Self-organized topological insulator due to cavity-mediated correlated tunneling

2021
journal article
article
14
cris.lastimport.wos2024-04-10T00:50:51Z
dc.abstract.enTopological materials have potential applications for quantum technologies. Non-interacting topological materials, such as e.g., topological insulators and superconductors, are classified by means of fundamental symmetry classes. It is instead only partially understood how interactions affect topological properties. Here, we discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions. The system is composed by soft-core bosons that interact via global correlated hopping in a one-dimensional lattice. The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry, the corresponding phase resembles nontrivial states of the celebrated Su-Schriefer-Heeger model. Like the fermionic Peierls instability, the emerging quantum phase is a topological insulator and is found at half fillings. Originating from quantum interference, this topological phase is found in "exact" density-matrix renormalization group calculations and is entirely absent in the mean-field approach. We argue that these dynamics can be realized in existing experimental platforms, such as cavity quantum electrodynamics setups, where the topological features can be revealed in the light emitted by the resonator.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznejpl
dc.contributor.authorChanda, Titas - 409734 pl
dc.contributor.authorKraus, Rebeccapl
dc.contributor.authorMorigi, Giovannapl
dc.contributor.authorZakrzewski, Jakub - 100023 pl
dc.date.accessioned2021-07-14T11:30:55Z
dc.date.available2021-07-14T11:30:55Z
dc.date.issued2021pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.versionostateczna wersja wydawcy
dc.description.volume5pl
dc.identifier.articleid501pl
dc.identifier.doi10.22331/q-2021-07-13-501pl
dc.identifier.eissn2521-327Xpl
dc.identifier.projectROD UJ / OPpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/276229
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeotwarte czasopismo
dc.subtypeArticlepl
dc.titleSelf-organized topological insulator due to cavity-mediated correlated tunnelingpl
dc.title.journalQuantumpl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-10T00:50:51Z
dc.abstract.enpl
Topological materials have potential applications for quantum technologies. Non-interacting topological materials, such as e.g., topological insulators and superconductors, are classified by means of fundamental symmetry classes. It is instead only partially understood how interactions affect topological properties. Here, we discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions. The system is composed by soft-core bosons that interact via global correlated hopping in a one-dimensional lattice. The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry, the corresponding phase resembles nontrivial states of the celebrated Su-Schriefer-Heeger model. Like the fermionic Peierls instability, the emerging quantum phase is a topological insulator and is found at half fillings. Originating from quantum interference, this topological phase is found in "exact" density-matrix renormalization group calculations and is entirely absent in the mean-field approach. We argue that these dynamics can be realized in existing experimental platforms, such as cavity quantum electrodynamics setups, where the topological features can be revealed in the light emitted by the resonator.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki Teoretycznej
dc.contributor.authorpl
Chanda, Titas - 409734
dc.contributor.authorpl
Kraus, Rebecca
dc.contributor.authorpl
Morigi, Giovanna
dc.contributor.authorpl
Zakrzewski, Jakub - 100023
dc.date.accessioned
2021-07-14T11:30:55Z
dc.date.available
2021-07-14T11:30:55Z
dc.date.issuedpl
2021
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
5
dc.identifier.articleidpl
501
dc.identifier.doipl
10.22331/q-2021-07-13-501
dc.identifier.eissnpl
2521-327X
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/276229
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
otwarte czasopismo
dc.subtypepl
Article
dc.titlepl
Self-organized topological insulator due to cavity-mediated correlated tunneling
dc.title.journalpl
Quantum
dc.typepl
JournalArticle
dspace.entity.type
Publication

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
15
Views per month
Views per city
Ashburn
5
Wroclaw
2
Dublin
1
Lappeenranta
1
Downloads
chanda_kraus_morigi_zakrzewski_self-organized_topological_insulator_2021.pdf
2