SVM with a neutral class

2019
journal article
article
14
dc.abstract.enIn many real binary classification problems, in addition to the presence of positive and negative classes, we are also given the examples of third neutral class, i.e., the examples with uncertain or intermediate state between positive and negative. Although it is a common practice to ignore the neutral class in a learning process, its appropriate use can lead to the improvement in classification accuracy. In this paper, to include neutral examples in a training stage, we adapt two variants of Tri-Class SVM (proposed by Angulo et al. in Neural Process Lett 23(1):89–101, 2006), the method designed to solve three-class problems with a use of single learning model. In analogy to classical SVM, we look for such a hyperplane, which maximizes the margin between positive and negative instances and which is localized as close to the neutral class as possible. In addition to original Angulo’s paper, we give a new interpretation of the model and show that it can be easily implemented in the primal. Our experiments demonstrate that considered methods obtain better results in binary classification problems than classical SVM and semi-supervised SVM.pl
dc.affiliationWydział Matematyki i Informatyki : Instytut Informatyki i Matematyki Komputerowejpl
dc.contributor.authorŚmieja, Marek - 135996 pl
dc.contributor.authorTabor, Jacek - 132362 pl
dc.contributor.authorSpurek, Przemysław - 135993 pl
dc.date.accessioned2019-08-28T07:58:51Z
dc.date.available2019-08-28T07:58:51Z
dc.date.issued2019pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number2pl
dc.description.physical573-582pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume22pl
dc.identifier.doi10.1007/s10044-017-0654-3pl
dc.identifier.eissn1433-755Xpl
dc.identifier.issn1433-7541pl
dc.identifier.project2016/21/D/ST6/00980pl
dc.identifier.project2015/19/B/ST6/01819pl
dc.identifier.project2015/19/D/ST6/01472pl
dc.identifier.projectROD UJ / OPpl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/81390
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeinne
dc.subject.enclassificationpl
dc.subject.enSVMpl
dc.subject.ensemi-supervised learningpl
dc.subject.encheminformaticspl
dc.subtypeArticlepl
dc.titleSVM with a neutral classpl
dc.title.journalPattern Analysis and Applicationspl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
In many real binary classification problems, in addition to the presence of positive and negative classes, we are also given the examples of third neutral class, i.e., the examples with uncertain or intermediate state between positive and negative. Although it is a common practice to ignore the neutral class in a learning process, its appropriate use can lead to the improvement in classification accuracy. In this paper, to include neutral examples in a training stage, we adapt two variants of Tri-Class SVM (proposed by Angulo et al. in Neural Process Lett 23(1):89–101, 2006), the method designed to solve three-class problems with a use of single learning model. In analogy to classical SVM, we look for such a hyperplane, which maximizes the margin between positive and negative instances and which is localized as close to the neutral class as possible. In addition to original Angulo’s paper, we give a new interpretation of the model and show that it can be easily implemented in the primal. Our experiments demonstrate that considered methods obtain better results in binary classification problems than classical SVM and semi-supervised SVM.
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Informatyki i Matematyki Komputerowej
dc.contributor.authorpl
Śmieja, Marek - 135996
dc.contributor.authorpl
Tabor, Jacek - 132362
dc.contributor.authorpl
Spurek, Przemysław - 135993
dc.date.accessioned
2019-08-28T07:58:51Z
dc.date.available
2019-08-28T07:58:51Z
dc.date.issuedpl
2019
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
2
dc.description.physicalpl
573-582
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
22
dc.identifier.doipl
10.1007/s10044-017-0654-3
dc.identifier.eissnpl
1433-755X
dc.identifier.issnpl
1433-7541
dc.identifier.projectpl
2016/21/D/ST6/00980
dc.identifier.projectpl
2015/19/B/ST6/01819
dc.identifier.projectpl
2015/19/D/ST6/01472
dc.identifier.projectpl
ROD UJ / OP
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/81390
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subject.enpl
classification
dc.subject.enpl
SVM
dc.subject.enpl
semi-supervised learning
dc.subject.enpl
cheminformatics
dc.subtypepl
Article
dc.titlepl
SVM with a neutral class
dc.title.journalpl
Pattern Analysis and Applications
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
4
Views per month
Views per city
Ashburn
2
Downloads
smieja_tabor_spurek_svm_with_a_neutral_class_2019.pdf
20
smieja_tabor_spurek_svm_with_a_neutral_class_2019.odt
5