The structure of mean equicontinuous group actions

2022
journal article
article
9
cris.lastimport.wos2024-04-09T22:23:46Z
dc.abstract.enWe study mean equicontinuous actions of locally compact σ-compact amenable groups on compact metric spaces. In this setting, we establish the equivalence of mean equicontinuity and topo-isomorphy to the maximal equicontinuous factor and provide a characterization of mean equicontinuity of an action via properties of its product. This characterization enables us to show the equivalence of mean equicontinuity and the weaker notion of Besicovitch-mean equicontinuity in fairly high generality, including actions of abelian groups as well as minimal actions of general groups. In the minimal case, we further conclude that mean equicontinuity is equivalent to discrete spectrum with continuous eigenfunctions. Applications of our results yield a new class of non-abelian mean equicontinuous examples as well as a characterization of those extensions of mean equicontinuous actions which are still mean equicontinuous.pl
dc.affiliationWydział Matematyki i Informatyki : Instytut Matematykipl
dc.contributor.authorFuhrmann, Gabrielpl
dc.contributor.authorGröger, Maik - 440950 pl
dc.contributor.authorLenz, Danielpl
dc.date.accessioned2022-07-08T08:33:33Z
dc.date.available2022-07-08T08:33:33Z
dc.date.issued2022pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.physical75-123pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume247pl
dc.identifier.doi10.1007/s11856-022-2292-8pl
dc.identifier.eissn1565-8511pl
dc.identifier.issn0021-2172pl
dc.identifier.urihttps://ruj.uj.edu.pl/xmlui/handle/item/295540
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/legalcode.pl*
dc.share.typeinne
dc.subtypeArticlepl
dc.titleThe structure of mean equicontinuous group actionspl
dc.title.journalIsrael Journal of Mathematicspl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T22:23:46Z
dc.abstract.enpl
We study mean equicontinuous actions of locally compact σ-compact amenable groups on compact metric spaces. In this setting, we establish the equivalence of mean equicontinuity and topo-isomorphy to the maximal equicontinuous factor and provide a characterization of mean equicontinuity of an action via properties of its product. This characterization enables us to show the equivalence of mean equicontinuity and the weaker notion of Besicovitch-mean equicontinuity in fairly high generality, including actions of abelian groups as well as minimal actions of general groups. In the minimal case, we further conclude that mean equicontinuity is equivalent to discrete spectrum with continuous eigenfunctions. Applications of our results yield a new class of non-abelian mean equicontinuous examples as well as a characterization of those extensions of mean equicontinuous actions which are still mean equicontinuous.
dc.affiliationpl
Wydział Matematyki i Informatyki : Instytut Matematyki
dc.contributor.authorpl
Fuhrmann, Gabriel
dc.contributor.authorpl
Gröger, Maik - 440950
dc.contributor.authorpl
Lenz, Daniel
dc.date.accessioned
2022-07-08T08:33:33Z
dc.date.available
2022-07-08T08:33:33Z
dc.date.issuedpl
2022
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.physicalpl
75-123
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
247
dc.identifier.doipl
10.1007/s11856-022-2292-8
dc.identifier.eissnpl
1565-8511
dc.identifier.issnpl
0021-2172
dc.identifier.uri
https://ruj.uj.edu.pl/xmlui/handle/item/295540
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 4.0 Międzynarodowa
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/4.0/legalcode.pl
dc.share.type
inne
dc.subtypepl
Article
dc.titlepl
The structure of mean equicontinuous group actions
dc.title.journalpl
Israel Journal of Mathematics
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
12
Views per month
Views per city
Ashburn
2
Wroclaw
2
Dublin
1
Krakow
1
Lappeenranta
1
Downloads
groger_et-al_the_structure_of_mean_equicontinuou_2022.pdf
54
groger_et-al_the_structure_of_mean_equicontinuou_2022.odt
5