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We discuss a modified gravity theory defined by f (R) = ∑l
n αn M2(1−n) Rn . We consider both finite and 

infinite number of terms in the series while requiring that the Einstein frame potential of the theory 
has a flat area around any of its stationary points. We show that the requirement of maximally flat 
stationary point leads to the existence of the saddle point (local maximum) for even (odd) l. In both 
cases for l → ∞ one obtains the Starobinsky model with small, exponentially suppressed corrections. 
Besides the GR minimum the Einstein frame potential has an anti de Sitter vacuum. However we argue 
that the GR vacuum is absolutely stable and AdS can be reached neither via classical evolution nor via 
quantum tunnelling. Our results show that a Starobinsky-like model is the only possible realisation of 
f (R) theory with an extremely flat area in the Einstein frame potential.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Cosmic inflation [1–3] is a well established, consistent with the 
data [4], theory of the early universe which predicts cosmic ac-
celeration and generation of seeds of the large scale structure of 
the present universe. The inflationary universe can be obtained by 
introduction of additional fields or by modification of general rela-
tivity (GR), which is the possibility explored in this paper. The first 
theory of inflation is the Starobinsky model [5,6], which is an f (R)

theory [7] with R + R2/6M2 Lagrangian density. In such a model 
the acceleration of space–time is generated in the empty universe, 
i.e. by the gravitational interaction itself. This comes from the fact 
that the homogeneous and isotropic R2 model gives an exact de 
Sitter solution.

The f (R) theory is one of the simplest generalisations of 
general relativity (GR). It is based on Lagrangian density S =
1
2

∫
d4√−g f (R) and it can be expressed using the so-called aux-

iliary field, which means that the Ricci scalar is treated as a inde-
pendent scalar degree of freedom. In such a case one defines Q by 
Q := R and the Jordan frame (JF) action is equal to

S JF =
∫

d4x
√−g

(
F (Q )

R

2
− U (Q )

)
, (1)
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where F = df /dQ and U (Q ) = (Q F (Q ) − f (Q ))/2. U is the Jor-
dan frame (JF) potential, which is related to energy density of 
the field, but its derivative is not an effective force in the EOM 
of Q. For F = 1 one recovers GR, which is usually positioned at 
Q = 0. Note that the variation of the JF action with respect to 
Q gives F ′(Q )(Q − R) = 0. Therefore one obtains a constraint on 
Q and R , which is valid whenever F ′(Q ) �= 0. If F ′ = 0 the con-
straint is satisfied for any relation between Q and R , and therefore 
we lose one-to-one correspondence between the scalar picture and 
the original f (R) theory. The Jordan frame auxiliary field can also 
be defined as ϕ := F (R). This convention requires an exact form 
of the function R = R(ϕ), however obtaining such a form is not 
always possible.

The same model can be expressed in the Einstein frame (EF), 
with the metric tensor defined as g̃μν = F (Q )gμν . This is a purely 
classical transformation of coordinates and results obtained in one 
frame are classically perfectly equivalent to the ones from another 
frame. The EF action is equal to

SEF =
∫

d4 x̃
√

−g̃

(
1

2
R̃ + 1

2
(∂μφ)2 − V (φ)

)
, (2)

where R̃ , φ := √
3/2 log F and V := (R F − f )/(2F 2) are the EF 

Ricci scalar, auxiliary field and potential respectively. The EF poten-
tial should have a minimum at the GR vacuum, which is positioned 
at φ = 0. The auxiliary field φ may be used as an inflaton or a 
source of the dark energy, which makes the f (R) theory a power-
ful theoretical tool to solve problems of classical cosmology.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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A separate issue related to f (R) inflation concerns loop correc-
tions to the f(R) function. Note that the R2 term in the Starobinsky
model was originally motivated by one-loop correction to GR, 
which in principle could be extended into series of higher or-
der loop corrections. In order to obtain quasi de Sitter evolution 
of space–time one needs a wide range of energies for which the 
R2M−2 term dominates the Lagrangian density. This would re-
quire all higher order corrections (such as R3, R4 etc.) [8,9] to be 
suppressed by a mass scale much bigger than M . One naturally 
expects all higher order correction to GR to appear at the same 
energy scale if one wants to avoid fine-tuning of coefficients of 
all higher order terms. Thus, the influence of higher order correc-
tions on the Starobinsky model may spoil the flatness of the Ein-
stein frame potential and prevent the early universe from inflating. 
The saddle-point inflation generated by higher order corrections to 
Starobinsky model was already analysed in [9–11]. In this paper 
we extend this analysis as follows: we assume that the Einstein 
frame potential of the f (R) theory with higher order terms up to 
Rl has a flat area around any of its stationary points. We do not 
assume where such a point is, we simply require that the potential 
is as flat as possible around it, namely that first l − 2 derivatives 
of V are equal to zero at this point, which gives certain relations 
between αn coefficients. We describe implications of such extreme 
flatness. We also investigate the issue of stability of the GR vacuum 
of the model. We stress that our point of view is that whatever 
corrections have been computed there exists an effective classical 
action that can be studied and this is what we do in this paper. 
Our approach also covers the case that higher order corrections 
come from the Taylor expansion of some fundamental, unknown 
f (R) theory.

In what follows we use the convention 8πG = M−2
p = 1, where 

Mp = 2.435 × 1018 GeV is the reduced Planck mass.
The outline of the paper is as follows. In Sec. 2 we discuss the 

general form of f (R) with a stationary point around which the 
Einstein frame potential is as flat as possible. In Sec. 3 we investi-
gate the stability of the GR vacuum and a possibility of quantum 
tunnelling to anti de Sitter vacuum. Finally we summarise in Sec. 4

2. General f (R) function with stationary point in Einstein frame

2.1. A stationary point with k vanishing derivatives

As mentioned in the introduction we require the existence of a 
stationary point (i.e. extremum or saddle point) anywhere in the 
Einstein frame potential besides the minimum in φ = 0, which is 
the GR vacuum. We require the potential around a stationary point 
to be as flat as possible for a given f (R) function. We want to find 
out whether this requirement will determine the shape of V (φ)

outside of the domain of a stationary point. Let us assume that the 
f (R) function is the following sum of Rn terms

f (R) =
l∑

n=1

αn
Rn

M2(n−1)
, (3)

where l > 4 is a natural number. In order to obtain the correct 
GR limit one requires α1 = 1. Without any loss of generality one 
can choose α3 to be any positive constant, so for simplicity we set 
α3 = 1. Conditions Vφ = 0 and Vφφ = 0 are equivalent to R F = 2 f
and R F ′ = F for some R = Rs , where Rs is a stationary point of 
the Einstein frame potential. All dk V

dφk = 0 for k > 2 are equivalent 

to dk f
dRk = 0. In case of a saddle point there is a deeper motivation 

to consider Rs with many vanishing derivatives. The saddle point 
with Vφ = Vφφ = 0 and Vφφφ �= 0 gives spectral index ns � 0.92, 
which is inconsistent with the PLANCK data. On the other hand the 
saddle point with first k derivatives vanishing, which was analysed 
in Ref. [12], gives 1 − ns � 2k

N�(k−1)
, so one can fit the PLANCK data 

for k of order of at least a few, if the pivot scale leaves the horizon 
when φ is close to the saddle point. For any given l > 2 one can 
obtain maximally l − 2 vanishing derivatives of the Einstein frame 
potential for some φs . This comes from the fact that R and R2

automatically satisfy V (n) = 0 for any non-zero n. Assuming the 
maximal number of vanishing derivatives one obtains

R = Rs = √
p M2 , where p = (l − 1)

(
l

2
− 1

)
, (4)

where Rs is a saddle point (local maximum) of V for even (odd) l
respectively. The αn coefficients satisfy

αn = (−1)n−1 2(l − 3)!
(l − n)!(n − 1)! p

3−n
2 for n = {3, . . . , l} . (5)

Note that Eq. (4) and (5) are completely independent of α2. For 
the odd (even) l one finds αl > 0 (αl < 0) respectively. Thus for 
even l one obtains F < 0 for sufficiently big R and the gravity 
becomes repulsive. Note that F = 0 does not only separates the 
attractive and repulsive limit of gravity. It is also a pressure sin-
gularity, which cannot be passed by any trajectory in phase space. 
Usually the maximal allowed R is an order of magnitude bigger 
than Rs . For odd l the potential is well defined for all R > 0. The 
α2 is the only free parameter of the theory, since none of the con-
ditions for the stationary point does not constrain it. Using Eq. (3)
and (5) one obtains

f (R) = R + α2

M2
R2

+ R

(
lM2√pR + M4 p

((
1 − R

M2√
p

)l − 1

)
− (l − 1)R2

)
M4 p − M2√pR

. (6)

The Einstein frame potential for such an f (R) theory has several 
troublesome points. The first one is the repulsive gravity limit for 
sufficiently big R and even l. The second one is the possible insta-
bility of the GR vacuum at R = 0. For α2 = 0 the only minimum 
is the anti de Sitter minimum at certain R < 0. In order to create 
a potential barrier between the possibly unstable GR vacuum and 
anti de Sitter vacuum one needs α2 > 0, which will be analysed in 
detail in the section 3. We plot the Einstein frame potential as a 
function of φ and R in Fig. 1 and Fig. 2 respectively.

In the Ref. [9] we showed what are the features of the power 
spectrum of primordial inhomogeneities for the saddle-point case 
(even l). For odd l the results are exactly the same, i.e. r and ns
have the same l dependence as in the even l scenario. For any fi-
nite l there is an issue of initial conditions for inflation. For the 
saddle point inflation the R cannot be too high in order to i) stay 
on the inflationary branch of the potential, ii) avoid the repulsive 
gravity regime. For odd l the question is how has the field ap-
peared on the plateau and why initial φ was smaller than φs (the 
opposite case would mean that the field rolls down towards the 
runaway vacuum). Note that for odd l one can also obtain the topo-
logical inflation.

2.2. Extensions to other scalar-tensor theories

One could try to generalize this analysis into the Brans–Dicke 
theory. In Ref. [10,11] we have investigated the issue of higher or-
der corrections to the JF potential in Brans–Dicke theory. We have 
proven that in the presence of higher order corrections one can 
still obtain flat areas of the Einstein frame potential, for instance 
around a saddle point. Nevertheless such a saddle point is not 
maximally flat, i.e. we required in Ref. [10,11] only the first two 
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Fig. 1. Left panel: EF potential for the model (6) for l = 6, l = 8, l = 10, l = 12 and l = 14 (orange, green, red, brown and blue lines respectively). The saddle point lies close 
to the right edge of the potential, beyond which one obtains a second branch of V , which leads to repulsive gravity. Right panel: plateaus around local maxima for several 
odd l. All potentials have runaway vacuum for big φ. For both odd and even l the width of the plateau grows with l, which leads to the infinite plateau for l → ∞. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Einstein frame potential for different values of l and α = 1/2 (left panel) and α = 1 (right panel). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)
derivatives to be zero, even though the number of free parameters 
enabled us to make the first three derivatives of V vanish. This 
issue can be discussed for a general series of higher order cor-
rections to the JF potential. It is easy to show that for the Jordan 
frame potential

U =
l∑

n=1

αn(ϕ − 1)n (7)

one cannot obtain a real, maximally flat stationary point in the 
Einstein frame. Therefore the idea presented in this paper does not 
work in the Brans–Dicke theory.

The other way to extend this analysis is to include negative 
powers of R in the f (R) power series. In particular such terms 
could be used as source of dark energy [13]. Nevertheless, negative 
powers of R have several disadvantages. In Ref. [13] it was proven 
that For the R − αRn models with n < 0 one does not obtain the 
true dust domination era, which is inconsistent with astronomical 
observations. The other issue is the influence of negative powers of 
R on the stability of GR vacuum – after including n < 0 in Eq. (3)
the GR vacuum does not appear even for significant contribution 
of α2. Therefore we restrict our analysis to positive n.

Another form of scalar-tensor theory used to obtain inflation-
ary potentials is the so-called induced inflation [14,15] with the 
following action

S =
∫

d4√−g

[
1

f (ϕ)R + 1
(∂ϕ)2 − M2( f − 1)2

]
. (8)
2 2
The EF potential takes the form V = (1 − 1/ f )2 and therefore for 
big values of f it has a Starobinsky-like plateau. Note, that for f =
1 + ξϕ2 one recovers the Higgs inflation. This simple model was 
generalised into f = 1 +ξϕn , which gives the same results as Higgs 
or Starobinsky inflation in the strong coupling limit [16]. For the 
following form of f (ϕ)

f (ϕ) = ξ

n∑
k=0

λk ϕk , (9)

the requirement of the existence of the maximally flat area around 
a stationary point of the EF potential gives

f (ϕ) = λ0 + ξ

n
(n λn)

−1
n−1

(
1 +

(
(n λn)

1
n−1 ϕ − 1

)n)
. (10)

This form of f (ϕ) contains all possible positive powers of ϕ and 
besides the Starobinsky-like plateau for big ϕ it predicts the ex-
istence of an additional plateau around the saddle point at ϕs =
(n λn)

−1
n−1 . Depending on values of λ0 and λn the two plateaus can 

be separated by the GR minimum or there can be a cascade of 
plateaus. Therefore this model can generate a multi-phase infla-
tion, where each phase occurs at a different energy scale. The same 
approach could be also used in the context of a scalar theory with 
minimal coupling to gravity. The results of this analysis will be 
presented in our further work.
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Fig. 3. Left Panel: The Einstein frame potential as a function of the Ricci scalar. The GR minimum at R = 0 seems to be unstable, due to the existence of the anti de Sitter 
vacuum. Right Panel: The Einstein frame potential V as a function of the Einstein frame field φ for the model (11). Two branches of potential correspond to two solutions of 
φ = √

3/2 log F (R). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
2.3. The l → ∞ limit

Numerical analysis shows that in order to obtain correct nor-
malisation of primordial inhomogeneities one needs M = M(l, α2). 
Nevertheless for l → ∞ one obtains M → Mo = Mo(α2) (where 
Mo ∼ 10−5 for α2 = 0), which implies Rs → ∞ for l → ∞. Hence 
for l 
 1 one cannot obtain inflation close to stationary point. For 
l → ∞ one obtains

f (R) = R

(
e
−

√
2R

M2
o +

√
2 + α2

M2
o

R

)
. (11)

The result is a slightly modified Starobinsky model, which is very 
interesting, since we require the existence of a point around which 
the potential is perfectly flat. Note that one cannot obtain the ana-
lytical relation ϕ = ϕ(R) for all α2. The GR vacuum of the Einstein 
frame potential of (11) does not exist without the explicit contri-
bution of the α2 term. This comes from the fact that around φ = 0
one finds

V � M2

12α2
φ2 −

(
2α2

2 + 1
)

M2

12
√

6α3
2

φ3 +O(φ4). (12)

Without the α2 term all derivatives of V around the GR vacuum 
are singular. Thus the positive α2 is needed to stabilise the GR 
vacuum at φ = 0. For α2 < 0 one finds F < 0 for R � α2M2

o , so the 
GR limit lies in the range of repulsive gravity.

The numerical results for the power spectra for N� = 60 are 
shown in Fig. 6 of Ref. [9]. As expected, for α 
 1 values of 
M/

√
α, r and ns assume limiting values of the Starobinsky the-

ory. As shown in Fig. 3 the potentials have two branches, which 
split at some φ = φm , where φm is the minimal value of φ. The 
splitting point corresponds to the value of the Ricci scalar, for 
which F ′ = 0 and therefore the auxiliary field loses its relation 
to R . For α2 = 0 one obtains two branches of the potential which 
grow out from φ = 0. Both of them do exist only for φ > 0 with 
no GR minimum. While increasing the value of α2 the splitting 
of branches moves towards φ < 0 and the inflationary branch de-
velops a minimum at φ = 0. The splitting does not exists if one 
expresses V as a function of R or Q . Then one obtains two vacua 
(at φ = R = 0 and at R = −M2/

√
2) separated by the maximum 

at R = −M2(W (e2(
√

2α + 2)) − 2)/
√

2, where W is the Lambert 
function. For α2 � 1.2 this maximum becomes a global maximum.

2.4. The self reproduction of the universe

One can describe the evolution of the universe by the set of the 
classical equations of motion when quantum fluctuations of fields 
and metric remain small. This issue is especially important in the 
slow-roll regime for potentials, which are very flat or may assume 
very big values. Let us therefore investigate the slow-roll limit of 
the quantum and classical evolution of the scalaron (denoted as 
δφ and �φ respectively) during one Hubble time tH, which is the 
typical time scale for the inflationary universe. Then one obtains

δφ < �φ ⇔
∣∣∣(R F − f )3/2

∣∣∣ < 4π |F (2 f − R F )| . (13)

When the condition (13) is not satisfied one obtains domination of 
quantum fluctuations over the classical evolution of φ, so the field 
does not need to evolve towards its minimum. For |δφ| 
 |�φ| in 
a half of horizons generated during one Hubble time the value of φ
would even grow! For the potentials with inflationary plateau this 
effect appears when the field is on the plateau, far enough from 
the GR minimum. The flatness of the plateau provides small �φ, 
which decreases while increasing φ. Meanwhile δφ ∝ √

V remains 
almost φ independent, so at some φ > φq one obtains δφ > �φ.

For the R + α2 R2/M2 Lagrangian density one finds Rq ∼
8π M/

√
α2 and therefore φq ∼

√
3
2 log

(
16π

√
α2

M

)
, which should be 

the α2 → ∞ limit of the theory with higher order terms. The value 
of Rq for the model (11) is plotted in the right panel of the Fig. 4. 
Note that for α2 < 106 the quantum corrections start to dominate 
for much lower values of R than in the Starobinsky model. Never-
theless Rq is always at least an order of magnitude bigger than R� , 
which is the value of the Ricci scalar at which the pivot scale is 
leaving the horizon. Therefore the last 60 e-folds of inflation al-
ways remain determined by the classical evolution of the field.

The issue of quantum self-reproduction of the universe is con-
sidered in vast majority of inflationary theories. In this section we 
are not trying to solve it but rather to show that the classical evo-
lution of the inflaton is valid at the crucial (i.e. observed) stage of 
inflation. Therefore it is sufficient that only one horizon would de-
tach from eternal inflation, which would provide the graceful exit. 
Nevertheless one could argue that since vast majority of horizons 
are still inflating it is a priori highly improbable to live in the hori-
zon that ever stopped inflating. Again, this problem is typical for 
inflation and not just for our model.

3. Classical and quantum stability of the GR vacuum

For both finite and infinite l one obtains the EF potential with 
two vacua: i) the GR vacuum at R = 0, ii) the true vacuum of the 
model, which is the anti de Sitter minimum of the EF potential at 
R = −M2/

√
2 (for l → ∞) or at some negative R (for finite l). One 

could ask whether it is possible to reach the true vacuum by clas-
sical evolution of the auxiliary field or by quantum tunnelling. In 
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Fig. 4. Left panel: Values of ϕ̇ at the maximum of the Einstein frame potential for which a nonsingular solution to the euclidean equation of motion exists. Values of ϕ̇ for 
a physical time and the same l and α are purely imaginary. right panel: Rq and R∗ as a functions of α2 for l → ∞ model. For α2 � 106 one recovers the result of the 
Starobinsky theory. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the first case the field could in principle overshoot the GR mini-
mum while rolling down from the plateau. This could happen for 
a small α, which would make the barrier between minima of the 
EF potential too low. Using the Ricci scalar as a scalar degree of 
freedom to discuss the quantum tunnelling [11,17], we obtain the 
equation of motion

R̈ + 3
ȧ

a
Ṙ = 1

3F ′ (2 f − R F − F ′′ Ṙ2) , (14)

where F ′ = ∂ F/∂ R and Ṙ = dR/dt . Let us focus on the evolution of 
R around maximum of the EF potential, which separates GR and 
anti de Sitter minima. Let us denote R at the maximum as Rmax. 
For any l in our potential F ′(Rmax) = 0, which means that for R =
Rmax one requires 2 f − R F − F ′′ Ṙ2 = 0, to obtain a non-singular
solution. Let us assume that l 
 1 and α < 1, which is a generic 
case for the issue of instability of the GR vacuum. Then Rmax ∼
−αM2/3 and (2 f − R F )/F ′′(R = Rmax) ∼ −αM2/18. In fact for all 
α and l around R � Rmax one finds Ṙ2 = (2 f − R F )/F ′′ < 0, and 
so, Eq. (14) does not have real non-singular solutions connecting 
the two vacua. Only real solutions are physical and therefore all 
potentials, which require complex solutions to allow R to reach 
Rmax are excluded. In particular we should limit our parameter 
space to those potentials, which do not allow us to reach Rmax
starting from the plateau with the slow-roll initial conditions for R . 
Taking into account the α2 dependence of M we have calculated 
the minimal value of α2 (denoted as αmin), which prevents R from 
reaching Rmax and therefore overshooting the GR minimum. The 
result is plotted in Fig. 8 in Ref. [9].

Another way to reach anti de Sitter vacuum would be to satisfy 
2 f − R F − F ′′ Ṙ2 = 0 with Ṙ = 0 at R = Rmax. This condition can 
be satisfied for

α2 � 1

2
√

p

((
l − 1

l − 2

)l−2

(3l − 4) − 2(l − 1)

)
, (15)

which in the l → ∞ limit gives α = (3e − 2)/
√

2. In this case 
one could possibly obtain an enormously finely tuned solution in 
which the curvature freezes at R = Rmax. Some quantum fluctua-
tion could then push it towards anti de Sitter vacuum. Nevertheless 
values of α which allow for such a solution are ∼ 5 times bigger 
than αmin mentioned already in this section. Therefore the max-
imum would be too high, and we would not be able to reach it 
assuming slow-roll initial conditions on the plateau. Initial con-
ditions on the plateau beyond the slow-roll approximation would 
mean that inflation did not commence and there is no hope to 
reconcile such solutions with experimental data.

In euclidean version of the theory the EOM, we need to solve 
while discussing quantum tunnelling, reads
R̈ + 3
ȧ

a
Ṙ = 1

3F ′ (−2 f + R F − F ′′ Ṙ2) . (16)

Now with the sign of potential term from (14) changed, the RHS 
of EOM is no longer complex around R = Rmax. In fact there ex-
ists a single value of Ṙmax for each l and α which results in a 
nonsingular solution. This value is shown in Fig. 4. Thus, it is pos-
sible to obtain a real solution of Eq. (16), which passes Rmax, but 
it does not imply that quantum tunnelling of R into the anti de 
Sitter vacuum is possible. We also need to satisfy specific bound-
ary conditions for the solution to represent an appearing bubble 
of the true vacuum. Most importantly we require that for t → ∞
the solution asymptotes to our background, the GR vacuum. In or-
der to check whether our single possible value of Ṙmax represents 
a tunnelling solution, we solve the EOM from Rmax towards the 
GR vacuum and check whether the boundary condition is fulfilled. 
Generically this is not the case and even if there exists a value of 
α for a given l for which we obtain a solution this excludes only 
a single point in the parameter space. Thus we conclude that the 
GR vacuum is in general stable also with respect to quantum tun-
nelling.

Vacuum stability in a model with a potential which splits in 
to two branches was recently discussed in [18] with the appli-
cation of the thin-wall approximation. This approximation does 
not require finding the solution to EOM and is more related to 
the other process which can render the vacuum unstable, that 
is the Hawking–Moss transition [19]. Essentially it is a temper-
ature effect in which the system is excited to an unstable con-
figuration on top of the barrier separating the two vacua. The 
role of temperature is played by Hawking–Gibbons temperature 
TdS = H/(2π) ≈ √

V /3/(2π) [20]. Action of the HM instanton is 
the difference between the action of homogeneous solution of field 
in the false vacuum and on the top of the barrier at φmax

SHM = Smax − SG R = 24π2
(

1

V max
− 1

V G R

)
. (17)

To reach the top of the barrier we would need to satisfy (15). How-
ever we can already see a problem since the decay probability is 
as usual exponentially suppressed by the action


 ∝ e−S H M . (18)

In our model V max is of the order of 10−13 while V G R ≈ 10−120

(both in Planck units), and the resulting action is enormous S ≈
10122 leaving the decay practically impossible. Of course we could 
tune the model parameters by lowering α2 to lower the barrier to 
α2 � 1. However a more stringent constraint comes from requiring 
that the field does not reach the top of the barrier during classi-
cal evolution from normal slow-roll initial conditions needed for 
inflation.
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4. Conclusions

In this paper we investigate the issue of very general higher or-
der corrections to an f (R) model in the context of the slow-roll 
inflation. In Sec. 2 we consider f (R) = ∑l

n αn M2(1−n)Rn and we 
require the existence of a maximally flat area around a station-
ary point φs in the Einstein frame potential V . This requirement is 
equivalent to vanishing of the first l − 2 derivatives of V at φ = φs , 
which gives us values of all αn coefficients for n ≥ 3. The station-
ary point appears to be a saddle point (local maximum) for even 
(odd) l respectively. In both cases power spectra of primordial in-
homogeneities are consistent with PLANCK for l ≥ 10. The α2 R2

term is not constrained by the flatness of V at φ = φs and there-
fore α2 is a free parameter of a theory. A contribution of the R2

term is needed in order to obtain GR vacuum of V .
In the l → ∞ limit one obtains f (R) = R(e−√

2R/M2
o +

(
√

2 + α2)R/M2
o ), which is the Starobinsky model with an expo-

nentially suppressed deviation. In such a model V has two minima, 
namely the possibly unstable GR minimum for α2 > 0 and an anti 
de-Sitter minimum at R = −M/

√
2. Let us stress that again – we 

have started from the most general form of f (R) with all possible 
Rn terms (for n > 0) and we have required that somewhere on V
there is a stationary point around which the potential is as flat as 
possible. Even though we have not assumed anything about other 
parts of potential we have obtained a Starobinsky-like model with 
flat inflationary plateau and with predictions consistent with the 
PLANCK data.

The existence of the anti de Sitter vacuum rises a possibil-
ity of an instability of the GR minimum, which we analyse in 
Sec. 3. Minima are separated by a local maximum of the Einstein 
frame potential at R = Rmax. For R = Rmax one finds F ′ = 0, which 
causes discontinuity of Vφ . In order to satisfy Friedmann equa-
tions at R = Rmax one needs complex values of curvature. This 
makes every solution, which reaches Rmax unphysical. In order to 
avoid this one requires α2 � 0.7, so the maximum is too high to 
be reach by the scalaron with slow-roll initial conditions on the 
plateau. For the Euclidean time the solution, which passes Rmax
can be real. Nevertheless, for every set of α and l one obtains just 
two trajectories, which passes Rmax, so quantum tunnelling is very 
improbable. The GR vacuum of the model is therefore perfectly 
stable.
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