Temperature-modulated doping at polymer semiconductor interfaces

2021
journal article
article
1
cris.lastimport.wos2024-04-10T02:24:05Z
dc.abstract.enUnderstanding doping in polymer semiconductors has important implications for the development of organic electronic devices. This study reports a detailed investigation of the doping of the poly(3-hexylthiophene) (P3HT)/Nafion bilayer interfaces commonly used in organic biosensors. A combination of UV–visible spectroscopy, dynamic secondary ion mass spectrometry (d-SIMS), dynamic mechanical thermal analysis, and electrical device characterization reveals that the doping of P3HT increases with annealing temperature, and this increase is associated with thermally activated interdiffusion of the P3HT and Nafion. First-principles modeling of d-SIMS depth profiling data demonstrates that the diffusivity coefficient is a strong function of the molar concentration, resulting in a discrete intermixed region at the P3HT/Nafion interface that grows with increasing annealing temperature. Correlating the electrical conductance measurements with the diffusion model provides a detailed model for the temperature-modulated doping that occurs in P3HT/Nafion bilayers. Point-of-care testing has created a market for low-cost sensor technology, with printed organic electronic sensors well positioned to meet this demand, and this article constitutes a detailed study of the doping mechanism underlying such future platforms for the development of sensing technologies based on organic semiconductors.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiegopl
dc.contributor.authorHolmes, Natalie P.pl
dc.contributor.authorElkington, Daniel C.pl
dc.contributor.authorBergin, Matthewpl
dc.contributor.authorGriffith, Matthew J.pl
dc.contributor.authorSharma, Anirudhpl
dc.contributor.authorFahy, Adampl
dc.contributor.authorAndersson, Mats R.pl
dc.contributor.authorBelcher, Warwickpl
dc.contributor.authorRysz, Jakub - 131755 pl
dc.contributor.authorDastoor, Paul C.pl
dc.date.accessioned2021-09-27T18:03:47Z
dc.date.available2021-09-27T18:03:47Z
dc.date.issued2021pl
dc.description.number3pl
dc.description.physical1384-1393pl
dc.description.volume3pl
dc.identifier.doi10.1021/acsaelm.1c00008pl
dc.identifier.eissn2637-6113pl
dc.identifier.projectROD UJ / Opl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/279179
dc.languageengpl
dc.language.containerengpl
dc.pbn.affiliationDziedzina nauk ścisłych i przyrodniczych : nauki fizycznepl
dc.rightsDodaję tylko opis bibliograficzny*
dc.rights.licencebez licencji
dc.rights.uri*
dc.subject.enbiosensorpl
dc.subject.enprinted electronicspl
dc.subject.enorganic electronicspl
dc.subject.endopingpl
dc.subject.ensemiconductor interfacepl
dc.subtypeArticlepl
dc.titleTemperature-modulated doping at polymer semiconductor interfacespl
dc.title.journalACS Applied Electronic Materialspl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-10T02:24:05Z
dc.abstract.enpl
Understanding doping in polymer semiconductors has important implications for the development of organic electronic devices. This study reports a detailed investigation of the doping of the poly(3-hexylthiophene) (P3HT)/Nafion bilayer interfaces commonly used in organic biosensors. A combination of UV–visible spectroscopy, dynamic secondary ion mass spectrometry (d-SIMS), dynamic mechanical thermal analysis, and electrical device characterization reveals that the doping of P3HT increases with annealing temperature, and this increase is associated with thermally activated interdiffusion of the P3HT and Nafion. First-principles modeling of d-SIMS depth profiling data demonstrates that the diffusivity coefficient is a strong function of the molar concentration, resulting in a discrete intermixed region at the P3HT/Nafion interface that grows with increasing annealing temperature. Correlating the electrical conductance measurements with the diffusion model provides a detailed model for the temperature-modulated doping that occurs in P3HT/Nafion bilayers. Point-of-care testing has created a market for low-cost sensor technology, with printed organic electronic sensors well positioned to meet this demand, and this article constitutes a detailed study of the doping mechanism underlying such future platforms for the development of sensing technologies based on organic semiconductors.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.contributor.authorpl
Holmes, Natalie P.
dc.contributor.authorpl
Elkington, Daniel C.
dc.contributor.authorpl
Bergin, Matthew
dc.contributor.authorpl
Griffith, Matthew J.
dc.contributor.authorpl
Sharma, Anirudh
dc.contributor.authorpl
Fahy, Adam
dc.contributor.authorpl
Andersson, Mats R.
dc.contributor.authorpl
Belcher, Warwick
dc.contributor.authorpl
Rysz, Jakub - 131755
dc.contributor.authorpl
Dastoor, Paul C.
dc.date.accessioned
2021-09-27T18:03:47Z
dc.date.available
2021-09-27T18:03:47Z
dc.date.issuedpl
2021
dc.description.numberpl
3
dc.description.physicalpl
1384-1393
dc.description.volumepl
3
dc.identifier.doipl
10.1021/acsaelm.1c00008
dc.identifier.eissnpl
2637-6113
dc.identifier.projectpl
ROD UJ / O
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/279179
dc.languagepl
eng
dc.language.containerpl
eng
dc.pbn.affiliationpl
Dziedzina nauk ścisłych i przyrodniczych : nauki fizyczne
dc.rights*
Dodaję tylko opis bibliograficzny
dc.rights.licence
bez licencji
dc.rights.uri*
dc.subject.enpl
biosensor
dc.subject.enpl
printed electronics
dc.subject.enpl
organic electronics
dc.subject.enpl
doping
dc.subject.enpl
semiconductor interface
dc.subtypepl
Article
dc.titlepl
Temperature-modulated doping at polymer semiconductor interfaces
dc.title.journalpl
ACS Applied Electronic Materials
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
17
Views per month
Views per city
Ashburn
5
Wroclaw
2
Bayreuth
1
Dublin
1
Livingston
1

No access

No Thumbnail Available