Asymptotic and exact expansions of heat traces

2015
journal article
article
8
dc.abstract.enWe study heat traces associated with positive unbounded operators with compact inverses. With the help of the inverse Mellin transform we derive necessary conditions for the existence of a short time asymptotic expansion. The conditions are formulated in terms of the meromorphic extension of the associated spectral zeta-functions and proven to be verified for a large class of operators. We also address the problem of convergence of the obtained asymptotic expansions. General results are illustrated with a number of explicit examples.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiegopl
dc.affiliationWydział Matematyki i Informatykipl
dc.contributor.authorEckstein, Michał - 106698 pl
dc.contributor.authorZając, Artur - 138775 pl
dc.date.accessioned2015-12-14T14:37:24Z
dc.date.available2015-12-14T14:37:24Z
dc.date.issued2015pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number1pl
dc.description.publication2,9pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume18pl
dc.identifier.articleid28pl
dc.identifier.doi10.1007/s11040-015-9197-2pl
dc.identifier.eissn1572-9656pl
dc.identifier.issn1385-0172pl
dc.identifier.urihttp://ruj.uj.edu.pl/xmlui/handle/item/18252
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.typeinne
dc.subject.enheat tracespl
dc.subject.enasymptotic expansionspl
dc.subject.enspectral theorypl
dc.subject.enzeta-functionspl
dc.subject.engeneral Dirichlet seriespl
dc.subtypeArticlepl
dc.titleAsymptotic and exact expansions of heat tracespl
dc.title.journalMathematical Physics, Analysis and Geometrypl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
We study heat traces associated with positive unbounded operators with compact inverses. With the help of the inverse Mellin transform we derive necessary conditions for the existence of a short time asymptotic expansion. The conditions are formulated in terms of the meromorphic extension of the associated spectral zeta-functions and proven to be verified for a large class of operators. We also address the problem of convergence of the obtained asymptotic expansions. General results are illustrated with a number of explicit examples.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.affiliationpl
Wydział Matematyki i Informatyki
dc.contributor.authorpl
Eckstein, Michał - 106698
dc.contributor.authorpl
Zając, Artur - 138775
dc.date.accessioned
2015-12-14T14:37:24Z
dc.date.available
2015-12-14T14:37:24Z
dc.date.issuedpl
2015
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
1
dc.description.publicationpl
2,9
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
18
dc.identifier.articleidpl
28
dc.identifier.doipl
10.1007/s11040-015-9197-2
dc.identifier.eissnpl
1572-9656
dc.identifier.issnpl
1385-0172
dc.identifier.uri
http://ruj.uj.edu.pl/xmlui/handle/item/18252
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.enpl
heat traces
dc.subject.enpl
asymptotic expansions
dc.subject.enpl
spectral theory
dc.subject.enpl
zeta-functions
dc.subject.enpl
general Dirichlet series
dc.subtypepl
Article
dc.titlepl
Asymptotic and exact expansions of heat traces
dc.title.journalpl
Mathematical Physics, Analysis and Geometry
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
28
Views per month
Views per city
Ashburn
9
Krakow
4
Dublin
2
Wroclaw
2
Boardman
1
Chandler
1
Des Moines
1
Lappeenranta
1
New York
1
Downloads
Asymptotic and exact expansions of heat traces.pdf
3