12
12
14
14
16
16
Spectra and radio maps of giant radio galaxies
f λ [10−17 erg/s/cm2/Å]
25 20 15 10 5 0−5−10
J1345+5403
3500 4000 4500 5000 5500 6000 6500 7000 7500 Wavelength [Å]
DECLINATION (J2000) DECLINATION (J2000)
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
J1400+3019
3500 4000 4500 5000 5500 6000 6500 7000 Wavelength [Å]
30 26 RIGHT ASCENSION (J2000)
Spectra and radio maps of giant radio galaxies
J1409-0302
3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 Wavelength [Å]
-02 56
-02 56
-03 00
-03 00
DECLINATION (J2000)
J1418+3746
3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 Wavelength [Å]
RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
DECLINATION (J2000)
Spectra and radio maps of giant radio galaxies
J1428+2918
60 50
f λ [10−17 erg/s/cm2/Å]
40
30
20
10
0
−10
−20
3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Wavelength [Å]
29 28
29 28
26
26
24
24
22
22
DECLINATION (J2000)
20
18
DECLINATION (J2000)
20
18
16 16
14 14
12 12
10 10
14 29 00 28 45 30 15 00 27 45 14 29 00 28 45 30 15 00 27 45
RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
J1453+3308
3500 4000 4500 5000 5500 6000 6500 7000 Wavelength [Å]
RIGHT ASCENSION (J2000) RIGHT ASCENSION (J2000)
DECLINATION (J2000)
f λ [10−17 erg/s/cm2/Å]
07 14 300013 300012 300011 300010 300009 30
16 05 22
20 18 16 14 12 10RIGHT ASCENSION (J2000)
08 06
07 14 300013 300012 300011 300010 300009 30
16 05 22 20 18 16 14 12 10 08 06 RIGHT ASCENSION (J2000)
J1628+5146
Wavelength [Å]
51 56
51 56
DECLINATION (J2000)
Spectra and radio maps of giant radio galaxies
J1635+3608
30 25
f λ [10−17 erg/s/cm2/Å]
20 15 10 5 0−5−10
Wavelength [Å]
36 12
36 12
11
11
10
10
DECLINATION (J2000)
09
09
08
08
07
07
06
06
05
05
04
04
RIGHT ASCENSION (J2000)
40 35 30 25 20 15 10 5 0
J1738+3733
Wavelength [Å]
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
37 40
38
36
34
32
30
28
RIGHT ASCENSION (J2000)
400 350 300 250 200 150 100 50 0−50
J2145+8154
Wavelength [Å]
f λ [10−17 erg/s/cm2/Å]
DECLINATION (J2000)
82 10
05
00
81 55
50
45
RIGHT ASCENSION (J2000)