Extreme entropy machines : robust information theoretic classification

2017
journal article
article
18
dc.abstract.enMost existing classification methods are aimed at minimization of empirical risk (through some simple point-based error measured with loss function) with added regularization. We propose to approach the classification problem by applying entropy measures as a model objective function. We focus on quadratic Renyi’s entropy and connected Cauchy-Schwarz Divergence which leads to the construction of extreme entropy machines (EEM). The main contribution of this paper is proposing a model based on the information theoretic concepts which on the one hand shows new, entropic perspective on known linear classifiers and on the other leads to a construction of very robust method competitive with the state of the art noninformation theoretic ones (including Support Vector Machines and Extreme Learning Machines). Evaluation on numerous problems spanning from small, simple ones from UCI repository to the large (hundreds of thousands of samples) extremely unbalanced (up to 100:1 classes’ ratios) datasets shows wide applicability of the EEM in real-life problems. Furthermore, it scales better than all considered competitive methods.pl
dc.affiliationWydział Matematyki i Informatyki : Instytut Informatyki i Matematyki Komputerowejpl
dc.contributor.authorCzarnecki, Wojciech - 115076 pl
dc.contributor.authorTabor, Jacek - 132362 pl
dc.date.accessioned2017-04-26T10:41:11Z
dc.date.available2017-04-26T10:41:11Z
dc.date.issued2017pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number2pl
dc.description.physical383-400pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume20pl
dc.identifier.doi10.1007/s10044-015-0497-8pl
dc.identifier.eissn1433-755Xpl
dc.identifier.issn1433-7541pl
dc.identifier.urihttp://ruj.uj.edu.pl/xmlui/handle/item/39735
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 3.0 Polska*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/legalcode*
dc.share.typeinne
dc.subject.enrapid learningpl
dc.subject.enextreme learning machinespl
dc.subject.enrandom projectionspl
dc.subject.enclassificationpl
dc.subject.enentropypl
dc.subtypeArticlepl
dc.titleExtreme entropy machines : robust information theoretic classificationpl
dc.title.journalPattern Analysis and Applicationspl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
Most existing classification methods are aimed at minimization of empirical risk (through some simple point-based error measured with loss function) with added regularization. We propose to approach the classification problem by applying entropy measures as a model objective function. We focus on quadratic Renyi’s entropy and connected Cauchy-Schwarz Divergence which leads to the construction of extreme entropy machines (EEM). The main contribution of this paper is proposing a model based on the information theoretic concepts which on the one hand shows new, entropic perspective on known linear classifiers and on the other leads to a construction of very robust method competitive with the state of the art noninformation theoretic ones (including Support Vector Machines and Extreme Learning Machines). Evaluation on numerous problems spanning from small, simple ones from UCI repository to the large (hundreds of thousands of samples) extremely unbalanced (up to 100:1 classes’ ratios) datasets shows wide applicability of the EEM in real-life problems. Furthermore, it scales better than all considered competitive methods.
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Informatyki i Matematyki Komputerowej
dc.contributor.authorpl
Czarnecki, Wojciech - 115076
dc.contributor.authorpl
Tabor, Jacek - 132362
dc.date.accessioned
2017-04-26T10:41:11Z
dc.date.available
2017-04-26T10:41:11Z
dc.date.issuedpl
2017
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
2
dc.description.physicalpl
383-400
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
20
dc.identifier.doipl
10.1007/s10044-015-0497-8
dc.identifier.eissnpl
1433-755X
dc.identifier.issnpl
1433-7541
dc.identifier.uri
http://ruj.uj.edu.pl/xmlui/handle/item/39735
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 3.0 Polska
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/3.0/pl/legalcode
dc.share.type
inne
dc.subject.enpl
rapid learning
dc.subject.enpl
extreme learning machines
dc.subject.enpl
random projections
dc.subject.enpl
classification
dc.subject.enpl
entropy
dc.subtypepl
Article
dc.titlepl
Extreme entropy machines : robust information theoretic classification
dc.title.journalpl
Pattern Analysis and Applications
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
2
Views per month
Views per city
Ashburn
2
Downloads
Extreme entropy machines_robust information theoretic classification.pdf
10