Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium

2019
journal article
article
17
cris.lastimport.wos2024-04-09T22:24:37Z
dc.abstract.enCell division, movement and differentiation contribute to pattern formation in developing tissues. This is the case in the vertebrate neural tube, in which neurons differentiate in a characteristic pattern from a highly dynamic proliferating pseudostratified epithelium. To investigate how progenitor proliferation and differentiation affect cell arrangement and growth of the neural tube, we used experimental measurements to develop a mechanical model of the apical surface of the neuroepithelium that incorporates the effect of interkinetic nuclear movement and spatially varying rates of neuronal differentiation. Simulations predict that tissue growth and the shape of lineage-related clones of cells differ with the rate of differentiation. Growth is isotropic in regions of high differentiation, but dorsoventrally biased in regions of low differentiation. This is consistent with experimental observations. The absence of directional signalling in the simulations indicates that global mechanical constraints are sufficient to explain the observed differences in anisotropy. This provides insight into how the tissue growth rate affects cell dynamics and growth anisotropy and opens up possibilities to study the coupling between mechanics, pattern formation and growth in the neural tube.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiegopl
dc.contributor.authorGuerrero, Pilarpl
dc.contributor.authorPerez-Carrasco, Rubenpl
dc.contributor.authorZagórski, Marcin - 114055 pl
dc.contributor.authorPage, Davidpl
dc.contributor.authorKicheva, Annapl
dc.contributor.authorBriscoe, Jamespl
dc.contributor.authorPage, Karen M.pl
dc.date.accessioned2019-12-20T13:36:28Z
dc.date.available2019-12-20T13:36:28Z
dc.date.issued2019pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number23pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume146pl
dc.identifier.articleiddev176297pl
dc.identifier.doi10.1242/dev.176297pl
dc.identifier.eissn1477-9129pl
dc.identifier.issn0950-1991pl
dc.identifier.projectROD UJ / OPpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/129673
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeinne
dc.subject.encomputational modellingpl
dc.subject.enepithelial mechanicspl
dc.subject.enneural tubepl
dc.subject.entissue mechanicspl
dc.subject.envertex modelpl
dc.subtypeArticlepl
dc.titleNeuronal differentiation influences progenitor arrangement in the vertebrate neuroepitheliumpl
dc.title.journalDevelopmentpl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T22:24:37Z
dc.abstract.enpl
Cell division, movement and differentiation contribute to pattern formation in developing tissues. This is the case in the vertebrate neural tube, in which neurons differentiate in a characteristic pattern from a highly dynamic proliferating pseudostratified epithelium. To investigate how progenitor proliferation and differentiation affect cell arrangement and growth of the neural tube, we used experimental measurements to develop a mechanical model of the apical surface of the neuroepithelium that incorporates the effect of interkinetic nuclear movement and spatially varying rates of neuronal differentiation. Simulations predict that tissue growth and the shape of lineage-related clones of cells differ with the rate of differentiation. Growth is isotropic in regions of high differentiation, but dorsoventrally biased in regions of low differentiation. This is consistent with experimental observations. The absence of directional signalling in the simulations indicates that global mechanical constraints are sufficient to explain the observed differences in anisotropy. This provides insight into how the tissue growth rate affects cell dynamics and growth anisotropy and opens up possibilities to study the coupling between mechanics, pattern formation and growth in the neural tube.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.contributor.authorpl
Guerrero, Pilar
dc.contributor.authorpl
Perez-Carrasco, Ruben
dc.contributor.authorpl
Zagórski, Marcin - 114055
dc.contributor.authorpl
Page, David
dc.contributor.authorpl
Kicheva, Anna
dc.contributor.authorpl
Briscoe, James
dc.contributor.authorpl
Page, Karen M.
dc.date.accessioned
2019-12-20T13:36:28Z
dc.date.available
2019-12-20T13:36:28Z
dc.date.issuedpl
2019
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
23
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
146
dc.identifier.articleidpl
dev176297
dc.identifier.doipl
10.1242/dev.176297
dc.identifier.eissnpl
1477-9129
dc.identifier.issnpl
0950-1991
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/129673
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.enpl
computational modelling
dc.subject.enpl
epithelial mechanics
dc.subject.enpl
neural tube
dc.subject.enpl
tissue mechanics
dc.subject.enpl
vertex model
dc.subtypepl
Article
dc.titlepl
Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium
dc.title.journalpl
Development
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
12
Views per month
Views per city
Des Moines
6
Wroclaw
2
Ashburn
1
Dublin
1
Downloads
zagorski_et-al_neuronal_differentiation_influences_progenitor_arrangement_2019.odt
1