Engineering non-equilibrium quantum phase transitions via causally gapped Hamiltonians

2018
journal article
article
13
dc.abstract.enWe introduce a phenomenological theory for many-body control of critical phenomena by engineering causally-induced gaps for quantum Hamiltonian systems. The core mechanisms are controlling information flow within and/or between clusters that are created near a quantum critical point. To this end, we construct inhomogeneous quantum phase transitions via designing spatiotemporal quantum fluctuations. We show how non-equilibrium evolution of disordered quantum systems can create new effective correlation length scales and effective dynamical critical exponents. In particular, we construct a class of causally-induced non-adiabatic quantum annealing transitions for strongly disordered quantum Ising chains leading to exponential suppression of topological defects beyond standard Kibble–Zurek predictions. Using exact numerical techniques for 1D quantum Hamiltonian systems, we demonstrate that our approach exponentially outperforms adiabatic quantum computing. Using strong-disorder renormalization group (SDRG), we demonstrate the universality of inhomogeneous quantum critical dynamics and exhibit the reconstructions of causal zones during SDRG flow. We derive a scaling relation for minimal causal gaps showing they narrow more slowly than any polynomial with increasing size of system, in contrast to stretched exponential scaling in standard adiabatic evolution. Furthermore, we demonstrate similar scaling behavior for random cluster-Ising Hamiltonians with higher order interactions.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiegopl
dc.contributor.authorMohseni, Masoudpl
dc.contributor.authorStrumpfer, Johanpl
dc.contributor.authorRams, Marek - 142333 pl
dc.date.accessioned2018-10-24T11:41:42Z
dc.date.available2018-10-24T11:41:42Z
dc.date.issued2018pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number10pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume20pl
dc.identifier.articleid105002pl
dc.identifier.doi10.1088/1367-2630/aae3edpl
dc.identifier.eissn1367-2630pl
dc.identifier.projectROD UJ / OPpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/58611
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 3.0 Polska*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/legalcode*
dc.share.typeotwarte czasopismo
dc.subtypeArticlepl
dc.titleEngineering non-equilibrium quantum phase transitions via causally gapped Hamiltonianspl
dc.title.journalNew Journal of Physicspl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
We introduce a phenomenological theory for many-body control of critical phenomena by engineering causally-induced gaps for quantum Hamiltonian systems. The core mechanisms are controlling information flow within and/or between clusters that are created near a quantum critical point. To this end, we construct inhomogeneous quantum phase transitions via designing spatiotemporal quantum fluctuations. We show how non-equilibrium evolution of disordered quantum systems can create new effective correlation length scales and effective dynamical critical exponents. In particular, we construct a class of causally-induced non-adiabatic quantum annealing transitions for strongly disordered quantum Ising chains leading to exponential suppression of topological defects beyond standard Kibble–Zurek predictions. Using exact numerical techniques for 1D quantum Hamiltonian systems, we demonstrate that our approach exponentially outperforms adiabatic quantum computing. Using strong-disorder renormalization group (SDRG), we demonstrate the universality of inhomogeneous quantum critical dynamics and exhibit the reconstructions of causal zones during SDRG flow. We derive a scaling relation for minimal causal gaps showing they narrow more slowly than any polynomial with increasing size of system, in contrast to stretched exponential scaling in standard adiabatic evolution. Furthermore, we demonstrate similar scaling behavior for random cluster-Ising Hamiltonians with higher order interactions.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.contributor.authorpl
Mohseni, Masoud
dc.contributor.authorpl
Strumpfer, Johan
dc.contributor.authorpl
Rams, Marek - 142333
dc.date.accessioned
2018-10-24T11:41:42Z
dc.date.available
2018-10-24T11:41:42Z
dc.date.issuedpl
2018
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
10
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
20
dc.identifier.articleidpl
105002
dc.identifier.doipl
10.1088/1367-2630/aae3ed
dc.identifier.eissnpl
1367-2630
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/58611
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 3.0 Polska
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/3.0/legalcode
dc.share.type
otwarte czasopismo
dc.subtypepl
Article
dc.titlepl
Engineering non-equilibrium quantum phase transitions via causally gapped Hamiltonians
dc.title.journalpl
New Journal of Physics
dc.typepl
JournalArticle
dspace.entity.type
Publication

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
1
Views per month
Views per city
Ashburn
1
Downloads
mohseni_strumpfer_rams_engineering_non-equilibrium_quantum_phase_2018.pdf
3